101
|
Abstract
The pathophysiology of cutaneous lupus erythematosus (CLE) encompasses the complex interactions between genetics, the environment, and cells and their products. Recent data have provided enhanced understanding of these interactions and the mechanism by which they cause disease. A number of candidate genes have been identified which increase the risk of developing CLE. Ultraviolet radiation, the predominant environmental exposure associated with CLE, appears to initiate CLE lesion formation by inducing apoptosis, precipitating autoantigen presentation, and promoting cellular production of specific cytokines. Autoantibodies are a well-known entity in CLE, but their exact role remains unclear. Finally, cells ranging from native skin cells to innate and adaptive immune cells produce cytokines and other molecules and play specific roles in lesion formation and perpetuation. Native skin cells implicated in CLE include keratinocytes and endothelial cells. Innate immune cells crucial to CLE pathophysiology include dendritic cells and neutrophils. The primary adaptive immune cells thought to be involved include Th1 cells, Th17 cells, cytotoxic T cells, and invariant natural killer T cells. Though the pathophysiology of CLE has yet to be fully characterized, current research provides direction for future research and therapies.
Collapse
Affiliation(s)
- Jordan C Achtman
- Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, 19104, USA. .,Department of Dermatology, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Victoria P Werth
- Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, 19104, USA. .,Department of Dermatology, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
102
|
Lenz TL, Deutsch AJ, Han B, Hu X, Okada Y, Eyre S, Knapp M, Zhernakova A, Huizinga TWJ, Abecasis G, Becker J, Boeckxstaens GE, Chen WM, Franke A, Gladman DD, Gockel I, Gutierrez-Achury J, Martin J, Nair RP, Nöthen MM, Onengut-Gumuscu S, Rahman P, Rantapää-Dahlqvist S, Stuart PE, Tsoi LC, van Heel DA, Worthington J, Wouters MM, Klareskog L, Elder JT, Gregersen PK, Schumacher J, Rich SS, Wijmenga C, Sunyaev SR, de Bakker PIW, Raychaudhuri S. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat Genet 2015; 47:1085-90. [PMID: 26258845 PMCID: PMC4552599 DOI: 10.1038/ng.3379] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/16/2015] [Indexed: 12/14/2022]
Abstract
Human leukocyte antigen (HLA) genes confer strong risk for autoimmune diseases on a log-additive scale. Here we speculated that differences in autoantigen binding repertoires between a heterozygote’s two expressed HLA variants may result in additional non-additive risk effects. We tested non-additive disease contributions of classical HLA alleles in patients and matched controls for five common autoimmune diseases: rheumatoid arthritis (RA, Ncases=5,337), type 1 diabetes (T1D, Ncases=5,567), psoriasis vulgaris (Ncases=3,089), idiopathic achalasia (Ncases=727), and celiac disease (Ncases=11,115). In four out of five diseases, we observed highly significant non-additive dominance effects (RA: P=2.5×1012; T1D: P=2.4×10−10; psoriasis: P=5.9×10−6; celiac disease: P=1.2×10−87). In three of these diseases, the dominance effects were explained by interactions between specific classical HLA alleles (RA: P=1.8×10−3; T1D: P=8.6×1027; celiac disease: P=6.0×10−100). These interactions generally increased disease risk and explained moderate but significant fractions of phenotypic variance (RA: 1.4%, T1D: 4.0%, and celiac disease: 4.1%, beyond a simple additive model).
Collapse
Affiliation(s)
- Tobias L Lenz
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Evolutionary Immunogenomics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Aaron J Deutsch
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Partners Center for Personalized Genetic Medicine, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA.,Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Boston, Massachusetts, USA
| | - Buhm Han
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Partners Center for Personalized Genetic Medicine, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA.,Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Xinli Hu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Partners Center for Personalized Genetic Medicine, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA.,Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Boston, Massachusetts, USA
| | - Yukinori Okada
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Partners Center for Personalized Genetic Medicine, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA.,Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Stephen Eyre
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK.,National Institute for Health Research (NIHR) Manchester Musculoskeletal Biomedical Research Unit, Central Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Michael Knapp
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Alexandra Zhernakova
- Genetics Department, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gonçalo Abecasis
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.,Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jessica Becker
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Guy E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Dafna D Gladman
- Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Centre for Prognosis Studies in the Rheumatic Diseases, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada.,Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Javier Gutierrez-Achury
- Genetics Department, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Rajan P Nair
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Proton Rahman
- Department of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Solbritt Rantapää-Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.,Department of Rheumatology, Umeå University, Umeå, Sweden
| | - Philip E Stuart
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lam C Tsoi
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.,Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - David A van Heel
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane Worthington
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK.,National Institute for Health Research (NIHR) Manchester Musculoskeletal Biomedical Research Unit, Central Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Mira M Wouters
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Lars Klareskog
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - James T Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA
| | - Peter K Gregersen
- Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, USA
| | - Johannes Schumacher
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Cisca Wijmenga
- Genetics Department, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Shamil R Sunyaev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Paul I W de Bakker
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Epidemiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Soumya Raychaudhuri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Partners Center for Personalized Genetic Medicine, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA.,Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK.,Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
103
|
Jaberi-Douraki M, Pietropaolo M, Khadra A. Continuum model of T-cell avidity: Understanding autoreactive and regulatory T-cell responses in type 1 diabetes. J Theor Biol 2015; 383:93-105. [PMID: 26271890 DOI: 10.1016/j.jtbi.2015.07.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/22/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that results from the destruction of insulin-secreting pancreatic β cells, leading to abolition of insulin secretion and onset of diabetes. Cytotoxic CD4(+) and CD8(+) T cells, activated by antigen presenting cells (APCs), are both implicated in disease onset and progression. Regulatory T cells (Tregs), on the other hand, play a leading role in regulating immunological tolerance and resistant homoeostasis in T1D by suppressing effector T cells (Teffs). Recent data indicates that after activation, conventional Teffs transiently produce interleukin IL-2, a cytokine that acts as a growth factor for both Teffs and Tregs. Tregs suppress Teffs through IL-2 deprivation, competition and Teff conversion into inducible Tregs (iTregs). To investigate the interactions of these components during T1D progression, a mathematical model of T-cell dynamics is developed as a predictor of β-cell loss, with the underlying hypothesis that avidity of Teffs and Tregs, i.e., the binding affinity of T-cell receptors to peptide-major histocompatibility complexes on host cells, is continuum. The model is used to infer a set of criteria that determines susceptibility to T1D in high risk subjects. Our findings show that diabetes onset is guided by the absence of Treg-to-Teff dominance at specific high avidities, rather than over the whole range of avidity, and that the lack of overall dominance of Teffs-to-Tregs over time is the underlying cause of the "honeymoon period", the remission phase observed in some T1D patients. The model also suggests that competition between Teffs and Tregs is more effective than Teff-induction into iTregs in suppressing Teffs, and that a prolonged full width at half maximum of IL-2 release is a necessary condition for curbing disease onset. Finally, the model provides a rationale for observing rapid and slow progressors of T1D based on modest heterogeneity in the kinetic parameters.
Collapse
Affiliation(s)
| | - Massimo Pietropaolo
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston 77030, Texas, USA
| | - Anmar Khadra
- Department of Physiology, McGill University, H3G 1Y6, Quebec, Montreal, Canada.
| |
Collapse
|
104
|
Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem Rev 2015; 115:11109-46. [PMID: 26154342 DOI: 10.1021/acs.chemrev.5b00109] [Citation(s) in RCA: 553] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Darrell J Irvine
- The Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard University , 400 Technology Square, Cambridge, Massachusetts 02139, United States.,Howard Hughes Medical Institute , Chevy Chase, Maryland 20815, United States
| | | | | | | |
Collapse
|
105
|
Hollenbach JA, Oksenberg JR. The immunogenetics of multiple sclerosis: A comprehensive review. J Autoimmun 2015; 64:13-25. [PMID: 26142251 DOI: 10.1016/j.jaut.2015.06.010] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system and common cause of non-traumatic neurological disability in young adults. The likelihood for an individual to develop MS is strongly influenced by her or his ethnic background and family history of disease, suggesting that genetic susceptibility is a key determinant of risk. Over 100 loci have been firmly associated with susceptibility, whereas the main signal genome-wide maps to the class II region of the human leukocyte antigen (HLA) gene cluster and explains up to 10.5% of the genetic variance underlying risk. HLA-DRB1*15:01 has the strongest effect with an average odds ratio of 3.08. However, complex allelic hierarchical lineages, cis/trans haplotypic effects, and independent protective signals in the class I region of the locus have been described as well. Despite the remarkable molecular dissection of the HLA region in MS, further studies are needed to generate unifying models to account for the role of the MHC in disease pathogenesis. Driven by the discovery of combinatorial associations of Killer-cell Immunoglobulin-like Receptor (KIR) and HLA alleles with infectious, autoimmune diseases, transplantation outcome and pregnancy, multi-locus immunogenomic research is now thriving. Central to immunity and critically important for human health, KIR molecules and their HLA ligands are encoded by complex genetic systems with extraordinarily high levels of sequence and structural variation and complex expression patterns. However, studies to-date of KIR in MS have been few and limited to very low resolution genotyping. Application of modern sequencing methodologies coupled with state of the art bioinformatics and analytical approaches will permit us to fully appreciate the impact of HLA and KIR variation in MS.
Collapse
Affiliation(s)
- Jill A Hollenbach
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Jorge R Oksenberg
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
106
|
Threlfall AJ, Boag AM, Soutter F, Glanemann B, Syme HM, Catchpole B. Analysis of DLA-DQB1 and polymorphisms in CTLA4 in Cocker spaniels affected with immune-mediated haemolytic anaemia. Canine Genet Epidemiol 2015; 2:8. [PMID: 26401336 PMCID: PMC4579385 DOI: 10.1186/s40575-015-0020-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cocker spaniels are predisposed to immune-mediated haemolytic anaemia (IMHA), suggesting that genetic factors influence disease susceptibility. Dog leukocyte antigen (DLA) class II genes encode major histocompatibility complex (MHC) molecules that are involved in antigen presentation to CD4(+) T cells. Several DLA haplotypes have been associated with autoimmune disease, including IMHA, in dogs, and breed specific differences have been identified. Cytotoxic T lymphocyte antigen 4 (CTLA4) is a critical molecule involved in the regulation of T-cell responses. Single nucleotide polymorphisms (SNPs) in the CTLA4 promoter have been shown to be associated with several autoimmune diseases in humans and more recently with diabetes mellitus and hypoadrenocorticism in dogs. The aim of the present study was to investigate whether DLA-DQB1 alleles or CTLA4 promoter variability are associated with risk of IMHA in Cocker spaniels. RESULTS There were a restricted number of DLA-DQB1 alleles identified, with a high prevalence of DLA-DQB1*007:01 in both groups. A high prevalence of DLA-DQB1 homozygosity was identified, although there was no significant difference between IMHA cases and controls. CTLA4 promoter haplotype diversity was limited in Cocker spaniels, with all dogs expressing at least one copy of haplotype 8. There was no significant difference comparing haplotypes in the IMHA affected group versus control group (p = 0.23). Homozygosity for haplotype 8 was common in Cocker spaniels with IMHA (27/29; 93 %) and in controls (52/63; 83 %), with no statistically significant difference in prevalence between the two groups (p = 0.22). CONCLUSIONS DLA-DQB1 allele and CTLA4 promoter haplotype were not found to be significantly associated with IMHA in Cocker spaniels. Homozygosity for DLA-DQB1*007:01 and the presence of CTLA4 haplotype 8 in Cocker spaniels might increase overall susceptibility to IMHA in this breed, with other genetic and environmental factors involved in disease expression and progression.
Collapse
Affiliation(s)
- Anna J Threlfall
- Department of Clinical Science and Services, Royal Veterinary College, North Mymms, Hatfield, AL9 7TA Hertfordshire UK
| | - Alisdair M Boag
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG UK
| | - Francesca Soutter
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hatfield, AL9 7TA Hertfordshire UK
| | - Barbara Glanemann
- Department of Clinical Science and Services, Royal Veterinary College, North Mymms, Hatfield, AL9 7TA Hertfordshire UK
| | - Harriet M Syme
- Department of Clinical Science and Services, Royal Veterinary College, North Mymms, Hatfield, AL9 7TA Hertfordshire UK
| | - Brian Catchpole
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hatfield, AL9 7TA Hertfordshire UK
| |
Collapse
|
107
|
Autoimmunity: Rationalizing possible pathways from initiation to disease. J Theor Biol 2015; 375:40-51. [DOI: 10.1016/j.jtbi.2014.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/12/2014] [Accepted: 05/20/2014] [Indexed: 12/23/2022]
|
108
|
Pithukpakorn M, Roothumnong E, Angkasekwinai N, Suktitipat B, Assawamakin A, Luangwedchakarn V, Umrod P, Thongnoppakhun W, Foongladda S, Suputtamongkol Y. HLA-DRB1 and HLA-DQB1 Are Associated with Adult-Onset Immunodeficiency with Acquired Anti-Interferon-Gamma Autoantibodies. PLoS One 2015; 10:e0128481. [PMID: 26011559 PMCID: PMC4444022 DOI: 10.1371/journal.pone.0128481] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/27/2015] [Indexed: 11/29/2022] Open
Abstract
Recently a newly identified clinical syndrome of disseminated non-tuberculous mycobacterial diseases (with or without other opportunistic infections in adult patients who were previously healthy, has been recognized in association with an acquired autoantibody to interferon-gamma. This syndrome is emerging as an important cause of morbidity and mortality, especially among people of Asian descent. Trigger for the production of this autoantibody remains unknown, but genetic factors are strongly suspected to be involved. We compared HLA genotyping between 32 patients with this clinical syndrome, and 38 controls. We found that this clinical syndrome was associated with very limited allele polymorphism, with HLA-DRB1 and DQB1 alleles, especially HLA-DRB1*15:01, DRB1*16:02, DQB1*05:01 and DQB1*05:02. Odds ratio of DRB1*15:01, DRB1*16:02, DQB1*05:01 and DQB1*05:02 were 7.03 (95% CI, 2.18–22.69, P<0.0001, 9.06 (95% CI, 2.79–29.46, P<0.0001), 6.68 (95% CI, 2.29–19.52, P = 0.0004), and 6.64 (95% CI, 2.30–19.20, P = 0.0004), respectively. Further investigation is warranted to provide better understanding on pathogenesis of this association.
Collapse
Affiliation(s)
- Manop Pithukpakorn
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ekkapong Roothumnong
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nasikarn Angkasekwinai
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Bhoom Suktitipat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anunchai Assawamakin
- Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Voravich Luangwedchakarn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pinklow Umrod
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanna Thongnoppakhun
- Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suporn Foongladda
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yupin Suputtamongkol
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
109
|
Furukawa H, Oka S, Shimada K, Hashimoto A, Tohma S. Human leukocyte antigen polymorphisms and personalized medicine for rheumatoid arthritis. J Hum Genet 2015; 60:691-6. [PMID: 25903069 DOI: 10.1038/jhg.2015.36] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 01/11/2023]
Abstract
Human leukocyte antigen (HLA) polymorphisms are the most important genetic risk factors for rheumatoid arthritis (RA), a chronic systemic inflammatory disease of unknown etiology. Certain HLA-DRB1 alleles, known as shared epitope (SE) alleles because they have the same amino-acid sequence at positions 70-74, are associated with susceptibility to RA. A gene dosage effect is present for RA-predisposing SE alleles, and protective alleles show epistasis. An important role of amino-acid polymorphisms at positions 11 and 13 of the HLA-DRβ chain was also reported recently. Rheumatoid factor and anticitrullinated peptide antibodies are present in many RA patients. Similar to extra-articular manifestations, the presence of these autoantibodies is also associated with certain DRB1 alleles. Different frequencies of RA risk alleles in different ethnicities explain the varying prevalence of RA in different populations and suggest genetic heterogeneity of RA with regard to phenotype and population subsets. Some drug-induced hypersensitivity reactions due to disease-modifying antirheumatic drugs are also associated with HLA alleles. Understanding the role of HLA as the most important genetic factor relevant to RA susceptibility may help in determining its pathogenesis and pave the way to personalized medicine.
Collapse
Affiliation(s)
- Hiroshi Furukawa
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Japan
| | - Shomi Oka
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Japan
| | - Kota Shimada
- Department of Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Japan.,Department of Rheumatic Diseases, Tokyo Metropolitan Tama Medical Center, Fuchu, Japan
| | - Atsushi Hashimoto
- Department of Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Japan
| | - Shigeto Tohma
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Japan
| |
Collapse
|
110
|
Sanchez AM, Viganò P, Somigliana E, Cioffi R, Panina-Bordignon P, Candiani M. The endometriotic tissue lining the internal surface of endometrioma: hormonal, genetic, epigenetic status, and gene expression profile. Reprod Sci 2015; 22:391-401. [PMID: 24700055 PMCID: PMC4812685 DOI: 10.1177/1933719114529374] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ovarian endometriomas are found in a consistent proportion of patients with endometriosis and are associated with a more severe form of the disease. The endometriotic tissue lining the inside of the endometrioma has been extensively studied over the years mostly for the need to compare the molecular and cellular characteristics of eutopic and ectopic endometria. Several aspects of hormonal regulation, response to local inflammation, carcinogenesis, and modifications of the local environment have been investigated in order to characterize also the processes associated with peritoneal endometriosis. In this review, we have summarized the current knowledge of pathophysiology of endometrioma, with a particular focus on the cellular components lining the internal surface of the cyst in order to provide a comprehensive overview of the hormonal, genetic, epigenetic, and gene expression profiles of this essential part of the cyst.
Collapse
Affiliation(s)
- Ana Maria Sanchez
- Division of Genetics and Cell Biology, Reproductive Sciences Laboratory, San Raffaele Scientific Institute, Milano, Italy
| | - Paola Viganò
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Edgardo Somigliana
- Department of Obstetrics, Gynecology and Neonatology, Fondazione Cà Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Raffaella Cioffi
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Paola Panina-Bordignon
- Division of Genetics and Cell Biology, Reproductive Sciences Laboratory, San Raffaele Scientific Institute, Milano, Italy
| | - Massimo Candiani
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milano, Italy Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Vita-Salute University, Milano, Italy
| |
Collapse
|
111
|
Didonna A, Oksenberg JR. Genetic determinants of risk and progression in multiple sclerosis. Clin Chim Acta 2015; 449:16-22. [PMID: 25661088 DOI: 10.1016/j.cca.2015.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/21/2015] [Indexed: 01/07/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease that represents a primary cause of neurological disability in the young adult population. Converging evidence supports the importance of genetic determinants for MS etiology. However, with the exception of the major histocompatibility complex, their nature has been elusive for more than 20 years. In the last decade, the advent of large genome-wide association studies has significantly improved our understanding of the disease, leading to the golden era of MS genetic research. To date more than 110 genetic variants have been firmly associated to an increased risk of developing MS. A large part of these variants tag genes involved in the regulation of immune response and several of them are shared with other autoimmune diseases, suggesting a common etiological root for this class of disorders. Despite the impressive body of data obtained in the last years, we are still far from fully decoding MS genetic complexity. For example, we ignore how these genetic factors interact with each other and with the environment. Thus, the biggest challenge for the next era of MS research will consist in identifying and characterizing the molecular mechanisms and the cellular pathways in which these risk variants play a role.
Collapse
Affiliation(s)
- Alessandro Didonna
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jorge R Oksenberg
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
112
|
Smilek DE, St. Clair EW. Solving the puzzle of autoimmunity: critical questions. F1000PRIME REPORTS 2015; 7:17. [PMID: 25750735 PMCID: PMC4335798 DOI: 10.12703/p7-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite recent advances in delineating the pathogenic mechanisms of autoimmune disease, the puzzle that reveals the true picture of these diverse immunological disorders is yet to be solved. We know that the human leukocyte antigen (HLA) loci as well as many different genetic susceptibility loci with relatively small effect sizes predispose to various autoimmune diseases and that environmental factors are involved in triggering disease. Models for mechanisms of disease become increasingly complex as relationships between components of both the adaptive and innate immune systems are untangled at the molecular level. In this article, we pose some of the important questions about autoimmunity where the answers will advance our understanding of disease pathogenesis and improve the rational design of novel therapies. How is autoimmunity triggered, and what components of the immune response drive the clinical manifestations of disease? What determines whether a genetically predisposed individual will develop an autoimmune disease? Is restoring immune tolerance the secret to finding cures for autoimmune disease? Current research efforts seek answers to these big questions.
Collapse
Affiliation(s)
- Dawn E. Smilek
- Immune Tolerance Network185 Berry Street #3515, San Francisco, CA 94107USA
| | - E. William St. Clair
- Immune Tolerance Network185 Berry Street #3515, San Francisco, CA 94107USA
- Department of Medicine, Division of Rheumatology and Immunology, School of Medicine, Duke UniversityDurham, NC 27710USA
| |
Collapse
|
113
|
Abstract
Hypoadrenocorticism is an uncommon disease in dogs and rare in humans, where it is known as Addison disease (ADD). The disease is characterized by a deficiency in corticosteroid production from the adrenal cortex, requiring lifelong hormone replacement therapy. When compared with humans, the pathogenesis of hypoadrenocorticism in dogs is not well established, although the evidence supports a similar autoimmune etiology of adrenocortical pathology. Several immune response genes have been implicated in determining susceptibility to Addison disease in humans, some of which are shared with other autoimmune syndromes. Indeed, other types of autoimmune disease are common (approximately 50%) in patients affected with ADD. Several lines of evidence suggest a genetic component to the etiology of canine hypoadrenocorticism. Certain dog breeds are overrepresented in epidemiologic studies, reflecting a likely genetic influence, supported by data from pedigree analysis. Molecular genetic studies have identified similar genes and signaling pathways, involved in ADD in humans, to be also associated with susceptibility to canine hypoadrenocorticism. Immune response genes such as the dog leukocyte antigen (DLA) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) genes seem to be particularly important. It is clear that there are genetic factors involved in determining susceptibility to canine hypoadrenocorticism, although similar to the situation in humans, this is likely to represent a complex genetic disorder.
Collapse
Affiliation(s)
- Alisdair M Boag
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, Scotland.
| | - Brian Catchpole
- Department of Pathology and Pathogen Biology, Royal Veterinary College, University of London, Hatfield, UK
| |
Collapse
|
114
|
Tafti M. HLA-DQ allele competition in narcolepsy: where is the evidence? Sleep 2015; 38:153-4. [PMID: 25515111 DOI: 10.5665/sleep.4344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 11/03/2022] Open
Affiliation(s)
- Mehdi Tafti
- Center for Integrative Genomics (CIG) University of Lausanne, Lausanne, Switzerland; Center for Investigation and Research in Sleep (CIRS), Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
115
|
Schrauwen I, Barber RM, Schatzberg SJ, Siniard AL, Corneveaux JJ, Porter BF, Vernau KM, Keesler RI, Matiasek K, Flegel T, Miller AD, Southard T, Mariani CL, Johnson GC, Huentelman MJ. Identification of novel genetic risk loci in Maltese dogs with necrotizing meningoencephalitis and evidence of a shared genetic risk across toy dog breeds. PLoS One 2014; 9:e112755. [PMID: 25393235 PMCID: PMC4231098 DOI: 10.1371/journal.pone.0112755] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/14/2014] [Indexed: 12/02/2022] Open
Abstract
Necrotizing meningoencephalitis (NME) affects toy and small breed dogs causing progressive, often fatal, inflammation and necrosis in the brain. Genetic risk loci for NME previously were identified in pug dogs, particularly associated with the dog leukocyte antigen (DLA) class II complex on chromosome 12, but have not been investigated in other susceptible breeds. We sought to evaluate Maltese and Chihuahua dogs, in addition to pug dogs, to identify novel or shared genetic risk factors for NME development. Genome-wide association testing of single nucleotide polymorphisms (SNPs) in Maltese dogs with NME identified 2 regions of genome-wide significance on chromosomes 4 (chr4:74522353T>A, p = 8.1×10−7) and 15 (chr15:53338796A>G, p = 1.5×10−7). Haplotype analysis and fine-mapping suggests that ILR7 and FBXW7, respectively, both important for regulation of immune system function, could be the underlying associated genes. Further evaluation of these regions and the previously identified DLA II locus across all three breeds, revealed an enrichment of nominal significant SNPs associated with chromosome 15 in pug dogs and DLA II in Maltese and Chihuahua dogs. Meta-analysis confirmed effect sizes the same direction in all three breeds for both the chromosome 15 and DLA II loci (p = 8.6×10–11 and p = 2.5×10−7, respectively). This suggests a shared genetic background exists between all breeds and confers susceptibility to NME, but effect sizes might be different among breeds. In conclusion, we identified the first genetic risk factors for NME development in the Maltese, chromosome 4 and chromosome 15, and provide evidence for a shared genetic risk between breeds associated with chromosome 15 and DLA II. Last, DLA II and IL7R both have been implicated in human inflammatory diseases of the central nervous system such as multiple sclerosis, suggesting that similar pharmacotherapeutic targets across species should be investigated.
Collapse
Affiliation(s)
- Isabelle Schrauwen
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Renee M. Barber
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Scott J. Schatzberg
- The Animal Neurology and Imaging Center, Algodones, New Mexico, United States of America
| | - Ashley L. Siniard
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Jason J. Corneveaux
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Brian F. Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Karen M. Vernau
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Rebekah I. Keesler
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Ludwig Maximilians University Munich, Munich, Germany
| | - Thomas Flegel
- Department of Small Animal Medicine, University of Leipzig, Leipzig, Germany
| | - Andrew D. Miller
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Teresa Southard
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Christopher L. Mariani
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Gayle C. Johnson
- Department of Veterinary Pathobiology, Veterinary Medical Diagnostic Laboratory, University of Missouri, Columbia, Missouri, United States of America
| | - Matthew J. Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
- * E-mail:
| |
Collapse
|
116
|
Hartmann N, Luesink E, Khokhlovich E, Szustakowski JD, Baeriswyl L, Peterson J, Scherer A, Nanguneri NR, Staedtler F. The use of haplotype-specific transcripts improves sample annotation consistency. Biomark Res 2014; 2:17. [PMID: 25285214 PMCID: PMC4184161 DOI: 10.1186/2050-7771-2-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
Background Exact sample annotation in expression microarray datasets is essential for any type of pharmacogenomics research. Results Candidate markers were explored through the application of Hartigans’ dip test statistics to a publically available human whole genome microarray dataset. The marker performance was tested on 188 serial samples from 53 donors and of variable tissue origin from five public microarray datasets. A qualified transcript marker panel consisting of three probe sets for human leukocyte antigens HLA-DQA1 (2 probe sets) and HLA-DRB4 identified sample donor identifier inconsistencies in six of the 188 test samples. About 3% of the test samples require root-cause analysis due to unresolvable inaccuracies. Conclusions The transcript marker panel consisting of HLA-DQA1 and HLA-DRB4 represents a robust, tissue-independent composite marker to assist control donor annotation concordance at the transcript level. Allele-selectivity of HLA genes renders them good candidates for “fingerprinting” with donor specific expression pattern.
Collapse
Affiliation(s)
- Nicole Hartmann
- Novartis Institutes for BioMedical Research (NIBR), Biomarker Development, Fabrikstrasse 10.13, CH-4002 Basel, Switzerland
| | - Evert Luesink
- Novartis Institutes for BioMedical Research (NIBR), Biomarker Development, Fabrikstrasse 10.13, CH-4002 Basel, Switzerland
| | - Edward Khokhlovich
- Novartis Institutes for BioMedical Research (NIBR), Biomarker Development, Fabrikstrasse 10.13, CH-4002 Basel, Switzerland
| | - Joseph D Szustakowski
- Novartis Institutes for BioMedical Research (NIBR), Biomarker Development, Fabrikstrasse 10.13, CH-4002 Basel, Switzerland
| | - Lukas Baeriswyl
- Novartis Institutes for BioMedical Research (NIBR), Biomarker Development, Fabrikstrasse 10.13, CH-4002 Basel, Switzerland
| | - Joshua Peterson
- Novartis Institutes for BioMedical Research (NIBR), Biomarker Development, Fabrikstrasse 10.13, CH-4002 Basel, Switzerland
| | | | - Nirmala R Nanguneri
- Novartis Institutes for BioMedical Research (NIBR), Biomarker Development, Fabrikstrasse 10.13, CH-4002 Basel, Switzerland
| | - Frank Staedtler
- Novartis Institutes for BioMedical Research (NIBR), Biomarker Development, Fabrikstrasse 10.13, CH-4002 Basel, Switzerland
| |
Collapse
|
117
|
|
118
|
Jaberi-Douraki M, Liu SW(S, Pietropaolo M, Khadra A. Autoimmune responses in T1DM: quantitative methods to understand onset, progression, and prevention of disease. Pediatr Diabetes 2014; 15:162-74. [PMID: 24827702 PMCID: PMC4050373 DOI: 10.1111/pedi.12148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 03/12/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023] Open
Abstract
Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4⁺ and CD8⁺ T-cells that infiltrate the pancreatic islets of Langerhans and destroy insulin-secreting β-cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet-specific autoantibodies that appear in high-risk subjects (HRS) several years prior to the onset of diabetes-related symptoms. It has been suggested that T1D is relapsing-remitting in nature and that islet-specific autoantibodies released by lymphocytic B-cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T- and B-cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease.
Collapse
Affiliation(s)
- Majid Jaberi-Douraki
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Shang Wan (Shalon) Liu
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Massimo Pietropaolo
- Laboratory of Immunogenetics, University of Michigan, Ann Arbor, MI, USA 48105-5714
| | - Anmar Khadra
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| |
Collapse
|
119
|
Poggi A, Zocchi MR. NK cell autoreactivity and autoimmune diseases. Front Immunol 2014; 5:27. [PMID: 24550913 PMCID: PMC3912987 DOI: 10.3389/fimmu.2014.00027] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/17/2014] [Indexed: 01/14/2023] Open
Abstract
Increasing evidences have pointed out the relevance of natural killer (NK) cells in organ-specific and systemic autoimmune diseases. NK cells bear a plethora of activating and inhibiting receptors that can play a role in regulating reactivity with autologous cells. The activating receptors recognize natural ligands up-regulated on virus-infected or stressed or neoplastic cells. Of note, several autoimmune diseases are thought to be linked to viral infections as one of the first event in inducing autoimmunity. Also, it is conceivable that autoimmunity can be triggered when a dysregulation of innate immunity occurs, activating T and B lymphocytes to react with self-components. This would imply that NK cells can play a regulatory role during adaptive immunity; indeed, innate lymphoid cells (ILCs), comprising the classical CD56+ NK cells, have a role in maintaining or alternating tissue homeostasis secreting protective and/or pro-inflammatory cytokines. In addition, NK cells display activating receptors involved in natural cytotoxicity and the activating isoforms of receptors for HLA class I that can interact with healthy host cells and induce damage without any evidence of viral infection or neoplastic-induced alteration. In this context, the interrelationship among ILC, extracellular-matrix components, and mesenchymal stromal cells can be considered a key point for the control of homeostasis. Herein, we summarize evidences for a role of NK cells in autoimmune diseases and will give a point of view of the interplay between NK cells and self-cells in triggering autoimmunity.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino-IST , Genoa , Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, Scientific Institute San Raffaele , Milan , Italy
| |
Collapse
|