101
|
Kroetsch A, Qiao C, Heavey M, Guo L, Shah DK, Park S. Engineered pH-dependent recycling antibodies enhance elimination of Staphylococcal enterotoxin B superantigen in mice. MAbs 2018; 11:411-421. [PMID: 30526311 DOI: 10.1080/19420862.2018.1545510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
A new modality in antibody engineering has emerged in which the antigen affinity is designed to be pH dependent (PHD). In particular, combining high affinity binding at neutral pH with low affinity binding at acidic pH leads to a novel antibody that can more effectively neutralize the target antigen while avoiding antibody-mediated antigen accumulation. Here, we studied how the in vivo pharmacokinetics of the superantigen, Staphylococcal enterotoxin B (SEB), is affected by an engineered antibody with pH-dependent binding. PHD anti-SEB antibodies were engineered by introducing mutations into a high affinity anti-SEB antibody, 3E2, by rational design and directed evolution. Three antibody mutants engineered in the study have an affinity at pH 6.0 that is up to 68-fold weaker than the control antibody. The pH dependency of each mutant, measured as the pH-dependent affinity ratio (PAR - ratio of affinity at pH 7.4 and pH 6.0), ranged from 6.7-11.5 compared to 1.5 for the control antibody. The antibodies were characterized in mice by measuring their effects on the pharmacodynamics and pharmacokinetics (PK) of SEB after co-administration. All antibodies were effective in neutralizing the toxin and reducing the toxin-induced cytokine production. However, engineered PHD antibodies led to significantly faster elimination of the toxin from the circulation than wild type 3E2. The area under the curve computed from the SEB PK profile correlated well with the PAR value of antibody, indicating the importance of fine tuning the pH dependency of binding. These results suggest that a PHD recycling antibody may be useful to treat intoxication from a bacterial toxin by accelerating its clearance.
Collapse
Affiliation(s)
- Andrew Kroetsch
- a Department of Chemical and Biological Engineering , University at Buffalo , Buffalo , New York , USA
| | - Chunxia Qiao
- b Department of Pharmaceutical Sciences , University at Buffalo , Buffalo , New York , USA
| | - Mairead Heavey
- b Department of Pharmaceutical Sciences , University at Buffalo , Buffalo , New York , USA
| | - Leiming Guo
- b Department of Pharmaceutical Sciences , University at Buffalo , Buffalo , New York , USA
| | - Dhaval K Shah
- b Department of Pharmaceutical Sciences , University at Buffalo , Buffalo , New York , USA
| | - Sheldon Park
- a Department of Chemical and Biological Engineering , University at Buffalo , Buffalo , New York , USA
| |
Collapse
|
102
|
Hill A, Hill QA. Autoimmune hemolytic anemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:382-389. [PMID: 30504336 PMCID: PMC6246027 DOI: 10.1182/asheducation-2018.1.382] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The diagnosis of autoimmune hemolytic anemia (AIHA) can be made with a stepwise approach that aims to identify laboratory and clinical evidence of hemolysis and then determine the immune nature of hemolysis with the direct anti-globulin test. Once alternative causes for these findings have been excluded, AIHA is established, and the clinician must search for secondary causes, as well as identify the type of AIHA. Rituximab is now the preferred second-line treatment for primary warm AIHA and first-line treatment for primary cold agglutinin disease (CAD), either as monotherapy or combined with bendamustine. Complement inhibitors have shown utility in stabilizing AIHA patients with acute severe hemolysis. Future prospects are discussed and include the C1s inhibitor BIVV009 (sutimlimab) that is now entering phase 3 studies for CAD.
Collapse
Affiliation(s)
- Anita Hill
- Department of Haematology, Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Quentin A Hill
- Department of Haematology, Leeds Teaching Hospitals, Leeds, United Kingdom
| |
Collapse
|
103
|
|
104
|
Macor P, Capolla S, Tedesco F. Complement as a Biological Tool to Control Tumor Growth. Front Immunol 2018; 9:2203. [PMID: 30319647 PMCID: PMC6167450 DOI: 10.3389/fimmu.2018.02203] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/05/2018] [Indexed: 01/21/2023] Open
Abstract
Deposits of complement components have been documented in several human tumors suggesting a potential involvement of the complement system in tumor immune surveillance. In vitro and in vivo studies have revealed a double role played by this system in tumor progression. Complement activation in the cancer microenvironment has been shown to promote cancer growth through the release of the chemotactic peptide C5a recruiting myeloid suppressor cells. There is also evidence that tumor progression can be controlled by complement activated on the surface of cancer cells through one of the three pathways of complement activation. The aim of this review is to discuss the protective role of complement in cancer with special focus on the beneficial effect of complement-fixing antibodies that are efficient activators of the classical pathway and contribute to inhibit tumor expansion as a result of MAC-mediated cancer cell killing and complement-mediated inflammatory process. Cancer cells are heterogeneous in their susceptibility to complement-induced killing that generally depends on stable and relatively high expression of the antigen and the ability of therapeutic antibodies to activate complement. A new generation of monoclonal antibodies are being developed with structural modification leading to hexamer formation and enhanced complement activation. An important progress in cancer immunotherapy has been made with the generation of bispecific antibodies targeting tumor antigens and able to neutralize complement regulators overexpressed on cancer cells. A great effort is being devoted to implementing combined therapy of traditional approaches based on surgery, chemotherapy and radiotherapy and complement-fixing therapeutic antibodies. An effective control of tumor growth by complement is likely to be obtained on residual cancer cells following conventional therapy to reduce the tumor mass, prevent recurrences and avoid disabilities.
Collapse
Affiliation(s)
- Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Sara Capolla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Francesco Tedesco
- Immunorheumatology Research Laboratory, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| |
Collapse
|
105
|
Bonam SR, Wang F, Muller S. Autophagy: A new concept in autoimmunity regulation and a novel therapeutic option. J Autoimmun 2018; 94:16-32. [PMID: 30219390 DOI: 10.1016/j.jaut.2018.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
Nowadays, pharmacologic treatments of autoinflammatory diseases are largely palliative rather than curative. Most of them result in non-specific immunosuppression, which can be associated with broad disruption of natural and induced immunity with significant and sometimes serious unwanted injuries. Among the novel strategies that are under development, tools that modulate the immune system to restore normal tolerance mechanisms are central. In these approaches, peptide therapeutics constitute a class of agents that display many physicochemical advantages. Within this class of potent drugs, the phosphopeptide P140 is very promising for treating patients with lupus, and likely also patients with other chronic inflammatory diseases. We discovered that P140 targets autophagy, a finely orchestrated catabolic process, involved in the regulation of inflammation and in the biology of immune cells. In vitro, P140 acts directly on a particular form of autophagy called chaperone-mediated autophagy, which seems to be hyperactivated in certain subsets of lymphocytes in lupus and in other autoinflammatory settings. In lupus, the "correcting" effect of P140 on autophagy results in a weaker signaling of autoreactive T cells, leading to a significant improvement of pathophysiological status of treated mice. These findings also demonstrated ex vivo in human cells, open novel avenues of therapeutic intervention in pathological conditions, in which specific and not general targeting is highly pursued in the context of the new action plans for personalized medicines.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; CNRS-University of Strasbourg, Laboratory of Excellence Medalis, France
| | - Fengjuan Wang
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; CNRS-University of Strasbourg, Laboratory of Excellence Medalis, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; CNRS-University of Strasbourg, Laboratory of Excellence Medalis, France; University of Strasbourg Institute for Advanced Study, Strasbourg, France.
| |
Collapse
|
106
|
Casan JML, Wong J, Northcott MJ, Opat S. Anti-CD20 monoclonal antibodies: reviewing a revolution. Hum Vaccin Immunother 2018; 14:2820-2841. [PMID: 30096012 PMCID: PMC6343614 DOI: 10.1080/21645515.2018.1508624] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/14/2018] [Accepted: 08/02/2018] [Indexed: 12/23/2022] Open
Abstract
Since the inception of rituximab in the 1990s, anti-CD20 monoclonal antibodies have revolutionised the treatment of B cell hematological malignancies and have become a cornerstone of modern gold-standard practice. Additionally, the potent efficacy of these agents in depleting the B cell compartment has been used in the management of a broad array of autoimmune diseases. Multiple iterations of these agents have been investigated and are routinely used in clinical practice. In this review, we will discuss the physiology of CD20 and its attractiveness as a therapeutic target, as well as the pharmacology, pre-clinical and clinical data for the major anti-CD20 monoclonal antibodies: rituximab, obinutuzumab and ofatumumab.
Collapse
Affiliation(s)
- J. M. L. Casan
- Haematology Department, Monash Health, Melbourne Australia
| | - J. Wong
- Haematology Department, Monash Health, Melbourne Australia
| | - M. J. Northcott
- Rheumatology Department, Monash Health, Melbourne, Australia
- School of Clinical Sciences, Monash University, Melbourne, Australia
| | - S. Opat
- Haematology Department, Monash Health, Melbourne Australia
- School of Clinical Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
107
|
Sopp J, Cragg MS. Deleting Malignant B Cells With Second-Generation Anti-CD20 Antibodies. J Clin Oncol 2018; 36:2323-2325. [PMID: 29894272 DOI: 10.1200/jco.2018.78.7390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Josh Sopp
- Josh Sopp and Mark S. Cragg, University of Southampton, Southampton, United Kingdom
| | - Mark S Cragg
- Josh Sopp and Mark S. Cragg, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
108
|
Hew J, Pham D, Matthews Hew T, Minocha V. A Novel Treatment With Obinutuzumab-Chlorambucil in a Patient With B-Cell Prolymphocytic Leukemia: A Case Report and Review of the Literature. J Investig Med High Impact Case Rep 2018; 6:2324709618788674. [PMID: 30038912 PMCID: PMC6050796 DOI: 10.1177/2324709618788674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/20/2018] [Accepted: 06/23/2018] [Indexed: 12/25/2022] Open
Abstract
We report the case of a patient with B-cell prolymphocytic leukemia who was
successfully treated with the novel humanized monoclonal antibody obinutuzumab.
This patient was previously treated with the combination of rituximab and
bendamustine and had recurrent infusion reactions. Her treatment with rituximab
and bendamustine was discontinued when she developed disease progression after 3
cycles of therapy. She was then treated with obinutuzumab 1000 mg on day 1 of
every cycle and chlorambucil 0.5 mg/kg on days 1 and 15 every 28 days to which
she had greater tolerability. After 4 cycles of treatment, she had resolution of
her clinical symptoms, massive splenomegaly, and normalization of her white
blood cell count.
Collapse
Affiliation(s)
- Jason Hew
- University of Florida, Jacksonville, FL, USA
| | - Dat Pham
- University of Florida, Jacksonville, FL, USA
| | | | | |
Collapse
|
109
|
Ahmed AR, Kaveri S. Reversing Autoimmunity Combination of Rituximab and Intravenous Immunoglobulin. Front Immunol 2018; 9:1189. [PMID: 30072982 PMCID: PMC6058053 DOI: 10.3389/fimmu.2018.01189] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022] Open
Abstract
In this concept paper, the authors present a unique and novel protocol to treat autoimmune diseases that may have the potential to reverse autoimmunity. It uses a combination of B cell depletion therapy (BDT), specifically rituximab (RTX) and intravenous immunoglobulin (IVIg), based on a specifically designed protocol (Ahmed Protocol). Twelve infusions of RTX are given in 6–14 months. Once the CD20+ B cells are depleted from the peripheral blood, IVIg is given monthly until B cells repopulation occurs. Six additional cycles are given to end the protocol. During the stages of B cell depletion, repopulation and after clinical recovery, IVIg is continued. Along with clinical recovery, significant reduction and eventual disappearance of pathogenic autoantibody occurs. Administration of IVIg in the post-clinical period is a crucial part of this protocol. This combination reduces and may eventually significantly eliminates inflammation in the microenvironment and facilitates restoring immune balance. Consequently, the process of autoimmunity and the phenomenon that lead to autoimmune disease are arrested, and a sustained and prolonged disease and drug-free remission is achieved. Data from seven published studies, in which this combination protocol was used, are presented. It is known that BDT does not affect check points. IVIg has functions that mimic checkpoints. Hence, when inflammation is reduced and the microenvironment is favorable, IVIg may restore tolerance. The authors provide relevant information, molecular mechanism of action of BDT, IVIg, autoimmunity, and autoimmune diseases. The focus of the manuscript is providing an explanation, using the current literature, to demonstrate possible pathways, used by the combination of BDT and IVIg in providing sustained, long-term, drug-free remissions of autoimmune diseases, and thus reversing autoimmunity, albeit for the duration of the observation.
Collapse
Affiliation(s)
- A Razzaque Ahmed
- Department of Dermatology, Tufts University School of Medicine, Boston, MA, United States.,Center for Blistering Diseases, Boston, MA, United States
| | - Srinivas Kaveri
- INSERM U1138 Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
110
|
Capuano C, Battella S, Pighi C, Franchitti L, Turriziani O, Morrone S, Santoni A, Galandrini R, Palmieri G. Tumor-Targeting Anti-CD20 Antibodies Mediate In Vitro Expansion of Memory Natural Killer Cells: Impact of CD16 Affinity Ligation Conditions and In Vivo Priming. Front Immunol 2018; 9:1031. [PMID: 29867997 PMCID: PMC5958227 DOI: 10.3389/fimmu.2018.01031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells represent a pivotal player of innate anti-tumor immune responses. The impact of environmental factors in shaping the representativity of different NK cell subsets is increasingly appreciated. Human cytomegalovirus (HCMV) infection profoundly affects NK cell compartment, as documented by the presence of a CD94/NKG2C+FcεRIγ- long-lived “memory” NK cell subset, endowed with enhanced CD16-dependent functional capabilities, in a fraction of HCMV-seropositive subjects. However, the requirements for memory NK cell pool establishment/maintenance and activation have not been fully characterized yet. Here, we describe the capability of anti-CD20 tumor-targeting therapeutic monoclonal antibodies (mAbs) to drive the selective in vitro expansion of memory NK cells and we show the impact of donor’ HCMV serostatus and CD16 affinity ligation conditions on this event. In vitro expanded memory NK cells maintain the phenotypic and functional signature of their freshly isolated counterpart; furthermore, our data demonstrate that CD16 affinity ligation conditions differently affect memory NK cell proliferation and functional activation, as rituximab-mediated low-affinity ligation represents a superior proliferative stimulus, while high-affinity aggregation mediated by glycoengineered obinutuzumab results in improved multifunctional responses. Our work also expands the molecular and functional characterization of memory NK cells, and investigates the possible impact of CD16 functional allelic variants on their in vivo and in vitro expansions. These results reveal new insights in Ab-driven memory NK cell responses in a therapeutic setting and may ultimately inspire new NK cell-based intervention strategies against cancer, in which the enhanced responsiveness to mAb-bound target could significantly impact therapeutic efficacy.
Collapse
Affiliation(s)
- Cristina Capuano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Simone Battella
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Pighi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lavinia Franchitti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Stefania Morrone
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | | | - Gabriella Palmieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
111
|
Hofmann K, Clauder AK, Manz RA. Targeting B Cells and Plasma Cells in Autoimmune Diseases. Front Immunol 2018; 9:835. [PMID: 29740441 PMCID: PMC5924791 DOI: 10.3389/fimmu.2018.00835] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/05/2018] [Indexed: 12/29/2022] Open
Abstract
Success with B cell depletion using rituximab has proven the concept that B lineage cells represent a valid target for the treatment of autoimmune diseases, and has promoted the development of other B cell targeting agents. Present data confirm that B cell depletion is beneficial in various autoimmune disorders and also show that it can worsen the disease course in some patients. These findings suggest that B lineage cells not only produce pathogenic autoantibodies, but also significantly contribute to the regulation of inflammation. In this review, we will discuss the multiple pro- and anti-inflammatory roles of B lineage cells play in autoimmune diseases, in the context of recent findings using B lineage targeting therapies.
Collapse
Affiliation(s)
- Katharina Hofmann
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| |
Collapse
|
112
|
Alaibac M. Ultra-Low Dosage Regimen of Rituximab in Autoimmune Blistering Skin Conditions. Front Immunol 2018; 9:810. [PMID: 29720979 PMCID: PMC5915962 DOI: 10.3389/fimmu.2018.00810] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/03/2018] [Indexed: 01/16/2023] Open
Affiliation(s)
- Mauro Alaibac
- Unit of Dermatology, Department of Medicine, University of Padua, Padua, Italy
| |
Collapse
|
113
|
Challenging tumour immunological techniques that help to track cancer stem cells in malignant melanomas and other solid tumours. Contemp Oncol (Pozn) 2018; 22:41-47. [PMID: 29628793 PMCID: PMC5885074 DOI: 10.5114/wo.2018.73884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim of the study The arsenal of questions and answers about the minor cancer initiating cancer stem cell (CSC) population put responsible for cancer invasiveness and metastases, has left with an unsolved puzzle. Specific aims of a complex project were partly focused on revealing new biomarkers of cancer. We designed and set up novel techniques to facilitate the detection of cancerous cells. Materials and methods As a novel approach, we investigated B cells infiltrating breast carcinomas and melanomas (TIL-B) in terms of their tumour antigen binding potential. By developing the TIL-B phage display technology we provide here a new technology for the specific detection of highly tumour-associated antigens. Single chain Fv (scFv) antibody fragment phage ELISA, immunofluorescence (IF) FACS analysis, chamber slide technique with IF confocal laser microscopy and immunohistochemistry (IHC) in paraffin-embedded tissue sections were set up and standardized. Results We showed strong tumour-associated disialylated glycosphingolipid expression levels on various cancer cells using scFv antibody fragments, generated previously by uniquely invasive breast carcinoma TIL-B phage display library technology. Conclusions We report herein a novel strategy to obtain antibody fragments of human origin that recognise tumour-associated ganglioside antigens. Our investigations have the power to detect privileged molecules in cancer progression, invasiveness, and metastases. The technical achievements of this study are being harnessed for early diagnostics and effective cancer therapeutics.
Collapse
|
114
|
Poggi A, Varesano S, Zocchi MR. How to Hit Mesenchymal Stromal Cells and Make the Tumor Microenvironment Immunostimulant Rather Than Immunosuppressive. Front Immunol 2018; 9:262. [PMID: 29515580 PMCID: PMC5825917 DOI: 10.3389/fimmu.2018.00262] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
Experimental evidence indicates that mesenchymal stromal cells (MSCs) may regulate tumor microenvironment (TME). It is conceivable that the interaction with MSC can influence neoplastic cell functional behavior, remodeling TME and generating a tumor cell niche that supports tissue neovascularization, tumor invasion and metastasization. In addition, MSC can release transforming growth factor-beta that is involved in the epithelial-mesenchymal transition of carcinoma cells; this transition is essential to give rise to aggressive tumor cells and favor cancer progression. Also, MSC can both affect the anti-tumor immune response and limit drug availability surrounding tumor cells, thus creating a sort of barrier. This mechanism, in principle, should limit tumor expansion but, on the contrary, often leads to the impairment of the immune system-mediated recognition of tumor cells. Furthermore, the cross-talk between MSC and anti-tumor lymphocytes of the innate and adaptive arms of the immune system strongly drives TME to become immunosuppressive. Indeed, MSC can trigger the generation of several types of regulatory cells which block immune response and eventually impair the elimination of tumor cells. Based on these considerations, it should be possible to favor the anti-tumor immune response acting on TME. First, we will review the molecular mechanisms involved in MSC-mediated regulation of immune response. Second, we will focus on the experimental data supporting that it is possible to convert TME from immunosuppressive to immunostimulant, specifically targeting MSC.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Policlinico San Martino, Genoa, Italy
| | - Serena Varesano
- Molecular Oncology and Angiogenesis Unit, Policlinico San Martino, Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|