101
|
Zelaya-Molina LX, Hernández-Soto LM, Guerra-Camacho JE, Monterrubio-López R, Patiño-Siciliano A, Villa-Tanaca L, Hernández-Rodríguez C. Ammonia-Oligotrophic and Diazotrophic Heavy Metal-Resistant Serratia liquefaciens Strains from Pioneer Plants and Mine Tailings. MICROBIAL ECOLOGY 2016; 72:324-346. [PMID: 27138047 DOI: 10.1007/s00248-016-0771-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Mine tailings are man-made environments characterized by low levels of organic carbon and assimilable nitrogen, as well as moderate concentrations of heavy metals. For the introduction of nitrogen into these environments, a key role is played by ammonia-oligotrophic/diazotrophic heavy metal-resistant guilds. In mine tailings from Zacatecas, Mexico, Serratia liquefaciens was the dominant heterotrophic culturable species isolated in N-free media from bulk mine tailings as well as the rhizosphere, roots, and aerial parts of pioneer plants. S. liquefaciens strains proved to be a meta-population with high intraspecific genetic diversity and a potential to respond to these extreme conditions. The phenotypic and genotypic features of these strains reveal the potential adaptation of S. liquefaciens to oligotrophic and nitrogen-limited mine tailings with high concentrations of heavy metals. These features include ammonia-oligotrophic growth, nitrogen fixation, siderophore and indoleacetic acid production, phosphate solubilization, biofilm formation, moderate tolerance to heavy metals under conditions of diverse nitrogen availability, and the presence of zntA, amtB, and nifH genes. The acetylene reduction assay suggests low nitrogen-fixing activity. The nifH gene was harbored in a plasmid of ∼60 kb and probably was acquired by a horizontal gene transfer event from Klebsiella variicola.
Collapse
Affiliation(s)
- Lily X Zelaya-Molina
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Luis M Hernández-Soto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Jairo E Guerra-Camacho
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Ricardo Monterrubio-López
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Alfredo Patiño-Siciliano
- Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico.
| |
Collapse
|
102
|
Mus F, Crook MB, Garcia K, Garcia Costas A, Geddes BA, Kouri ED, Paramasivan P, Ryu MH, Oldroyd GED, Poole PS, Udvardi MK, Voigt CA, Ané JM, Peters JW. Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes. Appl Environ Microbiol 2016. [PMID: 27084023 DOI: 10.1128/aem.01055-01016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Access to fixed or available forms of nitrogen limits the productivity of crop plants and thus food production. Nitrogenous fertilizer production currently represents a significant expense for the efficient growth of various crops in the developed world. There are significant potential gains to be had from reducing dependence on nitrogenous fertilizers in agriculture in the developed world and in developing countries, and there is significant interest in research on biological nitrogen fixation and prospects for increasing its importance in an agricultural setting. Biological nitrogen fixation is the conversion of atmospheric N2 to NH3, a form that can be used by plants. However, the process is restricted to bacteria and archaea and does not occur in eukaryotes. Symbiotic nitrogen fixation is part of a mutualistic relationship in which plants provide a niche and fixed carbon to bacteria in exchange for fixed nitrogen. This process is restricted mainly to legumes in agricultural systems, and there is considerable interest in exploring whether similar symbioses can be developed in nonlegumes, which produce the bulk of human food. We are at a juncture at which the fundamental understanding of biological nitrogen fixation has matured to a level that we can think about engineering symbiotic relationships using synthetic biology approaches. This minireview highlights the fundamental advances in our understanding of biological nitrogen fixation in the context of a blueprint for expanding symbiotic nitrogen fixation to a greater diversity of crop plants through synthetic biology.
Collapse
Affiliation(s)
- Florence Mus
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Matthew B Crook
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amaya Garcia Costas
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Barney A Geddes
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Evangelia D Kouri
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, USA
| | | | - Min-Hyung Ryu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Michael K Udvardi
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, USA
| | - Christopher A Voigt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John W Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
103
|
Mus F, Crook MB, Garcia K, Garcia Costas A, Geddes BA, Kouri ED, Paramasivan P, Ryu MH, Oldroyd GED, Poole PS, Udvardi MK, Voigt CA, Ané JM, Peters JW. Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes. Appl Environ Microbiol 2016; 82:3698-3710. [PMID: 27084023 PMCID: PMC4907175 DOI: 10.1128/aem.01055-16] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Access to fixed or available forms of nitrogen limits the productivity of crop plants and thus food production. Nitrogenous fertilizer production currently represents a significant expense for the efficient growth of various crops in the developed world. There are significant potential gains to be had from reducing dependence on nitrogenous fertilizers in agriculture in the developed world and in developing countries, and there is significant interest in research on biological nitrogen fixation and prospects for increasing its importance in an agricultural setting. Biological nitrogen fixation is the conversion of atmospheric N2 to NH3, a form that can be used by plants. However, the process is restricted to bacteria and archaea and does not occur in eukaryotes. Symbiotic nitrogen fixation is part of a mutualistic relationship in which plants provide a niche and fixed carbon to bacteria in exchange for fixed nitrogen. This process is restricted mainly to legumes in agricultural systems, and there is considerable interest in exploring whether similar symbioses can be developed in nonlegumes, which produce the bulk of human food. We are at a juncture at which the fundamental understanding of biological nitrogen fixation has matured to a level that we can think about engineering symbiotic relationships using synthetic biology approaches. This minireview highlights the fundamental advances in our understanding of biological nitrogen fixation in the context of a blueprint for expanding symbiotic nitrogen fixation to a greater diversity of crop plants through synthetic biology.
Collapse
Affiliation(s)
- Florence Mus
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Matthew B Crook
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amaya Garcia Costas
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Barney A Geddes
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Evangelia D Kouri
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, USA
| | | | - Min-Hyung Ryu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Michael K Udvardi
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, USA
| | - Christopher A Voigt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John W Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
104
|
Čorić I, Holland PL. Insight into the Iron-Molybdenum Cofactor of Nitrogenase from Synthetic Iron Complexes with Sulfur, Carbon, and Hydride Ligands. J Am Chem Soc 2016; 138:7200-11. [PMID: 27171599 PMCID: PMC5508211 DOI: 10.1021/jacs.6b00747] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nitrogenase enzymes are used by microorganisms for converting atmospheric N2 to ammonia, which provides an essential source of N atoms for higher organisms. The active site of the molybdenum-dependent nitrogenase is the unique carbide-containing iron-sulfur cluster called the iron-molybdenum cofactor (FeMoco). On the FeMoco, N2 binding is suggested to occur at one or more iron atoms, but the structures of the catalytic intermediates are not clear. In order to establish the feasibility of different potential mechanistic steps during biological N2 reduction, chemists have prepared iron complexes that mimic various structural aspects of the iron sites in the FeMoco. This reductionist approach gives mechanistic insight, and also uncovers fundamental principles that could be used more broadly for small-molecule activation. Here, we discuss recent results and highlight directions for future research. In one direction, synthetic iron complexes have now been shown to bind N2, break the N-N triple bond, and produce ammonia catalytically. Carbon- and sulfur-based donors have been incorporated into the ligand spheres of Fe-N2 complexes to show how these atoms may influence the structure and reactivity of the FeMoco. Hydrides have been incorporated into synthetic systems, which can bind N2, reduce some nitrogenase substrates, and/or reductively eliminate H2 to generate reduced iron centers. Though some carbide-containing iron clusters are known, none yet have sulfide bridges or high-spin iron atoms like the FeMoco.
Collapse
Affiliation(s)
- Ilija Čorić
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
105
|
Jelen BI, Giovannelli D, Falkowski PG. The Role of Microbial Electron Transfer in the Coevolution of the Biosphere and Geosphere. Annu Rev Microbiol 2016; 70:45-62. [PMID: 27297124 DOI: 10.1146/annurev-micro-102215-095521] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All life on Earth is dependent on biologically mediated electron transfer (i.e., redox) reactions that are far from thermodynamic equilibrium. Biological redox reactions originally evolved in prokaryotes and ultimately, over the first ∼2.5 billion years of Earth's history, formed a global electronic circuit. To maintain the circuit on a global scale requires that oxidants and reductants be transported; the two major planetary wires that connect global metabolism are geophysical fluids-the atmosphere and the oceans. Because all organisms exchange gases with the environment, the evolution of redox reactions has been a major force in modifying the chemistry at Earth's surface. Here we briefly review the discovery and consequences of redox reactions in microbes with a specific focus on the coevolution of life and geochemical phenomena.
Collapse
Affiliation(s)
- Benjamin I Jelen
- Environmental Biophysics and Molecular Ecology Program, Institute of Earth, Ocean and Atmospheric Sciences, Rutgers University, New Brunswick, New Jersey 08901; , ,
| | - Donato Giovannelli
- Environmental Biophysics and Molecular Ecology Program, Institute of Earth, Ocean and Atmospheric Sciences, Rutgers University, New Brunswick, New Jersey 08901; , , .,Institute of Marine Science, National Research Council, 60125 Ancona, Italy.,Program in Interdisciplinary Studies, Institute for Advanced Studies, Princeton, New Jersey 08540.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan 152-8550
| | - Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Program, Institute of Earth, Ocean and Atmospheric Sciences, Rutgers University, New Brunswick, New Jersey 08901; , , .,Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, New Jersey 08854
| |
Collapse
|
106
|
Nowicka B, Kruk J. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution. Microbiol Res 2016; 186-187:99-118. [PMID: 27242148 DOI: 10.1016/j.micres.2016.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/12/2016] [Accepted: 04/01/2016] [Indexed: 11/29/2022]
Abstract
Photosynthesis is a complex metabolic process enabling photosynthetic organisms to use solar energy for the reduction of carbon dioxide into biomass. This ancient pathway has revolutionized life on Earth. The most important event was the development of oxygenic photosynthesis. It had a tremendous impact on the Earth's geochemistry and the evolution of living beings, as the rise of atmospheric molecular oxygen enabled the development of a highly efficient aerobic metabolism, which later led to the evolution of complex multicellular organisms. The mechanism of photosynthesis has been the subject of intensive research and a great body of data has been accumulated. However, the evolution of this process is not fully understood, and the development of photosynthesis in prokaryota in particular remains an unresolved question. This review is devoted to the occurrence and main features of phototrophy and photosynthesis in prokaryotes. Hypotheses concerning the origin and spread of photosynthetic traits in bacteria are also discussed.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
107
|
Wurzburger N. Old-growth temperate forests harbor hidden nitrogen-fixing bacteria. THE NEW PHYTOLOGIST 2016; 210:374-376. [PMID: 27000954 DOI: 10.1111/nph.13925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Nina Wurzburger
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
108
|
Is plant evolutionary history impacting recruitment of diazotrophs and nifH expression in the rhizosphere? Sci Rep 2016; 6:21690. [PMID: 26902960 PMCID: PMC4763242 DOI: 10.1038/srep21690] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/26/2016] [Indexed: 11/23/2022] Open
Abstract
Plant evolutionary history influences the taxonomic composition of the root-associated bacterial community, but whether it can also modulate its functioning is unknown. Here, we tested the hypothesis that crop diversification is a significant factor determining the ecology of the functional group of nitrogen-fixing bacteria the rhizosphere of Poaceae. A greenhouse experiment was carried out using a range of Poaceae, i.e. four Zea mays varieties (from two genetic groups) and teosinte (representing maize’s ancestor), sorghum (from the same Panicoideae subfamily), and wheat (from neighboring Pooideae subfamily), as well as the dicot tomato as external reference. Diazotroph rhizosphere community was characterized at 21 days in terms of size (quantitative PCR of nifH genes), composition (T-RFLP and partial sequencing of nifH alleles) and functioning (quantitative RT-PCR, T-RFLP and partial sequencing of nifH transcripts). Plant species and varieties had a significant effect on diazotroph community size and the number of nifH transcripts per root system. Contrarily to expectations, however, there was no relation between Poaceae evolutionary history and the size, diversity or expression of the rhizosphere diazotroph community. These results suggest a constant selection of this functional group through evolution for optimization of nitrogen fixation in the rhizosphere.
Collapse
|
109
|
Gupta RS, Khadka B. Evidence for the presence of key chlorophyll-biosynthesis-related proteins in the genus Rubrobacter (Phylum Actinobacteria) and its implications for the evolution and origin of photosynthesis. PHOTOSYNTHESIS RESEARCH 2016; 127:201-18. [PMID: 26174026 DOI: 10.1007/s11120-015-0177-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/06/2015] [Indexed: 05/18/2023]
Abstract
Homologs showing high degree of sequence similarity to the three subunits of the protochlorophyllide oxidoreductase enzyme complex (viz. BchL, BchN, and BchB), which carries out a central role in chlorophyll-bacteriochlorophyll (Bchl) biosynthesis, are uniquely found in photosynthetic organisms. The results of BLAST searches and homology modeling presented here show that proteins exhibiting a high degree of sequence and structural similarity to the BchB and BchN proteins are also present in organisms from the high G+C Gram-positive phylum of Actinobacteria, specifically in members of the genus Rubrobacter (R. x ylanophilus and R. r adiotolerans). The results presented exclude the possibility that the observed BLAST hits are for subunits of the nitrogenase complex or the chlorin reductase complex. The branching in phylogenetic trees and the sequence characteristics of the Rubrobacter BchB/BchN homologs indicate that these homologs are distinct from those found in other photosynthetic bacteria and that they may represent ancestral forms of the BchB/BchN proteins. Although a homolog showing high degree of sequence similarity to the BchL protein was not detected in Rubrobacter, another protein, belonging to the ParA/Soj/MinD family, present in these bacteria, exhibits high degree of structural similarity to the BchL. In addition to the BchB/BchN homologs, Rubrobacter species also contain homologs showing high degree of sequence similarity to different subunits of magnesium chelatase (BchD, BchH, and BchI) as well as proteins showing significant similarity to the BchP and BchG proteins. Interestingly, no homologs corresponding to the BchX, BchY, and BchZ proteins were detected in the Rubrobacter species. These results provide the first suggestive evidence that some form of photosynthesis either exists or was anciently present within the phylum Actinobacteria (high G+C Gram-positive) in members of the genus Rubrobacter. The significance of these results concerning the origin of the Bchl-based photosynthesis is also discussed.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| | - Bijendra Khadka
- Department of Biochemistry, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| |
Collapse
|
110
|
Mobberley JM, Khodadad CLM, Visscher PT, Reid RP, Hagan P, Foster JS. Inner workings of thrombolites: spatial gradients of metabolic activity as revealed by metatranscriptome profiling. Sci Rep 2015. [PMID: 26213359 PMCID: PMC4515876 DOI: 10.1038/srep12601] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Microbialites are sedimentary deposits formed by the metabolic interactions of microbes and their environment. These lithifying microbial communities represent one of the oldest ecosystems on Earth, yet the molecular mechanisms underlying the function of these communities are poorly understood. In this study, we used comparative metagenomic and metatranscriptomic analyses to characterize the spatial organization of the thrombolites of Highborne Cay, The Bahamas, an actively forming microbialite system. At midday, there were differences in gene expression throughout the spatial profile of the thrombolitic mat with a high abundance of transcripts encoding genes required for photosynthesis, nitrogen fixation and exopolymeric substance production in the upper three mm of the mat. Transcripts associated with denitrification and sulfate reduction were in low abundance throughout the depth profile, suggesting these metabolisms were less active during midday. Comparative metagenomics of the Bahamian thrombolites with other known microbialite ecosystems from across the globe revealed that, despite many shared core pathways, the thrombolites represented genetically distinct communities. This study represents the first time the metatranscriptome of living microbialite has been characterized and offers a new molecular perspective on those microbial metabolisms, and their underlying genetic pathways, that influence the mechanisms of carbonate precipitation in lithifying microbial mat ecosystems.
Collapse
Affiliation(s)
- J M Mobberley
- Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab-Exploration Park, Merritt Island, FL 32953
| | - C L M Khodadad
- Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab-Exploration Park, Merritt Island, FL 32953
| | - P T Visscher
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340
| | - R P Reid
- Rosenstiel School of Marine Sciences, University of Miami, Miami, FL, 33149
| | - P Hagan
- Rosenstiel School of Marine Sciences, University of Miami, Miami, FL, 33149
| | - J S Foster
- Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab-Exploration Park, Merritt Island, FL 32953
| |
Collapse
|
111
|
Robson RL, Jones R, Robson RM, Schwartz A, Richardson TH. Azotobacter Genomes: The Genome of Azotobacter chroococcum NCIMB 8003 (ATCC 4412). PLoS One 2015; 10:e0127997. [PMID: 26061173 PMCID: PMC4465626 DOI: 10.1371/journal.pone.0127997] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/22/2015] [Indexed: 11/18/2022] Open
Abstract
The genome of the soil-dwelling heterotrophic N2-fixing Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 (ATCC 4412) (Ac-8003) has been determined. It consists of 7 circular replicons totalling 5,192,291 bp comprising a circular chromosome of 4,591,803 bp and six plasmids pAcX50a, b, c, d, e, f of 10,435 bp, 13,852, 62,783, 69,713, 132,724, and 311,724 bp respectively. The chromosome has a G+C content of 66.27% and the six plasmids have G+C contents of 58.1, 55.3, 56.7, 59.2, 61.9, and 62.6% respectively. The methylome has also been determined and 5 methylation motifs have been identified. The genome also contains a very high number of transposase/inactivated transposase genes from at least 12 of the 17 recognised insertion sequence families. The Ac-8003 genome has been compared with that of Azotobacter vinelandii ATCC BAA-1303 (Av-DJ), a derivative of strain O, the only other member of the Azotobacteraceae determined so far which has a single chromosome of 5,365,318 bp and no plasmids. The chromosomes show significant stretches of synteny throughout but also reveal a history of many deletion/insertion events. The Ac-8003 genome encodes 4628 predicted protein-encoding genes of which 568 (12.2%) are plasmid borne. 3048 (65%) of these show > 85% identity to the 5050 protein-encoding genes identified in Av-DJ, and of these 99 are plasmid-borne. The core biosynthetic and metabolic pathways and macromolecular architectures and machineries of these organisms appear largely conserved including genes for CO-dehydrogenase, formate dehydrogenase and a soluble NiFe-hydrogenase. The genetic bases for many of the detailed phenotypic differences reported for these organisms have also been identified. Also many other potential phenotypic differences have been uncovered. Properties endowed by the plasmids are described including the presence of an entire aerobic corrin synthesis pathway in pAcX50f and the presence of genes for retro-conjugation in pAcX50c. All these findings are related to the potentially different environmental niches from which these organisms were isolated and to emerging theories about how microbes contribute to their communities.
Collapse
Affiliation(s)
- Robert L. Robson
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Robert Jones
- Craic Computing LLC, Seattle, Washington, United States of America
| | - R. Moyra Robson
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Ariel Schwartz
- Synthetic Genomics, La Jolla, California, United States of America
| | | |
Collapse
|
112
|
Evolution of molybdenum nitrogenase during the transition from anaerobic to aerobic metabolism. J Bacteriol 2015; 197:1690-9. [PMID: 25733617 DOI: 10.1128/jb.02611-14] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/24/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Phylogenetic evidence indicates that oxygen (O2)-sensitive Nif emerged in an anaerobic archaeon and later diversified into an aerobic bacterium. Aerobic bacteria that fix N2 have adapted a number of strategies to protect Nif from inactivation by O2, including spatial and temporal segregation of Nif from O2 and respiratory consumption of O2. Here we report the complement of Nif-encoding genes in 189 diazotrophic genomes. We show that the evolution of Nif during the transition from anaerobic to aerobic metabolism was accompanied by both gene recruitment and loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes and their phylogenetic distribution are strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protection mechanisms. Rather, gene recruitment appears to have been in response to selective pressure to optimize Nif synthesis to meet fixed N demands associated with aerobic productivity and to more efficiently regulate Nif under oxic conditions that favor protein turnover. Consistent with this hypothesis, the transition of Nif from anoxic to oxic environments is associated with a shift from posttranslational regulation in anaerobes to transcriptional regulation in obligate aerobes and facultative anaerobes. Given that fixed nitrogen typically limits ecosystem productivity, our observations further underscore the dynamic interplay between the evolution of Earth's oxygen, nitrogen, and carbon biogeochemical cycles. IMPORTANCE Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Nif emerged in an anaerobe and later diversified into aerobes. Here we show that the transition of Nif from anaerobic to aerobic metabolism was accompanied by both gene recruitment and gene loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes is strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protective mechanisms. Rather, gene recruitment was likely a response to more efficiently regulate Nif under oxic conditions that favor protein turnover.
Collapse
|
113
|
Limpens E, van Zeijl A, Geurts R. Lipochitooligosaccharides modulate plant host immunity to enable endosymbioses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:311-34. [PMID: 26047562 DOI: 10.1146/annurev-phyto-080614-120149] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Symbiotic nitrogen-fixing rhizobium bacteria and arbuscular mycorrhizal fungi use lipochitooligosaccharide (LCO) signals to communicate with potential host plants. Upon a compatible match, an intimate relation is established during which the microsymbiont is allowed to enter root (-derived) cells. Plants perceive microbial LCO molecules by specific LysM-domain-containing receptor-like kinases. These do not only activate a common symbiosis signaling pathway that is shared in both symbioses but also modulate innate immune responses. Recent studies revealed that symbiotic LCO receptors are closely related to chitin innate immune receptors, and some of these receptors even function in symbiosis as well as immunity. This raises questions about how plants manage to translate structurally very similar microbial signals into different outputs. Here, we describe the current view on chitin and LCO perception in innate immunity and endosymbiosis and question how LCOs might modulate the immune system. Furthermore, we discuss what it takes to become an endosymbiont.
Collapse
Affiliation(s)
- Erik Limpens
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, 6708PB Wageningen, The Netherlands;
| | | | | |
Collapse
|
114
|
Avenhaus U, Cabeza RA, Liese R, Lingner A, Dittert K, Salinas-Riester G, Pommerenke C, Schulze J. Short-Term Molecular Acclimation Processes of Legume Nodules to Increased External Oxygen Concentration. FRONTIERS IN PLANT SCIENCE 2015; 6:1133. [PMID: 26779207 PMCID: PMC4702478 DOI: 10.3389/fpls.2015.01133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/30/2015] [Indexed: 05/19/2023]
Abstract
Nitrogenase is an oxygen labile enzyme. Microaerobic conditions within the infected zone of nodules are maintained primarily by an oxygen diffusion barrier (ODB) located in the nodule cortex. Flexibility of the ODB is important for the acclimation processes of nodules in response to changes in external oxygen concentration. The hypothesis of the present study was that there are additional molecular mechanisms involved. Nodule activity of Medicago truncatula plants were continuously monitored during a change from 21 to 25 or 30% oxygen around root nodules by measuring nodule H2 evolution. Within about 2 min of the increase in oxygen concentration, a steep decline in nitrogenase activity occurred. A quick recovery commenced about 8 min later. A qPCR-based analysis of the expression of genes for nitrogenase components showed a tendency toward upregulation during the recovery. The recovery resulted in a new constant activity after about 30 min, corresponding to approximately 90% of the pre-treatment level. An RNAseq-based comparative transcriptome profiling of nodules at that point in time revealed that genes for nodule-specific cysteine-rich (NCR) peptides, defensins, leghaemoglobin and chalcone and stilbene synthase were significantly upregulated when considered as a gene family. A gene for a nicotianamine synthase-like protein (Medtr1g084050) showed a strong increase in count number. The gene appears to be of importance for nodule functioning, as evidenced by its consistently high expression in nodules and a strong reaction to various environmental cues that influence nodule activity. A Tnt1-mutant that carries an insert in the coding sequence (cds) of that gene showed reduced nitrogen fixation and less efficient acclimation to an increased external oxygen concentration. It was concluded that sudden increases in oxygen concentration around nodules destroy nitrogenase, which is quickly counteracted by an increased neoformation of the enzyme. This reaction might be induced by increased formation of NCR peptides and necessitates an efficient iron supply to the bacteroid, which is probably mediated by nicotianamine. The paper is dedicated to the 85th birthday of Prof. Dr. Günther Schilling, University of Halle/Wittenberg, Germany, https://de.wikipedia.org/wiki/Günther_Schilling.
Collapse
Affiliation(s)
- Ulrike Avenhaus
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
| | - Ricardo A. Cabeza
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
- Departamento de Ingeniería y Suelos, Facultad de Ciencias Agronómicas, Universidad de ChileLa Pintana, Chile
| | - Rebecca Liese
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
| | - Annika Lingner
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
| | - Klaus Dittert
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
| | - Gabriela Salinas-Riester
- Department of Developmental Biochemistry, DNA Microarray and Deep-Sequencing Facility, Faculty of Medicine, University of GoettingenGoettingen, Germany
| | - Claudia Pommerenke
- Department of Developmental Biochemistry, DNA Microarray and Deep-Sequencing Facility, Faculty of Medicine, University of GoettingenGoettingen, Germany
| | - Joachim Schulze
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
- *Correspondence: Joachim Schulze,
| |
Collapse
|
115
|
Hu Y, Ribbe MW. Nitrogenase and homologs. J Biol Inorg Chem 2014; 20:435-45. [PMID: 25491285 DOI: 10.1007/s00775-014-1225-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/24/2014] [Indexed: 11/24/2022]
Abstract
Nitrogenase catalyzes biological nitrogen fixation, a key step in the global nitrogen cycle. Three homologous nitrogenases have been identified to date, along with several structural and/or functional homologs of this enzyme that are involved in nitrogenase assembly, bacteriochlorophyll biosynthesis and methanogenic process, respectively. In this article, we provide an overview of the structures and functions of nitrogenase and its homologs, which highlights the similarity and disparity of this uniquely versatile group of enzymes.
Collapse
Affiliation(s)
- Yilin Hu
- Department of Molecular Biology and Biochemistry, 2230 McGaugh Hall, University of California, Irvine, CA, 92697-3900, USA,
| | | |
Collapse
|
116
|
Boyd ES, Thomas KM, Dai Y, Boyd JM, Outten FW. Interplay between oxygen and Fe-S cluster biogenesis: insights from the Suf pathway. Biochemistry 2014; 53:5834-47. [PMID: 25153801 PMCID: PMC4172210 DOI: 10.1021/bi500488r] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Iron–sulfur (Fe–S)
cluster metalloproteins conduct
essential functions in nearly all contemporary forms of life. The
nearly ubiquitous presence of Fe–S clusters and the fundamental
requirement for Fe–S clusters in both aerobic and anaerobic
Archaea, Bacteria, and Eukarya suggest that these clusters were likely
integrated into central metabolic pathways early in the evolution
of life prior to the widespread oxidation of Earth’s atmosphere.
Intriguingly, Fe–S cluster-dependent metabolism is sensitive
to disruption by oxygen because of the decreased bioavailability of
ferric iron as well as direct oxidation of sulfur trafficking intermediates
and Fe–S clusters by reactive oxygen species. This fact, coupled
with the ubiquity of Fe–S clusters in aerobic organisms, suggests
that organisms evolved with mechanisms that facilitate the biogenesis
and use of these essential cofactors in the presence of oxygen, which
gradually began to accumulate around 2.5 billion years ago as oxygenic
photosynthesis proliferated and reduced minerals that buffered against
oxidation were depleted. This review highlights the most ancient of
the Fe–S cluster biogenesis pathways, the Suf system, which
likely was present in early anaerobic forms of life. Herein, we use
the evolution of the Suf pathway to assess the relationships between
the biochemical functions and physiological roles of Suf proteins,
with an emphasis on the selective pressure of oxygen toxicity. Our
analysis suggests that diversification into oxygen-containing environments
disrupted iron and sulfur metabolism and was a main driving force
in the acquisition of accessory Suf proteins (such as SufD, SufE,
and SufS) by the core SufB–SufC scaffold complex. This analysis
provides a new framework for the study of Fe–S cluster biogenesis
pathways and Fe–S cluster-containing metalloenzymes and their
complicated patterns of divergence in response to oxygen.
Collapse
Affiliation(s)
- Eric S Boyd
- Department of Microbiology and Immunology, Montana State University , 109 Lewis Hall, Bozeman, Montana 59717, United States
| | | | | | | | | |
Collapse
|
117
|
Ganzert L, Bajerski F, Wagner D. Bacterial community composition and diversity of five different permafrost-affected soils of Northeast Greenland. FEMS Microbiol Ecol 2014; 89:426-41. [DOI: 10.1111/1574-6941.12352] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/05/2014] [Accepted: 05/07/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Lars Ganzert
- Alfred Wegener Institute; Helmholtz Centre for Polar and Marine Research; Potsdam Germany
| | - Felizitas Bajerski
- Alfred Wegener Institute; Helmholtz Centre for Polar and Marine Research; Potsdam Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences; Section 4.5 Geomicrobiology; Potsdam Germany
| |
Collapse
|
118
|
Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia. Proc Natl Acad Sci U S A 2014; 111:4782-7. [PMID: 24639508 DOI: 10.1073/pnas.1402976111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biological nitrogen fixation constitutes the main input of fixed nitrogen to Earth's ecosystems, and its isotope effect is a key parameter in isotope-based interpretations of the N cycle. The nitrogen isotopic composition (δ(15)N) of newly fixed N is currently believed to be ∼-1‰, based on measurements of organic matter from diazotrophs using molybdenum (Mo)-nitrogenases. We show that the vanadium (V)- and iron (Fe)-only "alternative" nitrogenases produce fixed N with significantly lower δ(15)N (-6 to -7‰). An important contribution of alternative nitrogenases to N2 fixation provides a simple explanation for the anomalously low δ(15)N (<-2‰) in sediments from the Cretaceous Oceanic Anoxic Events and the Archean Eon. A significant role for the alternative nitrogenases over Mo-nitrogenase is also consistent with evidence of Mo scarcity during these geologic periods, suggesting an additional dimension to the coupling between the global cycles of trace elements and nitrogen.
Collapse
|