101
|
Zuluaga DL, Sonnante G. The Use of Nitrogen and Its Regulation in Cereals: Structural Genes, Transcription Factors, and the Role of miRNAs. PLANTS 2019; 8:plants8080294. [PMID: 31434274 PMCID: PMC6724420 DOI: 10.3390/plants8080294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/31/2023]
Abstract
Cereals and, especially, rice, maize, and wheat, are essential commodities, on which human nutrition is based. Expanding population and food demand have required higher production which has been achieved by increasing fertilization, and especially nitrogen supply to cereal crops. In fact, nitrogen is a crucial nutrient for the plant, but excessive use poses serious environmental and health issues. Therefore, increasing nitrogen use efficiency in cereals is of pivotal importance for sustainable agriculture. The main steps in the use of nitrogen are uptake and transport, reduction and assimilation, and translocation and remobilization. Many studies have been carried out on the genes involved in these phases, and on transcription factors regulating these genes. Lately, increasing attention has been paid to miRNAs responding to abiotic stress, including nutrient deficiency. Many miRNAs have been found to regulate transcription factors acting on the expression of specific genes for nitrogen uptake or remobilization. Recent studies on gene regulatory networks have also demonstrated that miRNAs can interact with several nodes in the network, functioning as key regulators in nitrogen metabolism.
Collapse
Affiliation(s)
- Diana L Zuluaga
- Institute of Biosciences and Bioresources, National Research Council, Via Amendola 165/A, 70126 Bari, Italy.
| | - Gabriella Sonnante
- Institute of Biosciences and Bioresources, National Research Council, Via Amendola 165/A, 70126 Bari, Italy.
| |
Collapse
|
102
|
Gómez-Godínez LJ, Fernandez-Valverde SL, Martinez Romero JC, Martínez-Romero E. Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs. Syst Appl Microbiol 2019; 42:517-525. [DOI: 10.1016/j.syapm.2019.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
|
103
|
Hrynkiewicz K, Patz S, Ruppel S. Salicornia europaea L. as an underutilized saline-tolerant plant inhabited by endophytic diazotrophs. J Adv Res 2019; 19:49-56. [PMID: 31341669 PMCID: PMC6630021 DOI: 10.1016/j.jare.2019.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/31/2022] Open
Abstract
Revealing of the community composition of diazotrophic endophytes of S. europaea. The abundance of bacterial diazotrophs in plant organs of S. europaea. Domination of endophytic diazotrophs from Actinobacteria in higher salinity. Indication of new diazotrophic species associated with halophytes. Selection of diazotrophic endophytes useful in agriculture.
Despite the great interest in using halophyte Salicornia europaea L. as a crop in extreme saline habitats, little is known about the role played by associated endophytic bacteria in increasing tolerance of the host-plant to nutrient deficiency. Main objectives of this study were to investigate the community composition of diazotrophic endophytes of S. europaea grown under natural conditions, and determine the proportion of plant-growth promoting bacterial strains able to fix N2. To quantify the abundance of diazotrophic bacterial endophytes in stems and roots of S. europaea, nifH gene and 16S rDNA copy numbers were assessed by quantitative real-time PCR, and characterized the taxonomic structure of cultivable bacteria based on selective medium for diazotrophs. The highest copy numbers of nifH and 16S rDNA were observed in the stems of plants growing at the test site characterized by lower salinity, and correlated with high N concentrations in plant tissues. The abundance of bacterial diazotrophs isolated from plant tissues ranged from 3.6 to 6.3 (log10 of cfu per gram dry plant tissue) and varied in a site- and plant-organ manner. Proteobacteria dominated in plants growing in lower salinity while Actinobacteria prevailed in plants originating from higher salinity, what suggest better adaptation of this group of bacteria to extreme salinity. The results provide insights into new species of diazotrophs associated with halophytes that can be used to optimize strategies for selecting biostimulants useful in saline soils.
Collapse
Affiliation(s)
- Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biology and Environmental Protection, N. Copernicus University in Torun, Lwowska 1, PL-87-100 Torun, Poland
| | - Sascha Patz
- Algorithms in Bioinformatics, Center for Bioinformatics, University of Tuebingen, Sand 14, D-72076 Tuebingen, Germany
| | - Silke Ruppel
- Leibniz Institute of Vegetable- and Ornamental Crops, Theodor-Echtermeyer-Weg 1, D-14979 Grossbeeren, Germany
| |
Collapse
|
104
|
Xie Q, Xu Z. Sustainable Agriculture: From Sweet Sorghum Planting and Ensiling to Ruminant Feeding. MOLECULAR PLANT 2019; 12:603-606. [PMID: 31002980 DOI: 10.1016/j.molp.2019.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 05/26/2023]
Affiliation(s)
- Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; China University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhihong Xu
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
105
|
Nonaka A, Yamamoto H, Kamiya N, Kotani H, Yamakawa H, Tsujimoto R, Fujita Y. Accessory Proteins of the Nitrogenase Assembly, NifW, NifX/NafY, and NifZ, Are Essential for Diazotrophic Growth in the Nonheterocystous Cyanobacterium Leptolyngbya boryana. Front Microbiol 2019; 10:495. [PMID: 30930880 PMCID: PMC6428710 DOI: 10.3389/fmicb.2019.00495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Since nitrogenase is extremely vulnerable to oxygen, aerobic or micro-aerobic nitrogen-fixing organisms need to create anaerobic microenvironments in the cells for diazotrophic growth, which would be one of the major barriers to express active nitrogenase in plants in efforts to create nitrogen-fixing plants. Numerous cyanobacteria are able to fix nitrogen with nitrogenase by coping with the endogenous oxygen production by photosynthesis. Understanding of the molecular mechanisms enabling to the coexistence of nitrogen fixation and photosynthesis in nonheterocystous cyanobacteria could offer valuable insights for the transfer of nitrogen fixation capacity into plants. We previously identified the cnfR gene encoding the master regulator for the nitrogen fixation (nif) gene cluster in the genome of a nonheterocystous cyanobacterium Leptolyngbya boryana, in addition to initial characterization of the nif gene cluster. Here we isolated nine mutants, in which the nif and nif-related genes were individually knocked out in L. boryana to investigate the individual functions of (1) accessory proteins (NifW, NifX/NafY, and NifZ) in the biosynthesis of nitrogenase metallocenters, (2) serine acetyltransferase (NifP) in cysteine supply for iron-sulfur clusters, (3) pyruvate formate lyase in anaerobic metabolism, and (4) NifT and HesAB proteins. ΔnifW, ΔnifXnafY, and ΔnifZ exhibited the most severe phenotype characterized by low nitrogenase activity (<10%) and loss of diazotrophic growth ability. The phenotypes of ΔnifX, ΔnafY, and ΔnifXnafY suggested that the functions of the homologous proteins NifX and NafY partially overlap. ΔnifP exhibited significantly slower diazotrophic growth than the wild type, with lower nitrogenase activity (22%). The other four mutants (ΔpflB, ΔnifT, ΔhesA, and ΔhesB) grew diazotrophically similar to the wild type. Western blot analysis revealed a high correlation between nitrogenase activity and NifD contents, suggesting that NifD is more susceptible to proteolytic degradation than NifK in L. boryana. The phenotype of the mutants lacking the accessory proteins was more severe than that observed in heterotrophic bacteria such as Azotobacter vinelandii, which suggests that the functions of NifW, NifX/NafY, and NifZ are critical for diazotrophic growth of oxygenic photosynthetic cells. L. boryana provides a promising model for studying the molecular mechanisms that produce active nitrogenase, to facilitate the creation of nitrogen-fixing plants.
Collapse
Affiliation(s)
- Aoi Nonaka
- School of Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Narumi Kamiya
- School of Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hiroya Kotani
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hisanori Yamakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ryoma Tsujimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yuichi Fujita
- School of Agricultural Sciences, Nagoya University, Nagoya, Japan.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
106
|
Hara S, Morikawa T, Wasai S, Kasahara Y, Koshiba T, Yamazaki K, Fujiwara T, Tokunaga T, Minamisawa K. Identification of Nitrogen-Fixing Bradyrhizobium Associated With Roots of Field-Grown Sorghum by Metagenome and Proteome Analyses. Front Microbiol 2019; 10:407. [PMID: 30915047 PMCID: PMC6422874 DOI: 10.3389/fmicb.2019.00407] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/15/2019] [Indexed: 02/04/2023] Open
Abstract
Sorghum (Sorghum bicolor) is cultivated worldwide for food, bioethanol, and fodder production. Although nitrogen fixation in sorghum has been studied since the 1970s, N2-fixing bacteria have not been widely examined in field-grown sorghum plants because the identification of functional diazotrophs depends on the culture method used. The aim of this study was to identify functional N2-fixing bacteria associated with field-grown sorghum by using “omics” approaches. Four lines of sorghum (KM1, KM2, KM4, and KM5) were grown in a field in Fukushima, Japan. The nitrogen-fixing activities of the roots, leaves, and stems were evaluated by acetylene reduction and 15N2-feeding assays. The highest nitrogen-fixing activities were detected in the roots of lines KM1 and KM2 at the late growth stage. Bacterial cells extracted from KM1 and KM2 roots were analyzed by metagenome, proteome, and isolation approaches and their DNA was isolated and sequenced. Nitrogenase structural gene sequences in the metagenome sequences were retrieved using two nitrogenase databases. Most sequences were assigned to nifHDK of Bradyrhizobium species, including non-nodulating Bradyrhizobium sp. S23321 and photosynthetic B. oligotrophicum S58T. Amplicon sequence and metagenome analysis revealed a relatively higher abundance (2.9–3.6%) of Bradyrhizobium in the roots. Proteome analysis indicated that three NifHDK proteins of Bradyrhizobium species were consistently detected across sample replicates. By using oligotrophic media, we purified eight bradyrhizobial isolates. Among them, two bradyrhizobial isolates possessed 16S rRNA and nif genes similar to those in S23321 and S58T which were predicted as functional diazotrophs by omics approaches. Both free-living cells of the isolates expressed N2-fixing activity in a semi-solid medium according to an acetylene reduction assay. These results suggest that major functional N2-fixing bacteria in sorghum roots are unique bradyrhizobia that resemble photosynthetic B. oligotrophicum S58T and non-nodulating Bradyrhizobium sp. S23321. Based on our findings, we discuss the N2-fixing activity level of sorghum plants, phylogenetic and genomic comparison with diazotrophic bacteria in other crops, and Bradyrhizobium diversity in N2 fixation and nodulation.
Collapse
Affiliation(s)
- Shintaro Hara
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takashi Morikawa
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Sawa Wasai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yasuhiro Kasahara
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | - Kiyoshi Yamazaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|