101
|
Zhang H, Chen JL, Lin JH, Lin JT, Wu ZZ. Odorant-binding proteins and chemosensory proteins potentially involved in host plant recognition in the Asian citrus psyllid, Diaphorina citri. PEST MANAGEMENT SCIENCE 2020; 76:2609-2618. [PMID: 32083388 DOI: 10.1002/ps.5799] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are two families of small water-soluble proteins involved in odor detection and subsequent signal transmission. Determination of their binding mechanisms and specificity towards different odorants is important for developing OBPs/CSPs as targets in pest control management. RESULTS We re-annotated genes encoding putative OBPs and CSPs in the Asian citrus psyllid (Diaphorina citri) draft genome using various bioinformatic tools. Genes encoding nine OBPs (seven Classic and two Plus-C) and 12 CSPs were identified, consistent with our previous transcriptomic results. Tissue-specific and developmental expression analyses suggested that genes encoding six OBPs and four CSPs were predominantly expressed in antennae, and displayed various expression patterns in different development stages, suggesting potential involvement in olfactory perception. Competitive fluorescence binding assays with 13 candidate ligands, including known host plant volatiles, sex pheromone components and repellents, showed that DcitOBP3 could bind to various odorants, whereas DcitOBP6, 8 and 9 bound specifically to host plant terpenoids. DcitCSP1 and 12 could also bind to certain terpenoids with high binding specificity. CONCLUSION OBP- and CSP-encoding genes were systematically identified by annotating the draft D. citri genome and those potentially involved in odorant detection and signal transmission were identified by analyzing their tissue-expression profiles and odorant-binding affinities, particularly to the peripheral molecular perception of host plant terpenoids. The identified genes may provide potential targets for efficient pest control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- He Zhang
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Jun-Long Chen
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Jia-Hao Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Jin-Tian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Zhong-Zhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| |
Collapse
|
102
|
Li MY, Jiang XY, Qi YZ, Huang YJ, Li SG, Liu S. Identification and Expression Profiles of 14 Odorant-Binding Protein Genes From Pieris rapae (Lepidoptera: Pieridae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5901940. [PMID: 32889524 PMCID: PMC7474526 DOI: 10.1093/jisesa/ieaa087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Indexed: 06/11/2023]
Abstract
The small white butterfly, Pieris rapae (L.), is an important insect pest of Brassica crops. This species utilize olfactory cues to find their hosts and mates. However, the molecular mechanism underlying the olfactory perception in this species remains unclear. Here, we identified 14 odorant-binding proteins (OBP) genes-essential for insect olfaction-in P. rapae by exploring a previously published transcriptome dataset. Proteins encoded by all of these genes contain N-terminal signal peptides and six positionally conserved cysteine residues, which are characteristic of insect OBPs. These OBPs displayed high amino acid identity with their respective orthologs in other lepidopterans, and several conserved motifs were identified within these OBPs. Phylogenetic analysis showed that these OBPs were well segregated from each other and clustered into different branches. PrapOBP1 and PrapOBP2 were clustered into the 'general odorant-binding protein' clade, and PrapOBP3 and PrapOBP4 fall into the 'pheromone-binding protein' clade. The 14 OBP genes were located on seven genomic scaffolds. Of these, PrapOBP1, 2, 3, and 4 were located on scaffold332, whereas PrapOBP5, 6, 7, 8, and 9 were located on scaffold116. Ten of the 14 genes had antenna-biased expression. Of these, PrapOBP1, 2, 4, and 13 were enriched in male antennae, whereas PrapOBP7 and PrapOBP10 were female-biased. Our findings suggest that these OBPs may be involved in olfactory communication. To the best of our knowledge, this is the first report on the identification and characterization of OBPs in P. rapae, and our findings provide a solid foundation for studying the functions of these genes.
Collapse
Affiliation(s)
- Mao-Ye Li
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiu-Yun Jiang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Yu-Zhe Qi
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Yuan-Jie Huang
- People’s Government of Fenshui Town, Tonglu County, Hangzhou, China
| | - Shi-Guang Li
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Su Liu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
103
|
Yan C, Sun X, Cao W, Li R, Zhao C, Sun Z, Liu W, Pan L. Identification and expression pattern of chemosensory genes in the transcriptome of Propsilocerus akamusi. PeerJ 2020; 8:e9584. [PMID: 32742817 PMCID: PMC7380273 DOI: 10.7717/peerj.9584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
Chironomidae is the most ecologically diverse insects in aquatic and semi-aquatic habitats. Propsilocerus akamusi (Tokunaga) is a dominant and ubiquitous chironomid species in Eastern Asia and its morphologically unique larvae are also considered as indicator organisms to detect water contamination, potential toxicity and waterborne pathogens. Since few studies to date have focused on the olfactory system of P. akamusi, our study aims to elucidate the potential functions of chemosensory genes in P. akamusi. In our study, we found that although signals released from male groups might attract female swarmers, it was a completely male-dominated mating process. Sequencing the transcriptome of P. akamusi on an Illumina HiSeq platform generated 4.42, 4.46 and 4.53 Gb of clean reads for heads, legs, and antennae, respectively. 27,609 unigenes, 20,379 coding sequences (CDSs), and 8,073 simple sequence repeats were finally obtained. The gene-level differential expression analysis demonstrated variants among three different tissues, including 2,019 genes specifically expressed in heads, 1,540 genes in legs, and 2,071 genes in antennae. Additionally, we identified an assortment of putative olfactory genes consisting of 34 odorant binding proteins, 17 odorant receptors, 32 gustatory receptors, 22 ionotropic receptors, six chemosensory proteins as well as 3 sensory neuron membrane proteins; their relative abundances in the above three tissues were also determined by RT-qPCR. Our finding could allow a more plausible understanding of certain olfaction-mediated behaviors in groups of this macroinvertebrate.
Collapse
Affiliation(s)
- Chuncai Yan
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Xiaoya Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Wei Cao
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Ruoqun Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Cong Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Zeyang Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Wenbin Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Lina Pan
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| |
Collapse
|
104
|
Gene Expression and Functional Analyses of Odorant Receptors in Small Hive Beetles ( Aethina tumida). Int J Mol Sci 2020; 21:ijms21134582. [PMID: 32605135 PMCID: PMC7370172 DOI: 10.3390/ijms21134582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022] Open
Abstract
Olfaction is key to many insects. Odorant receptors (ORs) stand among the key chemosensory receptors mediating the detection of pheromones and kairomones. Small hive beetles (SHBs), Aethina tumida, are parasites of social bee colonies and olfactory cues are especially important for host finding. However, how interactions with their hosts may have shaped the evolution of ORs in the SHB remains poorly understood. Here, for the first time, we analyzed the evolution of SHB ORs through phylogenetic and positive selection analyses. We then tested the expression of selected OR genes in antennae, heads, and abdomens in four groups of adult SHBs: colony odor-experienced/-naive males and females. The results show that SHBs experienced both OR gene losses and duplications, thereby providing a first understanding of the evolution of SHB ORs. Additionally, three candidate ORs potentially involved in host finding and/or chemical communication were identified. Significantly different downregulations of ORs between the abdomens of male and female SHBs exposed to colony odors may reflect that these expression patterns might also reflect other internal events, e.g., oviposition. Altogether, these results provide novel insights into the evolution of SHB ORs and provide a valuable resource for analyzing the function of key genes, e.g., for developing biological control. These results will also help in understanding the chemosensory system in SHBs and other beetles.
Collapse
|
105
|
Li Z, Yuan Y, Meng M, Hu P, Wang Y. De novo transcriptome of the whole-body of the gastropod mollusk Philomycus bilineatus, a pest with medical potential in China. J Appl Genet 2020; 61:439-449. [PMID: 32557200 DOI: 10.1007/s13353-020-00566-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/18/2020] [Accepted: 06/09/2020] [Indexed: 11/30/2022]
Abstract
Philomycus bilineatus is a highly common gastropod mollusk pest in China and is also utilized to treat infectious diseases. However, no genomic resources are available for this non-model species. In the present study, the transcriptomic analysis of P. bilineatus was completed. After sequencing using the next generation sequencing technology, 9.11 Gb of clean reads were obtained, which led to the assembly and annotation of 145,523 transcripts and 125,690 unigenes. Unigenes were functionally classified using Gene Ontology (GO), euKaryotic Ortholog Groups of proteins (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG). A total of 27,554 unigenes were assigned into 55 GO terms, 13,989 unigenes were differentiated into 26 KOG categories, and 16,368 unigenes were assigned to 229 KEGG pathways. Furthermore, 16,614 simple sequence repeats (SSRs), 38 olfactory genes, and 40 antimicrobial peptide/protein genes were identified. The transcriptome profile of P. bilineatus will provide a valuable genomic resource for further study, will promote the development of new pest management strategies through interference of chemosensory communication, and will support potential medicinal uses of this species.
Collapse
Affiliation(s)
- Zhongjie Li
- Medical College, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China.
| | - Yaping Yuan
- Medical College, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China
| | - Miaomiao Meng
- Medical College, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China
| | - Ping Hu
- Medical College, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China
| | - Yong Wang
- Medical College, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China
| |
Collapse
|
106
|
Molecular Modeling of Chemosensory Protein 3 from Spodoptera litura and Its Binding Property with Plant Defensive Metabolites. Int J Mol Sci 2020; 21:ijms21114073. [PMID: 32517283 PMCID: PMC7312704 DOI: 10.3390/ijms21114073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022] Open
Abstract
Chemosensory perception in insects involves a broad set of chemosensory proteins (CSPs) that identify the bouquet of chemical compounds present in the external environment and regulate specific behaviors. The current study is focused on the Spodoptera litura (Fabricius) chemosensory-related protein, SlitCSP3, a midgut-expressed CSP, which demonstrates differential gene expression upon different diet intake. There is an intriguing possibility that SlitCSP3 can perceive food-derived chemical signals and modulate insect feeding behavior. We predicted the three-dimensional structure of SlitCSP3 and subsequently performed an accelerated molecular dynamics (aMD) simulation of the best-modeled structure. SlitCSP3 structure has six α-helices arranged as a prism and a hydrophobic binding pocket predominated by leucine and isoleucine. We analyzed the interaction of selected host plant metabolites with the modeled structure of SlitCSP3. Out of two predicted binding pockets in SlitCSP3, the plant-derived defensive metabolites 2-b-D-glucopyranosyloxy-4-hydroxy-7-methoxy-1, 4-benzoxazin-3-one (DIMBOA), 6-Methoxy-2–benzoxazolinone (MBOA), and nicotine were found to interact preferably to the hydrophobic site 1, compared to site 2. The current study provides the potential role of CSPs in recognizing food-derived chemical signals, host-plant specialization, and adaptation to the varied ecosystem. Our work opens new perspectives in designing novel pest-management strategies. It can be further used in the development of CSP-based advanced biosensors.
Collapse
|
107
|
Lizana P, Machuca J, Larama G, Quiroz A, Mutis A, Venthur H. Mating-based regulation and ligand binding of an odorant-binding protein support the inverse sexual communication of the greater wax moth, Galleria mellonella (Lepidoptera: Pyralidae). INSECT MOLECULAR BIOLOGY 2020; 29:337-351. [PMID: 32065441 DOI: 10.1111/imb.12638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
In moths, sex pheromones play a key role in mate finding. These chemicals are transported in the antennae by odorant-binding proteins (OBPs). Commonly, males encounter conspecific females; therefore, several OBPs are male-biased. Less is known, however, about how the olfactory system of moths has evolved toward inverse sexual communication, ie where females seek males. Therefore, the objective of this study was to identify the profile of OBPs and their expression patterns in the bee hive pest, Galleria mellonella, a moth that uses inverse sexual communication. Here, OBP-related transcripts were identified by an RNA Sequencing (RNA-Seq) approach and analysed through both Reverse Transcription Polymerase Chain Reaction (RT-PCR) in different tissues and quantitative real-time PCR for two states, virgin and postmating. Our results indicate that G. mellonella has 20 OBPs distributed amongst different tissues. Interestingly, 17 of the 20 OBPs were significantly down-regulated after mating in females, whereas only OBP7 was up-regulated. By contrast, 18 OBP transcripts were up-regulated in males after mating. Additionally, binding assays and structural simulations showed general odorant-binding protein 2 (GOBP2) was able to bind sex pheromone components and analogues. These findings suggest a possible role of OBPs, especially GOBPs, in the inverse sexual communication of G. mellonella, with gene expression regulated as a response to mating.
Collapse
Affiliation(s)
- P Lizana
- Carrera de Bioquímica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - J Machuca
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - G Larama
- Centro de Excelencia de Modelación y Computación Científica, Universidad de La Frontera, Temuco, Chile
| | - A Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco, Chile
| | - A Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco, Chile
| | - H Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
108
|
Wang D, Tao J, Lu P, Luo Y, Hu P. The whole body transcriptome of Coleophora obducta reveals important olfactory proteins. PeerJ 2020; 8:e8902. [PMID: 32309046 PMCID: PMC7153557 DOI: 10.7717/peerj.8902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/12/2020] [Indexed: 11/21/2022] Open
Abstract
Background The tiny casebearer moth Coleophora obducta, an important defoliator of Larix spp., is a major threat to ecological security in north China. Studies have shown that C. obducta is strongly specific to host plants; it is unable complete its life cycle without Larix spp. The sex pheromones of C. obducta Z5-10:OH have been elucidated; and eight types of antennae sensilla, have been detected, indicating that an exploration of its olfactory proteins is necessary, due to the general lack of information on this topic. Methods We investigated the whole body transcriptome of C. obducta, performed a phylogenetic analysis of its olfactory proteins and produced expression profiles of three pheromone-binding proteins (CobdPBPs) by qRT–PCR. Results We identified 16 odorant binding proteins, 14 chemosensory proteins, three sensory neuron membrane proteins, six odorant degrading enzymes, five antennal esterases, 13 odorant receptors, seven ionotropic receptors and 10 gustatory receptors, including three PBPs and one odorant co-receptor. Additionally, three putative pheromone receptors, two bitter gustatory receptors and five functional ionotropic receptors were found by phylogenetic analysis. The expression profiles of three PBPs in males and females showed that all of them exhibited male-specific expression and two were expressed at significantly higher levels in males. These data provide a molecular foundation from which to explore the olfactory recognition process and may be useful in the development of a new integrated pest management strategy targeting olfactory recognition of C. obducta.
Collapse
Affiliation(s)
- Dongbai Wang
- Forestry College, Guangxi University, Nanning, Guangxi, China.,Xingan Vocational and Technical College, Xinganmeng, Inner Mongolia, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Pengfei Lu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Ping Hu
- Forestry College, Guangxi University, Nanning, Guangxi, China.,Xingan Vocational and Technical College, Xinganmeng, Inner Mongolia, China
| |
Collapse
|
109
|
Zhang F, Merchant A, Zhao Z, Zhang Y, Zhang J, Zhang Q, Wang Q, Zhou X, Li X. Characterization of MaltOBP1, a Minus-C Odorant-Binding Protein, From the Japanese Pine Sawyer Beetle, Monochamus alternatus Hope (Coleoptera: Cerambycidae). Front Physiol 2020; 11:212. [PMID: 32296339 PMCID: PMC7138900 DOI: 10.3389/fphys.2020.00212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
Insect Odorant-Binding Proteins (OBPs) play crucial roles in the discrimination, binding and transportation of odorants. Herein, the full-length cDNA sequence of Minus-C OBP1 (MaltOBP1) from the Japanese pine sawyer beetle, Monochamus alternatus, was cloned by 3′ and 5′ RACE-PCR and analyzed. The results showed that MaltOBP1 contains a 435 bp open reading frame (ORF) that encodes 144 amino acids, including a 21-amino acid signal peptide at the N-terminus. The matured MaltOBP1 protein possesses a predicted molecular weight of about 14 kDa and consists of six α-helices, creating an open binding pocket, and two disulfide bridges. Immunoblotting results showed that MaltOBP1 was most highly expressed in antennae in both sexes, followed by wings and legs. Fluorescence assays demonstrated that MaltOBP1 protein exhibited high binding affinity with (R)-(+)-α-pinene, (−)-β-pinene, trans-caryophyllene, (R)-(+)-limonene and (–)-verbenone, which are the main volatile compounds of the pine tree. Our combined results suggest that MaltOBP1 plays a role in host seeking behavior in M. alternatus.
Collapse
Affiliation(s)
- Fangmei Zhang
- Henan Provincial South Henan Crop Pest Green Prevention and Control Academician Workstation, Xinyang Agriculture and Forestry University, Xinyang, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Zhibin Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qinghua Wang
- The Key Laboratory of Forest Protection, State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Entomology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
110
|
Zhang XQ, Yan Q, Li LL, Xu JW, Mang D, Wang XL, Hoh HH, Ye J, Ju Q, Ma Y, Liang M, Zhang YY, Zhu XY, Zhang F, Dong SL, Zhang YN, Zhang LW. Different binding properties of two general-odorant binding proteins in Athetis lepigone with sex pheromones, host plant volatiles and insecticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:173-182. [PMID: 32284124 DOI: 10.1016/j.pestbp.2020.01.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 01/01/2020] [Accepted: 01/21/2020] [Indexed: 06/11/2023]
Abstract
Athetis lepigone (Alep) is a polyphagous pest native to Europe and Asia that has experienced major outbreaks in the summer maize area of China since 2011 and has shown evidence of resistance to some insecticides. Insect olfaction is crucial for recognition of sex pheromones, host plant volatiles and even insecticides, in which two general-odorant binding proteins (GOBPs) play important roles. To elucidate the functions of GOBPs in A. lepigone, we first expressed the two AlepGOBP proteins in the E. coli expression system. Then, the results of fluorescence competitive binding assays demonstrated that the high binding affinity of AlepGOBP2 with sex pheromones [(Z)-7-dodecenyl acetate (Z7-12:Ac), Ki = 0.65 μM; (Z)-9-tetradecenyl acetate (Z9-14:Ac), Ki = 0.83 μM], two maize plant volatiles [Ocimene, Ki = 9.63 μM; (E)-β-Farnesene, Ki = 4.76 μM] and two insecticides (Chlorpyrifos Ki =5.61 μM; Phoxim, Ki = 4.38 μM). However, AlepGOBP1 could only bind Ocimene (Ki = 13.0 μM) and two insecticides (Chlorpyrifos Ki =4.46 μM; Phoxim, Ki = 3.27 μM). These results clearly suggest that AlepGOBP1 and AlepGOBP2 differentiate among odorants and other ligands. The molecular docking results further revealed different key residues involved in the ligand binding of AlepGOBPs. In summary, this study provides a foundation for exploring the olfactory mechanism of A. lepigone and identified two potential target genes for the development of highly effective insecticides in the future.
Collapse
Affiliation(s)
- Xiao-Qing Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China; Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lu-Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Dingze Mang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Xue-Liang Wang
- Dangshan Plant Protection and Plant Inspection Service Center, Dangshan, China
| | - Hong-Huat Hoh
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jia Ye
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Qian Ju
- Shandong Peanut Research Institute, Qingdao, China
| | - Yu Ma
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Meng Liang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Yun-Ying Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Fan Zhang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China.
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
111
|
Zhao Y, Cui K, Li H, Ding J, Mu W, Zhou C. Identification and Expression Analysis of Chemosensory Receptor Genes in Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:435-450. [PMID: 31687766 DOI: 10.1093/jee/toz286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 06/10/2023]
Abstract
The chive midge, Bradysia odoriphaga, is a major insect pest affecting Chinese chive production in China. Its adult life stage is nonfeeding and has a short life span. Hence, the perception of chemical stimuli is important for its adult behavior and reproductive success. To better understand its chemosensory process at the molecular level, chemosensory receptor genes were identified based on transcriptomes of B. odoriphaga. In total, 101 chemosensory genes were identified from the antenna and body transcriptomes, including 71 odorant receptors (ORs), 18 ionotropic receptors (IRs), 5 gustatory receptors (GRs), and 7 sensory neuron membrane proteins (SNMPs). Phylogenetic analysis indicated that most of these genes have homologs among other Dipteran insects. A transcript abundance comparison based on FPKM values was conducted to analyze the sex- and tissue-specific expression profiles of these chemosensory genes. Moreover, quantitative real-time PCR of OR transcripts was performed on different tissues (female antennae, male antennae, heads, and legs) to verify the transcriptional expression levels of ORs in the transcriptomes. This analysis suggested that 44 ORs showed significantly higher expression in the female antennae, while 16 OR transcripts were most highly expressed in the male antennae and may play significant roles in sex pheromone detection. In addition, some IRs and GRs might be involved in CO2 and sugar detection and temperature sensing. In the present study, 101 chemosensory genes were identified, and their putative functions were predicted. This work could provide a basis to facilitate functional clarification of these chemosensory genes at the molecular level.
Collapse
Affiliation(s)
- Yunhe Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Kaidi Cui
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Huan Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Jinfeng Ding
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Chenggang Zhou
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| |
Collapse
|
112
|
Grison C, Carrasco D, Pelissier F, Moderc A. Reflexion on Bio-Sourced Mosquito Repellents: Nature, Activity, and Preparation. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
113
|
Antennal transcriptome analysis and expression profiles of putative chemosensory soluble proteins in Histia rhodope Cramer (Lepidoptera: Zygaenidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 33:100654. [PMID: 31954363 DOI: 10.1016/j.cbd.2020.100654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 11/22/2022]
Abstract
Histia rhodope Cramer (Lepidoptera: Zygaenidae) is one of the most destructive defoliators of landscape tree Bischofia polycarpa (Levl.) Airy Shaw in China stretching to other Southeast Asia regions. Olfactory genes, encoding proteins such as odorant carrier proteins believed to initiate olfactory signal transduction in insects, have been acknowledged to be novel targets for pest control. In this study, we established antennal transcriptome of H. rhodope and ultimately identified 19 odorant binding proteins (OBPs), 23 chemosensory proteins (CSPs) and 4 Niemann-Pick type C2 proteins (NPC2s). The 19 OBPs, 6 CSPs and 4 NPC2s were assessed to validate the differential expressions between sexes, and between olfactory and non-olfactory tissues. 8 OBPs and 2 CSPs exhibited male-biased antennae expression, while 6 OBPs, 2 CSPs and HrhoNPC2a exhibited female-biased antennae expression. Moreover, 17 OBPs, 4 CSPs and 2 NPC2s were predominantly expressed in the antennae compared with non-olfactory tissues. HrhoOBP1 and HrhoOBP8 were predominantly expressed in the antennae and heads, HrhoCSP8 and HrhoCSP14 were highly expressed in abdomens and legs, HrhoNPC2c was highly expressed in abdomens, while HrhoNPC2d was expressed in all tissues. Phylogenetic analysis revealed that most H. rhodope proteins were closely related to proteins from other moths. Moreover, compared with other nocturnal moths, acting as a diurnal moth, we found that H. rhodope may have lost a PBP gene. Our results provide important molecular information for further studies on olfactory mechanisms of H. rhodope.
Collapse
|
114
|
Mbaluto CM, Ayelo PM, Duffy AG, Erdei AL, Tallon AK, Xia S, Caballero-Vidal G, Spitaler U, Szelényi MO, Duarte GA, Walker WB, Becher PG. Insect chemical ecology: chemically mediated interactions and novel applications in agriculture. ARTHROPOD-PLANT INTERACTIONS 2020; 14:671-684. [PMID: 33193908 PMCID: PMC7650581 DOI: 10.1007/s11829-020-09791-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/16/2020] [Indexed: 05/19/2023]
Abstract
Insect chemical ecology (ICE) evolved as a discipline concerned with plant-insect interactions, and also with a strong focus on intraspecific pheromone-mediated communication. Progress in this field has rendered a more complete picture of how insects exploit chemical information in their surroundings in order to survive and navigate their world successfully. Simultaneously, this progress has prompted new research questions about the evolution of insect chemosensation and related ecological adaptations, molecular mechanisms that mediate commonly observed behaviors, and the consequences of chemically mediated interactions in different ecosystems. Themed meetings, workshops, and summer schools are ideal platforms for discussing scientific advancements as well as identifying gaps and challenges within the discipline. From the 11th to the 22nd of June 2018, the 11th annual PhD course in ICE was held at the Swedish University of Agricultural Sciences (SLU) Alnarp, Sweden. The course was made up of 35 student participants from 22 nationalities (Fig. 1a) as well as 32 lecturers. Lectures and laboratory demonstrations were supported by literature seminars, and four broad research areas were covered: (1) multitrophic interactions and plant defenses, (2) chemical communication focusing on odor sensing, processing, and behavior, (3) disease vectors, and (4) applied aspects of basic ICE research in agriculture. This particular article contains a summary and brief synthesis of these main emergent themes and discussions from the ICE 2018 course. In addition, we also provide suggestions on teaching the next generation of ICE scientists, especially during unprecedented global situations.
Collapse
Affiliation(s)
- Crispus M. Mbaluto
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Pusch straße 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Pascal M. Ayelo
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Hatfield, Private Bag X20, Pretoria, 0028 South Africa
| | - Alexandra G. Duffy
- Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT 84602 USA
| | - Anna L. Erdei
- Zoology Department, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó str. 15, Budapest, 1022 Hungary
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 23053 Alnarp, Sweden
| | - Anaїs K. Tallon
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 23053 Alnarp, Sweden
| | - Siyang Xia
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT 06511 USA
| | - Gabriela Caballero-Vidal
- INRAE, Institute of Ecology and Environmental Sciences of Paris, CNRS, IRD, UPEC, Sorbonne Université, Université Paris Diderot, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - Urban Spitaler
- Institute of Plant Health, Laimburg Research Centre, Laimburg 6, 3904 Ora, South Tyrol Italy
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Magdolna O. Szelényi
- Zoology Department, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó str. 15, Budapest, 1022 Hungary
| | - Gonçalo A. Duarte
- LEAF-Linking Landscape, Environment, Agriculture and Food Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - William B. Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 23053 Alnarp, Sweden
| | - Paul G. Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 23053 Alnarp, Sweden
| |
Collapse
|
115
|
Gao B, Song XQ, Yu H, Fu DY, Xu J, Ye H. Mating-Induced Differential Expression in Genes Related to Reproduction and Immunity in Spodoptera litura (Lepidoptera: Noctuidae) Female Moths. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:10. [PMID: 32092133 PMCID: PMC7039226 DOI: 10.1093/jisesa/ieaa003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Mating promotes reproductive activity, which may impact immune performance. Paradoxically, mating frequently challenges females' immunity (e.g., infections). Therefore, studies of postmating resource allocation between reproduction and survival are likely to shed new light on life-history trade-off and sexual selection. Here, we used RNAseq to test whether and how mating affected mRNA expression in genes related to reproduction and immunity in Spodoptera litura female moths. Results show a divergent change in the differentially expressed genes (DEGs) between reproduction and immunity: the immune response was largely downregulated shortly after mating (~6 h postmating), which has some recovery at 24 h postmating; reproductive response is trivial shortly after mating (~6 h postmating), but it largely upregulated at 24 h postmating (e.g., egg maturation related genes were highly upregulated). Considering the fact that most of the total DEGs downregulated from 0 to 6 h postmating (from 51/68 to 214/260) but most of the total DEGs upregulated at 24 h postmating (816/928), it is possible that trade-offs between reproduction and immunity occurred in mated females. For example, they may shut down immunity to favor sperm storage and save limited resources to support the increased energy required in reproduction (e.g., egg maturation and oviposition). Mating-induced infections should be trivial due to low polyandry in S. litura. A reduced immune defense may have no threat to S. litura survival but may benefit reproduction significantly. Furthermore, obvious expression changes were detected in genes related to hormone production, suggesting that endocrine changes could play important roles in postmating responses.
Collapse
Affiliation(s)
- Bo Gao
- School of Life Sciences, Yunnan University, Kunming, China
| | - Xiao-Qian Song
- School of Life Sciences, Yunnan University, Kunming, China
| | - Hong Yu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Da-Ying Fu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Hui Ye
- School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
116
|
da Costa KS, Galúcio JM, da Costa CHS, Santana AR, dos Santos Carvalho V, do Nascimento LD, Lima e Lima AH, Neves Cruz J, Alves CN, Lameira J. Exploring the Potentiality of Natural Products from Essential Oils as Inhibitors of Odorant-Binding Proteins: A Structure- and Ligand-Based Virtual Screening Approach To Find Novel Mosquito Repellents. ACS OMEGA 2019; 4:22475-22486. [PMID: 31909330 PMCID: PMC6941369 DOI: 10.1021/acsomega.9b03157] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/29/2019] [Indexed: 05/31/2023]
Abstract
Odorant-binding proteins (OBPs) are the main olfactory proteins of mosquitoes, and their structures have been widely explored to develop new repellents. In the present study, we combined ligand- and structure-based virtual screening approaches using as a starting point 1633 compounds from 71 botanical families obtained from the Essential Oil Database (EssOilDB). Using as reference the crystallographic structure of N,N-diethyl-meta-toluamide interacting with the OBP1 homodimer of Anopheles gambiae (AgamOBP1), we performed a structural and pharmacophoric similarity search to select potential natural products from the library. Thymol acetate, 4-(4-methyl phenyl)-pentanal, thymyl isovalerate, and p-cymen-8-yl demonstrated a favorable chemical correlation with DEET and also had high-affinity interactions with the OBP binding pocket that molecular dynamics simulations showed to be stable. To the best of our knowledge, this is the first study to evaluate on a large scale the potentiality of NPs from essential oils as inhibitors of the mosquito OBP1 using in silico approaches. Our results could facilitate the design of novel repellents with improved selectivity and affinity to the protein binding pocket and can shed light on the mechanism of action of these compounds against insect olfactory recognition.
Collapse
Affiliation(s)
- Kauȇ Santana da Costa
- Institute
of Biodiversity, Federal University of Western
Pará, 68035-110 Santarém, Pará, Brazil
| | - João Marcos Galúcio
- Institute
of Biodiversity, Federal University of Western
Pará, 68035-110 Santarém, Pará, Brazil
| | | | - Amanda Ruslana Santana
- Department
of Pharmaceutical Sciences, Federal University
of Pará, 66060-902 Belém, Pará, Brazil
| | - Vitor dos Santos Carvalho
- Institute of Exact and Natural
Sciences and Institute of Biological Sciences, Federal
University of Pará, 66075-110 Belém, Pará, Brazil
| | | | - Anderson Henrique Lima e Lima
- Institute of Exact and Natural
Sciences and Institute of Biological Sciences, Federal
University of Pará, 66075-110 Belém, Pará, Brazil
| | - Jorddy Neves Cruz
- Department
of Pharmaceutical Sciences, Federal University
of Pará, 66060-902 Belém, Pará, Brazil
| | - Claudio Nahum Alves
- Institute of Exact and Natural
Sciences and Institute of Biological Sciences, Federal
University of Pará, 66075-110 Belém, Pará, Brazil
| | - Jerônimo Lameira
- Institute of Exact and Natural
Sciences and Institute of Biological Sciences, Federal
University of Pará, 66075-110 Belém, Pará, Brazil
| |
Collapse
|
117
|
Zhu GH, Zheng MY, Sun JB, Khuhro SA, Yan Q, Huang Y, Syed Z, Dong SL. CRISPR/Cas9 mediated gene knockout reveals a more important role of PBP1 than PBP2 in the perception of female sex pheromone components in Spodoptera litura. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 115:103244. [PMID: 31560967 DOI: 10.1016/j.ibmb.2019.103244] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/16/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Three different pheromone binding proteins (PBPs) can typically be found in the sensilla lymph of noctuid moth antennae, but their relative contributions in perception of the sex pheromone is rarely verified in vivo. Previously, we demonstrated that SlitPBP3 plays a minor role in the sex pheromone detection in Spodoptera litura using the CRISPR/Cas9 system. In the present study, the roles of two other SlitPBPs (SlitPBP1 and SlitPBP2) are further verified using the same system. First, by co-injection of Cas9 mRNA/sgRNA into newly laid eggs, a high rate of target mutagenesis was induced, 51.5% for SlitPBP1 and 46.8% for SlitPBP2 as determined by restriction enzyme assay. Then, the homozygous SlitPBP1 and SlitPBP2 knockout lines were obtained by cross-breeding. Finally, using homozygous knockout male moths, we performed electrophysiological (EAG recording) and behavioral analyses. Results showed that knockout of either SlitPBP1 or SlitPBP2 in males decreased EAG response to each of the 3 sex pheromone components (Z9,E11-14:Ac, Z9,E12-14:Ac and Z9-14:Ac) by 53%, 60% and 63% (for SlitPBP1 knockout) and 40%, 43% and 46% (for SlitPBP2 knockout), respectively. These decreases in EAG responses were similar among 3 pheromone components, but were more pronounced in SlitPBP1 knockout males than in SlitPBP2 knockout males. Consistently, behavioral assays with the major component (Z9,E11-14:Ac) showed that SlitPBP1 knockout males responded in much lower percentages than SlitPBP2 knockout males in terms of orientation to the pheromone, along with reduction in close range behaviors such as hairpencil display and mating attempt. Taken together, this study provides direct functional evidence for the roles of SlitPBP1 and SlitPBP2, as well as their relative importance (SlitPBP1 > SlitPBP2) in the sex pheromone perception. This information is valuable in understanding mechanisms of sex pheromone perception and may facilitate the development of PBP-targeted pest control techniques.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA
| | - Mei-Yan Zheng
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia-Bin Sun
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sajjad Ali Khuhro
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Yan
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai Institutes for Biological Sciences, Shanghai, 200032, China
| | | | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
118
|
Cui Y, Kang C, Wu Z, Lin J. Identification and Expression Analyses of Olfactory Gene Families in the Rice Grasshopper, Oxya chinensis, From Antennal Transcriptomes. Front Physiol 2019; 10:1223. [PMID: 31616318 PMCID: PMC6775195 DOI: 10.3389/fphys.2019.01223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
The rice grasshopper Oxya chinensis is an important agricultural pest of rice and other gramineous plants. Chemosensory genes are crucial factors in direct interactions with odorants in the olfactory process. Here we identified genes encoding 18 odorant-binding proteins (OBPs), 13 chemosensory proteins (CSPs), 94 olfactory receptors (ORs), 12 ionotropic receptors (IRs), and two sensory neuron membrane proteins (SNMPs) from O. chinensis using an transcriptomic approach. Semi-quantitative RT-PCR assays revealed that six OBP-encoding genes (OchiOBP4, 5, 8, 9, 10, and 14), one CSP gene (OchiOBP10) and two IR genes (OchiIR28 and 29) were exclusively expressed in antennae, suggesting their roles in olfaction. Real-time quantitative PCR analyses revealed that genes expressed exclusively or predominantly in antennae also displayed significant differences in expression levels between males and females. Among the differentially expressed genes, 17 OR-encoding genes, one CSP- and one SNMP-gene showed female-biased expression, suggesting that they may be involved in some female-specific behaviors such as seeking oviposition site; whereas the three remaining OR-encoding genes showed male-biased expression, indicating their possible roles in sensing female sex pheromones. Our results laid a solid foundation for future studies to reveal olfactory mechanisms as well as designing strategies for controlling this rice pest.
Collapse
Affiliation(s)
- Yang Cui
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Cong Kang
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhongzhen Wu
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jintian Lin
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
119
|
Zhou LY, Li W, Liu HY, Xiang F, Kang YK, Yin X, Huang AP, Wang YJ. Systemic identification and analyses of genes potentially involved in chemosensory in the devastating tea pest Basilepta melanopus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100586. [DOI: 10.1016/j.cbd.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/03/2019] [Accepted: 04/06/2019] [Indexed: 11/27/2022]
|
120
|
Zhao HX, Xiao WY, Ji CH, Ren Q, Xia XS, Zhang XF, Huang WZ. Candidate chemosensory genes identified from the greater wax moth, Galleria mellonella, through a transcriptomic analysis. Sci Rep 2019; 9:10032. [PMID: 31296896 PMCID: PMC6624281 DOI: 10.1038/s41598-019-46532-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/27/2019] [Indexed: 11/09/2022] Open
Abstract
The greater wax moth, Galleria mellonella Linnaeus (Lepidoptera: Galleriinae), is a ubiquitous pest of the honeybee, and poses a serious threat to the global honeybee industry. G. mellonella pheromone system is unusual compared to other lepidopterans and provides a unique olfactory model for pheromone perception. To better understand the olfactory mechanisms in G. mellonella, we conducted a transcriptomic analysis on the antennae of both male and female adults of G. mellonella using high-throughput sequencing and annotated gene families potentially involved in chemoreception. We annotated 46 unigenes coding for odorant receptors, 25 for ionotropic receptors, two for sensory neuron membrane proteins, 22 for odorant binding proteins and 20 for chemosensory proteins. Expressed primarily in antennae were all the 46 odorant receptor unigenes, nine of the 14 ionotropic receptor unigenes, and two of the 22 unigenes coding for odorant binding proteins, suggesting their putative roles in olfaction. The expression of some of the identified unigenes were sex-specific, suggesting that they may have important functions in the reproductive behavior of the insect. Identification of the candidate unigenes and initial analyses on their expression profiles should facilitate functional studies in the future on chemoreception mechanisms in this species and related lepidopteran moths.
Collapse
Affiliation(s)
- Hong-Xia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, PR China
| | - Wan-Yu Xiao
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510308, PR China
| | - Cong-Hui Ji
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, PR China
| | - Qin Ren
- Chongqing Academy of Animal Science, Chongqing, 402460, PR China
| | - Xiao-Shan Xia
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, PR China
| | - Xue-Feng Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, PR China.
| | - Wen-Zhong Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, PR China.
| |
Collapse
|
121
|
Liu XL, Sun SJ, Khuhro SA, Elzaki MEA, Yan Q, Dong SL. Functional characterization of pheromone receptors in the moth Athetis dissimilis (Lepidoptera: Noctuidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 158:69-76. [PMID: 31378363 DOI: 10.1016/j.pestbp.2019.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 06/10/2023]
Abstract
Sex pheromones are crucial for communication between females and males in moths, and pheromone receptors (PRs) play a key role in peripheral coding of sex pheromones. During the last decade, many PR candidates have been identified based on transcriptome sequencing and bioinformatic analysis, but their detailed functions remain mostly unknown. Here, focusing on four PR candidates of Athetis dissimilis (AdisOR1, AdisOR6, AdisOR11 and AdisOR14) identified in a previous study, we first cloned the full-length cDNAs and determined the tissue expression profiles by quantitative real-time PCR (qPCR). The results revealed that expression of three of these genes were male antennae-specific, while AdisOR11 was similar in expression between male and female antennae. Furthermore, the expression level of AdisOR1 was much higher than those of the other three genes. Then, functional analysis was conducted using Xenopus oocyte system. AdisOR1 responded strongly to the sex pheromone component Z9-14:OH and the potential pheromone component Z9,E12-14:OH, suggesting its important role in the sex pheromone perception; AdisOR14 showed specificity for Z9,E12-14:OH; while AdisOR6 and AdisOR11 did not respond to any of the pheromone components and analogs tested. Taken together, this study contributes to elucidate the molecular mechanism of sex pheromone reception and provides potential targets for development of OR based pest control techniques in A. dissimilis.
Collapse
Affiliation(s)
- Xiao-Long Liu
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Si-Jie Sun
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Sajjad Ali Khuhro
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Qi Yan
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
122
|
Tang QF, Shen C, Zhang Y, Yang ZP, Han RR, Wang J. Antennal transcriptome analysis of the maize weevil Sitophilus zeamais: Identification and tissue expression profiling of candidate odorant-binding protein genes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21542. [PMID: 30820994 DOI: 10.1002/arch.21542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/14/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Our bioassays reviewed that antennae played crucial roles in the responses of maize weevil (Sitophilus zeamais) to food and sex volatiles. In order to identify the maize weevil odorant-binding protein (OBP) genes, we analyzed its antennal transcriptome. In total, 21,587,928 high-quality clean reads were obtained from RNA-seq, 52,206 unigenes were assembled, and 25,744 unigenes showed significant similarity ( E value < 10 -5 ) to known proteins in the NCBI nonredundant protein database. From those unigenes, we identified 41 candidate OBP proteins, which could be categorized into dimeric OBPs subfamily, minus-C OBPs subfamily, and classical OBPs subfamily. Phylogenic analysis indicated that most maize weevil OBPs were closely related to their orthologues in other beetles of the Superfamily Curculionoidea. We further investigated the expression profiles of those candidate OBP genes by quantitative real-time polymerase chain reaction. Twenty-six of forty-one maize weevil OBP genes were highly expressed in the antennae or other parts of the head. The rest were expressed in the legs, wings, or other tested tissues. The antennal transcriptomic data and candidate OBP genes described here provide a basis for the functional studies of the maize weevil chemical perception, which are potential novel targets for pest control strategies.
Collapse
Affiliation(s)
- Qing-Feng Tang
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Chen Shen
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Ying Zhang
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhi-Peng Yang
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Rong-Rong Han
- Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, Maryland
| |
Collapse
|