101
|
Li Z, Liang WS, Carr JP. Effects of modifying alternative respiration on nitric oxide-induced virus resistance and PR1 protein accumulation. J Gen Virol 2014; 95:2075-2081. [PMID: 24903327 DOI: 10.1099/vir.0.066662-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Nitric oxide (NO) is an important defensive signal in plants but its effects on virus infection are not well understood. Administration of NO-releasing compounds immediately before inoculation of tobacco leaves with potato virus X and tobacco mosaic virus decreased the accumulation of virus, indicating that NO can induce resistance rapidly. Resistance induction was inhibited by co-administration with an NO-scavenging compound or when experiments were done in transgenic tobacco plants expressing increased alternative respiratory pathway capacity due to constitutive expression of the plant mitochondrial enzyme, alternative oxidase (AOX). These results indicate that NO, which inhibits electron transport chain activity, is triggering defensive signalling by inducing changes in mitochondrial reactive oxygen species levels that are in turn regulated by AOX. Experiments using nahG-transgenic plants, which cannot accumulate the defensive plant hormone salicylic acid (SA) showed that NO rapidly induces resistance to virus infection independently of SA. However, this initial state of resistance may be transient. Subsequently, by 5 days post-treatment, NO had caused an increase in pathogenesis-related protein 1 (PR1) expression (a proxy for increased SA biosynthesis), which correlated with a longer-term state of resistance to virus infection. The induction by NO of PR1 accumulation was modified in AOX-transgenic plants. This indicates that the influence of NO on defensive gene expression is in part mediated through its effects on mitochondria.
Collapse
Affiliation(s)
- Zheng Li
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Wu-Sheng Liang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
102
|
Lee YH, Kim SH, Yun BW, Hong JK. Altered cultivar resistance of kimchi cabbage seedlings mediated by salicylic Acid, jasmonic Acid and ethylene. THE PLANT PATHOLOGY JOURNAL 2014; 30:323-9. [PMID: 25289020 PMCID: PMC4181111 DOI: 10.5423/ppj.nt.06.2014.0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/07/2014] [Accepted: 07/24/2014] [Indexed: 05/23/2023]
Abstract
Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.
Collapse
Affiliation(s)
- Young Hee Lee
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), 33 Dongjinro, Jinju 660-758, Republic of Korea
| | - Sang Hee Kim
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Byung-Wook Yun
- Division of Plant Biosciences, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jeum Kyu Hong
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), 33 Dongjinro, Jinju 660-758, Republic of Korea
| |
Collapse
|
103
|
Genome-wide analysis and identification of stress-responsive genes of the CCCH zinc finger family in Solanum lycopersicum. Mol Genet Genomics 2014; 289:965-79. [PMID: 24870401 DOI: 10.1007/s00438-014-0861-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 05/05/2014] [Indexed: 12/13/2022]
Abstract
Zinc finger genes comprise a large and diverse gene family. Based on their individual finger structures and spacing, zinc finger proteins are further divided into different families according to their specific molecular functions. Genes in the CCCH family encode zinc finger proteins containing a motif with three cysteines and one histidine. They play important roles in plant growth and development, and in response to biotic and abiotic stresses. However, the limited analysis of the genome sequence has meant that there is no detailed information concerning the CCCH zinc finger family in tomato (Solanum lycopersicum). Here, we identified 80 CCCH zinc finger protein genes in the tomato genome. A complete overview of this gene family in tomato was presented, including the chromosome locations, gene duplications, phylogeny, gene structures and protein motifs. Promoter sequences and expression profiles of putative stress-responsive members were also investigated. These results revealed that, with the exception of four genes, the 80 CCCH genes are distributed over all 12 chromosomes with different densities, and include six segmental duplication events. The CCCH family in tomato could be divided into 12 groups based on their different CCCH motifs and into eight subfamilies by phylogenetic analysis. Analysis showed that almost all CCCH genes contain putative stress-responsive cis-elements in their promoter regions. Nine CCCH genes chosen for further quantitative real-time PCR analysis showed differential expression patterns in three representative tomato tissues. In addition, their expression levels indicated that these genes are mostly involved in the response to mannitol, heat, salicylic acid, ethylene or methyl jasmonate treatments. To the best of our knowledge, this is the first report of a genome-wide analysis of the tomato CCCH zinc finger family. Our data provided valuable information on tomato CCCH proteins and form a foundation for future studies of these proteins, especially for those members that may play important roles in stress responses.
Collapse
|
104
|
Tanaka K, Choi J, Cao Y, Stacey G. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:446. [PMID: 25232361 PMCID: PMC4153020 DOI: 10.3389/fpls.2014.00446] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/19/2014] [Indexed: 05/16/2023]
Abstract
As sessile organisms, plants have evolved effective mechanisms to protect themselves from environmental stresses. Damaged (i.e., wounded) plants recognize a variety of endogenous molecules as danger signals, referred to as damage-associated molecular patterns (DAMPs). ATP is among the molecules that are released by cell damage, and recent evidence suggests that ATP can serve as a DAMP. Although little studied in plants, extracellular ATP is well known for its signaling roles in animals, including acting as a DAMP during the inflammatory response and wound healing. If ATP acts outside the cell, then it is reasonable to expect that it is recognized by a plasma membrane-localized receptor. Recently, DORN1, a lectin receptor kinase, was shown to recognize extracellular ATP in Arabidopsis. DORN1 is the founding member of a new purinoceptor subfamily, P2K (P2 receptor kinase), which is plant-specific. P2K1 (DORN1) is required for ATP-induced cellular responses (e.g., cytosolic Ca(2+) elevation, MAPK phosphorylation, and gene expression). Genetic analysis of loss-of-function mutants and overexpression lines showed that P2K1 participates in the plant wound response, consistent with the role of ATP as a DAMP. In this review, we summarize past research on the roles and mechanisms of extracellular ATP signaling in plants, and discuss the direction of future research on extracellular ATP as a DAMP signal.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Department of Plant Pathology, Washington State UniversityPullman, WA, USA
- *Correspondence: Kiwamu Tanaka, Department of Plant Pathology, Washington State University, P.O. BOX 646430, Pullman, WA 99164, USA e-mail:
| | - Jeongmin Choi
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Yangrong Cao
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Gary Stacey
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| |
Collapse
|
105
|
Tanaka K, Choi J, Cao Y, Stacey G. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. FRONTIERS IN PLANT SCIENCE 2014. [PMID: 25232361 DOI: 10.3389/fpls.2014.00446.ecollection] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
As sessile organisms, plants have evolved effective mechanisms to protect themselves from environmental stresses. Damaged (i.e., wounded) plants recognize a variety of endogenous molecules as danger signals, referred to as damage-associated molecular patterns (DAMPs). ATP is among the molecules that are released by cell damage, and recent evidence suggests that ATP can serve as a DAMP. Although little studied in plants, extracellular ATP is well known for its signaling roles in animals, including acting as a DAMP during the inflammatory response and wound healing. If ATP acts outside the cell, then it is reasonable to expect that it is recognized by a plasma membrane-localized receptor. Recently, DORN1, a lectin receptor kinase, was shown to recognize extracellular ATP in Arabidopsis. DORN1 is the founding member of a new purinoceptor subfamily, P2K (P2 receptor kinase), which is plant-specific. P2K1 (DORN1) is required for ATP-induced cellular responses (e.g., cytosolic Ca(2+) elevation, MAPK phosphorylation, and gene expression). Genetic analysis of loss-of-function mutants and overexpression lines showed that P2K1 participates in the plant wound response, consistent with the role of ATP as a DAMP. In this review, we summarize past research on the roles and mechanisms of extracellular ATP signaling in plants, and discuss the direction of future research on extracellular ATP as a DAMP signal.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Department of Plant Pathology, Washington State University Pullman, WA, USA
| | - Jeongmin Choi
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri Columbia, MO, USA
| | - Yangrong Cao
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri Columbia, MO, USA
| | - Gary Stacey
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri Columbia, MO, USA
| |
Collapse
|
106
|
Freschi L. Nitric oxide and phytohormone interactions: current status and perspectives. FRONTIERS IN PLANT SCIENCE 2013; 4:398. [PMID: 24130567 PMCID: PMC3793198 DOI: 10.3389/fpls.2013.00398] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/19/2013] [Indexed: 05/16/2023]
Abstract
Nitric oxide (NO) is currently considered a ubiquitous signal in plant systems, playing significant roles in a wide range of responses to environmental and endogenous cues. During the signaling events leading to these plant responses, NO frequently interacts with plant hormones and other endogenous molecules, at times originating remarkably complex signaling cascades. Accumulating evidence indicates that virtually all major classes of plant hormones may influence, at least to some degree, the endogenous levels of NO. In addition, studies conducted during the induction of diverse plant responses have demonstrated that NO may also affect biosynthesis, catabolism/conjugation, transport, perception, and/or transduction of different phytohormones, such as auxins, gibberellins, cytokinins, abscisic acid, ethylene, salicylic acid, jasmonates, and brassinosteroids. Although still not completely elucidated, the mechanisms underlying the interaction between NO and plant hormones have recently been investigated in a number of species and plant responses. This review specifically focuses on the current knowledge of the mechanisms implicated in NO-phytohormone interactions during the regulation of developmental and metabolic plant events. The modifications triggered by NO on the transcription of genes encoding biosynthetic/degradative enzymes as well as proteins involved in the transport and signal transduction of distinct plant hormones will be contextualized during the control of developmental, metabolic, and defense responses in plants. Moreover, the direct post-translational modification of phytohormone biosynthetic enzymes and receptors through S-nitrosylation will also be discussed as a key mechanism for regulating plant physiological responses. Finally, some future perspectives toward a more complete understanding of NO-phytohormone interactions will also be presented and discussed.
Collapse
Affiliation(s)
- Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao PauloSao Paulo, Brazil
| |
Collapse
|
107
|
Pieterse CMJ, Poelman EH, Van Wees SCM, Dicke M. Induced plant responses to microbes and insects. FRONTIERS IN PLANT SCIENCE 2013; 4:475. [PMID: 24312114 PMCID: PMC3836026 DOI: 10.3389/fpls.2013.00475] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/03/2013] [Indexed: 05/22/2023]
Affiliation(s)
- Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
- *Correspondence:
| | - Erik H. Poelman
- Laboratory of Entomology, Department of Plant Science, Wageningen UniversityWageningen, Netherlands
| | - Saskia C. M. Van Wees
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Department of Plant Science, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|