101
|
da-Silva CJ, Mollica DC, Vicente MH, Peres LE, Modolo LV. NO, hydrogen sulfide does not come first during tomato response to high salinity. Nitric Oxide 2018; 76:164-173. [DOI: 10.1016/j.niox.2017.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 09/02/2017] [Accepted: 09/21/2017] [Indexed: 11/26/2022]
|
102
|
Alsaeedi A, El-Ramady H, Alshaal T, El-Garawani M, Elhawat N, Al-Otaibi A. Exogenous nanosilica improves germination and growth of cucumber by maintaining K +/Na + ratio under elevated Na + stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:164-171. [PMID: 29471211 DOI: 10.1016/j.plaphy.2018.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/08/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
The current work was aimed to elucidate the role of engineered nanosilica (SiNPs) particles to mitigate the damaging impacts of Na+-derived salinity on cucumber (Cucumis sativus) Beit Alpha variety by conducting in vitro experiments applying various Na+ concentrations i.e. 0, 1000, 2000, 3000, 4000 and 5000 mg L-1. By treating seeds and seedlings, respectively, of cucumber with SiNPs (0, 100, 200 and 300 ppm) and subsequent determination some germination and vegetative parameters as well as chemical analysis of seedlings, we verified that SiNPs succeeded to alleviate the detrimental effects of high Na+ salinity by increasing germination parameters and vegetative growth of cucumber seedlings. Even as little as 100 ppm of N-Si results in considerable improvement of seed germination and seedlings growth of cucumber compared to the control, while 200 ppm was optimal among the doses tested. At 5000 mg Na+ L-1, applying SiNPs with 200 ppm increased final germination percentage by 101% over control, vigor index by 101%, germination rate index by 116%, germination index by 110%, fresh mass by 13%, K+/Na+ ratio by 77%, shoot dry mass by 384%, root dry mass by 304% and plant height by 70%. The results mentioned in this paper obviously outline the large practical relevance of SiNPs and imply that applying of SiNPs for cucumber seeds and seedlings under high Na+-derived salinity enhances germination and growth as a result for decreasing Na+ uptake and sequentially improves high K+/Na+ ratio.
Collapse
Affiliation(s)
- Abdullah Alsaeedi
- Department of Environment and Natural Resources, Faculty of Agriculture and Food Science, King Faisal University, Saudi Arabia
| | - Hassan El-Ramady
- Department of Soil and Water, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Tarek Alshaal
- Department of Soil and Water, Faculty of Agriculture, Kafrelsheikh University, Egypt; Department of Agricultural Botany, Plant Physiology and Biotechnology, University of Debrecen, Hungary.
| | | | - Nevien Elhawat
- Department of Biological and Environmental Sciences, Faculty of Home Economic, Al-Azhar University, Egypt; Department of Agricultural Botany, Plant Physiology and Biotechnology, University of Debrecen, Hungary
| | | |
Collapse
|
103
|
Ma Y, Niu J, Zhang W, Wu X. Hydrogen sulfide may function downstream of hydrogen peroxide in mediating darkness-induced stomatal closure in Vicia faba. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:553-560. [PMID: 32290994 DOI: 10.1071/fp17274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/21/2017] [Indexed: 06/11/2023]
Abstract
The relationship between hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) during darkness-induced stomatal closure in Vicia faba L. was investigated by using pharmacological, spectrophotographic and lasers canning confocal microscopic approaches. Darkness-induced stomatal closure was inhibited by H2S scavenger hypotaurine (HT), H2S synthesis inhibitors aminooxy acetic acid (AOA) and hydroxylamine (NH2OH) and potassium pyruvate (N3H3KO3) and ammonia (NH3), which are the products of L-/D-cysteine desulfhydrase (L-/D-CDes). Moreover, darkness induced H2S generation and increased L-/D-CDes activity in leaves of V. faba. H2O2 scavenger and synthesis inhibitors suppressed darkness-induced increase of H2S levels and L-/D-CDes activity as well as stomatal closure in leaves of V. faba. However, H2S scavenger and synthesis inhibitors had no effect on darkness-induced H2O2 accumulation in guard cells of V. faba. From these data it can be deduced that H2S is involved in darkness-induced stomatal closure and acts downstream of H2O2 in V. faba.
Collapse
Affiliation(s)
- Yinli Ma
- School of Life Sciences, Shanxi Normal University, Gongyuan Street No. 1, Linfen 041004, China
| | - Jiao Niu
- School of Life Sciences, Shanxi Normal University, Gongyuan Street No. 1, Linfen 041004, China
| | - Wei Zhang
- School of Life Sciences, Shanxi Normal University, Gongyuan Street No. 1, Linfen 041004, China
| | - Xiang Wu
- Hanzhong Forestry Science Research Institute, Zhengjiaba, Hanzhong 723000, China
| |
Collapse
|
104
|
Chen G, Liu C, Gao Z, Zhang Y, Zhang A, Zhu L, Hu J, Ren D, Yu L, Xu G, Qian Q. Variation in the Abundance of OsHAK1 Transcript Underlies the Differential Salinity Tolerance of an indica and a japonica Rice Cultivar. FRONTIERS IN PLANT SCIENCE 2018; 8:2216. [PMID: 29354152 PMCID: PMC5760540 DOI: 10.3389/fpls.2017.02216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/18/2017] [Indexed: 05/03/2023]
Abstract
Salinity imposes a major constraint over the productivity of rice. A set of chromosome segment substitution lines (CSSLs), derived from a cross between the japonica type cultivar (cv.) Nipponbare (salinity sensitive) and the indica type cv. 9311 (moderately tolerant), was scored using a hydroponics system for their salinity tolerance at the seedling stage. Two of the CSSLs, which share a ∼1.2 Mbp stretch of chromosome 4 derived from cv. Nipponbare, were as sensitive to the stress as cv. Nipponbare itself. Fine mapping based on an F2 population bred from a backcross between one of these CSSLs and cv. 9311 narrowed this region to 95 Kbp, within which only one gene (OsHAK1) exhibited a differential (lower) transcript abundance in cv. Nipponbare and the two CSSLs compared to in cv. 9311. The gene was up-regulated by exposure to salinity stress both in the root and the shoot, while a knockout mutant proved to be more salinity sensitive than its wild type with respect to its growth at both the vegetative and reproductive stages. Seedlings over-expressing OsHAK1 were more tolerant than wild type, displaying a superior photosynthetic rate, a higher leaf chlorophyll content, an enhanced accumulation of proline and a reduced level of lipid peroxidation. At the transcriptome level, the over-expression of OsHAK1 stimulated a number of stress-responsive genes as well as four genes known to be involved in Na+ homeostasis and the salinity response (OsHKT1;5, OsSOS1, OsLti6a and OsLti6b). When the stress was applied at booting through to maturity, the OsHAK1 over-expressors out-yielded wild type by 25%, and no negative pleiotropic effects were expressed in plants gown under non-saline conditions. The level of expression of OsHAK1 was correlated with Na+/K+ homeostasis, which implies that the gene should be explored a target for molecular approaches to the improvement of salinity tolerance in rice.
Collapse
Affiliation(s)
- Guang Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yu Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Anpeng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ling Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
105
|
Siddiqui MN, Mostofa MG, Akter MM, Srivastava AK, Sayed MA, Hasan MS, Tran LSP. Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity. CHEMOSPHERE 2017; 187:385-394. [PMID: 28858718 DOI: 10.1016/j.chemosphere.2017.08.078] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 05/09/2023]
Abstract
High salinity is a major constraint for wheat productivity in many countries, including Bangladesh. Here, we examined the effects of salt-induced toxicity on growth and production of 10 local wheat cultivars by analyzing physiological, biochemical and agronomical responses to identify the salt-tolerant attributes among the contrasting genotypes. Results of cluster analyses based on salt tolerance indices of plant growth-related and yield-contributing parameters, ionic balance (Na+, K+ and Na+/K+ ratio), and stress indicators (SPAD values and proline) revealed Gourab and Shatabdi as salt-sensitive, BARI Gom 27 and 28 as salt-tolerant and the other six examined varieties as moderately salt-tolerant cultivars. Hierarchical clustering and principle component analyses also demonstrated BARI Gom 27 and 28 as the highest salt-tolerant cultivars, especially in terms of Na+/K+ ratio and proline level. Additionally, lower accumulations of hydrogen peroxide and malondialdehyde, and higher activities of antioxidant enzymes catalase, peroxidase and ascorbate peroxidase in the salt-tolerant BARI Gom 28 than in the salt-sensitive Gourab indicated reduced oxidative damage in BARI Gom 28 relative to that in Gourab. Collectively, our findings suggest that the optimum growth and yield of salt-tolerant cultivars are associated with decreased Na+/K+ ratio, increased proline level and reduced oxidative stress. Furthermore, BARI Gom 27 and 28 could be suggested as suitable cultivars for cultivation in salt-affected areas, and the contrasting salt-responsive genotypes can be used as valuable genetic resources in breeding and dissection of molecular mechanisms underlying wheat adaptation to high salinity.
Collapse
Affiliation(s)
- Md Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Mst Mahmuda Akter
- Director (Research) Office, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Md Abu Sayed
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - M Shamim Hasan
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
| |
Collapse
|
106
|
Abdel Latef AAH, Srivastava AK, Saber H, Alwaleed EA, Tran LSP. Sargassum muticum and Jania rubens regulate amino acid metabolism to improve growth and alleviate salinity in chickpea. Sci Rep 2017. [PMID: 28874670 DOI: 10.1007/s00344-018-9906-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
The present study evaluates the potential of Sar gassum muticum (Sar) and Jan ia rubens (Jan) seaweeds for enhancing growth and mitigating soil-salinity in chickpea (Cicer arietinum L.). Under control conditions, Sar and Jan extracts improved chickpea growth which was attributed to their potential for increasing photosynthetic pigments, K+ and amino acids, particularly proline, in comparison with water-sprayed control. Upon stress imposition, chickpea growth was reduced in NaCl concentration-dependent manner, and principal component analysis (PCA) revealed Na+ accumulation and oxidative damage as major determinants of sensitivity at high salinity. Furthermore, amino acid quantification indicated activation/deactivation of overall metabolism in roots/shoots, as an adaptive strategy, for maintaining plant growth under salt stress. Sar and Jan extract supplementations provided stress amelioration, and PCA confirmed that improved growth parameters at high salinity were associated with enhanced activities of superoxide dismutase and peroxidase. Besides, four key amino acids, including serine, threonine, proline and aspartic acids, were identified from roots which maximally contribute to Sar- and Jan-mediated stress amelioration. Sar showed higher effectiveness than Jan under both control and salt stress conditions. Our findings highlight "bio-stimulant" properties of two seaweeds and provide mechanistic insight into their salt-ameliorating action which is relevant for both basic and applied research.
Collapse
Affiliation(s)
- Arafat Abdel Hamed Abdel Latef
- Botany Department, Faculty of Science, South Valley University, 83523, Qena, Egypt.
- Biology Department, College of Applied Medical Science, Turabah Branch 21955, Taif University, Taif, Saudi Arabia.
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Hani Saber
- Botany Department, Faculty of Science, South Valley University, 83523, Qena, Egypt
| | - Eman A Alwaleed
- Botany Department, Faculty of Science, South Valley University, 83523, Qena, Egypt
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam.
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
107
|
Guarino C, Sciarrillo R. The effectiveness and efficiency of phytoremediation of a multicontaminated industrial site: Porto Marghera (Venice Lagoon, Italy). CHEMOSPHERE 2017; 183:371-379. [PMID: 28554021 DOI: 10.1016/j.chemosphere.2017.05.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 05/18/2023]
Abstract
The Venice Lagoon is worldwide considered as a typical example of the human impact on the surrounding ecosystem. The development of the industrial zone of Porto Marghera begun in 1917 as an extension of the Venice Port, in order to sustain activities related to oil and coal, as well as to exploit the railway system. Despite the recent decrease in the number of employees, Porto Marghera is still one of the most important chemical districts in Italy. This study reports early results from the ongoing in-situ phytoextraction of potentially toxic elements (Cd, Hg, Zn) within the industrial area of Porto Marghera. Two agronomic plant species with high annual biomass yield (Helianthus annuus L., Brassica juncea (L.) Czern.) were used. This paper also reports the microcosms and mesocosms tests to evaluate the efficacy of the treatments to be applied to the in-situ phytoextraction process of the polluted site. The combined use of EDTA and Ammonium Thiosulfate during phytoextraction increases the efficiency of Cd, Hg, Zn removal from contaminated soil.
Collapse
Affiliation(s)
- C Guarino
- University of Sannio, Department of Science and Technology, via Port'Arsa 11, 82100 Benevento, Italy
| | - R Sciarrillo
- University of Sannio, Department of Science and Technology, via Port'Arsa 11, 82100 Benevento, Italy.
| |
Collapse
|
108
|
Mostofa MG, Hossain MA, Siddiqui MN, Fujita M, Tran LS. Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. CHEMOSPHERE 2017; 178:212-223. [PMID: 28324842 DOI: 10.1016/j.chemosphere.2017.03.046] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/23/2017] [Accepted: 03/11/2017] [Indexed: 05/04/2023]
Abstract
The present study investigated the phenotypical, physiological and biochemical changes of rice plants exposed to high selenium (Se) concentrations to gain an insight into Se-induced phytotoxicity. Results showed that exposure of rice plants to excessive Se resulted in growth retardation and biomass reduction in connection with the decreased levels of chlorophyll, carotenoids and soluble proteins. The reduced water status and an associated increase in sugar and proline levels indicated Se-induced osmotic stress in rice plants. Measurements of Se contents in roots, leaf sheaths and leaves revealed that Se was highly accumulated in leaves followed by leaf sheaths and roots. Se also potentiated its toxicity by impairing oxidative metabolism, as evidenced by enhanced accumulation of hydrogen peroxide, superoxide and lipid peroxidation product. Se toxicity also displayed a desynchronized antioxidant system by elevating the level of glutathione and the activities of superoxide dismutase, glutathione-S-transferase and glutathione peroxidase, whereas decreasing the level of ascorbic acid and the activities of catalase, glutathione reductase and dehydroascorbate reductase. Furthermore, Se triggered methylglyoxal toxicity by inhibiting the activities of glyoxalases I and II, particularly at higher concentrations of Se. Collectively, our results suggest that excessive Se caused phytotoxic effects on rice plants by inducing chlorosis, reducing sugar, protein and antioxidant contents, and exacerbating oxidative stress and methylglyoxal toxicity. Accumulation levels of Se, proline and glutathione could be considered as efficient biomarkers to indicate degrees of Se-induced phytotoxicity in rice, and perhaps in other crops.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan; Department of Biochemistry and Molecular Biology, Bangabandhu Shiekh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Shiekh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Lam-Son Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
109
|
Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants. Int J Mol Sci 2017; 18:ijms18010200. [PMID: 28117669 PMCID: PMC5297830 DOI: 10.3390/ijms18010200] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 12/31/2016] [Accepted: 01/10/2017] [Indexed: 12/02/2022] Open
Abstract
Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS). Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG), which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I) and glyoxalase II (Gly II), and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III), has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH) acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated action of these systems towards stress tolerance.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Md Shahadat Hossain
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Jubayer Al Mahmud
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
- Department of Agroforestry and Environmental Science, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Anisur Rahman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Masashi Inafuku
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | - Hirosuke Oku
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| |
Collapse
|
110
|
Rahman MM, Rahman MA, Miah MG, Saha SR, Karim MA, Mostofa MG. Mechanistic Insight into Salt Tolerance of Acacia auriculiformis: The Importance of Ion Selectivity, Osmoprotection, Tissue Tolerance, and Na + Exclusion. FRONTIERS IN PLANT SCIENCE 2017; 8:155. [PMID: 28421081 PMCID: PMC5378810 DOI: 10.3389/fpls.2017.00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/25/2017] [Indexed: 05/08/2023]
Abstract
Salinity, one of the major environmental constraints, threatens soil health and consequently agricultural productivity worldwide. Acacia auriculiformis, being a halophyte, offers diverse benefits against soil salinity; however, the defense mechanisms underlying salt-tolerant capacity in A. auriculiformis are still elusive. In this study, we aimed to elucidate mechanisms regulating the adaptability of the multi-purpose perennial species A. auriculiformis to salt stress. The growth, ion homeostasis, osmoprotection, tissue tolerance and Na+ exclusion, and anatomical adjustments of A. auriculiformis grown in varied doses of seawater for 90 and 150 days were assessed. Results showed that diluted seawater caused notable reductions in the level of growth-related parameters, relative water content, stomatal conductance, photosynthetic pigments, proteins, and carbohydrates in dose- and time-dependent manners. However, the percent reduction of these parameters did not exceed 50% of those of control plants. Na+ contents in phyllodes and roots increased with increasing levels of salinity, whereas K+ contents and K+/Na+ ratio decreased significantly in comparison with control plants. A. auriculiformis retained more Na+ in the roots and maintained higher levels of K+, Ca2+ and Mg2+, and K+/Na+ ratio in phyllodes than roots through ion selective capacity. The contents of proline, total free amino acids, total sugars and reducing sugars significantly accumulated together with the levels of malondialdehyde and electrolyte leakage in the phyllodes, particularly at day 150th of salt treatment. Anatomical investigations revealed various anatomical changes in the tissues of phyllodes, stems and roots by salt stress, such as increase in the size of spongy parenchyma of phyllodes, endodermal thickness of stems and roots, and the diameter of root vascular bundle, relative to control counterparts. Furthermore, the estimated values for Na+ exclusion and tissue tolerance index suggested that A. auriculiformis efficiently adopted these two mechanisms to address higher salinity levels. Our results conclude that the adaptability of A. auriculiformis to salinity is closely associated with ion selectivity, increased accumulation of osmoprotectants, efficient Na+ retention in roots, anatomical adjustments, Na+ exclusion and tissue tolerance mechanisms.
Collapse
Affiliation(s)
- Md. M. Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
| | - Md. A. Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
| | - Md. G. Miah
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
| | - Satya R. Saha
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
| | - M. A. Karim
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
| | - Mohammad G. Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
- *Correspondence: Mohammad G. Mostofa,
| |
Collapse
|
111
|
Zhou S, Jia L, Chu H, Wu D, Peng X, Liu X, Zhang J, Zhao J, Chen K, Zhao L. Arabidopsis CaM1 and CaM4 Promote Nitric Oxide Production and Salt Resistance by Inhibiting S-Nitrosoglutathione Reductase via Direct Binding. PLoS Genet 2016; 12:e1006255. [PMID: 27684709 PMCID: PMC5042403 DOI: 10.1371/journal.pgen.1006255] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/23/2016] [Indexed: 12/19/2022] Open
Abstract
Salt is a major threat to plant growth and crop productivity. Calmodulin (CaM), the most important multifunctional Ca2+ sensor protein in plants, mediates reactions against environmental stresses through target proteins; however, direct proof of the participation of CaM in salt tolerance and its corresponding signaling pathway in vivo is lacking. In this study, we found that AtCaM1 and AtCaM4 produced salt-responsive CaM isoforms according to real-time reverse transcription-polymerase chain reaction analyses; this result was verified based on a phenotypic analysis of salt-treated loss-of-function mutant and transgenic plants. We also found that the level of nitric oxide (NO), an important salt-responsive signaling molecule, varied in response to salt treatment depending on AtCaM1 and AtCaM4 expression. GSNOR is considered as an important and widely utilized regulatory component of NO homeostasis in plant resistance protein signaling networks. In vivo and in vitro protein-protein interaction assays revealed direct binding between AtCaM4 and S-nitrosoglutathione reductase (GSNOR), leading to reduced GSNOR activity and an increased NO level. Overexpression of GSNOR intensified the salt sensitivity of cam4 mutant plants accompanied by a reduced internal NO level, whereas a gsnor deficiency increased the salt tolerance of cam4 plants accompanied by an increased internal NO level. Physiological experiments showed that CaM4-GSNOR, acting through NO, reestablished the ion balance to increase plant resistance to salt stress. Together, these data suggest that AtCaM1 and AtCaM4 serve as signals in plant salt resistance by promoting NO accumulation through the binding and inhibition of GSNOR. This could be a conserved defensive signaling pathway in plants and animals.
Collapse
Affiliation(s)
- Shuo Zhou
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Lixiu Jia
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Hongye Chu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Dan Wu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Xuan Peng
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Xu Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Jiaojiao Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Junfeng Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Kunming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, China
| | - Liqun Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
- * E-mail:
| |
Collapse
|
112
|
Ge N, Liu C, Li G, Xie L, Zhang Q, Li L, Hao N, Zhang J. Hydrosulfide attenuates acute myocardial ischemic injury through the glycogen synthase kinase-3β/β-catenin signaling pathway. Int J Mol Med 2016; 37:1281-9. [PMID: 27035393 PMCID: PMC4829127 DOI: 10.3892/ijmm.2016.2538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/07/2016] [Indexed: 01/22/2023] Open
Abstract
The endogenous signaling gasotransmitter, hydrosulfide (H2S), has been shown to exert cardioprotective effects against acute myocardial infarction (AMI) due to ischemic injury. However, the mechanisms responsible for these effects are not yet fully understood. In this study, we investigated whether sodium hydrogen sulfide (NaHS), an H2S donor, attenuates acute myocardial ischemic injury through glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling. For this purpose, we utilized an in vivo rat model of AMI by occluding the left anterior descending coronary artery. NaHS (0.39, 0.78 or 1.56 mg/kg, intraperitoneally), the GSK-3β inhibitor, SB216763 (0.6 mg/kg, intravenously), or 1% dimethylsulfoxide (2 ml/kg, intravenously) were administered to the rats. The results demonstrated that the administration of medium- and high-dose NaHS and SB216763 significantly improved rat cardiac function, as evidenced by an increase in the mean arterial pressure, left ventricular developed pressure, contraction and relaxation rates, as well as a decrease in left ventricular end-diastolic pressure. In addition, the administration of NaHS and SB216763 attenuated myocardial injury as reflected by a decrease in apoptotic cell death and in the serum lactate dehydrogenase concentrations, and prevented myocardial structural changes. The administration of NaHS and SB216763 increased the concentrations of phosphorylated (p-)GSK-3β, the p-GSK-3β/t-GSK-3β ratio and downstream protein β-catenin. Moreover, western blot and immunohistochemical analyses of apoptotic signaling pathway proteins further established the cardioprotective potential of NaHS, as reflected by the upregulation of Bcl-2 expression, the downregulation of Bax expression, and a decrease in the number of TUNEL-positive stained cells. These findings suggest that hydrosulfide exerts cardioprotective effects against AMI-induced apoptosis through the GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ning Ge
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050021, P.R. China
| | - Chao Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050021, P.R. China
| | - Guofeng Li
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Lijun Xie
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Qinzeng Zhang
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Liping Li
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Na Hao
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Jianxin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050021, P.R. China
| |
Collapse
|
113
|
Hoque TS, Hossain MA, Mostofa MG, Burritt DJ, Fujita M, Tran LSP. Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:1341. [PMID: 27679640 PMCID: PMC5020096 DOI: 10.3389/fpls.2016.01341] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/19/2016] [Indexed: 05/04/2023]
Abstract
The oxygenated short aldehyde methylglyoxal (MG) is produced in plants as a by-product of a number of metabolic reactions, including elimination of phosphate groups from glycolysis intermediates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I and glyoxalase II that together with glutathione make up the glyoxalase system. Under normal growth conditions, basal levels of MG remain low in plants; however, when plants are exposed to abiotic stress, MG can accumulate to much higher levels. Stress-induced MG functions as a toxic molecule, inhibiting different developmental processes, including seed germination, photosynthesis and root growth, whereas MG, at low levels, acts as an important signaling molecule, involved in regulating diverse events, such as cell proliferation and survival, control of the redox status of cells, and many other aspects of general metabolism and cellular homeostases. MG can modulate plant stress responses by regulating stomatal opening and closure, the production of reactive oxygen species, cytosolic calcium ion concentrations, the activation of inward rectifying potassium channels and the expression of many stress-responsive genes. MG appears to play important roles in signal transduction by transmitting and amplifying cellular signals and functions that promote adaptation of plants growing under adverse environmental conditions. Thus, MG is now considered as a potential biochemical marker for plant abiotic stress tolerance, and is receiving considerable attention by the scientific community. In this review, we will summarize recent findings regarding MG metabolism in plants under abiotic stress, and evaluate the concept of MG signaling. In addition, we will demonstrate the importance of giving consideration to MG metabolism and the glyoxalase system, when investigating plant adaptation and responses to various environmental stresses.
Collapse
Affiliation(s)
- Tahsina S. Hoque
- Department of Soil Science, Bangladesh Agricultural UniversityMymensingh, Bangladesh
| | - Mohammad A. Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural UniversityMymensingh, Bangladesh
| | - Mohammad G. Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
- *Correspondence: Mohammad G. Mostofa, Lam-Son P. Tran, ;
| | | | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityKagawa, Japan
| | - Lam-Son P. Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang UniversityHo Chi Minh City, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- *Correspondence: Mohammad G. Mostofa, Lam-Son P. Tran, ;
| |
Collapse
|