101
|
Gateau H, Blanckaert V, Veidl B, Burlet-Schiltz O, Pichereaux C, Gargaros A, Marchand J, Schoefs B. Application of pulsed electric fields for the biocompatible extraction of proteins from the microalga Haematococcus pluvialis. Bioelectrochemistry 2020; 137:107588. [PMID: 33147566 DOI: 10.1016/j.bioelechem.2020.107588] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
This study aims to employ a pulsed electric field (PEF) treatment for the biocompatible (non-destructive) extraction of proteins from living cells of the green microalga Haematococcus pluvialis. Using a field strength of 1 kV cm-1, we achieved the extraction of 10.2 µg protein per mL of culture, which corresponded to 46% of the total amount of proteins that could be extracted by complete destructive extraction (i.e. the grinding of biomass with glass beads). We found that the extraction yield was not improved by stronger field strengths and was not dependent on the pulse frequency. A biocompatibility index (BI) was defined as the relative abundance of cells that remained alive after the PEF treatment. This index relied on measurements of several physiological parameters after a PEF treatment. It was found that at 1 kV cm-1 that cultures recovered after 72 h. Therefore, these PEF conditions constituted a good compromise between protein extraction efficiency and culture survival. To characterize the PEF treatment further at a molecular level, mass spectrometry-based proteomics analyses of PEF-prepared extracts was used. This led to the identification of 52 electro-extracted proteins. Of these, only 16 proteins were identified when proteins were extracted with PEF at 0.5 cm-1. They belong to core metabolism, stress response and cell movement. Unassigned proteins were also extracted. Their physiological implications and possible utilization in food as alimentary complements are discussed.
Collapse
Affiliation(s)
- Hélène Gateau
- Metabolism, Bioengineering of Molecules from Microalgae and Applications (MIMMA), Mer Molécules Santé, IUML - FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Vincent Blanckaert
- Metabolism, Bioengineering of Molecules from Microalgae and Applications (MIMMA), Mer Molécules Santé, IUML - FR 3473 CNRS, IUT de Laval, Le Mans University, Le Mans, France
| | - Brigitte Veidl
- Metabolism, Bioengineering of Molecules from Microalgae and Applications (MIMMA), Mer Molécules Santé, IUML - FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, Toulouse, France
| | - Carole Pichereaux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, Toulouse, France; Fédération de Recherche (FR3450), Agrobiosciences, Interactions et Biodiversité (FRAIB), CNRS, Toulouse, France
| | | | - Justine Marchand
- Metabolism, Bioengineering of Molecules from Microalgae and Applications (MIMMA), Mer Molécules Santé, IUML - FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bioengineering of Molecules from Microalgae and Applications (MIMMA), Mer Molécules Santé, IUML - FR 3473 CNRS, Le Mans University, Le Mans, France.
| |
Collapse
|
102
|
Medrano M, Alonso C, Bazaga P, López E, Herrera CM. Comparative genetic and epigenetic diversity in pairs of sympatric, closely related plants with contrasting distribution ranges in south-eastern Iberian mountains. AOB PLANTS 2020; 12:plaa013. [PMID: 32477484 PMCID: PMC7246305 DOI: 10.1093/aobpla/plaa013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/07/2020] [Indexed: 06/01/2023]
Abstract
Genetic diversity defines the evolutionary potential of a species, yet mounting evidence suggests that epigenetic diversity could also contribute to adaptation. Elucidating the complex interplay between genetic and epigenetic variation in wild populations remains a challenge for evolutionary biologists, and the intriguing possibility that epigenetic diversity could compensate for the loss of genetic diversity is one aspect that remains basically unexplored in wild plants. This hypothesis is addressed in this paper by comparing the extent and patterns of genetic and epigenetic diversity of phylogenetically closely related but ecologically disparate species. Seven pairs of congeneric species from Cazorla mountains in south-eastern Spain were studied, each pair consisting of one endemic, restricted-range species associated to stressful environments, and one widespread species occupying more favourable habitats. The prediction was tested that endemic species should have lower genetic diversity due to population fragmentation, and higher epigenetic diversity induced by environmental stress, than their widespread congeners. Genetic (DNA sequence variants) and epigenetic (DNA cytosine methylation variants) diversities and their possible co-variation were assessed in three populations of each focal species using amplified fragment length polymorphism (AFLP) and methylation-sensitive AFLP (MSAP). All species and populations exhibited moderate to high levels of genetic polymorphism irrespective of their ecological characteristics. Epigenetic diversity was greater than genetic diversity in all cases. Only in endemic species were the two variables positively related, but the difference between epigenetic and genetic diversity was greater at populations with low genetic polymorphism. Results revealed that the relationship between genetic and epigenetic diversity can be more complex than envisaged by the simple hypothesis addressed in this study, and highlight the need of additional research on the actual role of epigenetic variation as a source of phenotypic diversity before a realistic understanding of the evolutionary relevance of epigenetic phenomena in plant adaptation can be achieved.
Collapse
Affiliation(s)
- Mónica Medrano
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Isla de La Cartuja, Sevilla, Spain
| | - Conchita Alonso
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Isla de La Cartuja, Sevilla, Spain
| | - Pilar Bazaga
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Isla de La Cartuja, Sevilla, Spain
| | - Esmeralda López
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Isla de La Cartuja, Sevilla, Spain
| | - Carlos M Herrera
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Isla de La Cartuja, Sevilla, Spain
| |
Collapse
|
103
|
Recurrent Water Deficit and Epigenetic Memory in Medicago sativa L. Varieties. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Global DNA methylation changes in response to recurrent drought stress were investigated in two common Greek Medicago sativa L. varieties (Lamia and Chaironia-Institute of Ιndustrial and Forage Crops). The water deficit was implemented in two phases. At the end of the first phase, which lasted for 60 days, the plants were cut at the height of 5 cm and were watered regularly for two months before being subjected to the second drought stress, which lasted for two weeks. Finally, the following groups of plants were formed: CC (controls both in phase I and phase II), CD2 (Controls in phase I, experiencing drought in phase II), and D1D2 (were subjected to drought in both phase I and phase II). At the end of phase II, samples were taken for global DNA methylation analysis with the Methylation Sensitive Amplification Polymorphism (MSAP) method, and all plants were harvested in order to measure the fresh and dry weight of roots and shoots. The variety Lamia responded better, especially the D1D2 group, compared to Chaironia in terms of root and shoot dry weight. Additionally, the shoots of Lamia had a constant water status for CD2 and D1D2 group of plants. According to DNA methylation analysis by the MSAP method, Lamia had lower total DNA methylation percentage after the second drought episode (D1D2) as compared to the plants CD2 that had experienced only one drought episode. On the other hand, the total DNA methylation percentage of Chaironia was almost the same in plants grown under recurrent drought stress conditions compared to control plants. In conclusion, the decrease of DNA methylation of Lamia stressed plants probably indicates the existence of an epigenetic mechanism that may render drought tolerance.
Collapse
|
104
|
Nihranz CT, Walker WS, Brown SJ, Mescher MC, De Moraes CM, Stephenson AG. Transgenerational impacts of herbivory and inbreeding on reproductive output in Solanum carolinense. AMERICAN JOURNAL OF BOTANY 2020; 107:286-297. [PMID: 31944272 PMCID: PMC7064912 DOI: 10.1002/ajb2.1402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/13/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Plant maternal effects on offspring phenotypes are well documented. However, little is known about how herbivory on maternal plants affects offspring fitness. Furthermore, while inbreeding is known to reduce plant reproductive output, previous studies have not explored whether and how such effects may extend across generations. Here, we addressed the transgenerational consequences of herbivory and maternal plant inbreeding on the reproduction of Solanum carolinense offspring. METHODS Manduca sexta caterpillars were used to inflict weekly damage on inbred and outbred S. carolinense maternal plants. Cross-pollinations were performed by hand to produce seed from herbivore-damaged outbred plants, herbivore-damaged inbred plants, undamaged outbred plants, and undamaged inbred plants. The resulting seeds were grown in the greenhouse to assess emergence rate and flower production in the absence of herbivores. We also grew offspring in the field to examine reproductive output under natural conditions. RESULTS We found transgenerational effects of herbivory and maternal plant inbreeding on seedling emergence and reproductive output. Offspring of herbivore-damaged plants had greater emergence, flowered earlier, and produced more flowers and seeds than offspring of undamaged plants. Offspring of outbred maternal plants also had greater seedling emergence and reproductive output than offspring of inbred maternal plants, even though all offspring were outbred. Moreover, the effects of maternal plant inbreeding were more severe when plant offspring were grown in field conditions. CONCLUSIONS This study demonstrates that both herbivory and inbreeding have fitness consequences that extend across generations even in outbred progeny.
Collapse
Affiliation(s)
- Chad T. Nihranz
- Intercollege Graduate Program in EcologyPennsylvania State UniversityUniversity ParkPA16802USA
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| | - William S. Walker
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| | - Steven J. Brown
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| | - Mark C. Mescher
- Department of Environmental Systems ScienceSwiss Federal Institute of Technology (ETH Zurich)CH‐8092ZurichSwitzerland
| | - Consuelo M. De Moraes
- Department of Environmental Systems ScienceSwiss Federal Institute of Technology (ETH Zurich)CH‐8092ZurichSwitzerland
| | - Andrew G. Stephenson
- Intercollege Graduate Program in EcologyPennsylvania State UniversityUniversity ParkPA16802USA
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
105
|
Pucker B, Rückert C, Stracke R, Viehöver P, Kalinowski J, Weisshaar B. Twenty-Five Years of Propagation in Suspension Cell Culture Results in Substantial Alterations of the Arabidopsis Thaliana Genome. Genes (Basel) 2019; 10:E671. [PMID: 31480756 PMCID: PMC6770967 DOI: 10.3390/genes10090671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 01/16/2023] Open
Abstract
Arabidopsis thaliana is one of the best studied plant model organisms. Besides cultivation in greenhouses, cells of this plant can also be propagated in suspension cell culture. At7 is one such cell line that was established about 25 years ago. Here, we report the sequencing and the analysis of the At7 genome. Large scale duplications and deletions compared to the Columbia-0 (Col-0) reference sequence were detected. The number of deletions exceeds the number of insertions, thus indicating that a haploid genome size reduction is ongoing. Patterns of small sequence variants differ from the ones observed between A. thaliana accessions, e.g., the number of single nucleotide variants matches the number of insertions/deletions. RNA-Seq analysis reveals that disrupted alleles are less frequent in the transcriptome than the native ones.
Collapse
Affiliation(s)
- Boas Pucker
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany.
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| | - Ralf Stracke
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| | - Prisca Viehöver
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| |
Collapse
|
106
|
Wang MZ, Li HL, Li JM, Yu FH. Correlations between genetic, epigenetic and phenotypic variation of an introduced clonal herb. Heredity (Edinb) 2019; 124:146-155. [PMID: 31431739 DOI: 10.1038/s41437-019-0261-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/06/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Heritable epigenetic modifications may occur in response to environmental variation, further altering phenotypes through gene regulation, without genome sequence changes. However, epigenetic variation in wild plant populations and their correlations with genetic and phenotypic variation remain largely unknown, especially for clonal plants. We investigated genetic, epigenetic and phenotypic variation of ten populations of an introduced clonal herb Hydrocotyle vulgaris in China. Populations of H. vulgaris exhibited extremely low genetic diversity with one genotype exclusively dominant, but significantly higher epigenetic diversity. Both intra- and inter-population epigenetic variation were related to genetic variation. But there was no correlation between intra-/inter-population genetic variation and phenotypic variation. When genetic variation was controlled, intra-population epigenetic diversity was related to petiole length, specific leaf area, and leaf area variation, while inter-population epigenetic distance was correlated with leaf area differentiation. Our study provides empirical evidence that even though epigenetic variation is partly under genetic control, it could also independently play a role in shaping plant phenotypes, possibly serving as a pathway to accelerate evolution of clonal plant populations.
Collapse
Affiliation(s)
- Mo-Zhu Wang
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, 318000, China.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China.,School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Hong-Li Li
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jun-Min Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, 318000, China. .,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
107
|
Herbivory and inbreeding affect growth, reproduction, and resistance in the rhizomatous offshoots of Solanum carolinense (Solanaceae). Evol Ecol 2019. [DOI: 10.1007/s10682-019-09997-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|