101
|
Vernizzi L, Paiardi C, Licata G, Vitali T, Santarelli S, Raneli M, Manelli V, Rizzetto M, Gioria M, Pasini ME, Grifoni D, Vanoni MA, Gellera C, Taroni F, Bellosta P. Glutamine Synthetase 1 Increases Autophagy Lysosomal Degradation of Mutant Huntingtin Aggregates in Neurons, Ameliorating Motility in a Drosophila Model for Huntington's Disease. Cells 2020; 9:cells9010196. [PMID: 31941072 PMCID: PMC7016901 DOI: 10.3390/cells9010196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Glutamine Synthetase 1 (GS1) is a key enzyme that catalyzes the ATP-dependent synthesis of l-glutamine from l-glutamate and is also member of the Glutamate Glutamine Cycle, a complex physiological process between glia and neurons that controls glutamate homeostasis and is often found compromised in neurodegenerative diseases including Huntington's disease (HD). Here we report that the expression of GS1 in neurons ameliorates the motility defects induced by the expression of the mutant Htt, using a Drosophila model for HD. This phenotype is associated with the ability of GS1 to favor the autophagy that we associate with the presence of reduced Htt toxic protein aggregates in neurons expressing mutant Htt. Expression of GS1 prevents the TOR activation and phosphorylation of S6K, a mechanism that we associate with the reduced levels of essential amino acids, particularly of arginine and asparagine important for TOR activation. This study reveals a novel function for GS1 to ameliorate neuronal survival by changing amino acids' levels that induce a "starvation-like" condition responsible to induce autophagy. The identification of novel targets that inhibit TOR in neurons is of particular interest for the beneficial role that autophagy has in preserving physiological neuronal health and in the mechanisms that eliminate the formation of toxic aggregates in proteinopathies.
Collapse
Affiliation(s)
- Luisa Vernizzi
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
| | - Chiara Paiardi
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
| | - Giusimaria Licata
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
| | - Teresa Vitali
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
| | - Stefania Santarelli
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy;
| | - Martino Raneli
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
| | - Vera Manelli
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
| | - Manuela Rizzetto
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.R.); (C.G.); (F.T.)
| | - Mariarosa Gioria
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
| | - Maria E. Pasini
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Maria A. Vanoni
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.R.); (C.G.); (F.T.)
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.R.); (C.G.); (F.T.)
| | - Paola Bellosta
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy;
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
- Correspondence: ; Tel.: +39-0461-283070
| |
Collapse
|
102
|
Platelet glutamate dehydrogenase activity and efficacy of antipsychotic therapy in patients with schizophrenia. J Med Biochem 2020; 39:54-59. [PMID: 32549778 DOI: 10.2478/jomb-2019-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/23/2019] [Indexed: 11/20/2022] Open
Abstract
Background Evaluation of possible relationship between platelet glutamate dehydrogenase (GDH) activity and mental state of schizophrenia patients after antipsychotic pharmacotherapy. Methods Patients (n = 50) with chronic paranoid schizophrenia (F20.0) initially in acute psychotic state were examined before and after a treatment course with antipsychotics. When assessing the patients' states using PANSS, the "responder" category was attributed to those patients who had not less than 30% reduction in the score for the corresponding PANSS "subscale". The control group (n = 48) was ageand gender-matched with the patient group. Platelet glutamate dehydrogenase (GDH) activity was measured in patients twice, before and after the treatment course, and once in controls. Results Significantly reduced GDH activity was found in patients compared with controls. The patient group was divided into two subgroups according to median GDH activity at baseline: above and below the median GDH, subgroup 1 and subgroup 2, respectively. GDH activity significantly increased from its level at baseline after antipsychotic treatment in subgroup 2. Distribution of non responders / responders to antipsychotic treatment (by PANSS scores) was significantly uneven among subgroups 1 and 2. In subgroup 1, GDH activity levels significantly correlated with PANSS scores after the treatment course. Conclusions Baseline platelet GDH activity might serve as a predictor of antipsychotic therapy efficacy in schizophrenia patients.
Collapse
|
103
|
Lander SS, Chornyy S, Safory H, Gross A, Wolosker H, Gaisler‐Salomon I. Glutamate dehydrogenase deficiency disrupts glutamate homeostasis in hippocampus and prefrontal cortex and impairs recognition memory. GENES BRAIN AND BEHAVIOR 2020; 19:e12636. [DOI: 10.1111/gbb.12636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/11/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
| | - Sergiy Chornyy
- Department of PsychologyUniversity of Haifa Haifa Israel
| | - Hazem Safory
- Department of Biochemistry, The Ruth and Bruce Rappaport Faculty of MedicineTechnion‐Israel Institute of Technology Haifa Israel
| | - Amit Gross
- Department of PsychologyUniversity of Haifa Haifa Israel
| | - Herman Wolosker
- Department of Biochemistry, The Ruth and Bruce Rappaport Faculty of MedicineTechnion‐Israel Institute of Technology Haifa Israel
| | | |
Collapse
|
104
|
Kang Y, Anderson AJ, Jackson TD, Palmer CS, De Souza DP, Fujihara KM, Stait T, Frazier AE, Clemons NJ, Tull D, Thorburn DR, McConville MJ, Ryan MT, Stroud DA, Stojanovski D. Function of hTim8a in complex IV assembly in neuronal cells provides insight into pathomechanism underlying Mohr-Tranebjærg syndrome. eLife 2019; 8:48828. [PMID: 31682224 PMCID: PMC6861005 DOI: 10.7554/elife.48828] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Human Tim8a and Tim8b are members of an intermembrane space chaperone network, known as the small TIM family. Mutations in TIMM8A cause a neurodegenerative disease, Mohr-Tranebjærg syndrome (MTS), which is characterised by sensorineural hearing loss, dystonia and blindness. Nothing is known about the function of hTim8a in neuronal cells or how mutation of this protein leads to a neurodegenerative disease. We show that hTim8a is required for the assembly of Complex IV in neurons, which is mediated through a transient interaction with Complex IV assembly factors, in particular the copper chaperone COX17. Complex IV assembly defects resulting from loss of hTim8a leads to oxidative stress and changes to key apoptotic regulators, including cytochrome c, which primes cells for death. Alleviation of oxidative stress with Vitamin E treatment rescues cells from apoptotic vulnerability. We hypothesise that enhanced sensitivity of neuronal cells to apoptosis is the underlying mechanism of MTS.
Collapse
Affiliation(s)
- Yilin Kang
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Alexander J Anderson
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Thomas Daniel Jackson
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Catherine S Palmer
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - David P De Souza
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Kenji M Fujihara
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Tegan Stait
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Ann E Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Nicholas J Clemons
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Deidreia Tull
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Victorian Clinical Genetic Services, Royal Children's Hospital, Melbourne, Australia
| | - Malcolm J McConville
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
105
|
Trotter PJ, Juco K, Le HT, Nelson K, Tamayo LI, Nicaud JM, Park YK. Glutamate dehydrogenases in the oleaginous yeast Yarrowia lipolytica. Yeast 2019; 37:103-115. [PMID: 31119792 DOI: 10.1002/yea.3425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 05/17/2019] [Indexed: 11/12/2022] Open
Abstract
Glutamate dehydrogenases (GDHs) are fundamental to cellular nitrogen and energy balance. Yet little is known about these enzymes in the oleaginous yeast Yarrowia lipolytica. The YALI0F17820g and YALI0E09603g genes, encoding potential GDH enzymes in this organism, were examined. Heterologous expression in gdh-null Saccharomyces cerevisiae and examination of Y. lipolytica strains carrying gene deletions demonstrate that YALI0F17820g (ylGDH1) encodes a NADP-dependent GDH whereas YALI0E09603g (ylGDH2) encodes a NAD-dependent GDH enzyme. The activity encoded by these two genes accounts for all measurable GDH activity in Y. lipolytica. Levels of the two enzyme activities are comparable during logarithmic growth on rich medium, but the NADP-ylGDH1p enzyme activity is most highly expressed in stationary and nitrogen starved cells by threefold to 12-fold. Replacement of ammonia with glutamate causes a decrease in NADP-ylGdh1p activity, whereas NAD-ylGdh2p activity is increased. When glutamate is both carbon and nitrogen sources, the activity of NAD-ylGDH2p becomes dominant up to 18-fold compared with that of NADP-ylGDH1p. Gene deletion followed by growth on different carbon and nitrogen sources shows that NADP-ylGdh1p is required for efficient nitrogen assimilation whereas NAD-ylGdh2p plays a role in nitrogen and carbon utilization from glutamate. Overexpression experiments demonstrate that ylGDH1 and ylGDH2 are not interchangeable. These studies provide a vital basis for future consideration of how these enzymes function to facilitate energy and nitrogen homeostasis in Y. lipolytica.
Collapse
Affiliation(s)
- Pamela J Trotter
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Karen Juco
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Ha T Le
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Kjersten Nelson
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Lizeth I Tamayo
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Jean-Marc Nicaud
- Biologie intégrative du Métabolisme Lipidique, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Young-Kyoung Park
- Biologie intégrative du Métabolisme Lipidique, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
106
|
Miller BA, Chapwanya A, Kilminster T, Scanlon T, Milton J, Osório H, Oldham C, Greeff J, Bergfelt DR, Campos AMO, Almeida AM. The ovine hepatic mitochondrial proteome: Understanding seasonal weight loss tolerance in two distinct breeds. PLoS One 2019; 14:e0212580. [PMID: 30785939 PMCID: PMC6382166 DOI: 10.1371/journal.pone.0212580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
Seasonal weight loss (SWL) is a primary constraint for farmers in the Mediterranean and tropics. One cost-effective solution to SWL is utilizing breeds like the Damara sheep that have adapted to deal with nutritional stress. Previous studies concluded that one of the adaptation mechanisms of SWL is a specialized fatty acid metabolism. Accordingly, hepatic-mitochondrial proteomes were compared across two different breeds (24 sheep total, Merino, n = 12 and Damara, n = 12) and two different diets (restricted vs unrestricted diet, 6 per breed, per diet, 24 total). Mitochondrial-proteins were isolated and relatively quantified using Blue native PAGE / 2D-electrophoresis and then analyzed via mass spectrometry. The tool ReviGO summarized the proteomes’ gene-ontology terms. A total of 50 proteins were identified with 7 changing significantly in abundance (ANOVA p-value<0.05). Specific abundance patterns of corticosteroid and inflammatory response-associated proteins such as annexin and glutamate dehydrogenase suggests that the Damara has an unusual inflammation response when subjected to SWL in addition to its unique metabolism. All significant proteins warrant further study; Annexin in particular shows promise as a potentially useful biomarker.
Collapse
Affiliation(s)
- Blake A. Miller
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, St. Kitts and Nevis
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, St. Kitts and Nevis
| | - Tanya Kilminster
- Department of Agriculture and Food Western Australia, Perth, WA, Australia
| | - Tim Scanlon
- Department of Agriculture and Food Western Australia, Perth, WA, Australia
| | - John Milton
- University of Western Australia, Perth, WA, Australia
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology at the University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Chris Oldham
- Department of Agriculture and Food Western Australia, Perth, WA, Australia
| | - Johan Greeff
- Department of Agriculture and Food Western Australia, Perth, WA, Australia
| | - Don R. Bergfelt
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, St. Kitts and Nevis
| | - Alexandre M. O. Campos
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - André M. Almeida
- Linking Landscape, Environmental, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
107
|
Hou W, Lu S, Zhao H, Yu Y, Xu H, Yu B, Su L, Lin C, Ruan BH. Propylselen inhibits cancer cell growth by targeting glutamate dehydrogenase at the NADP + binding site. Biochem Biophys Res Commun 2018; 509:262-267. [PMID: 30583861 DOI: 10.1016/j.bbrc.2018.12.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 01/18/2023]
Abstract
High levels of glutamate dehydrogenase (GDH) activity are associated with hypoglycemia, cancer, and Parkinson's disease. Propylselen was synthesized to investigate its mechanism of GDH inhibition in comparison with Ebselen and Epigallocatechin gallate (EGCG). Because Ebselen was found to crosslink with the peptide (AA299-341) at the active site of E.coli GDH, the Cys, Pro, and Lys residues of the corresponding peptide were mutagenized to Ala residues. Using enzyme kinetics and biomolecular interaction assays, we found that the conserved GDH P320 residue is important for propylselen binding, C321 for Ebselen binding, and K341 for EGCG binding. In addition, these 3 mutations abolished NADP+ binding to E. coli GDH in the absence of glutamate substrate, but in the presence of glutamate, the catalytic activity of the mutants was reduced only by 2-4 fold, indicating that a substrate-induced fit mechanism exists in E. coli GDH. Furthermore, biochemical analysis showed that NADP+ had high affinity (Kd of 77 nM) for GDH; by targeting the NADP binding site, propylselen effectively inhibited both E. coli and human GDH activity and improved anticancer activity.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Institute of Drug Development & Chemical Biology (IDD & CB), Zhejiang University of Technology, Hangzhou, China
| | - Shiying Lu
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Institute of Drug Development & Chemical Biology (IDD & CB), Zhejiang University of Technology, Hangzhou, China
| | - Han Zhao
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Institute of Drug Development & Chemical Biology (IDD & CB), Zhejiang University of Technology, Hangzhou, China
| | - Yan Yu
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Institute of Drug Development & Chemical Biology (IDD & CB), Zhejiang University of Technology, Hangzhou, China
| | - Haodong Xu
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Institute of Drug Development & Chemical Biology (IDD & CB), Zhejiang University of Technology, Hangzhou, China
| | - Biao Yu
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Institute of Drug Development & Chemical Biology (IDD & CB), Zhejiang University of Technology, Hangzhou, China
| | - Lin Su
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Institute of Drug Development & Chemical Biology (IDD & CB), Zhejiang University of Technology, Hangzhou, China
| | - Chenshui Lin
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Institute of Drug Development & Chemical Biology (IDD & CB), Zhejiang University of Technology, Hangzhou, China
| | - Benfang Helen Ruan
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Institute of Drug Development & Chemical Biology (IDD & CB), Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
108
|
Mara P, Fragiadakis GS, Gkountromichos F, Alexandraki D. The pleiotropic effects of the glutamate dehydrogenase (GDH) pathway in Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:170. [PMID: 30384856 PMCID: PMC6211499 DOI: 10.1186/s12934-018-1018-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Ammonium assimilation is linked to fundamental cellular processes that include the synthesis of non-essential amino acids like glutamate and glutamine. In Saccharomyces cerevisiae glutamate can be synthesized from α-ketoglutarate and ammonium through the action of NADP-dependent glutamate dehydrogenases Gdh1 and Gdh3. Gdh1 and Gdh3 are evolutionarily adapted isoforms and cover the anabolic role of the GDH-pathway. Here, we review the role and function of the GDH pathway in glutamate metabolism and we discuss the additional contributions of the pathway in chromatin regulation, nitrogen catabolite repression, ROS-mediated apoptosis, iron deficiency and sphingolipid-dependent actin cytoskeleton modulation in S.cerevisiae. The pleiotropic effects of GDH pathway in yeast biology highlight the importance of glutamate homeostasis in vital cellular processes and reveal new features for conserved enzymes that were primarily characterized for their metabolic capacity. These newly described features constitute insights that can be utilized for challenges regarding genetic engineering of glutamate homeostasis and maintenance of redox balances, biosynthesis of important metabolites and production of organic substrates. We also conclude that the discussed pleiotropic features intersect with basic metabolism and set a new background for further glutamate-dependent applied research of biotechnological interest.
Collapse
Affiliation(s)
- P. Mara
- Department of Chemistry, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Present Address: Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - G. S. Fragiadakis
- Institute of Molecular Biology & Biotechnology, FORTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete Greece
| | - F. Gkountromichos
- Department of Biology, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Faculty of Biology, Biocenter, Ludwig-Maximilians-University of Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - D. Alexandraki
- Department of Biology, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Institute of Molecular Biology & Biotechnology, FORTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete Greece
| |
Collapse
|
109
|
Mitochondrial enzyme GLUD2 plays a critical role in glioblastoma progression. EBioMedicine 2018; 37:56-67. [PMID: 30314897 PMCID: PMC6284416 DOI: 10.1016/j.ebiom.2018.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 01/06/2023] Open
Abstract
Background Glioblastoma (GBM) is the most frequent and malignant primary brain tumor in adults and despite the progress in surgical procedures and therapy options, the overall survival remains very poor. Glutamate and α-KG are fundamental elements necessary to support the growth and proliferation of GBM cells. Glutamate oxidative deamination, catalyzed by GLUD2, is the predominant pathway for the production of α-KG. Methods GLUD2 emerged from the RNA-seq analysis of 13 GBM patients, performed in our laboratory and a microarray analysis of 77 high-grade gliomas available on the Geo database. Thereafter, we investigated GLUD2 relevance in cancer cell behavior by GLUD2 overexpression and silencing in two different human GBM cell lines. Finally, we overexpressed GLUD2 in-vivo by using zebrafish embryos and monitored the developing central nervous system. Findings GLUD2 expression was found associated to the histopathological classification, prognosis and survival of GBM patients. Moreover, through in-vitro functional studies, we showed that differences in GLUD2 expression level affected cell proliferation, migration, invasion, colony formation abilities, cell cycle phases, mitochondrial function and ROS production. In support of these findings, we also demonstrated, with in-vivo studies, that GLUD2 overexpression affects glial cell proliferation without affecting neuronal development in zebrafish embryos. Interpretation We concluded that GLUD2 overexpression inhibited GBM cell growth suggesting a novel potential drug target for control of GBM progression. The possibility to enhance GLUD2 activity in GBM could result in a blocked/reduced proliferation of GBM cells without affecting the survival of the surrounding neurons.
Collapse
|
110
|
Gaspar C, Silva-Marrero JI, Fàbregas A, Miñarro M, Ticó JR, Baanante IV, Metón I. Administration of chitosan-tripolyphosphate-DNA nanoparticles to knockdown glutamate dehydrogenase expression impairs transdeamination and gluconeogenesis in the liver. J Biotechnol 2018; 286:5-13. [PMID: 30195924 DOI: 10.1016/j.jbiotec.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/02/2018] [Accepted: 09/04/2018] [Indexed: 11/17/2022]
Abstract
Glutamate dehydrogenase (GDH) plays a major role in amino acid catabolism. To increase the current knowledge of GDH function, we analysed the effect of GDH silencing on liver intermediary metabolism from gilthead sea bream (Sparus aurata). Sequencing of GDH cDNA from S. aurata revealed high homology with its vertebrate orthologues and allowed us to design short hairpin RNAs (shRNAs) to knockdown GDH expression. Following validation of shRNA-dependent downregulation of S. aurata GDH in vitro, chitosan-tripolyphosphate (TPP) nanoparticles complexed with a plasmid encoding a selected shRNA (pCpG-sh2GDH) were produced to address the effect of GDH silencing on S. aurata liver metabolism. Seventy-two hours following intraperitoneal administration of chitosan-TPP-pCpG-sh2GDH, GDH mRNA levels and immunodetectable protein decreased in the liver, leading to reduced GDH activity in both oxidative and reductive reactions to about 53-55 % of control values. GDH silencing decreased glutamate, glutamine and aspartate aminotransferase activity, while increased 2-oxoglutarate content, 2-oxoglutarate dehydrogenase activity and 6-phosphofructo-1-kinase/fructose-1,6-bisphosphatase activity ratio. Our findings show for the first time that GDH silencing reduces transdeamination and gluconeogenesis in the liver, hindering the use of amino acids as gluconeogenic substrates and enabling protein sparing and metabolisation of dietary carbohydrates, which would reduce environmental impact and production costs of aquaculture.
Collapse
Affiliation(s)
- Carlos Gaspar
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Jonás I Silva-Marrero
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Anna Fàbregas
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Miñarro
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Josep R Ticó
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Isabel V Baanante
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
111
|
Mathioudakis L, Bourbouli M, Daklada E, Kargatzi S, Michaelidou K, Zaganas I. Localization of Human Glutamate Dehydrogenases Provides Insights into Their Metabolic Role and Their Involvement in Disease Processes. Neurochem Res 2018; 44:170-187. [PMID: 29943084 DOI: 10.1007/s11064-018-2575-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Abstract
Glutamate dehydrogenase (GDH) catalyzes the reversible deamination of L-glutamate to α-ketoglutarate and ammonia. In mammals, GDH contributes to important processes such as amino acid and carbohydrate metabolism, energy production, ammonia management, neurotransmitter recycling and insulin secretion. In humans, two isoforms of GDH are found, namely hGDH1 and hGDH2, with the former being ubiquitously expressed and the latter found mainly in brain, testis and kidney. These two iso-enzymes display highly divergent allosteric properties, especially concerning their basal activity, ADP activation and GTP inhibition. On the other hand, both enzymes are thought to predominantly localize in the mitochondrial matrix, even though alternative localizations have been proposed. To further study the subcellular localization of the two human iso-enzymes, we created HEK293 cell lines stably over-expressing hGDH1 and hGDH2. In these cell lines, immunofluorescence and enzymatic analyses verified the overexpression of both hGDH1 and hGDH2 iso-enzymes, whereas subcellular fractionation followed by immunoblotting showed their predominantly mitochondrial localization. Given that previous studies have only indirectly compared the subcellular localization of the two iso-enzymes, we co-expressed them tagged with different fluorescent dyes (green and red fluorescent protein for hGDH1 and hGDH2, respectively) and found them to co-localize. Despite the wealth of information related to the functional properties of hGDH1 and hGDH2 and the availability of the hGDH1 structure, there is still an ongoing debate concerning their metabolic role and their involvement in disease processes. Data on the localization of hGDHs, as the ones presented here, could contribute to better understanding of the function of these important human enzymes.
Collapse
Affiliation(s)
- Lambros Mathioudakis
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Mara Bourbouli
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Elisavet Daklada
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Sofia Kargatzi
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Kleita Michaelidou
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Ioannis Zaganas
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece. .,Department of Neurology, University Hospital of Heraklion, Heraklion, Crete, Greece.
| |
Collapse
|
112
|
Transgenic Mice Carrying GLUD2 as a Tool for Studying the Expressional and the Functional Adaptation of this Positive Selected Gene in Human Brain Evolution. Neurochem Res 2018; 44:154-169. [DOI: 10.1007/s11064-018-2546-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/12/2022]
|
113
|
Wilson DF, Cember ATJ, Matschinsky FM. Glutamate dehydrogenase: role in regulating metabolism and insulin release in pancreatic β-cells. J Appl Physiol (1985) 2018; 125:419-428. [PMID: 29648519 DOI: 10.1152/japplphysiol.01077.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Regulation of insulin release and glucose homeostasis by pancreatic β-cells is dependent on the metabolism of glucose by glucokinase (GK) and the influence of that activity on oxidative phosphorylation. Genetic alterations that result in hyperactivity of mitochondrial glutamate dehydrogenase (GDH-1) can cause hypoglycemia-hyperammonemia following high protein meals, but the role of GDH-1 remains poorly understood. GDH-1 activity is strongly inhibited by GTP, to near zero in the absence of ADP, and cooperatively activated ( n = 2.3) by ADP. The dissociation constant for ADP is near 200 µM in vivo, but leucine and its nonmetabolized analog 2-amino-2-norbornane-carboxylic acid (BCH) can activate GDH-1 by increasing the affinity for ADP. Under physiological conditions, as [ADP] increases GDH-1 activity remains very low until ~35 µM (threshold) and then increases rapidly. A model for GDH-1 and its regulation has been combined with a previously published model for glucose sensing that coupled GK activity and oxidative phosphorylation. The combined model (GK-GDH-core) shows that GK activity determines the energy state ([ATP]/[ADP][Pi]) in β-cells for glucose concentrations > 5 mM ([ADP] < 35 µM). As glucose falls < 5 mM the [ADP]-dependent increase in GDH-1 activity prevents [ADP] from rising above ~70 µM. Thus, GDH-1 dynamically buffers β-cell energy metabolism during hypoglycemia, maintaining the energy state and the basal rate of insulin release. GDH-1 hyperactivity suppresses the normal increase in [ADP] in hypoglycemia. This leads to hypoglycemia following a high protein meal by increasing the basal rate of insulin release (β-cells) and decreasing glucagon release (α-cells). NEW & NOTEWORTHY A model of β-cell metabolism and regulation of insulin release is presented. The model integrates regulation of oxidative phosphorylation, glucokinase (GK), and glutamate dehydrogenase (GDH-1). GDH-1 is near equilibrium under physiological conditions, but the activity is inhibited by GTP. In hypoglycemia, however, GK activity is low and [ADP], a potent activator of GDH-1, increases. Reducing equivalents from GDH dynamically buffers the intramitochondrial [NADH]/[NAD+], and thereby the energy state, preventing hypoglycemia-induced substrate deprivation.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Abigail T J Cember
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
114
|
Gaspar C, Silva-Marrero JI, Salgado MC, Baanante IV, Metón I. Role of upstream stimulatory factor 2 in glutamate dehydrogenase gene transcription. J Mol Endocrinol 2018; 60:247-259. [PMID: 29438976 DOI: 10.1530/jme-17-0142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/08/2018] [Indexed: 12/18/2022]
Abstract
Glutamate dehydrogenase (Gdh) plays a central role in ammonia detoxification by catalysing reversible oxidative deamination of l-glutamate into α-ketoglutarate using NAD+ or NADP+ as cofactor. To gain insight into transcriptional regulation of glud, the gene that codes for Gdh, we isolated and characterised the 5' flanking region of glud from gilthead sea bream (Sparus aurata). In addition, tissue distribution, the effect of starvation as well as short- and long-term refeeding on Gdh mRNA levels in the liver of S. aurata were also addressed. 5'-Deletion analysis of glud promoter in transiently transfected HepG2 cells, electrophoretic mobility shift assays, chromatin immunoprecipitation (ChIP) and site-directed mutagenesis allowed us to identify upstream stimulatory factor 2 (Usf2) as a novel factor involved in the transcriptional regulation of glud Analysis of tissue distribution of Gdh and Usf2 mRNA levels by reverse transcriptase-coupled quantitative real-time PCR (RT-qPCR) showed that Gdh is mainly expressed in the liver of S. aurata, while Usf2 displayed ubiquitous distribution. RT-qPCR and ChIP assays revealed that long-term starvation down-regulated the hepatic expression of Gdh and Usf2 to similar levels and reduced Usf2 binding to glud promoter, while refeeding resulted in a slow but gradual restoration of both Gdh and Usf2 mRNA abundance. Herein, we demonstrate that Usf2 transactivates S. aurata glud by binding to an E-box located in the proximal region of glud promoter. In addition, our findings provide evidence for a new regulatory mechanism involving Usf2 as a key factor in the nutritional regulation of glud transcription in the fish liver.
Collapse
Affiliation(s)
- Carlos Gaspar
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Jonás I Silva-Marrero
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - María C Salgado
- Servei de Bioquímica Clínica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Isabel V Baanante
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
115
|
Kim AY, Baik EJ. Glutamate Dehydrogenase as a Neuroprotective Target Against Neurodegeneration. Neurochem Res 2018; 44:147-153. [PMID: 29357018 DOI: 10.1007/s11064-018-2467-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
Abstract
Regulation of glutamate metabolism via glutamate dehydrogenase (GDH) might be the promising therapeutic approach for treating neurodegenerative disorders. In the central nervous system, glutamate functions both as a major excitatory neurotransmitter and as a key intermediate metabolite for neurons. GDH converts glutamate to α-ketoglutarate, which serves as a TCA cycle intermediate. Dysregulated GDH activity in the central nervous system is highly correlated with neurological disorders. Indeed, studies conducted with mutant mice and allosteric drugs have shown that deficient or overexpressed GDH activity in the brain can regulate whole body energy metabolism and affect early onset of Parkinson's disease, Alzheimer's disease, temporal lobe epilepsy, and spinocerebellar atrophy. Moreover, in strokes with excitotoxicity as the main pathophysiology, mice that overexpressed GDH exhibited smaller ischemic lesion than mice with normal GDH expression. In additions, GDH activators improve lesions in vivo by increasing α-ketoglutarate levels. In neurons exposed to an insult in vitro, enhanced GDH activity increases ATP levels. Thus, in an energy crisis, neuronal mitochondrial activity is improved and excitotoxic risk is reduced. Consequently, modulating GDH activity in energy-depleted conditions could be a sound strategy for maintaining the mitochondrial factory in neurons, and thus, protect against metabolic failure.
Collapse
Affiliation(s)
- A Young Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, South Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Eun Joo Baik
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, South Korea. .,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, 16499, South Korea.
| |
Collapse
|
116
|
Waitkus MS, Pirozzi CJ, Moure CJ, Diplas BH, Hansen LJ, Carpenter AB, Yang R, Wang Z, Ingram BO, Karoly ED, Mohney RP, Spasojevic I, McLendon RE, Friedman HS, He Y, Bigner DD, Yan H. Adaptive Evolution of the GDH2 Allosteric Domain Promotes Gliomagenesis by Resolving IDH1 R132H-Induced Metabolic Liabilities. Cancer Res 2018; 78:36-50. [PMID: 29097607 PMCID: PMC5754242 DOI: 10.1158/0008-5472.can-17-1352] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/25/2017] [Accepted: 10/27/2017] [Indexed: 01/13/2023]
Abstract
Hotspot mutations in the isocitrate dehydrogenase 1 (IDH1) gene occur in a number of human cancers and confer a neomorphic enzyme activity that catalyzes the conversion of α-ketoglutarate (αKG) to the oncometabolite D-(2)-hydroxyglutarate (D2HG). In malignant gliomas, IDH1R132H expression induces widespread metabolic reprogramming, possibly requiring compensatory mechanisms to sustain the normal biosynthetic requirements of actively proliferating tumor cells. We used genetically engineered mouse models of glioma and quantitative metabolomics to investigate IDH1R132H-dependent metabolic reprogramming and its potential to induce biosynthetic liabilities that can be exploited for glioma therapy. In gliomagenic neural progenitor cells, IDH1R132H expression increased the abundance of dipeptide metabolites, depleted key tricarboxylic acid cycle metabolites, and slowed progression of murine gliomas. Notably, expression of glutamate dehydrogenase GDH2, a hominoid-specific enzyme with relatively restricted expression to the brain, was critically involved in compensating for IDH1R132H-induced metabolic alterations and promoting IDH1R132H glioma growth. Indeed, we found that recently evolved amino acid substitutions in the GDH2 allosteric domain conferred its nonredundant, glioma-promoting properties in the presence of IDH1 mutation. Our results indicate that among the unique roles for GDH2 in the human forebrain is its ability to limit IDH1R132H-mediated metabolic liabilities, thus promoting glioma growth in this context. Results from this study raise the possibility that GDH2-specific inhibition may be a viable therapeutic strategy for gliomas with IDH mutations.Significance: These findings show that the homonid-specific brain enzyme GDH2 may be essential to mitigate metabolic liabilities created by IDH1 mutations in glioma, with possible implications to leverage its therapeutic management by IDH1 inhibitors. Cancer Res; 78(1); 36-50. ©2017 AACR.
Collapse
Affiliation(s)
- Matthew S Waitkus
- Department of Pathology, Duke University, Durham, North Carolina
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Christopher J Pirozzi
- Department of Pathology, Duke University, Durham, North Carolina
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Casey J Moure
- Department of Pathology, Duke University, Durham, North Carolina
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Bill H Diplas
- Department of Pathology, Duke University, Durham, North Carolina
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Landon J Hansen
- Department of Pathology, Duke University, Durham, North Carolina
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Austin B Carpenter
- Department of Pathology, Duke University, Durham, North Carolina
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Rui Yang
- Department of Pathology, Duke University, Durham, North Carolina
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Zhaohui Wang
- Department of Pathology, Duke University, Durham, North Carolina
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | | | | | | | - Ivan Spasojevic
- Department of Medicine - Oncology, Duke University School of Medicine, Durham, North Carolina
- Pharmacokinetics/Pharmacodynamics Core Laboratory, Duke Cancer Institute, Durham, North Carolina
| | - Roger E McLendon
- Department of Pathology, Duke University, Durham, North Carolina
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Henry S Friedman
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Yiping He
- Department of Pathology, Duke University, Durham, North Carolina
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Darell D Bigner
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Hai Yan
- Department of Pathology, Duke University, Durham, North Carolina.
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
117
|
Tereshkina EB, Prokhorova TA, Boksha IS, Savushkina OK, Vorobyeva EA, Burbaeva GS. [Comparative study of glutamate dehydrogenase in the brain of patients with schizophrenia and mentally healthy people]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:101-107. [PMID: 29265094 DOI: 10.17116/jnevro2017117111101-107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To compare the glutamate dehydrogenase (GDH) activity and amounts of GDHI, GDHII, and GDHIII immunoreactive forms in prefrontal, anterior and posterior cingulate cortex and cerebellar cortex of patients with schizophrenia and control subjects. MATERIAL AND METHODS GDH enzymatic activity was measured and levels of GDH immunoreactive forms were determined in extracts of autopsied samples of prefrontal, anterior and posterior cingulate cortex (areas 10, 24, and 23 by Brodmann), and cerebellar cortex of patients with schizophrenia (n=8) and controls (n=9). RESULTS AND CONCLUSION GDH enzymatic activity was significantly increased in the prefrontal cortex (area 10) (p<0.004), the posterior cingulate cortex (area 23) (p<0.05) and the cerebellar cortex (p<0.002) and was unchanged in the anterior cingulate cortex (area 24) in patients with schizophrenia compared to controls. The levels of immunoreactive GDH I, GDH II and GDH III were significantly higher in the prefrontal cortex of patients with schizophrenia than in controls (p<0.008, p<0.003, and p<0.0001, respectively). Levels of all three immunoreactive GDH forms were unchanged in the anterior cingulate cortex (area 24), but they were increased in the posterior cingulate cortex (area 23) (p<0.004, p<0.001 and p<0.02, respectively). The levels of immunoreactive GDH II and GDH III, but not GDH I, were significantly increased in the cerebellar cortex of patients with schizophrenia compared with the control group (p<0.02 and p<0.001, respectively). The alteration in the levels of GDH immunoreactive forms in the brain of patients with schizophrenia is one of the causes of impaired brain glutamate metabolism and an important aspect of schizophrenia pathogenesis.
Collapse
Affiliation(s)
| | | | - I S Boksha
- Mental Health Research Centre, Moscow, Russia
| | | | | | | |
Collapse
|
118
|
Bolliet V, Labonne J, Olazcuaga L, Panserat S, Seiliez I. Modeling of autophagy-related gene expression dynamics during long term fasting in European eel (Anguilla anguilla). Sci Rep 2017; 7:17896. [PMID: 29263413 PMCID: PMC5738402 DOI: 10.1038/s41598-017-18164-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/07/2017] [Indexed: 01/08/2023] Open
Abstract
Autophagy is an evolutionary conserved cellular self-degradation process considered as a major energy mobilizing system in eukaryotes. It has long been considered as a post-translationally regulated event, and the importance of transcriptional regulation of autophagy-related genes (atg) for somatic maintenance and homeostasis during long period of stress emerged only recently. In this regard, large changes in atg transcription have been documented in several species under diverse types of prolonged catabolic situations. However, the available data primarily concern atg mRNA levels at specific times and fail to capture the dynamic relationship between transcript production over time and integrated phenotypes. Here, we present the development of a statistical model describing the dynamics of expression of several atg and lysosomal genes in European glass eel (Anguilla anguilla) during long-term fasting at two temperatures (9 °C and 12 °C) and make use of this model to infer the effect of transcripts dynamics on an integrated phenotype – here weight loss. Our analysis shows long-term non-random fluctuating atg expression dynamics and reveals for the first time a significant contribution of atg transcripts production over time to weight loss. The proposed approach thus offers a new perspective on the long-term transcriptional control of autophagy and its physiological role.
Collapse
Affiliation(s)
- Valérie Bolliet
- INRA, UMR 1224 ECOBIOP, F-64310 St Pée sur, Nivelle, France.,Univ Pau & Pays Adour, UMR 1224 ECOBIOP, UFR Sciences et Techniques Côte Basque, Anglet, France
| | - Jacques Labonne
- INRA, UMR 1224 ECOBIOP, F-64310 St Pée sur, Nivelle, France.,Univ Pau & Pays Adour, UMR 1224 ECOBIOP, UFR Sciences et Techniques Côte Basque, Anglet, France
| | - Laure Olazcuaga
- INRA, UMR 1224 ECOBIOP, F-64310 St Pée sur, Nivelle, France.,Univ Pau & Pays Adour, UMR 1224 ECOBIOP, UFR Sciences et Techniques Côte Basque, Anglet, France
| | - Stéphane Panserat
- INRA, UMR 1419 Nutrition Metabolisme Aquaculture, F-64310 Saint Pée sur, Nivelle, France.,Univ Pau & Pays Adour, UMR 1419 Nutrition Metabolisme Aquaculture, F-40000, Mont de Marsan, France
| | - Iban Seiliez
- INRA, UMR 1419 Nutrition Metabolisme Aquaculture, F-64310 Saint Pée sur, Nivelle, France. .,Univ Pau & Pays Adour, UMR 1419 Nutrition Metabolisme Aquaculture, F-40000, Mont de Marsan, France.
| |
Collapse
|