101
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
102
|
Chakraborty M, Tarasovetc EV, Grishchuk EL. In vitro reconstitution of lateral to end-on conversion of kinetochore-microtubule attachments. Methods Cell Biol 2018; 144:307-327. [PMID: 29804674 PMCID: PMC6040660 DOI: 10.1016/bs.mcb.2018.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During mitosis, kinetochores often bind to the walls of spindle microtubules, but these lateral interactions are then converted into a different binding mode in which microtubule plus-ends are embedded at kinetochores, forming dynamic "end-on" attachments. This remarkable configuration allows continuous addition or loss of tubulin subunits from the kinetochore-bound microtubule ends, concomitant with movement of the chromosomes. Here, we describe novel experimental assays for investigating this phenomenon using a well-defined in vitro reconstitution system visualized by fluorescence microscopy. Our assays take advantage of the kinetochore kinesin CENP-E, which assists in microtubule end conversion in vertebrate cells. In the experimental setup, CENP-E is conjugated to coverslip-immobilized microbeads coated with selected kinetochore components, creating conditions suitable for microtubule gliding and formation of either static or dynamic end-on microtubule attachment. This system makes it possible to analyze, in a systematic and rigorous manner, the molecular friction generated by the microtubule wall-binding proteins during lateral transport, as well as the ability of these proteins to establish and maintain association with microtubule plus-end, providing unique insights into the specific activities of various kinetochore components.
Collapse
Affiliation(s)
- Manas Chakraborty
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ekaterina V Tarasovetc
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ekaterina L Grishchuk
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
103
|
Tolić IM. Mitotic spindle: kinetochore fibers hold on tight to interpolar bundles. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2018; 47:191-203. [PMID: 28725997 PMCID: PMC5845649 DOI: 10.1007/s00249-017-1244-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 12/24/2022]
Abstract
When a cell starts to divide, it forms a spindle, a micro-machine made of microtubules, which separates the duplicated chromosomes. The attachment of microtubules to chromosomes is mediated by kinetochores, protein complexes on the chromosome. Spindle microtubules can be divided into three major classes: kinetochore microtubules, which form k-fibers ending at the kinetochore; interpolar microtubules, which extend from the opposite sides of the spindle and interact in the middle; and astral microtubules, which extend towards the cell cortex. Recent work in human cells has shown a close relationship between interpolar and kinetochore microtubules, where interpolar bundles are attached laterally to kinetochore fibers almost all along their length, acting as a bridge between sister k-fibers. Most of the interpolar bundles are attached to a pair of sister kinetochore fibers and vice versa. Thus, the spindle is made of modules consisting of a pair of sister kinetochore fibers and a bundle of interpolar microtubules that connects them. These interpolar bundles, termed bridging fibers, balance the forces acting at kinetochores and support the rounded shape of the spindle during metaphase. This review discusses the structure, function, and formation of kinetochore fibers and interpolar bundles, with an emphasis on how they interact. Their connections have an impact on the force balance in the spindle and on chromosome movement during mitosis because the forces in interpolar bundles are transmitted to kinetochore fibers and hence to kinetochores through these connections.
Collapse
Affiliation(s)
- Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
104
|
Itoh G, Ikeda M, Iemura K, Amin MA, Kuriyama S, Tanaka M, Mizuno N, Osakada H, Haraguchi T, Tanaka K. Lateral attachment of kinetochores to microtubules is enriched in prometaphase rosette and facilitates chromosome alignment and bi-orientation establishment. Sci Rep 2018; 8:3888. [PMID: 29497093 PMCID: PMC5832872 DOI: 10.1038/s41598-018-22164-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/19/2018] [Indexed: 01/08/2023] Open
Abstract
Faithful chromosome segregation is ensured by the establishment of bi-orientation; the attachment of sister kinetochores to the end of microtubules extending from opposite spindle poles. In addition, kinetochores can also attach to lateral surfaces of microtubules; called lateral attachment, which plays a role in chromosome capture and transport. However, molecular basis and biological significance of lateral attachment are not fully understood. We have addressed these questions by focusing on the prometaphase rosette, a typical chromosome configuration in early prometaphase. We found that kinetochores form uniform lateral attachments in the prometaphase rosette. Many transient kinetochore components are maximally enriched, in an Aurora B activity-dependent manner, when the prometaphase rosette is formed. We revealed that rosette formation is driven by rapid poleward motion of dynein, but can occur even in its absence, through slow kinetochore movements caused by microtubule depolymerization that is supposedly dependent on kinetochore tethering at microtubule ends by CENP-E. We also found that chromosome connection to microtubules is extensively lost when lateral attachment is perturbed in cells defective in end-on attachment. Our findings demonstrate that lateral attachment is an important intermediate in bi-orientation establishment and chromosome alignment, playing a crucial role in incorporating chromosomes into the nascent spindle.
Collapse
Affiliation(s)
- Go Itoh
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Masanori Ikeda
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Mohammed Abdullahel Amin
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sei Kuriyama
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Natsuki Mizuno
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Hiroko Osakada
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, 651-2492, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, 651-2492, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan
- Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
105
|
Amin MA, McKenney RJ, Varma D. Antagonism between the dynein and Ndc80 complexes at kinetochores controls the stability of kinetochore-microtubule attachments during mitosis. J Biol Chem 2018; 293:5755-5765. [PMID: 29475948 DOI: 10.1074/jbc.ra117.001699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/06/2018] [Indexed: 01/22/2023] Open
Abstract
Chromosome alignment and segregation during mitosis require kinetochore-microtubule (kMT) attachments that are mediated by the molecular motor dynein and the kMT-binding complex Ndc80. The Rod-ZW10-Zwilch (RZZ) complex is central to this coordination as it has an important role in dynein recruitment and has recently been reported to have a key function in the regulation of stable kMT attachments in Caenorhabditis elegans besides its role in activating the spindle assembly checkpoint (SAC). However, the mechanism by which these protein complexes control kMT attachments to drive chromosome motility during early mitosis is still unclear. Here, using in vitro total internal reflection fluorescence microscopy, we observed that higher concentrations of Ndc80 inhibited dynein binding to MTs, providing evidence that Ndc80 and dynein antagonize each other's function. High-resolution microscopy and siRNA-mediated functional disruption revealed that severe defects in chromosome alignment induced by depletion of dynein or the dynein adapter Spindly are rescued by codepletion of the RZZ component Rod in human cells. Interestingly, rescue of the chromosome alignment defects was independent of Rod function in SAC activation and was accompanied by a remarkable restoration of stable kMT attachments. Furthermore, the chromosome alignment rescue depended on the plus-end-directed motility of centromere protein E (CENP-E) because cells codepleted of CENP-E, Rod, and dynein could not establish stable kMT attachments or align their chromosomes properly. Our findings support the idea that dynein may control the function of the Ndc80 complex in stabilizing kMT attachments directly by interfering with Ndc80-MT binding or indirectly by controlling the Rod-mediated inhibition of Ndc80.
Collapse
Affiliation(s)
- Mohammed A Amin
- From the Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Dileep Varma
- From the Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| |
Collapse
|
106
|
Baudoin NC, Cimini D. A guide to classifying mitotic stages and mitotic defects in fixed cells. Chromosoma 2018; 127:215-227. [PMID: 29411093 DOI: 10.1007/s00412-018-0660-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Cell division is fundamental to life and its perturbation can disrupt organismal development, alter tissue homeostasis, and cause disease. Analysis of mitotic abnormalities provides insight into how certain perturbations affect the fidelity of cell division and how specific cellular structures, molecules, and enzymatic activities contribute to the accuracy of this process. However, accurate classification of mitotic defects is instrumental for correct interpretation of data and formulation of new hypotheses. In this article, we provide guidelines for identifying specific mitotic stages and for classifying normal and deviant mitotic phenotypes. We hope this will clarify confusion about how certain defects are classified and help investigators avoid misnomers, misclassification, and/or misinterpretation, thus leading to a unified and standardized system to classify mitotic defects.
Collapse
Affiliation(s)
- Nicolaas C Baudoin
- Department of Biological Sciences and Biocomplexity Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA
| | - Daniela Cimini
- Department of Biological Sciences and Biocomplexity Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA.
| |
Collapse
|
107
|
Agarwal S, Varma D. Targeting mitotic pathways for endocrine-related cancer therapeutics. Endocr Relat Cancer 2017; 24:T65-T82. [PMID: 28615236 PMCID: PMC5557717 DOI: 10.1530/erc-17-0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/14/2017] [Indexed: 12/21/2022]
Abstract
A colossal amount of basic research over the past few decades has provided unprecedented insights into the highly complex process of cell division. There is an ever-expanding catalog of proteins that orchestrate, participate and coordinate in the exquisite processes of spindle formation, chromosome dynamics and the formation and regulation of kinetochore microtubule attachments. Use of classical microtubule poisons has still been widely and often successfully used to combat a variety of cancers, but their non-selective interference in other crucial physiologic processes necessitate the identification of novel druggable components specific to the cell cycle/division pathway. Considering cell cycle deregulation, unscheduled proliferation, genomic instability and chromosomal instability as a hallmark of tumor cells, there lies an enormous untapped terrain that needs to be unearthed before a drug can pave its way from bench to bedside. This review attempts to systematically summarize the advances made in this context so far with an emphasis on endocrine-related cancers and the avenues for future progress to target mitotic mechanisms in an effort to combat these dreadful cancers.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Cell and Molecular BiologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dileep Varma
- Department of Cell and Molecular BiologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|