101
|
Ries A, Slany A, Pirker C, Mader JC, Mejri D, Mohr T, Schelch K, Flehberger D, Maach N, Hashim M, Hoda MA, Dome B, Krupitza G, Berger W, Gerner C, Holzmann K, Grusch M. Primary and hTERT-Transduced Mesothelioma-Associated Fibroblasts but Not Primary or hTERT-Transduced Mesothelial Cells Stimulate Growth of Human Mesothelioma Cells. Cells 2023; 12:2006. [PMID: 37566084 PMCID: PMC10417280 DOI: 10.3390/cells12152006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
Pleural mesothelioma (PM) is an aggressive malignancy that develops in a unique tumor microenvironment (TME). However, cell models for studying the TME in PM are still limited. Here, we have generated and characterized novel human telomerase reverse transcriptase (hTERT)-transduced mesothelial cell and mesothelioma-associated fibroblast (Meso-CAF) models and investigated their impact on PM cell growth. Pleural mesothelial cells and Meso-CAFs were isolated from tissue of pneumothorax and PM patients, respectively. Stable expression of hTERT was induced by retroviral transduction. Primary and hTERT-transduced cells were compared with respect to doubling times, hTERT expression and activity levels, telomere lengths, proteomes, and the impact of conditioned media (CM) on PM cell growth. All transduced derivatives exhibited elevated hTERT expression and activity, and increased mean telomere lengths. Cell morphology remained unchanged, and the proteomes were similar to the corresponding primary cells. Of note, the CM of primary and hTERT-transduced Meso-CAFs stimulated PM cell growth to the same extent, while CM derived from mesothelial cells had no stimulating effect, irrespective of hTERT expression. In conclusion, all new hTERT-transduced cell models closely resemble their primary counterparts and, hence, represent valuable tools to investigate cellular interactions within the TME of PM.
Collapse
Affiliation(s)
- Alexander Ries
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Astrid Slany
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Johanna C. Mader
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
| | - Doris Mejri
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Thomas Mohr
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Waehringer Guertel 38, 1090 Vienna, Austria
- ScienceConsult—DI Thomas Mohr KG, Enzianweg 10a, 2353 Guntramsdorf, Austria
| | - Karin Schelch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.A.H.); (B.D.)
| | - Daniela Flehberger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Nadine Maach
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Muhammad Hashim
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.A.H.); (B.D.)
| | - Balazs Dome
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.A.H.); (B.D.)
- National Korányi Institute of Pulmonology, Korányi Frigyes u. 1, 1122 Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Rath Gyorgy u. 7-9, 1122 Budapest, Hungary
- Department of Translational Medicine, Lund University, Sölvegatan 19, 22184 Lund, Sweden
| | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Christopher Gerner
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
| | - Klaus Holzmann
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Michael Grusch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| |
Collapse
|
102
|
Shahvali S, Rahiman N, Jaafari MR, Arabi L. Targeting fibroblast activation protein (FAP): advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy. Drug Deliv Transl Res 2023; 13:2041-2056. [PMID: 36840906 DOI: 10.1007/s13346-023-01308-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/26/2023]
Abstract
Fibroblast activation protein (FAP) is a serine protease with dual enzymatic activities overexpressed in cancer-associated fibroblasts (CAFs) in several tumor types, while its expression in healthy adult tissues is scarce. FAP overexpression on CAFs is associated with poor prognosis and plays an important role in tumor development, progression, and invasion. Therefore, FAP is considered a robust therapeutic target for cancer therapy. Here, we try to review and highlight the recent advances in immunotherapies for FAP targeting including the anti-FAP antibodies and immunoconjugates, FAP chimeric antigen receptor (CAR)-T cell, and various FAP vaccines in a preclinical and clinical setting. Subsequently, a discussion on the challenges and prospects associated with the development and translation of effective and safe therapies for targeting and depletion of FAP is provided. We proposed that new CAR-T cell engineering strategies and nanotechnology-based systems as well as advanced functional biomaterials can be used to improve the efficiency and safety of CAR-T cells and vaccines against FAP for more personalized immunotherapy. This review emphasizes the immune targeting of FAP as an emerging stromal candidate and one of the crucial elements in immunotherapy and shows the potential for improvement of current cancer therapy. A summary of different immunotherapy approaches to target fibroblast activation protein (FAP) for cancer therapy.
Collapse
Affiliation(s)
- Sedigheh Shahvali
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
103
|
Souza da Silva R, Queiroga EM, de Toledo Osório C, Cunha KS, Neves FP, Andrade JP, Dias EP. Expression Profile of Microenvironmental Factors in the Interface Zone of Colorectal Cancer: Histological-Stromal Biomarkers and Cancer Cell-Cancer-Associated Fibroblast-Related Proteins Combined for the Assessment of Tumor Progression. Pathobiology 2023; 91:99-107. [PMID: 37369175 DOI: 10.1159/000531695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
INTRODUCTION The characterization of tumor microenvironment (TME) related factors and their impact on tumor progression have attracted much interest. We investigated cancer cells and cancer-associated fibroblasts (CAFs) to evaluate biomarkers that are associated with neoplastic progression, observing them in different interface zones of colorectal cancer. METHODS On 357 CRC tissue microarrays, using immunohistochemistry, we examined the associations of podoplanin and α-SMA expressed in cancer cells and CAFs and evaluated them in different areas: tumor core, invasive front, tumor budding, tumor-stroma ratio (TSR) scoring, and desmoplastic stroma. RESULTS CAFs expressing α-SMA were found in more than 90% of the cases. Podoplanin+ was detected in cancer cells and CAFs, with positivities of 38.6% and 70%, respectively. Higher α-SMA+ CAFs and podoplanin+ cancer cells were observed predominantly at the TSR score area: 94.3% and 64.3% of cases, respectively. The status of podoplanin in CAFs+ was higher in the desmoplastic area (71.6%). Stroma-high tumors showed increased expression of α-SMA and podoplanin in comparison with stroma-low tumors. The status of podoplanin in cancer cells was observed in association with lymphatic invasion and distant metastasis. CONCLUSION The substance of the CRC was composed predominantly of the surrounding stroma-α-SMA+ CAFs. Podoplanin expressed in the prognosticator zones was associated with unfavorable pathological features. The combination of histologic and protein-related biomarkers can result in a tool for the stratification of patients with CRC.
Collapse
Affiliation(s)
- Ricella Souza da Silva
- Pathological Anatomy Service, Lauro Wanderley University Hospital of Federal University of Paraíba, João Pessoa, Brazil
| | - Eduardo M Queiroga
- Laboratory of Pathological Anatomy, Alcides Carneiro University Hospital of the Federal University of Campina Grande, Campina Grande, Brazil
| | | | - Karin S Cunha
- Department of Pathology, School of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Fabiana P Neves
- Anatomopathological Diagnostic Center, Napoleão Laureano Hospital, João Pessoa, Brazil
| | - Julieth P Andrade
- Anatomopathological Diagnostic Center, Napoleão Laureano Hospital, João Pessoa, Brazil
| | - Eliane P Dias
- Department of Pathology, School of Medicine, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
104
|
Tang H, Xu W, Lu J, Anwaier A, Ye D, Zhang H. Heterogeneity and function of cancer-associated fibroblasts in renal cell carcinoma. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:100-105. [PMID: 39035728 PMCID: PMC11256550 DOI: 10.1016/j.jncc.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 07/23/2024] Open
Abstract
With the advancement of anticancer therapy, there is increasing interest in understanding the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) play a pivotal role in the TME and have been the focus of much research in recent years. CAFs play an active role in cancer progression through complex interactions with other cells in the TME, releasing regulatory factors, synthesizing and remodeling the extracellular matrix. However, research on the role of CAFs in renal cell carcinoma (RCC) is still in its nascent stages. Here, we describe the origins and subgroups of CAFs, the roles of CAFs in the development and progression of RCC, the impact of CAFs on RCC prognosis, and the potential of CAFs as treatment targets in RCC. By analyzing CAF subsets, biomarkers, and targeted therapies, we present the significance and contribution of CAFs in RCC research. Furthermore, we highlight the distinct contribution of CAFs in advanced RCC through horizontal comparison with other cancers. This paper provides a comprehensive perspective of recent and foundational studies on the role of CAFs in RCC and other types of cancers and new insights for further study of CAFs in RCC.
Collapse
Affiliation(s)
- Haijia Tang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Jiahe Lu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| |
Collapse
|
105
|
Komoto S, Noma K, Kato T, Kobayashi T, Nishiwaki N, Narusaka T, Sato H, Katsura Y, Kashima H, Kikuchi S, Ohara T, Tazawa H, Fujiwara T. Conventional Cancer Therapies Can Accelerate Malignant Potential of Cancer Cells by Activating Cancer-Associated Fibroblasts in Esophageal Cancer Models. Cancers (Basel) 2023; 15:cancers15112971. [PMID: 37296933 DOI: 10.3390/cancers15112971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/01/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Esophageal cancer is one of the most aggressive tumors, and the outcome remains poor. One contributing factor is the presence of tumors that are less responsive or have increased malignancy when treated with conventional chemotherapy, radiotherapy, or a combination of these. Cancer-associated fibroblasts (CAFs) play an important role in the tumor microenvironment. Focusing on conventional cancer therapies, we investigated how CAFs acquire therapeutic resistance and how they affect tumor malignancy. In this study, low-dose chemotherapy or radiotherapy-induced normal fibroblasts showed enhanced activation of CAFs markers, fibroblast activation protein, and α-smooth muscle actin, indicating the acquisition of malignancy in fibroblasts. Furthermore, CAFs activated by radiotherapy induce phenotypic changes in cancer cells, increasing their proliferation, migration, and invasion abilities. In in vivo peritoneal dissemination models, the total number of tumor nodules in the abdominal cavity was significantly increased in the co-inoculation group of cancer cells and resistant fibroblasts compared to that in the co-inoculation group of cancer cells and normal fibroblasts. In conclusion, we demonstrated that conventional cancer therapy causes anti-therapeutic effects via the activation of fibroblasts, resulting in CAFs. It is important to select or combine modalities of esophageal cancer treatment, recognizing that inappropriate radiotherapy and chemotherapy can lead to resistance in CAF-rich tumors.
Collapse
Affiliation(s)
- Satoshi Komoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takuya Kato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Teruki Kobayashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Noriyuki Nishiwaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toru Narusaka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroaki Sato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yuki Katsura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hajime Kashima
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Department of Pathology & Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
106
|
Wieder R. Fibroblasts as Turned Agents in Cancer Progression. Cancers (Basel) 2023; 15:2014. [PMID: 37046676 PMCID: PMC10093070 DOI: 10.3390/cancers15072014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Differentiated epithelial cells reside in the homeostatic microenvironment of the native organ stroma. The stroma supports their normal function, their G0 differentiated state, and their expansion/contraction through the various stages of the life cycle and physiologic functions of the host. When malignant transformation begins, the microenvironment tries to suppress and eliminate the transformed cells, while cancer cells, in turn, try to resist these suppressive efforts. The tumor microenvironment encompasses a large variety of cell types recruited by the tumor to perform different functions, among which fibroblasts are the most abundant. The dynamics of the mutual relationship change as the sides undertake an epic battle for control of the other. In the process, the cancer "wounds" the microenvironment through a variety of mechanisms and attracts distant mesenchymal stem cells to change their function from one attempting to suppress the cancer, to one that supports its growth, survival, and metastasis. Analogous reciprocal interactions occur as well between disseminated cancer cells and the metastatic microenvironment, where the microenvironment attempts to eliminate cancer cells or suppress their proliferation. However, the altered microenvironmental cells acquire novel characteristics that support malignant progression. Investigations have attempted to use these traits as targets of novel therapeutic approaches.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
107
|
Nicolini G, Balzan S, Forini F. Activated fibroblasts in cardiac and cancer fibrosis: An overview of analogies and new potential therapeutic options. Life Sci 2023; 321:121575. [PMID: 36933828 DOI: 10.1016/j.lfs.2023.121575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Heart disease and cancer are two major causes of morbidity and mortality in the industrialized countries, and their increasingly recognized connections are shifting the focus from single disease studies to an interdisciplinary approach. Fibroblast-mediated intercellular crosstalk is critically involved in the evolution of both pathologies. In healthy myocardium and in non-cancerous conditions, resident fibroblasts are the main cell source for synthesis of the extracellular matrix (ECM) and important sentinels of tissue integrity. In the setting of myocardial disease or cancer, quiescent fibroblasts activate, respectively, into myofibroblasts (myoFbs) and cancer-associated fibroblasts (CAFs), characterized by increased production of contractile proteins, and by a highly proliferative and secretory phenotype. Although the initial activation of myoFbs/CAFs is an adaptive process to repair the damaged tissue, massive deposition of ECM proteins leads to maladaptive cardiac or cancer fibrosis, a recognized marker of adverse outcome. A better understanding of the key mechanisms orchestrating fibroblast hyperactivity may help developing innovative therapeutic options to restrain myocardial or tumor stiffness and improve patient prognosis. Albeit still unappreciated, the dynamic transition of myocardial and tumor fibroblasts into myoFbs and CAFs shares several common triggers and signaling pathways relevant to TGF-β dependent cascade, metabolic reprogramming, mechanotransduction, secretory properties, and epigenetic regulation, which might lay the foundation for future antifibrotic intervention. Therefore, the aim of this review is to highlight emerging analogies in the molecular signature underlying myoFbs and CAFs activation with the purpose of identifying novel prognostic/diagnostic biomarkers, and to elucidate the potential of drug repositioning strategies to mitigate cardiac/cancer fibrosis.
Collapse
Affiliation(s)
| | - Silvana Balzan
- CNR Institute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy
| | - Francesca Forini
- CNR Institute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
108
|
Lokhov PG, Balashova EE, Trifonova OP, Maslov DL, Archakov AI. Cell Proteomic Footprinting: Advances in the Quality of Cellular and Cell-Derived Cancer Vaccines. Pharmaceutics 2023; 15:661. [PMID: 36839983 PMCID: PMC9963030 DOI: 10.3390/pharmaceutics15020661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In omics sciences, many compounds are measured simultaneously in a sample in a single run. Such analytical performance opens up prospects for improving cellular cancer vaccines and other cell-based immunotherapeutics. This article provides an overview of proteomics technology, known as cell proteomic footprinting. The molecular phenotype of cells is highly variable, and their antigenic profile is affected by many factors, including cell isolation from the tissue, cell cultivation conditions, and storage procedures. This makes the therapeutic properties of cells, including those used in vaccines, unpredictable. Cell proteomic footprinting makes it possible to obtain controlled cell products. Namely, this technology facilitates the cell authentication and quality control of cells regarding their molecular phenotype, which is directly connected with the antigenic properties of cell products. Protocols for cell proteomic footprinting with their crucial moments, footprint processing, and recommendations for the implementation of this technology are described in this paper. The provided footprints in this paper and program source code for their processing contribute to the fast implementation of this technology in the development and manufacturing of cell-based immunotherapeutics.
Collapse
Affiliation(s)
- Petr G. Lokhov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| | | | | | | | | |
Collapse
|
109
|
"Pulsed Hypoxia" Gradually Reprograms Breast Cancer Fibroblasts into Pro-Tumorigenic Cells via Mesenchymal-Epithelial Transition. Int J Mol Sci 2023; 24:ijms24032494. [PMID: 36768815 PMCID: PMC9916667 DOI: 10.3390/ijms24032494] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Hypoxia arises in most growing solid tumors and can lead to pleotropic effects that potentially increase tumor aggressiveness and resistance to therapy through regulation of the expression of genes associated with the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). The main goal of the current work was to obtain and investigate the intermediate phenotype of tumor cells undergoing the hypoxia-dependent transition from fibroblast to epithelial morphology. Primary breast cancer fibroblasts BrC4f, being cancer-associated fibroblasts, were subjected to one or two rounds of "pulsed hypoxia" (PH). PH induced transformation of fibroblast-shaped cells to semi-epithelial cells. Western blot analysis, fluorescent microscopy and flow cytometry of transformed cells demonstrated the decrease in the mesenchymal markers vimentin and N-cad and an increase in the epithelial marker E-cad. These cells kept mesenchymal markers αSMA and S100A4 and high ALDH activity. Real-time PCR data of the cells after one (BrC4f_Hyp1) and two (BrC4f_Hyp2) rounds of PH showed consistent up-regulation of TWIST1 gene as an early response and ZEB1/2 and SLUG transcriptional activity as a subsequent response. Reversion of BrC4f_Hyp2 cells to normoxia conditions converted them to epithelial-like cells (BrC4e) with decreased expression of EMT genes and up-regulation of MET-related OVOL2 and c-MYC genes. Transplantation of BrC4f and BrC4f_Hyp2 cells into SCID mice showed the acceleration of tumor growth up to 61.6% for BrC4f_Hyp2 cells. To summarize, rounds of PH imitate the MET process of tumorigenesis in which cancer-associated fibroblasts pass through intermediate stages and become more aggressive epithelial-like tumor cells.
Collapse
|
110
|
FAPI PET/CT in Diagnostic and Treatment Management of Colorectal Cancer: Review of Current Research Status. J Clin Med 2023; 12:jcm12020577. [PMID: 36675506 PMCID: PMC9865114 DOI: 10.3390/jcm12020577] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
FAPI PET/CT is a novel imaging tool targeting fibroblast activation protein (FAP), with high tumor uptake rate and low background noise. Therefore, the appearance of FAPI PET/CT provides a good tumor-to-background ratio between tumor and non-tumor tissues, which is beneficial to staging, tumor description and detection. Colorectal cancer has the biological characteristics of high expression of FAP, which provides the foundation for targeted FAP imaging. FAPI PET/CT may have a potential role in changing the staging and re-staging of colorectal cancer, monitoring recurrence and treatment management, and improving the prognosis of patients. This review will summarize the application status of FAPI PET/CT in colorectal cancer and provide directions for further application research.
Collapse
|
111
|
Therapeutic Targeting of Cancer-Associated Fibroblasts in the Non-Small Cell Lung Cancer Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15020335. [PMID: 36672284 PMCID: PMC9856659 DOI: 10.3390/cancers15020335] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer death worldwide. The most common lung cancer is non-small cell lung cancer (NSCLC), with an overall 5-year survival rate of around 20% because NSCLC is a metastatic disease. A better understanding of the mechanism underlying lung cancer metastasis is therefore urgently needed. The tumor microenvironment involves different types of stromal cells and functions as key components in the progression of NSCLC. Through epithelial-mesenchymal transition (EMT), in which epithelial cells lose their polarity and acquire mesenchymal potential, cancer cells acquire metastatic abilities, as well as cancer stem-cell-like potential. We previously reported that cancer-associated fibroblasts (CAFs) interact with lung cancer cells to allow for the acquisition of malignancy and treatment resistance by paracrine loops via EMT signals in the tumor microenvironment. Furthermore, CAFs regulate the cytotoxic activity of immune cells via various cytokines and chemokines, creating a microenvironment of immune tolerance. Regulation of CAFs can therefore affect immune responses. Recent research has shown several roles of CAFs in NSCLC tumorigenesis, owing to their heterogeneity, so molecular markers of CAFs should be elucidated to better classify tumor-promoting subtypes and facilitate the establishment of CAF-specific targeted therapies. CAF-targeted cancer treatments may suppress EMT and regulate the niche of cancer stem cells and the immunosuppressive network and thus may prove useful for NSCLC treatment through multiple mechanisms.
Collapse
|
112
|
Villegas-Pineda JC, Ramírez-de-Arellano A, Bueno-Urquiza LJ, Lizarazo-Taborda MDR, Pereira-Suárez AL. Cancer-associated fibroblasts in gynecological malignancies: are they really allies of the enemy? Front Oncol 2023; 13:1106757. [PMID: 37168385 PMCID: PMC10164963 DOI: 10.3389/fonc.2023.1106757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Molecular and cellular components of the tumor microenvironment are essential for cancer progression. The cellular element comprises cancer cells and heterogeneous populations of non-cancer cells that satisfy tumor needs. Immune, vascular, and mesenchymal cells provide the necessary factors to feed the tumor mass, promote its development, and favor the spread of cancer cells from the primary site to adjacent and distant anatomical sites. Cancer-associated fibroblasts (CAFs) are mesenchymal cells that promote carcinogenesis and progression of various malignant neoplasms. CAFs act through the secretion of metalloproteinases, growth factors, cytokines, mitochondrial DNA, and non-coding RNAs, among other molecules. Over the last few years, the evidence on the leading role of CAFs in gynecological cancers has notably increased, placing them as the cornerstone of neoplastic processes. In this review, the recently reported findings regarding the promoting role that CAFs play in gynecological cancers, their potential use as therapeutic targets, and the new evidence suggesting that they could act as tumor suppressors are analyzed and discussed.
Collapse
Affiliation(s)
- Julio César Villegas-Pineda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Lesly Jazmín Bueno-Urquiza
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Ana Laura Pereira-Suárez
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- *Correspondence: Ana Laura Pereira-Suárez,
| |
Collapse
|
113
|
Xu A, Xu XN, Luo Z, Huang X, Gong RQ, Fu DY. Identification of prognostic cancer-associated fibroblast markers in luminal breast cancer using weighted gene co-expression network analysis. Front Oncol 2023; 13:1191660. [PMID: 37207166 PMCID: PMC10191114 DOI: 10.3389/fonc.2023.1191660] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) play a pivotal role in cancer progression and are known to mediate endocrine and chemotherapy resistance through paracrine signaling. Additionally, they directly influence the expression and growth dependence of ER in Luminal breast cancer (LBC). This study aims to investigate stromal CAF-related factors and develop a CAF-related classifier to predict the prognosis and therapeutic outcomes in LBC. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to obtain mRNA expression and clinical information from 694 and 101 LBC samples, respectively. CAF infiltrations were determined by estimating the proportion of immune and cancer cells (EPIC) method, while stromal scores were calculated using the Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE) algorithm. Weighted gene co-expression network analysis (WGCNA) was used to identify stromal CAF-related genes. A CAF risk signature was developed through univariate and least absolute shrinkage and selection operator method (LASSO) Cox regression model. The Spearman test was used to evaluate the correlation between CAF risk score, CAF markers, and CAF infiltrations estimated through EPIC, xCell, microenvironment cell populations-counter (MCP-counter), and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms. The TIDE algorithm was further utilized to assess the response to immunotherapy. Additionally, Gene set enrichment analysis (GSEA) was applied to elucidate the molecular mechanisms underlying the findings. Results We constructed a 5-gene prognostic model consisting of RIN2, THBS1, IL1R1, RAB31, and COL11A1 for CAF. Using the median CAF risk score as the cutoff, we classified LBC patients into high- and low-CAF-risk groups and found that those in the high-risk group had a significantly worse prognosis. Spearman correlation analyses demonstrated a strong positive correlation between the CAF risk score and stromal and CAF infiltrations, with the five model genes showing positive correlations with CAF markers. In addition, the TIDE analysis revealed that high-CAF-risk patients were less likely to respond to immunotherapy. Gene set enrichment analysis (GSEA) identified significant enrichment of ECM receptor interaction, regulation of actin cytoskeleton, epithelial-mesenchymal transition (EMT), and TGF-β signaling pathway gene sets in the high-CAF-risk group patients. Conclusion The five-gene prognostic CAF signature presented in this study was not only reliable for predicting prognosis in LBC patients, but it was also effective in estimating clinical immunotherapy response. These findings have significant clinical implications, as the signature may guide tailored anti-CAF therapy in combination with immunotherapy for LBC patients.
Collapse
Affiliation(s)
- An Xu
- Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiang-Nan Xu
- Department of Thyroid and Breast Surgery, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| | - Zhou Luo
- Department of Thyroid and Breast Surgery, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| | - Xiao Huang
- Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Rong-Quan Gong
- Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - De-Yuan Fu
- Department of Thyroid and Breast Surgery, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- *Correspondence: De-Yuan Fu,
| |
Collapse
|
114
|
Toledo B, Picon-Ruiz M, Marchal JA, Perán M. Dual Role of Fibroblasts Educated by Tumour in Cancer Behavior and Therapeutic Perspectives. Int J Mol Sci 2022; 23:15576. [PMID: 36555218 PMCID: PMC9778751 DOI: 10.3390/ijms232415576] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Tumours are complex systems with dynamic interactions between tumour cells, non-tumour cells, and extracellular components that comprise the tumour microenvironment (TME). The majority of TME's cells are cancer-associated fibroblasts (CAFs), which are crucial in extracellular matrix (ECM) construction, tumour metabolism, immunology, adaptive chemoresistance, and tumour cell motility. CAF subtypes have been identified based on the expression of protein markers. CAFs may act as promoters or suppressors in tumour cells depending on a variety of factors, including cancer stage. Indeed, CAFs have been shown to promote tumour growth, survival and spread, and secretome changes, but they can also slow tumourigenesis at an early stage through mechanisms that are still poorly understood. Stromal-cancer interactions are governed by a variety of soluble factors that determine the outcome of the tumourigenic process. Cancer cells release factors that enhance the ability of fibroblasts to secrete multiple tumour-promoting chemokines, acting on malignant cells to promote proliferation, migration, and invasion. This crosstalk between CAFs and tumour cells has given new prominence to the stromal cells, from being considered as mere physical support to becoming key players in the tumour process. Here, we focus on the concept of cancer as a non-healing wound and the relevance of chronic inflammation to tumour initiation. In addition, we review CAFs heterogeneous origins and markers together with the potential therapeutic implications of CAFs "re-education" and/or targeting tumour progression inhibition.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, E-23071 Jaén, Spain
| | - Manuel Picon-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, E-18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, E-18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, E-23071 Jaén, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| |
Collapse
|
115
|
Mechanism of Extracellular Vesicle Secretion Associated with TGF-β-Dependent Inflammatory Response in the Tumor Microenvironment. Int J Mol Sci 2022; 23:ijms232315335. [PMID: 36499660 PMCID: PMC9740594 DOI: 10.3390/ijms232315335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/10/2022] Open
Abstract
Extracellular vesicles (EVs) serve as central mediators in communication between tumor and non-tumor cells. These interactions are largely dependent on the function of the endothelial barrier and the set of receptors present on its surface, as endothelial cells (ECs) are a plenteous source of EVs. The molecular basis for EV secretion and action in the tumor microenvironment (TME) has not been fully elucidated to date. Emerging evidence suggests a prominent role of inflammatory pathways in promoting tumor progression and metastasis. Although transforming growth factor β (TGF-β) is a cytokine with strong immunomodulatory and protective activity in benign and early-stage cancer cells, it plays a pro-tumorigenic role in advanced cancer cells, which is known as the "TGF-β paradox". Thus, the aim of this review is to describe the correlation between EV release, TGF-β-dependent inflammation, and dysregulation of downstream TGF-β signaling in the context of cancer development.
Collapse
|
116
|
Huan T, Li H, Tang B. Radiotherapy plus CAR-T cell therapy to date: A note for cautions optimism? Front Immunol 2022; 13:1033512. [PMID: 36466874 PMCID: PMC9714575 DOI: 10.3389/fimmu.2022.1033512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 08/26/2023] Open
Abstract
Radiotherapy (RT) is a traditional therapeutic regime that focuses on ionizing radiation, however, RT maintains largely palliative due to radioresistance. Factors such as hypoxia, the radiosensitivity of immune cells, and cancer stem cells (CSCs) all come into play in influencing the significant impact of radioresistance in the irradiated tumor microenvironment (TME). Due to the substantial advances in the treatment of malignant tumors, a promising approach is the genetically modified T cells with chimeric antigen receptors (CARs) to eliminate solid tumors. Moreover, CAR-T cells targeting CSC-related markers would eliminate radioresistant solid tumors. But solid tumors that support an immune deserted TME, are described as immunosuppressive and typically fail to respond to CAR-T cell therapy. And RT could overcome these immunosuppressive features; thus, growing evidence supports the combination of RT with CAR-T cell therapy. In this review, we provide a deep insight into the radioresistance mechanisms, advances, and barriers of CAR-T cells in response to solid tumors within TME. Therefore, we focus on how the combination strategy can be used to eliminate these barriers. Finally, we show the challenges of this therapeutic partnership.
Collapse
Affiliation(s)
- Tian Huan
- Department of Rehabilitation Medicine, Jinhu County People’s Hospital, Huaian, Jiangsu, China
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hongbo Li
- Department of Rehabilitation Medicine, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Bin Tang
- Department of Rehabilitation Medicine, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| |
Collapse
|