101
|
Kumar PS, Kumar KB, Obadiah A, Kumar SJ, Mohanapriya R, Durairaj A, Ramanathan S, Vasanthkumar S. Synthesis, Molecular Docking, Cytotoxicity and Antioxidant Activity Evaluation of Isoindoline-1,3-dione Derivatives. ASIAN JOURNAL OF CHEMISTRY 2019; 31:2548-2556. [DOI: 10.14233/ajchem.2019.22185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
A variety of amines have been employed to functionalize isobenzofuran-1,3-dione to obtain isoindoline-1,3-dione derivatives in the base free conditions. All the synthesized compounds are screened for their bioactivity through molecular docking, cytotoxicity (against HeLa) and antioxidant activity. ABTS and DPPH are employed to assess the antioxidant activity. Among the synthesized isoindoline-1,3-dione derivatives (3a-k), compound 3e has showed the best antioxidant activity and also exhibited better binding energy when docked with caspase-3 protein. Cytotoxicity of the synthesized compounds was studied against cervical cancer cell line (HeLa) and compound 3e has displayed better activity than other isoindoline derivatives.
Collapse
Affiliation(s)
| | | | - Asir Obadiah
- Department of Biotechnology, Karunya Institute of Technology and Science, Coimbatore-641114, India
| | - Suluvoy Jagadish Kumar
- Department of Biotechnology, Karunya Institute of Technology and Science, Coimbatore-641114, India
| | - Raman Mohanapriya
- Department of Bioinformatics, Karunya Institute of Technology and Science, Coimbatore-641114, India
| | - Arulappan Durairaj
- Department of Chemistry, Karunya Institute of Technology and Science, Coimbatore-641114, India
| | - Subramanian Ramanathan
- Department of Chemistry, Karunya Institute of Technology and Science, Coimbatore-641114, India
| | - Samuel Vasanthkumar
- Department of Chemistry, Karunya Institute of Technology and Science, Coimbatore-641114, India
| |
Collapse
|
102
|
Zeng J, Martin A, Han X, Shirihai OS, Grinstaff MW. Biodegradable PLGA nanoparticles restore lysosomal acidity and protect neural PC-12 cells against mitochondrial toxicity. Ind Eng Chem Res 2019; 58:13910-13917. [PMID: 38576774 PMCID: PMC10993316 DOI: 10.1021/acs.iecr.9b02003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Exposure of mitochondrial parkinsonian neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+) to PC-12 cells results in significant cell death, decreases lysosomal acidity, and inhibits autophagic flux. Biodegradable poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) of ≈100 nm diameter localize to the lysosome, degrade, and subsequently release their acidic components to acidify the local lysosomal environment. The performance of PLGA NPs with different lysosomal pH modulating capabilities is investigated in PC-12 cells under MPP+ induced mitochondrial toxicity. PLGA NPs perform in a compositional dependent manner, where NPs with a higher glycolic acid to lactic acid ratio content degrade faster, and yield greater degrees of lysosomal pH modulation as well as autophagic flux modulation in PC-12 cells under MPP+ insult. These results show that slight compositional changes of the polymeric NP give rise to differing degrees of lysosomal acidification in PC-12 cells and afford improved cellular degradative activity.
Collapse
Affiliation(s)
- Jialiu Zeng
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Andrew Martin
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Orian S. Shirihai
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90045, United States
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, United States
| | - Mark W. Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, United States
- Department of Chemistry, Boston University, Boston, MA 02215, United States
| |
Collapse
|
103
|
Potential Benefits of Nobiletin, A Citrus Flavonoid, against Alzheimer's Disease and Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20143380. [PMID: 31295812 PMCID: PMC6678479 DOI: 10.3390/ijms20143380] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD), which is characterized by the presence of amyloid-β (Aβ) plaques and neurofibrillary tangles, accompanied by neurodegeneration, is the most common form of age-related neurodegenerative disease. Parkinson’s disease (PD) is the second most common neurodegenerative disease after AD, and is characterized by early prominent loss of dopaminergic neurons in the substantia nigra pars compacta. As currently available treatments are not able to significantly alter the progression of these diseases, successful therapeutic and preventive interventions are strongly needed. In the course of our survey of substances from natural resources having anti-dementia and neuroprotective activity, we found nobiletin, a polymethoxylated flavone from the peel of Citrus depressa. Nobiletin improved cognitive deficits and the pathological features of AD, such as Aβ pathology, hyperphosphorylation of tau, and oxidative stress, in animal models of AD. In addition, nobiletin improved motor and cognitive deficits in PD animal models. These observations suggest that nobiletin has the potential to become a novel drug for the treatment and prevention of neurodegenerative diseases such as AD and PD.
Collapse
|
104
|
Ma J, Gao J, Wang J, Xie A. Prion-Like Mechanisms in Parkinson's Disease. Front Neurosci 2019; 13:552. [PMID: 31275093 PMCID: PMC6591488 DOI: 10.3389/fnins.2019.00552] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Formation and aggregation of misfolded proteins in the central nervous system (CNS) is a key hallmark of several age-related neurodegenerative diseases, including Parkinson’s disease (PD), Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS). These diseases share key biophysical and biochemical characteristics with prion diseases. It is believed that PD is characterized by abnormal protein aggregation, mainly that of α-synuclein (α-syn). Of particular importance, there is growing evidence indicating that abnormal α-syn can spread to neighboring brain regions and cause aggregation of endogenous α-syn in these regions as seeds, in a “prion-like” manner. Abundant studies in vitro and in vivo have shown that α-syn goes through a templated conformational change, propagates from the original region to neighboring regions, and eventually cause neuron degeneration in the substantia nigra and striatum. The objective of this review is to summarize the mechanisms involved in the aggregation of abnormal intracellular α-syn and its subsequent cell-to-cell transmission. According to these findings, we look forward to effective therapeutic perspectives that can block the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiangnan Ma
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Gao
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
105
|
Hussain G, Huang J, Rasul A, Anwar H, Imran A, Maqbool J, Razzaq A, Aziz N, Makhdoom EUH, Konuk M, Sun T. Putative Roles of Plant-Derived Tannins in Neurodegenerative and Neuropsychiatry Disorders: An Updated Review. Molecules 2019; 24:E2213. [PMID: 31200495 PMCID: PMC6630756 DOI: 10.3390/molecules24122213] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative and neuropsychiatric diseases are characterized by the structural and functional abnormalities of neurons in certain regions of the brain. These abnormalities, which can result in progressive neuronal degeneration and functional disability, are incurable to date. Although comprehensive efforts have been made to figure out effective therapies against these diseases, partial success has been achieved and complete functional recovery is still not a reality. At present, plants and plant-derived compounds are getting more attention because of a plethora of pharmacological properties, and they are proving to be a better and safer target as therapeutic interventions. This review aims to highlight the roles of tannins, 'the polyphenol phytochemicals', in tackling neurodegenerative diseases including Alzheimer's and Parkinson's diseases as well as neuropsychiatric disorders like depression. Among the multifarious pharmacological properties of tannins, anti-oxidative, anti-inflammatory, and anti-cholinesterase activities are emphasized more in terms of neuroprotection. The current review also throws light on mechanistic pathways by which various classes of tannins execute neuroprotective effects. Despite their beneficial properties, some harmful effects of tannins have also been elaborated.
Collapse
Affiliation(s)
- Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Jia Huang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Javeria Maqbool
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Aroona Razzaq
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Nimra Aziz
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Ehtisham Ul Haq Makhdoom
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Muhsin Konuk
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Uskudar University, Istanbul 34662, Turkey.
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
106
|
Baldacci F, Lista S, Vergallo A, Palermo G, Giorgi FS, Hampel H. A frontline defense against neurodegenerative diseases:the development of early disease detection methods. Expert Rev Mol Diagn 2019; 19:559-563. [DOI: 10.1080/14737159.2019.1627202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - Giovanni Palermo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| |
Collapse
|
107
|
Javed H, Azimullah S, Meeran MFN, Ansari SA, Ojha S. Neuroprotective Effects of Thymol, a Dietary Monoterpene Against Dopaminergic Neurodegeneration in Rotenone-Induced Rat Model of Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20071538. [PMID: 30934738 PMCID: PMC6480243 DOI: 10.3390/ijms20071538] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD), a multifactorial movement disorder that involves progressive degeneration of the nigrostriatal system affecting the movement ability of the patient. Oxidative stress and neuroinflammation both are shown to be involved in the etiopathogenesis of PD. The aim of this study was to evaluate the therapeutic potential of thymol, a dietary monoterpene phenol in rotenone (ROT)-induced neurodegeneration in rats that precisely mimics PD in humans. Male Wistar rats were injected ROT at a dose of 2.5 mg/kg body weight for 4 weeks, to induce PD. Thymol was co-administered for 4 weeks at a dose of 50 mg/kg body weight, 30 min prior to ROT injection. The markers of dopaminergic neurodegeneration, oxidative stress and inflammation were estimated using biochemical assays, enzyme-linked immunosorbent assay, western blotting and immunocytochemistry. ROT challenge increased the oxidative stress markers, inflammatory enzymes and cytokines as well as caused significant damage to nigrostriatal dopaminergic system of the brain. Thymol treatment in ROT challenged rats appears to significantly attenuate dopaminergic neuronal loss, oxidative stress and inflammation. The present study showed protective effects of thymol in ROT-induced neurotoxicity and neurodegeneration mediated by preservation of endogenous antioxidant defense networks and attenuation of inflammatory mediators including cytokines and enzymes.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| | - M F Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| |
Collapse
|
108
|
Ştefănescu R, Stanciu GD, Luca A, Caba IC, Tamba BI, Mihai CT. Contributions of Mass Spectrometry to the Identification of Low Molecular Weight Molecules Able to Reduce the Toxicity of Amyloid-β Peptide to Cell Cultures and Transgenic Mouse Models of Alzheimer's Disease. Molecules 2019; 24:E1167. [PMID: 30909659 PMCID: PMC6471768 DOI: 10.3390/molecules24061167] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's Disease affects approximately 33 million people worldwide and is characterized by progressive loss of memory at the cognitive level. The formation of toxic amyloid oligomers, extracellular amyloid plaques and amyloid angiopathy in brain by amyloid beta peptides are considered a part of the identified mechanism involved in disease pathogenesis. The optimal treatment approach leads toward finding a chemical compound able to form a noncovalent complex with the amyloid peptide thus blocking the process of amyloid aggregation. This direction gained an increasing interest lately, many studies demonstrating that mass spectrometry is a valuable method useful for the identification and characterization of such molecules able to interact with amyloid peptides. In the present review we aim to identify in the scientific literature low molecular weight chemical compounds for which there is mass spectrometric evidence of noncovalent complex formation with amyloid peptides and also there are toxicity reduction results which verify the effects of these compounds on amyloid beta toxicity towards cell cultures and transgenic mouse models developing Alzheimer's Disease.
Collapse
Affiliation(s)
- Raluca Ştefănescu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universității Street, 700115 Iaşi, Romania.
| | - Gabriela Dumitriṭa Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universității Street, 700115 Iaşi, Romania.
| | - Andrei Luca
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universității Street, 700115 Iaşi, Romania.
| | - Ioana Cezara Caba
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universității Street, 700115 Iaşi, Romania.
- Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universităṭii Street, 700115 Iaşi, Romania.
| | - Bogdan Ionel Tamba
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universității Street, 700115 Iaşi, Romania.
| | - Cosmin Teodor Mihai
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universității Street, 700115 Iaşi, Romania.
| |
Collapse
|
109
|
Nanodelivery of cerebrolysin reduces pathophysiology of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2019; 245:201-246. [DOI: 10.1016/bs.pbr.2019.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|