101
|
Wang C, Dou X, Li J, Wu J, Cheng Y, An N. Composition and Diversity of the Ocular Surface Microbiota in Patients With Blepharitis in Northwestern China. Front Med (Lausanne) 2021; 8:768849. [PMID: 34950683 PMCID: PMC8688757 DOI: 10.3389/fmed.2021.768849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose: To investigate the composition and diversity of the microbiota on the ocular surface of patients with blepharitis in northwestern China via 16S rDNA amplicon sequencing. Methods: Thirty-seven patients with blepharitis divided into groups of anterior, posterior and mixed blepharitis and twenty healthy controls from northwestern China were enrolled in the study. Samples were collected from the eyelid margin and conjunctival sac of each participant. The V3–V4 region of bacterial 16S rDNA in each sample was amplified and sequenced on the Illumina HiSeq 2500 sequencing platform, and the differences in taxonomy and diversity among different groups were compared. Results: The composition of the ocular surface microbiota of patients with blepharitis was similar to that of healthy subjects, but there were differences in the relative abundance of each bacterium. At the phylum level, the abundances of Actinobacteria, Cyanobacteria, Verrucomicrobia, Acidobacteria, Chloroflexi, and Atribacteria were significantly higher in the blepharitis group than in the healthy control group, while the relative abundance of Firmicutes was significantly lower (p < 0.05, Mann-Whitney U). At the genus level, the abundances of Lactobacillus, Ralstonia, Bacteroides, Akkermansia, Bifidobacterium, Escherichia-Shigella, Faecalibacterium, and Brevibacterium were significantly higher in the blepharitis group than in the healthy control group, while the relative abundances of Bacillus, Staphylococcus, Streptococcus, and Acinetobacter were significantly lower in the blepharitis group (p < 0.05, Mann-Whitney U). The microbiota of anterior blepharitis was similar to that of mixed blepharitis but different from that of posterior blepharitis. Lactobacillus and Bifidobacterium are biomarkers of posterior blepharitis, and Ralstonia is a biomarker of mixed blepharitis. There was no significant difference in the ocular surface microbiota between the eyelid margin and conjunctival sac with or without blepharitis. Conclusion: The ocular surface microbiota of patients with blepharitis varied among different study groups, according to 16S rDNA amplicon sequencing analysis. The reason might be due to the participants being from different environments and having different lifestyles. Lactobacillus, Bifidobacterium, Akkermansia, Ralstonia, and Bacteroides may play important roles in the pathogenesis of blepharitis.
Collapse
Affiliation(s)
- Changhao Wang
- College of Life Science, Northwest University, Xi'an, China
| | - Xiuhong Dou
- College of Life Science, Northwest University, Xi'an, China
| | - Jian Li
- College of Life Science, Northwest University, Xi'an, China
| | - Jie Wu
- Department of Ophthalmology, Xi'an No.1 Hospital, First Affiliated Hospital of Northwest University, Xi'an, China.,Shaanxi Key Laboratory of Ophthalmology, Shaanxi Provincial Clinical Research Center for Ophthalmic Diseases, Shaanxi Institute of Ophthalmology, Xi'an, China
| | - Yan Cheng
- Department of Ophthalmology, Xi'an No.1 Hospital, First Affiliated Hospital of Northwest University, Xi'an, China.,Shaanxi Key Laboratory of Ophthalmology, Shaanxi Provincial Clinical Research Center for Ophthalmic Diseases, Shaanxi Institute of Ophthalmology, Xi'an, China
| | - Na An
- Department of Ophthalmology, Xi'an No.1 Hospital, First Affiliated Hospital of Northwest University, Xi'an, China.,Shaanxi Key Laboratory of Ophthalmology, Shaanxi Provincial Clinical Research Center for Ophthalmic Diseases, Shaanxi Institute of Ophthalmology, Xi'an, China
| |
Collapse
|
102
|
Gámez-Valdez JS, García-Mazcorro JF, Montoya-Rincón AH, Rodríguez-Reyes DL, Jiménez-Blanco G, Rodríguez MTA, de Vaca RPC, Alcorta-García MR, Brunck M, Lara-Díaz VJ, Licona-Cassani C. Differential analysis of the bacterial community in colostrum samples from women with gestational diabetes mellitus and obesity. Sci Rep 2021; 11:24373. [PMID: 34934118 PMCID: PMC8692321 DOI: 10.1038/s41598-021-03779-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM) and obesity affect the functioning of multiple maternal systems and influence colonization of the newborn gastrointestinal through the breastmilk microbiota (BMM). It is currently unclear how GDM and obesity affect the human BMM composition. Here, we applied 16S-rRNA high-throughput sequencing to human colostrum milk to characterize BMM taxonomic changes in a cohort of 43 individuals classified in six subgroups according to mothers patho-physiological conditions (healthy control (n = 18), GDM (n = 13), or obesity (n = 12)) and newborn gender. Using various diversity indicators, including Shannon/Faith phylogenetic index and UniFrac/robust Aitchison distances, we evidenced that BMM composition was influenced by the infant gender in the obesity subgroup. In addition, the GDM group presented higher microbial diversity compared to the control group. Staphylococcus, Corynebacterium 1, Anaerococcus and Prevotella were overrepresented in colostrum from women with either obesity or GDM, compared to control samples. Finally, Rhodobacteraceae was distinct for GDM and 5 families (Bdellovibrionaceae, Halomonadaceae, Shewanellaceae, Saccharimonadales and Vibrionaceae) were distinct for obesity subgroups with an absolute effect size greater than 1 and a q-value ≤ 0.05. This study represents the first effort to describe the impact of maternal GDM and obesity on BMM.
Collapse
Affiliation(s)
- J S Gámez-Valdez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501 sur, Monterrey, NL, 64849, México
| | - J F García-Mazcorro
- Research and Development, MNA de México, San Nicolás de los Garza, NL, México
| | - A H Montoya-Rincón
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, México
| | - D L Rodríguez-Reyes
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, México
| | - G Jiménez-Blanco
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, México
| | - M T Alanís Rodríguez
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, México
| | - R Pérez-Cabeza de Vaca
- Coordinación de Investigación y División de Investigación Biomédica, C.M.N. "20 de Noviembre", ISSSTE, Ciudad de México, México
| | - M R Alcorta-García
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, México
- Departamento de Neonatología, Hospital Regional Materno Infantil, Servicios de Salud de Nuevo León, Guadalupe, México
| | - M Brunck
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501 sur, Monterrey, NL, 64849, México
- Division of Experimental Medicine, The Institute for Obesity Research, Tecnológico de Monterrey, Monterrey, NL, México
| | - V J Lara-Díaz
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, México
| | - C Licona-Cassani
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501 sur, Monterrey, NL, 64849, México.
- Division of Integrative Biology, The Institute for Obesity Research, Tecnológico de Monterrey, Monterrey, NL, México.
| |
Collapse
|
103
|
Lee H, Jeong J, Oh Y, Lee CJ, Mun S, Lee DG, Jo H, Heo YM, Baek C, Heo CY, Kang SM, Han K. Comparative analysis of human facial skin microbiome between topical sites compared to entire face. Genes Genomics 2021; 43:1483-1495. [PMID: 34734352 DOI: 10.1007/s13258-021-01180-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Skin is an essential outer barrier and supports the growth of commensal microorganisms that protects a host from the offense of foreign toxic organisms. With the rapid development of next-generation sequencing (NGS)-based applications, skin microbiome research for facial health care has reached industry growth, such as therapy and cosmetic product development. Despite the acceleration of skin microbiome research, experimental standardization protocol has not yet been established in the facial site and method of sampling. OBJECTIVE Thus, we aimed to investigate the differences in microbial composition at each facial site (cheek, mouth, forehead, and entire face) using comprehensive microbiome analysis. METHODS Twelve specimens from three men (four specimens per one person) were collected. The hypervariable regions (V3-V4) of the bacterial 16S rRNA gene were targeted for 16S amplicon library construction and classification of bacterial taxonomy. Skin microbial composition for all specimens was investigated, and the differences site-by-site in skin microbial composition were analyzed and evaluated by the various statistical tests. RESULTS We were able to validate the independent correlation between the skin microbiome composition and the facial sites. The cheek site showed the highest alpha-diversity in richness and evenness scores compared to the forehead and mouth. The cheek and mouth sites showed a positive correlation (R2 value > 0.93) with the entire face, while the forehead sites were negatively correlated (R2 value < 0.2). Given the relative abundance based on statistical correlation analysis, we estimated that the cheek site could be considered an optimal topical site to replace the entire face. CONCLUSION Our study suggests that skin microbiome profiling of four facial sites confirms that the cheek shows the most similar skin flora with the entire face. This study would be informative for preventing bias caused by sampling methods before researching and understanding skin cosmetics development or skin diseases.
Collapse
Affiliation(s)
- Haeun Lee
- Department of Bioconvergence Engineering, Dankook University, Jukjeon, 16890, Republic of Korea
| | - Jinuk Jeong
- Department of Bioconvergence Engineering, Dankook University, Jukjeon, 16890, Republic of Korea
| | - Yunseok Oh
- Department of Bioconvergence Engineering, Dankook University, Jukjeon, 16890, Republic of Korea
| | - Cherl-Jun Lee
- Department of Bioconvergence Engineering, Dankook University, Jukjeon, 16890, Republic of Korea
| | - Seyoung Mun
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea.,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong-Geol Lee
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam, 13486, Republic of Korea
| | - HyungWoo Jo
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam, 13486, Republic of Korea
| | - Young Mok Heo
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam, 13486, Republic of Korea
| | - Chaeyun Baek
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam, 13486, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Bundang-gu, Seongnam, 13620, Republic of Korea.,H&BIO Corporation/R&D CENTER, Bundang-gu, Seongnam, 13605, Republic of Korea
| | - So Min Kang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Bundang-gu, Seongnam, 13620, Republic of Korea.,H&BIO Corporation/R&D CENTER, Bundang-gu, Seongnam, 13605, Republic of Korea
| | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Jukjeon, 16890, Republic of Korea. .,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea. .,Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
104
|
The Antibiofilm Nanosystems for Improved Infection Inhibition of Microbes in Skin. Molecules 2021; 26:molecules26216392. [PMID: 34770799 PMCID: PMC8587837 DOI: 10.3390/molecules26216392] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Biofilm formation is an important virulence factor for the opportunistic microorganisms that elicit skin infections. The recalcitrant feature of biofilms and their antibiotic tolerance impose a great challenge on the use of conventional therapies. Most antibacterial agents have difficulty penetrating the matrix produced by a biofilm. One novel approach to address these concerns is to prevent or inhibit the formation of biofilms using nanoparticles. The advantages of using nanosystems for antibiofilm applications include high drug loading efficiency, sustained or prolonged drug release, increased drug stability, improved bioavailability, close contact with bacteria, and enhanced accumulation or targeting to biomasses. Topically applied nanoparticles can act as a strategy for enhancing antibiotic delivery into the skin. Various types of nanoparticles, including metal oxide nanoparticles, polymeric nanoparticles, liposomes, and lipid-based nanoparticles, have been employed for topical delivery to treat biofilm infections on the skin. Moreover, nanoparticles can be designed to combine with external stimuli to produce magnetic, photothermal, or photodynamic effects to ablate the biofilm matrix. This study focuses on advanced antibiofilm approaches based on nanomedicine for treating skin infections. We provide in-depth descriptions on how the nanoparticles could effectively eliminate biofilms and any pathogens inside them. We then describe cases of using nanoparticles for antibiofilm treatment of the skin. Most of the studies included in this review were supported by in vivo animal infection models. This article offers an overview of the benefits of nanosystems for treating biofilms grown on the skin.
Collapse
|
105
|
Polak K, Jobbágy A, Muszyński T, Wojciechowska K, Frątczak A, Bánvölgyi A, Bergler-Czop B, Kiss N. Microbiome Modulation as a Therapeutic Approach in Chronic Skin Diseases. Biomedicines 2021; 9:biomedicines9101436. [PMID: 34680552 PMCID: PMC8533290 DOI: 10.3390/biomedicines9101436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
There is a growing quantity of evidence on how skin and gut microbiome composition impacts the course of various dermatological diseases. The strategies involving the modulation of bacterial composition are increasingly in the focus of research attention. The aim of the present review was to analyze the literature available in PubMed (MEDLINE) and EMBASE databases on the topic of microbiome modulation in skin diseases. The effects and possible mechanisms of action of probiotics, prebiotics and synbiotics in dermatological conditions including atopic dermatitis (AD), psoriasis, chronic ulcers, seborrheic dermatitis, burns and acne were analyzed. Due to the very limited number of studies available regarding the topic of microbiome modulation in all skin diseases except for AD, the authors decided to also include case reports and original studies concerning oral administration and topical application of the pro-, pre- and synbiotics in the final analysis. The evaluated studies mostly reported significant health benefits to the patients or show promising results in animal or ex vivo studies. However, due to a limited amount of research and unambiguous results, the topic of microbiome modulation as a therapeutic approach in skin diseases still warrants further investigation.
Collapse
Affiliation(s)
- Karina Polak
- Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland; (K.P.); (K.W.)
| | - Antal Jobbágy
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
| | - Tomasz Muszyński
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Cracow, Poland;
| | - Kamila Wojciechowska
- Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland; (K.P.); (K.W.)
| | - Aleksandra Frątczak
- Chair and Department of Dermatology, Medical University of Silesia, 40-027 Katowice, Poland; (A.F.); (B.B.-C.)
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
| | - Beata Bergler-Czop
- Chair and Department of Dermatology, Medical University of Silesia, 40-027 Katowice, Poland; (A.F.); (B.B.-C.)
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
- Correspondence:
| |
Collapse
|
106
|
Mangion SE, Holmes AM, Roberts MS. Targeted Delivery of Zinc Pyrithione to Skin Epithelia. Int J Mol Sci 2021; 22:9730. [PMID: 34575891 PMCID: PMC8465279 DOI: 10.3390/ijms22189730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Zinc pyrithione (ZnPT) is an anti-fungal drug delivered as a microparticle to skin epithelia. It is one of the most widely used ingredients worldwide in medicated shampoo for treating dandruff and seborrheic dermatitis (SD), a disorder with symptoms that include skin flaking, erythema and pruritus. SD is a multi-factorial disease driven by microbiol dysbiosis, primarily involving Malassezia yeast. Anti-fungal activity of ZnPT depends on the cutaneous availability of bioactive monomeric molecular species, occurring upon particle dissolution. The success of ZnPT as a topical therapeutic is underscored by the way it balances treatment efficacy with formulation safety. This review demonstrates how ZnPT achieves this balance, by integrating the current understanding of SD pathogenesis with an up-to-date analysis of ZnPT pharmacology, therapeutics and toxicology. ZnPT has anti-fungal activity with an average in vitro minimum inhibitory concentration of 10-15 ppm against the most abundant scalp skin Malassezia species (Malassezia globosa and Malassezia restrica). Efficacy is dependent on the targeted delivery of ZnPT to the skin sites where these yeasts reside, including the scalp surface and hair follicle infundibulum. Imaging and quantitative analysis tools have been fundamental for critically evaluating the therapeutic performance and safety of topical ZnPT formulations. Toxicologic investigations have focused on understanding the risk of local and systemic adverse effects following exposure from percutaneous penetration. Future research is expected to yield further advances in ZnPT formulations for SD and also include re-purposing towards a range of other dermatologic applications, which is likely to have significant clinical impact.
Collapse
Affiliation(s)
- Sean E. Mangion
- Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; (S.E.M.); (A.M.H.)
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia
| | - Amy M. Holmes
- Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; (S.E.M.); (A.M.H.)
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Michael S. Roberts
- Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; (S.E.M.); (A.M.H.)
- Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia
- Therapeutics Research Centre, Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
107
|
Ericsson AC, Busi SB, Davis DJ, Nabli H, Eckhoff DC, Dorfmeyer RA, Turner G, Oswalt PS, Crim MJ, Bryda EC. Molecular and culture-based assessment of the microbiome in a zebrafish (Danio rerio) housing system during set-up and equilibration. Anim Microbiome 2021; 3:55. [PMID: 34353374 PMCID: PMC8340428 DOI: 10.1186/s42523-021-00116-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/27/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Zebrafish used in research settings are often housed in recirculating aquaculture systems (RAS) which rely on the system microbiome, typically enriched in a biofiltration substrate, to remove the harmful ammonia generated by fish via oxidation. Commercial RAS must be allowed to equilibrate following installation, before fish can be introduced. There is little information available regarding the bacterial community structure in commercial zebrafish housing systems, or the time-point at which the system or biofilter reaches a microbiological equilibrium in RAS in general. METHODS A zebrafish housing system was monitored at multiple different system sites including tank water in six different tanks, pre- and post-particulate filter water, the fluidized bed biofilter substrate, post-carbon filter water, and water leaving the ultra-violet (UV) disinfection unit and entering the tanks. All of these samples were collected in quadruplicate, from prior to population of the system with zebrafish through 18 weeks post-population, and analyzed using both 16S rRNA amplicon sequencing and culture using multiple agars and annotation of isolates via matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry. Sequencing data were analyzed using traditional methods, network analyses of longitudinal data, and integration of culture and sequence data. RESULTS The water microbiome, dominated by Cutibacterium and Staphylococcus spp., reached a relatively stable richness and composition by approximately three to four weeks post-population, but continued to evolve in composition throughout the study duration. The microbiomes of the fluidized bed biofilter and water leaving the UV disinfection unit were distinct from water at all other sites. Core taxa detected using molecular methods comprised 36 amplicon sequence variants, 15 of which represented Proteobacteria including multiple members of the families Burkholderiaceae and Sphingomonadaceae. Culture-based screening yielded 36 distinct isolates, and showed moderate agreement with sequencing data. CONCLUSIONS The microbiome of commercial RAS used for research zebrafish reaches a relatively stable state by four weeks post-population and would be expected to be suitable for experimental use following that time-point.
Collapse
Affiliation(s)
- Aaron C. Ericsson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO USA
- University of Missouri Metagenomics Center, Columbia, MO USA
| | - Susheel B. Busi
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Daniel J. Davis
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO USA
- Animal Modeling Core, University of Missouri, Columbia, MO USA
| | - Henda Nabli
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO USA
| | | | - Rebecca A. Dorfmeyer
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO USA
- University of Missouri Metagenomics Center, Columbia, MO USA
| | - Giedre Turner
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO USA
- University of Missouri Metagenomics Center, Columbia, MO USA
| | - Payton S. Oswalt
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO USA
| | | | - Elizabeth C. Bryda
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO USA
- Animal Modeling Core, University of Missouri, Columbia, MO USA
| |
Collapse
|
108
|
Procopio N, Lovisolo F, Sguazzi G, Ghignone S, Voyron S, Migliario M, Renò F, Sellitto F, D'Angiolella G, Tozzo P, Caenazzo L, Gino S. "Touch microbiome" as a potential tool for forensic investigation: A pilot study. J Forensic Leg Med 2021; 82:102223. [PMID: 34343925 DOI: 10.1016/j.jflm.2021.102223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Human skin hosts a variety of microbes that can be transferred to surfaces ("touch microbiome"). These microorganisms can be considered as forensic markers similarly to "touch DNA". With this pilot study, we wanted to evaluate the transferability and persistence of the "touch microbiome" on a surface after the deposition of a fingerprint and its exposure for 30 days at room temperature. Eleven volunteers were enrolled in the study. Skin microbiome samples were collected by swabbing the palm of their hands; additionally, donors were asked to touch a glass microscope slide to deposit their fingerprints, that were then swabbed. Both human and microbial DNA was isolated and quantified. Amelogenin locus and 16 human STRs were amplified, whereas the V4 region of 16 S rRNA gene was sequenced using Illumina MiSeq platform. STR profiles were successfully typed for 5 out of 22 "touch DNA" samples, while a microbiome profile was obtained for 20 out of 22 "touch microbiome" samples. Six skin core microbiome taxa were identified, as well as unique donor characterizing taxa. These unique taxa may have relevance for personal identification studies and may be useful to provide forensic intelligence information also when "touch DNA" fails. Additional future studies including greater datasets, additional time points and a greater number of surfaces may clarify the applicability of "touch microbiome" studies to real forensic contexts.
Collapse
Affiliation(s)
- Noemi Procopio
- Forensic Science Research Group, Faculty of Health and Life Sciences, Applied Sciences, Northumbria University, NE1 8ST, Newcastle Upon Tyne, UK.
| | - Flavia Lovisolo
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Giulia Sguazzi
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Stefano Ghignone
- Istituto per La Protezione Sostenibile Delle Piante - SS Torino - Consiglio Nazionale Delle Ricerche, C/o Department of Life Sciences and Systems Biology, University of Torino, V.le P.A. Mattioli 25, 10125 Turin, Italy.
| | - Samuele Voyron
- Department of Life Sciences and Systems Biology, University of Torino, V.le P.A. Mattioli 25, 10125 Turin, Italy.
| | - Mario Migliario
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Filippo Renò
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Federica Sellitto
- Forensic Science Research Group, Faculty of Health and Life Sciences, Applied Sciences, Northumbria University, NE1 8ST, Newcastle Upon Tyne, UK.
| | - Gabriella D'Angiolella
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Pamela Tozzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy.
| | - Luciana Caenazzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy.
| | - Sarah Gino
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| |
Collapse
|