101
|
Long S, Xiao Y, Zhang X. Progress in Preparation of Silk Fibroin Microspheres for Biomedical Applications. Pharm Nanotechnol 2020; 8:358-371. [PMID: 33038918 DOI: 10.2174/2211738508666201009123235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
As a natural biomaterial, silk fibroin (SF) holds great potential in biomedical applications with its broad availability, good biocompatibility, high mechanical strength, ease of fabrication, and controlled degradation. With emerging fabrication methods, nanoand microspheres made from SF have brought about unique opportunities in drug delivery, cell culture, and tissue engineering. For these applications, the size and distribution of silk fibroin particles (SFPs) are critical and require precise control during fabrication. Herein, we review common and emerging SFPs fabrication methods and their biomedical applications, and also the challenges and opportunities for SFPs in the near future. Lay Summary: The application of silk in textile has an extraordinarily long history and new biomedical applications emerged owing to the good biocompatibility and versatile fabrication options of its major protein component, silk fibroin. With the development of nanotechnology and microfabrication, silk fibroin has been fabricated into nano- or microspheres with precisely controlled shape and distribution. In this review, we summarize common and emerging silk fibroin particle fabrication methods and their biomedical applications, and also discuss their challenges and opportunities in the nearest future.
Collapse
Affiliation(s)
- Shihe Long
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yun Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
102
|
Wang HY, Wei ZG, Zhang YQ. Dissolution and regeneration of silk from silkworm Bombyx mori in ionic liquids and its application to medical biomaterials. Int J Biol Macromol 2019; 143:594-601. [PMID: 31836392 DOI: 10.1016/j.ijbiomac.2019.12.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/25/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022]
Abstract
The dissolution and regeneration of silk fibre have long been an issue for producers of silk. The high solubility of silk fibroin (SF) in ionic liquids (ILs) is a promising new avenue in silk dissolution and regeneration as it may allow for a significant reduction in operational steps required for SF regeneration and the subsequent formation of SF biomaterials. The regenerated SF solution can be prepared by dissolving directly SF in ILs without the tedious steps of degumming, dissolution and dialysis. Besides, the regenerated SF solution can simply form different SF biomaterials with the help of coagulant, and ILs can be separated from SF biomaterials easily during SF solidification. The goal of this work is to summarize the commonly used ILs for dissolving silk protein and their dissolution methods and to present the potential application of SF/ILs mixed solution in medical biomaterials.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, China
| | - Zheng-Guo Wei
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, China.
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, China.
| |
Collapse
|
103
|
Carissimi G, Lozano-Pérez AA, Montalbán MG, Aznar-Cervantes SD, Cenis JL, Víllora G. Revealing the Influence of the Degumming Process in the Properties of Silk Fibroin Nanoparticles. Polymers (Basel) 2019; 11:E2045. [PMID: 31835438 PMCID: PMC6960545 DOI: 10.3390/polym11122045] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 11/16/2022] Open
Abstract
Several studies have stated that the process used for sericin removal, or degumming, from silk cocoons has a strong impact in the silk fibroin integrity and consequently in their mechanical or biochemical properties after processing it into several biomaterials (e.g. fibers, films or scaffolds) but still, there is a lack of information of the impact on the features of silk nanoparticles. In this work, silk cocoons were degummed following four standard methods: autoclaving, short alkaline (Na2CO3) boiling, long alkaline (Na2CO3) boiling and ultrasounds. The resultant silk fibroin fibers were dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate and used for nanoparticle synthesis by rapid desolvation in polar organic solvents. The relative efficiencies of the degumming processes and the integrity of the resulting fibroin fibers obtained were analyzed by mass loss, optical microscopy, thermogravimetric analysis, infrared spectroscopy and SDS-PAGE. Particle sizes and morphology were analyzed by Dynamic Light Scattering and Field Emission Scanning Electronic Microscopy. The results showed that the different treatments had a remarkable impact on the integrity of the silk fibroin chains, as confirmed by gel electrophoresis, which can be correlated with particle mean size and size distribution changes. The smallest nanoparticles (156 ± 3 nm) and the most negative Z potential (-30.2 ± 1.8 mV) were obtained with the combination of long treatment (2 h) of boiling in alkaline solution (Na2CO3 0.02 eq/L). The study confirms that parameters of the process, such as composition of the solution and time of the degumming step, must be controlled in order to reach an optimum reproducibility of the nanoparticle production.
Collapse
Affiliation(s)
- Guzmán Carissimi
- Department of Chemical Engineering, Faculty of Chemistry, University of Murcia (UMU), Campus de Espinardo, 30100 Murcia, Spain;
| | - A. Abel Lozano-Pérez
- Department of Biotechnology, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, 30150 Murcia, Spain; (A.A.L.-P.); (S.D.A.-C.); (J.L.C.)
| | - Mercedes G. Montalbán
- Department of Chemical Engineering, University of Alicante, Apartado 99, 03080 Alicante, Spain;
| | - Salvador D. Aznar-Cervantes
- Department of Biotechnology, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, 30150 Murcia, Spain; (A.A.L.-P.); (S.D.A.-C.); (J.L.C.)
| | - José Luis Cenis
- Department of Biotechnology, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, 30150 Murcia, Spain; (A.A.L.-P.); (S.D.A.-C.); (J.L.C.)
| | - Gloria Víllora
- Department of Chemical Engineering, Faculty of Chemistry, University of Murcia (UMU), Campus de Espinardo, 30100 Murcia, Spain;
| |
Collapse
|
104
|
Nguyen TP, Nguyen QV, Nguyen VH, Le TH, Huynh VQN, Vo DVN, Trinh QT, Kim SY, Le QV. Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review. Polymers (Basel) 2019; 11:E1933. [PMID: 31771251 PMCID: PMC6960760 DOI: 10.3390/polym11121933] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/29/2022] Open
Abstract
Since it was first discovered, thousands of years ago, silkworm silk has been known to be an abundant biopolymer with a vast range of attractive properties. The utilization of silk fibroin (SF), the main protein of silkworm silk, has not been limited to the textile industry but has been further extended to various high-tech application areas, including biomaterials for drug delivery systems and tissue engineering. The outstanding mechanical properties of SF, including its facile processability, superior biocompatibility, controllable biodegradation, and versatile functionalization have allowed its use for innovative applications. In this review, we describe the structure, composition, general properties, and structure-properties relationship of SF. In addition, the methods used for the fabrication and modification of various materials are briefly addressed. Lastly, recent applications of SF-based materials for small molecule drug delivery, biological drug delivery, gene therapy, wound healing, and bone regeneration are reviewed and our perspectives on future development of these favorable materials are also shared.
Collapse
Affiliation(s)
- Thang Phan Nguyen
- Laboratory of Advanced Materials Chemistry, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Quang Vinh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
| | - Van-Huy Nguyen
- Key Laboratory of Advanced Materials for Energy and Environmental Applications, Lac Hong University, Bien Hoa 810000, Vietnam;
| | - Thu-Ha Le
- Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University–Ho Chi Minh City (VNU–HCM), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Vietnam;
| | - Vu Quynh Nga Huynh
- The Faculty of Pharmacy, Duy Tan University, 03 Quang Trung, Danang 550000, Vietnam;
| | - Dai-Viet N. Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam;
| | - Quang Thang Trinh
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore;
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
| |
Collapse
|
105
|
Lushchak O, Strilbytska O, Koliada A, Zayachkivska A, Burdyliuk N, Yurkevych I, Storey KB, Vaiserman A. Nanodelivery of phytobioactive compounds for treating aging-associated disorders. GeroScience 2019; 42:117-139. [PMID: 31686375 DOI: 10.1007/s11357-019-00116-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
Aging population presents a major challenge for many countries in the world and has made the development of efficient means for healthspan extension a priority task for researchers and clinicians worldwide. Anti-aging properties including antioxidant, anti-inflammatory, anti-tumor, and cardioprotective activities have been reported for various phytobioactive compounds (PBCs) including resveratrol, quercetin, curcumin, catechin, etc. However, the therapeutic potential of orally administered PBCs is limited by their poor stability, bioavailability, and solubility in the gastrointestinal tract. Recently, innovative nanotechnology-based approaches have been developed to improve the bioactivity of PBCs and enhance their potential in preventing and/or treating age-associated disorders, primarily those caused by aging-related chronic inflammation. PBC-loaded nanoparticles designed for oral administration provide many benefits over conventional formulations, including enhanced stability and solubility, prolonged half-life, improved epithelium permeability and bioavailability, enhanced tissue targeting, and minimized side effects. The present review summarizes recent advances in this rapidly developing research area.
Collapse
Affiliation(s)
- Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine.
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Alexander Koliada
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv, 04114, Ukraine
| | - Alina Zayachkivska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Nadia Burdyliuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Ihor Yurkevych
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv, 04114, Ukraine.
| |
Collapse
|
106
|
Can the venerated silk be the next-generation nanobiomaterial for biomedical-device designing, regenerative medicine and drug delivery? Prospects and hitches. Biodes Manuf 2019. [DOI: 10.1007/s42242-019-00052-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
107
|
Kargozar S, Baino F, Hoseini SJ, Verdi J, Asadpour S, Mozafari M. Curcumin: footprints on cardiac tissue engineering. Expert Opin Biol Ther 2019; 19:1199-1205. [DOI: 10.1080/14712598.2019.1650912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Francesco Baino
- Applied Science and Technology Department, Institute of Materials Physics and Engineering, Torino, Italy
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Verdi
- Tissue Engineering & Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Masoud Mozafari
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
108
|
Cockle Shell-Derived Calcium Carbonate (Aragonite) Nanoparticles: A Dynamite to Nanomedicine. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9142897] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cockle shell is an external covering of small, salt water edible clams (Anadara granosa) that dwells in coastal area. This abundant biomaterial is hard, cheap and readily available with high content of calcium carbonate in aragonite polymorphic form. At present, cockle shell-derived calcium carbonate nanoparticles (CSCaCO3NPs) with dual applications has remarkably drawn significant attention of researchers in nanotechnology as a nanocarrier for delivery of different categories of drugs and as bone scaffold due to its beneficial potentials such as biocompatibility, osteoconductivity, pH sensitivity, slow biodegradation, hydrophilic nature and a wide safety margin. In addition, CSCaCO3NP possesses structural porosity, a large surface area and functional group endings for electrostatic ion bonds with high loading capacity. Thus, it maintains great potential in the drug delivery system and a large number of biomedical utilisations. The pioneering researchers adopted a non-hazardous top-down method for the synthesis of CSCaCO3NP with subsequent improvements that led to the better spherical diameter size obtained recently which is suitable for drug delivery. The method is therefore a simple, low cost and environmentally friendly, which involves little procedural steps without stringent temperature management and expensive hazardous chemicals or any carbonation methods. This paper presents a review on a few different types of nanoparticles with emphasis on the versatile most recent advancements and achievements on the synthesis and developments of CSCaCO3NP aragonite with its applications as a nanocarrier for drug delivery in nanomedicine.
Collapse
|
109
|
Yavuz B, Chambre L, Kaplan DL. Extended release formulations using silk proteins for controlled delivery of therapeutics. Expert Opin Drug Deliv 2019; 16:741-756. [PMID: 31220955 PMCID: PMC6642005 DOI: 10.1080/17425247.2019.1635116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/19/2019] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Silk is a promising biomaterial for controlled delivery of therapeutics and has a unique protein chemistry that can be tuned to form different carrier formats. The protein has been studied for sustained release depot systems for the targeted or localized delivery of drugs. AREAS COVERED An overview of natural silk proteins for controlled delivery of therapeutics is provided, with a focus on the features of silk proteins that allow them to be useful tools for controlled delivery. Recent applications of natural silk proteins as controlled delivery systems are also summarized. EXPERT OPINION The versatility of silk proteins makes them desirable biomaterials for a broad range of applications for controlled delivery of both small and large molecules. Further, the degradation profile leading to peptides and amino acids provides compatibility with pH-sensitive therapeutics. While silk sericin and spider silks are under study, silk fibroin extracted from silkworms (e.g. Bombyx mori) dominates pharmaceutical studies with silk. Silk fibroin can be formed into drug delivery tools for systemic or local injections, topical and transdermal applications, and implantation; depending on the target disease and therapeutic molecule. In vitro to in vivo correlations and scale-up needs are the next steps towards clinical applications.
Collapse
Affiliation(s)
- Burcin Yavuz
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, MA 02155, USA
| | - Laura Chambre
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
110
|
Hasan M, Elkhoury K, Kahn CJF, Arab-Tehrany E, Linder M. Preparation, Characterization, and Release Kinetics of Chitosan-Coated Nanoliposomes Encapsulating Curcumin in Simulated Environments. Molecules 2019; 24:E2023. [PMID: 31137865 PMCID: PMC6572090 DOI: 10.3390/molecules24102023] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022] Open
Abstract
Curcumin, a natural polyphenol, has many biological properties, such as anti-inflammatory, antioxidant, and anti-carcinogenic properties, yet, its sensitivity to light, oxygen, and heat, and its low solubility in water renders its preservation and bioavailability challenging. To increase its bioaccessibility, we fabricated nanoliposomes and chitosan-coated nanoliposomes encapsulating curcumin, and we evaluated the systems in terms of their physicochemical characteristics and release profiles in simulated gastrointestinal mediums. Chitosan-coating enhanced the stability of nanoliposomes and slowed the release of curcumin in the simulated gastrointestinal (GI) environment. This study demonstrates that nanoliposomes and chitosan-coated nanoliposomes are promising carriers for poorly soluble lipophilic compounds with low oral bioavailability, such as curcumin.
Collapse
Affiliation(s)
- Mahmoud Hasan
- Laboratoire D'ingénierie des Biomolécules, Université de Lorraine, EA 4367, France.
| | - Kamil Elkhoury
- Laboratoire D'ingénierie des Biomolécules, Université de Lorraine, EA 4367, France.
| | - Cyril J F Kahn
- Laboratoire D'ingénierie des Biomolécules, Université de Lorraine, EA 4367, France.
| | - Elmira Arab-Tehrany
- Laboratoire D'ingénierie des Biomolécules, Université de Lorraine, EA 4367, France.
| | - Michel Linder
- Laboratoire D'ingénierie des Biomolécules, Université de Lorraine, EA 4367, France.
| |
Collapse
|
111
|
Crivelli B, Bari E, Perteghella S, Catenacci L, Sorrenti M, Mocchi M, Faragò S, Tripodo G, Prina-Mello A, Torre ML. Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an in vitro model of osteoarthritis. Eur J Pharm Biopharm 2019; 137:37-45. [DOI: 10.1016/j.ejpb.2019.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/22/2018] [Accepted: 02/14/2019] [Indexed: 01/08/2023]
|
112
|
Wróblewska-Krepsztul J, Rydzkowski T, Michalska-Pożoga I, Thakur VK. Biopolymers for Biomedical and Pharmaceutical Applications: Recent Advances and Overview of Alginate Electrospinning. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E404. [PMID: 30857370 PMCID: PMC6473949 DOI: 10.3390/nano9030404] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/19/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Innovative solutions using biopolymer-based materials made of several constituents seems to be particularly attractive for packaging in biomedical and pharmaceutical applications. In this direction, some progress has been made in extending use of the electrospinning process towards fiber formation based on biopolymers and organic compounds for the preparation of novel packaging materials. Electrospinning can be used to create nanofiber mats characterized by high purity of the material, which can be used to create active and modern biomedical and pharmaceutical packaging. Intelligent medical and biomedical packaging with the use of polymers is a broadly and rapidly growing field of interest for industries and academia. Among various polymers, alginate has found many applications in the food sector, biomedicine, and packaging. For example, in drug delivery systems, a mesh made of nanofibres produced by the electrospinning method is highly desired. Electrospinning for biomedicine is based on the use of biopolymers and natural substances, along with the combination of drugs (such as naproxen, sulfikoxazol) and essential oils with antibacterial properties (such as tocopherol, eugenol). This is a striking method due to the ability of producing nanoscale materials and structures of exceptional quality, allowing the substances to be encapsulated and the drugs/ biologically active substances placed on polymer nanofibers. So, in this article we briefly summarize the recent advances on electrospinning of biopolymers with particular emphasis on usage of Alginate for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Jolanta Wróblewska-Krepsztul
- Department of Mechanical Engineering, Koszalin University of Technology, Raclawicka 15-17, Koszalin 75-620, Poland.
| | - Tomasz Rydzkowski
- Department of Mechanical Engineering, Koszalin University of Technology, Raclawicka 15-17, Koszalin 75-620, Poland.
| | - Iwona Michalska-Pożoga
- Department of Mechanical Engineering, Koszalin University of Technology, Raclawicka 15-17, Koszalin 75-620, Poland.
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire, MK43 0AL, UK.
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh, 201314, India.
| |
Collapse
|
113
|
Wongpinyochit T, Totten JD, Johnston BF, Seib FP. Microfluidic-assisted silk nanoparticle tuning. NANOSCALE ADVANCES 2019; 1:873-883. [PMID: 36132231 PMCID: PMC9473249 DOI: 10.1039/c8na00208h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/09/2018] [Indexed: 05/13/2023]
Abstract
Silk is now making inroads into advanced pharmaceutical and biomedical applications. Both bottom-up and top-down approaches can be applied to silk and the resulting aqueous silk solution can be processed into a range of material formats, including nanoparticles. Here, we demonstrate the potential of microfluidics for the continuous production of silk nanoparticles with tuned particle characteristics. Our microfluidic-based design ensured efficient mixing of different solvent phases at the nanoliter scale, in addition to controlling the solvent ratio and flow rates. The total flow rate and aqueous : solvent ratios were important parameters affecting yield (1 mL min-1 > 12 mL min-1). The ratios also affected size and stability; a solvent : aqueous total flow ratio of 5 : 1 efficiently generated spherical nanoparticles 110 and 215 nm in size that were stable in water and had a high beta-sheet content. These 110 and 215 nm silk nanoparticles were not cytotoxic (IC50 > 100 μg mL-1) but showed size-dependent cellular trafficking. Overall, microfluidic-assisted silk nanoparticle manufacture is a promising platform that allows control of the silk nanoparticle properties by manipulation of the processing variables.
Collapse
Affiliation(s)
- Thidarat Wongpinyochit
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - John D Totten
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Blair F Johnston
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden Hohe Strasse 6 01069 Dresden Germany
| |
Collapse
|
114
|
Tan M, Liu W, Liu F, Zhang W, Gao H, Cheng J, Chen Y, Wang Z, Cao Y, Ran H. Silk Fibroin-Coated Nanoagents for Acidic Lysosome Targeting by a Functional Preservation Strategy in Cancer Chemotherapy. Theranostics 2019; 9:961-973. [PMID: 30867809 PMCID: PMC6401409 DOI: 10.7150/thno.30765] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/07/2019] [Indexed: 01/07/2023] Open
Abstract
Background: Premature drug leakage and inefficient cellular uptake are stand out as considerable hurdles for low drug delivery efficiency in tumor chemotherapy. Thus, we established a novel drug delivery and transportation strategy mediated by biocompatible silk fibroin (SF)-coated nanoparticles to overcome these therapeutic hurdles. Methods: we first synthesised a TME-responsive biocompatible nanoplatform constructed of amorphous calcium carbonate (ACC) cores and SF shells for enhanced chemotherapy by concurrently inhibiting premature drug release, achieving lysosome-targeted explosion and locally sprayed DOX, and monitoring via PAI, which was verified both in vitro and in vivo. Results: The natural SF polymer first served as a "gatekeeper" to inhibit a drug from prematurely leaking into the circulation was demonstrated both in vitro and in vivo. Upon encountering TMEs and targeting to the acidic pH environments of lysosomes, the sensitive ACC nanoparticles were gradually degraded, eventually generating a large amount of Ca2+ and CO2, resulting in lysosomal collapse, thus preventing both the efflux of DOX from cancer cells and the protonation of DOX within the lysosome, releasing multiple hydrolytic enzyme to cytoplasm, exhibiting the optimal therapeutic dose and remarkable synergetic therapeutic performance. In particular, CO2 gas generated by the pH response of ACC nanocarriers demonstrated their imaging capability for PAI, providing the potential for quantifying and guiding drug release in targets. Conclusion: In this work, we constructed TME-responsive biocompatible NPs by coating DOX-preloaded ACC-DOX clusters with SF via a bioinspired mineralization method for efficient therapeutics. This functional lysosome-targeted preservation-strategy-based therapeutic system could provid novel insights into cancer chemotherapy.
Collapse
Affiliation(s)
- Mixiao Tan
- The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Weiwei Liu
- The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Fengqiu Liu
- The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Wei Zhang
- The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Hui Gao
- The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Juan Cheng
- The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Yu Chen
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Zhigang Wang
- The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Yang Cao
- The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Haitao Ran
- The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| |
Collapse
|
115
|
Kamalabadi-Farahani M, Vasei M, Ahmadbeigi N, Ebrahimi-Barough S, Soleimani M, Roozafzoon R. Anti-tumour effects of TRAIL-expressing human placental derived mesenchymal stem cells with curcumin-loaded chitosan nanoparticles in a mice model of triple negative breast cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S1011-S1021. [DOI: 10.1080/21691401.2018.1527345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mohammad Kamalabadi-Farahani
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Vasei
- Department of Pathology, Molecular and Cell Biology Laboratory, Shariati Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Naser Ahmadbeigi
- Cell Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Tarbiat Modares University, Tehran, Iran
| | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
116
|
Kamalabadi-Farahani M, Vasei M, Ahmadbeigi N, Ebrahimi-Barough S, Soleimani M, Roozafzoon R. Anti-tumour effects of TRAIL-expressing human placental derived mesenchymal stem cells with curcumin-loaded chitosan nanoparticles in a mice model of triple negative breast cancer. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2018. [DOI: https://doi.org/10.1080/21691401.2018.1527345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mohammad Kamalabadi-Farahani
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Vasei
- Department of Pathology, Molecular and Cell Biology Laboratory, Shariati Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Naser Ahmadbeigi
- Cell Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Tarbiat Modares University, Tehran, Iran
| | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
117
|
Hawker MJ, Guo C, Omenetto FG, Kaplan DL. Solvent-Free Strategy To Encapsulate Degradable, Implantable Metals in Silk Fibroin. ACS APPLIED BIO MATERIALS 2018; 1:1677-1686. [PMID: 34996217 PMCID: PMC11047755 DOI: 10.1021/acsabm.8b00498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Implantable electronics hold enormous clinical potential for diagnosis and treatment of neurodegenerative and cardiac diseases and abnormalities. Transient devices are attractive alternatives to conventional silicon electrodes, as they can provide short-term electrical stimulation/recording followed by complete device degradation, mitigating the need for removal surgeries. Packaging transient metals is inherently challenging as they degrade upon contact with aqueous conditions. Development of new transient metal packaging strategies is a critical step toward transient device development. In this fundamental work, a solvent-free compression molding approach to encapsulate magnesium, a resorbable metal, in silk fibroin protein is reported. Silk fibroin was selected because of its processing versatility, desirable mechanical properties, compatibility with biological environments, and controllable degradation behavior in aqueous environments. The silk/magnesium composites were fabricated via compression molding, followed by water annealing to modify the secondary structure of the silk protein matrix to tune physical properties. Transient composite properties as a function of water annealing time are presented, which elucidate synergies between silk physical properties and degradation kinetics of the encapsulated magnesium, information useful in the design of multifunctional, transient metal-based constructs.
Collapse
Affiliation(s)
- Morgan J Hawker
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
118
|
Song W, Su X, Gregory DA, Li W, Cai Z, Zhao X. Magnetic Alginate/Chitosan Nanoparticles for Targeted Delivery of Curcumin into Human Breast Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E907. [PMID: 30400634 PMCID: PMC6267575 DOI: 10.3390/nano8110907] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 01/09/2023]
Abstract
Curcumin is a promising anti-cancer drug, but its applications in cancer therapy are limited, due to its poor solubility, short half-life and low bioavailability. In this study, curcumin loaded magnetic alginate/chitosan nanoparticles were fabricated to improve the bioavailability, uptake efficiency and cytotoxicity of curcumin to Human Caucasian Breast Adenocarcinoma cells (MDA-MB-231). Alginate and chitosan were deposited on Fe₃O₄ magnetic nanoparticles based on their electrostatic properties. The nanoparticle size ranged from 120⁻200 nm, within the optimum range for drug delivery. Controllable and sustained release of curcumin was obtained by altering the number of chitosan and alginate layers on the nanoparticles. Confocal fluorescence microscopy results showed that targeted delivery of curcumin with the aid of a magnetic field was achieved. The fluorescence-activated cell sorting (FACS) assay indicated that MDA-MB-231 cells treated with curcumin loaded nanoparticles had a 3⁻6 fold uptake efficiency to those treated with free curcumin. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay indicated that the curcumin loaded nanoparticles exhibited significantly higher cytotoxicity towards MDA-MB-231 cells than HDF cells. The sustained release profiles, enhanced uptake efficiency and cytotoxicity to cancer cells, as well as directed targeting make MACPs promising candidates for cancer therapy.
Collapse
Affiliation(s)
- Wenxing Song
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China.
| | - Xing Su
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| | - David Alexander Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| | - Wei Li
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S3 7HQ, UK.
| | - Zhiqiang Cai
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China.
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
119
|
Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein Nanoparticles: Promising Platforms for Drug Delivery Applications. ACS Biomater Sci Eng 2018; 4:3939-3961. [DOI: 10.1021/acsbiomaterials.8b01098] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Annish Jain
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Sumit K. Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Shailendra K. Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Subhas C. Kundu
- 3B’s Research Group, I3Bs − Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Sonia Kapoor
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201 313, Uttar Pradesh, India
| |
Collapse
|
120
|
Ernest U, Chen HY, Xu MJ, Taghipour YD, Asad MHHB, Rahimi R, Murtaza G. Anti-Cancerous Potential of Polyphenol-Loaded Polymeric Nanotherapeutics. Molecules 2018; 23:molecules23112787. [PMID: 30373235 PMCID: PMC6278361 DOI: 10.3390/molecules23112787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/04/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022] Open
Abstract
Recent evidence has extensively demonstrated the anticancer potential of nutraceuticals, including plant polyphenols. Polymeric nanocarrier systems have played an important role in improving the physicochemical and pharmacological properties of polyphenols, thus ameliorating their therapeutic effectiveness. This article summarizes the benefits and shortcomings of various polymeric systems developed for the delivery of polyphenols in cancer therapy and reveals some ideas for future work.
Collapse
Affiliation(s)
- Umeorah Ernest
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Hai-Yan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Ming-Jun Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 1416663547, Iran.
| | | | - Roja Rahimi
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 5165665931, Iran.
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus 54600, Pakistan.
| |
Collapse
|
121
|
Wu J, Wang J, Zhang J, Zheng Z, Kaplan DL, Li G, Wang X. Oral Delivery of Curcumin Using Silk Nano- and Microparticles. ACS Biomater Sci Eng 2018; 4:3885-3894. [DOI: 10.1021/acsbiomaterials.8b00454] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianbing Wu
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China 215123
| | - Jing Wang
- Laboratory Animal Center, Soochow University, Suzhou, China 215123
| | - Jue Zhang
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China 215123
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China 215123
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Gang Li
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China 215123
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China 215123
| |
Collapse
|
122
|
Fang Y, Xu L, Wang M. High-Throughput Preparation of Silk Fibroin Nanofibers by Modified Bubble-Electrospinning. NANOMATERIALS 2018; 8:nano8070471. [PMID: 29954106 PMCID: PMC6070844 DOI: 10.3390/nano8070471] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 11/23/2022]
Abstract
As a kind of natural macromolecular protein molecule extracted from silk, silk fibroin (SF) has been widely used as biological materials in recent years due to its good physical and chemical properties. In this paper, a modified bubble-electrospinning (MBE) using a cone-shaped gas nozzle combined with a copper solution reservoir was applied to obtain high-throughput fabrication of SF nanofibers. In the MBE process, sodium dodecyl benzene sulfonates (SDBS) were used as the surfactant to improve the spinnability of SF solution. The rheological properties and conductivity of the electrospun SF solutions were investigated. And the effects of gas flow volume, SF solution concentration and additive amounts of SDBS on the morphology, property and production of SF nanofibers were studied. The results showed the decrease of gas flow volume could decrease the nanofiber diameter, enhance the diameter distribution, and increase the production of nanofibers. And the maximum yield could reach 3.10 g/h at the SF concentration of 10 wt % and the SDBS concentration of 0.1 wt %.
Collapse
Affiliation(s)
- Yue Fang
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China.
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China.
| | - Mingdi Wang
- School of Mechanical and Electric Engineering, Soochow University, 178 Ganjiang Road, Suzhou 215021, China.
| |
Collapse
|
123
|
Inostroza-Riquelme M, Vivanco A, Lara P, Guerrero S, Salas-Huenuleo E, Chamorro A, Leyton L, Bolaños K, Araya E, Quest AFG, Kogan MJ, Oyarzun-Ampuero F. Encapsulation of Gold Nanostructures and Oil-in-Water Nanocarriers in Microgels with Biomedical Potential. Molecules 2018; 23:E1208. [PMID: 29783629 PMCID: PMC6099665 DOI: 10.3390/molecules23051208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Here we report the incorporation of gold nanostructures (nanospheres or nanorods, functionalized with carboxylate-end PEG) and curcumin oil-in-water (O/W) nanoemulsions (CurNem) into alginate microgels using the dripping technique. While gold nanostructures are promising nanomaterials for photothermal therapy applications, CurNem possess important pharmacological activities as reported here. In this sense, we evaluated the effect of CurNem on cell viability of both cancerous and non-cancerous cell lines (AGS and HEK293T, respectively), demonstrating preferential toxicity in cancer cells and safety for the non-cancerous cells. After incorporating gold nanostructures and CurNem together into the microgels, microstructures with diameters of 220 and 540 µm were obtained. When stimulating microgels with a laser, the plasmon effect promoted a significant rise in the temperature of the medium; the temperature increase was higher for those containing gold nanorods (11⁻12 °C) than nanospheres (1⁻2 °C). Interestingly, the incorporation of both nanosystems in the microgels maintains the photothermal properties of the gold nanostructures unmodified and retains with high efficiency the curcumin nanocarriers. We conclude that these results will be of interest to design hydrogel formulations with therapeutic applications.
Collapse
Affiliation(s)
- Mariela Inostroza-Riquelme
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| | - Andrea Vivanco
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| | - Pablo Lara
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| | - Simón Guerrero
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
| | - Edison Salas-Huenuleo
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| | - Alejandro Chamorro
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
| | - Lisette Leyton
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
| | - Karen Bolaños
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago 8370251, Chile.
| | - Eyleen Araya
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago 8370251, Chile.
| | - Andrew F G Quest
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile.
| | - Marcelo J Kogan
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| | - Felipe Oyarzun-Ampuero
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| |
Collapse
|
124
|
Sundar Dhilip Kumar S, Houreld NN, Abrahamse H. Therapeutic Potential and Recent Advances of Curcumin in the Treatment of Aging-Associated Diseases. Molecules 2018; 23:molecules23040835. [PMID: 29621160 PMCID: PMC6017430 DOI: 10.3390/molecules23040835] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 02/01/2023] Open
Abstract
Curcumin, a low molecular weight, lipophilic, major yellow natural polyphenolic, and the most well-known plant-derived compound, is extracted from the rhizomes of the turmeric (Curcuma longa) plant. Curcumin has been demonstrated as an effective therapeutic agent in traditional medicine for the treatment and prevention of different diseases. It has also shown a wide range of biological and pharmacological effects in drug delivery, and has actively been used for the treatment of aging-associated diseases, including cardiovascular diseases, atherosclerosis, neurodegenerative diseases, cancer, rheumatoid arthritis, ocular diseases, osteoporosis, diabetes, hypertension, chronic kidney diseases, chronic inflammation and infection. The functional application and therapeutic potential of curcumin in the treatment of aging-associated diseases is well documented in the literature. This review article focuses mainly on the potential role of plant-derived natural compounds such as curcumin, their mechanism of action and recent advances in the treatment of aging-associated diseases. Moreover, the review briefly recaps on the recent progress made in the preparation of nanocurcumins and their therapeutic potential in clinical research for the treatment of aging-associated diseases.
Collapse
Affiliation(s)
- Sathish Sundar Dhilip Kumar
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg-2028, South Africa.
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg-2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg-2028, South Africa.
| |
Collapse
|