101
|
Gujjarappa R, Vodnala N, Garg A, Hazra CK, Gupta S, Malakar CC. Amino‐Acid‐Mediated Aerobic Oxidation of Organoborons for the Synthesis of Phenolic Derivatives Using Single Electron Transfer. ChemistrySelect 2020. [DOI: 10.1002/slct.201904059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur Langol, Imphal 795004, Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur Langol, Imphal 795004, Manipur India
| | - Aakriti Garg
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054 India
| | - Chinmoy K. Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India
| | - Sreya Gupta
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054 India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Langol, Imphal 795004, Manipur India
| |
Collapse
|
102
|
Pujols J, Peña-Díaz S, Pallarès I, Ventura S. Chemical Chaperones as Novel Drugs for Parkinson's Disease. Trends Mol Med 2020; 26:408-421. [PMID: 32277934 DOI: 10.1016/j.molmed.2020.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/19/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive loss of dopaminergic neurons and the accumulation of deposits of α-synuclein (α-syn) in the brain. The pivotal role of α-syn aggregation in PD makes it an attractive target for potential disease-modifying therapies. However, the disordered nature of the protein, its multistep aggregation mechanism, and the lack of structural information on intermediate species complicate the discovery of modulators of α-syn amyloid deposition. Despite these difficulties, small molecules have been shown to block the misfolding and aggregation of α-syn, and can even disentangle mature α-syn amyloid fibrils. In this review we provide an updated overview of these leading small compounds and discuss how these chemical chaperones hold great promise to alter the course of PD progression.
Collapse
Affiliation(s)
- Jordi Pujols
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
103
|
Schaeffer E, Postuma RB, Berg D. Prodromal PD: A new nosological entity. PROGRESS IN BRAIN RESEARCH 2020; 252:331-356. [PMID: 32247370 DOI: 10.1016/bs.pbr.2020.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Recent years have brought a rapid growth in knowledge of the prodromal phase of Parkinson's disease (PD). It is now clear that the clinical phase of PD is preceded by a phase of progressing neurodegeneration lasting many years. This involves not only central nervous system structures outside the substantia nigra and neurotransmitter systems other than the dopaminergic system, but also the peripheral nervous systems. Different ways of alpha-synuclein spreading are presumed, corresponding to typical prodromal non-motor symptoms like constipation, REM sleep behavior disorder (RBD) and hyposmia. Moreover, many risk and prodromal markers have been identified and combined in the prodromal research criteria, which can be used to calculate an individual's probability of being in the prodromal phase of PD. Apart from specific genetic risk markers, including most importantly GBA- and LRRK2 mutations, RBD is currently the most important prodromal marker, predicting PD with a very high likelihood. This makes individuals with RBD a promising cohort for future clinical trials to detect and treat PD in its prodromal phase. New markers, especially those derived from tissue biopsies, quantitative motor assessment and imaging, appear very promising; these are paving the way for a better understanding of the prodromal phase and its potential clinicopathological subtypes, and a more precise probability calculation.
Collapse
Affiliation(s)
- Eva Schaeffer
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | - Ronald B Postuma
- Department of Neurology, Montreal General Hospital, Montreal, QC, Canada
| | - Daniela Berg
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
104
|
Lama A, Pirozzi C, Avagliano C, Annunziata C, Mollica MP, Calignano A, Meli R, Mattace Raso G. Nutraceuticals: An integrative approach to starve Parkinson's disease. Brain Behav Immun Health 2020; 2:100037. [PMID: 34589828 PMCID: PMC8474522 DOI: 10.1016/j.bbih.2020.100037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 01/15/2023] Open
Abstract
The therapeutic approach of multifactorial complex diseases is always a challenge; Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder triggered by genetic and environmental factors, contributing to its etiology. Indeed, several pathogenic mechanisms lead to selective dopaminergic neuronal injury, including oxidative stress, mitochondrial dysfunction, alteration of endoplasmic reticulum-to-Golgi protein trafficking, excitotoxicity, and neuroinflammation. Current treatment approaches include mainly dopamine replacement therapy or optimizing dopaminergic transmission; however, these strategies that do not counteract the pathogenic mechanisms underlying PD symptoms and often are less effective over time. Recently, there has been growing interest in the therapeutic use of nutraceuticals, that could represent an integrative approach to the pharmacological standard therapy and specifically affect one or more pathogenic pathways. The intake of nutraceuticals or nutritional modifications are generally safe and can be combined with current common drug therapy in most cases to improve the patient's quality of life and/or mitigate PD symptoms. The current review focuses on several key nutritional compounds and dietary modifications that are effective on several pathogenic pathways involved in PD onset and progression, and further highlights the rationale behind their potential use for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Adriano Lama
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Chiara Annunziata
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Maria Pina Mollica
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Department of Biology, University of Naples Federico II, Cupa Nuova Cinthia 21-Edificio 7, 80126, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Giuseppina Mattace Raso
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
105
|
Rai SN, Singh P. Advancement in the modelling and therapeutics of Parkinson's disease. J Chem Neuroanat 2020; 104:101752. [PMID: 31996329 DOI: 10.1016/j.jchemneu.2020.101752] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Since the discovery of L-dopa in the middle of the 20th century (1960s), there is not any neuroprotective therapy available although significant development has been made in the treatment of symptomatic Parkinson's disease (PD). Neurological disorders like PD can be modelled in animals so as to recapitulates most of the symptoms seen in PD patients. In aging population, PD is the second most common neurodegenerative disease after Alzheimer's disease, even though significant outcomes have been achieved in PD research yet it still is a mystery to solve the treatments for PD. In the last two decades, PD models have provided enhanced precision into the understanding of the process of PD disease, its etiology, pathology, and molecular mechanisms behind it. Furthermore, at the same time as cellular models have helped to recognize specific events, animal models, both toxic and genetic, have replicated almost all of the hallmarks of PD and are very helpful for testing and finding new strategies for neuroprotection. Recently, in both classical and newer models, major advances have been done in the modelling of supplementary PD features have come into the light. In this review, we have try to provide an updated summary of the characteristics of these models related to in vitro and in vivo models, animal models for PD, stem cell model for PD, newer 3D model as well as the strengths and limitations of these most popular PD models.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Department of Zoology, Mahila Maha Vidhyalaya, Institute of Science, Banaras Hindu University, Varanasi, India.
| | - Payal Singh
- Department of Zoology, Mahila Maha Vidhyalaya, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
106
|
Gao Y, Ma L, Han T, Wang M, Zhang D, Wang Y. Protective role of protocatechuic acid in sevoflurane-induced neuron apoptosis, inflammation and oxidative stress in mice. Restor Neurol Neurosci 2020; 38:323-331. [PMID: 32986634 DOI: 10.3233/rnn-201022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In neonatal mice, sevoflurane, inspired through the nasal cavity to act as anesthesia, triggers neuronal apoptosis, inflammation and oxidative injury that can hamper cognitive functions in the growth of the central nervous system in the later stages of life. OBJECTIVE Our study aimed to explore the potential neuroprotective effects of protocatechuic acid (PCA) to ameliorate neonatal sevoflurane-induced neurotoxicity. METHODS Male mice were pretreated with PCA (10 or 20 mg/kg) for half an hour before continuous treatment for 6 h with 3 % sevoflurane. TUNEL staining was performed to examine the apoptotic cells to record their count. ELISA was performed to evaluate the expressions of the proteins - IL-1β, IL-18 and TNF-α. Analysis of the Western blot and test of the Morris maze was determined and the results analyzed. RESULTS TUNEL findings assay showed a significant reduction with sevoflurane in neuronal apoptosis treated with PCA at 20 mg/kg. The expression of protein Caspase-3 showed significant changes in the group SEV + PCA (20 mg/kg). ELISA analysis showed that the levels of IL-18 and TNF-α were significantly reduced in the SEV + PCA (20 mg/kg) group as compared to SEV + PCA (10 mg/kg) group. MDA, ROS and SOD levels were noted to decrease significantly only in the SEV + PCA group (20 mg/kg) while IL-1β levels decreased in both SEV + PCA groups (10 or 20 mg/kg) respectively. CONCLUSIONS Our findings imply that apoptosis, inflammation, and oxidative stress in the hippocampal region of neonatal mouse brain were significantly reduced by pre-treatment with PCA before sevoflurane exposure. Therefore, suggesting a role for PCA as a novel therapeutic agent in the treatment of sevoflurane anesthesia-induced neurobehavioral dysfunction.
Collapse
Affiliation(s)
- Yuhua Gao
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Liping Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Tao Han
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Meng Wang
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Dongmei Zhang
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yana Wang
- Department of medical Genetics and cell biology of school of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
107
|
Neuroprotective effects of lignan 7-hydroxymatairesinol (HMR/lignan) in a rodent model of Parkinson's disease. Nutrition 2020; 69:110494. [DOI: 10.1016/j.nut.2019.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 01/01/2023]
|
108
|
Neuroprotective potential of chrysin in Parkinson's disease: Molecular mechanisms and clinical implications. Neurochem Int 2020; 132:104612. [DOI: 10.1016/j.neuint.2019.104612] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023]
|
109
|
Kujawska M, Jourdes M, Kurpik M, Szulc M, Szaefer H, Chmielarz P, Kreiner G, Krajka-Kuźniak V, Mikołajczak PŁ, Teissedre PL, Jodynis-Liebert J. Neuroprotective Effects of Pomegranate Juice against Parkinson's Disease and Presence of Ellagitannins-Derived Metabolite-Urolithin A-In the Brain. Int J Mol Sci 2019; 21:202. [PMID: 31892167 PMCID: PMC6981883 DOI: 10.3390/ijms21010202] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
Pomegranate juice is a rich source of ellagitannins (ETs) believed to contribute to a wide range of pomegranate's health benefits. While a lot of experimental studies have been devoted to Alzheimer disease and hypoxic-ischemic brain injury, our knowledge of pomegranate's effects against Parkinson's disease (PD) is very limited. It is suggested that its neuroprotective effects are mediated by ETs-derived metabolites-urolithins. In this study, we examined the capability of pomegranate juice for protection against PD in a rat model of parkinsonism induced by rotenone. To evaluate its efficiency, assessment of postural instability, visualization of neurodegeneration, determination of oxidative damage to lipids and α-synuclein level, as well as markers of antioxidant defense status, inflammation, and apoptosis, were performed in the midbrain. We also check the presence of plausible active pomegranate ETs-derived metabolite, urolithin A, in the plasma and brain. Our results indicated that pomegranate juice treatment provided neuroprotection as evidenced by the postural stability improvement, enhancement of neuronal survival, its protection against oxidative damage and α-synuclein aggregation, the increase in mitochondrial aldehyde dehydrogenase activity, and maintenance of antiapoptotic Bcl-xL protein at the control level. In addition, we have provided evidence for the distribution of urolithin A to the brain.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.)
| | - Michael Jourdes
- Université de Bordeaux, ISVV, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
- INRA, ISVV, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Monika Kurpik
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.)
| | - Michał Szulc
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland
| | - Hanna Szaefer
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland
| | | | - Pierre-Louis Teissedre
- Université de Bordeaux, ISVV, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
- INRA, ISVV, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.)
| |
Collapse
|
110
|
Jackson A, Forsyth CB, Shaikh M, Voigt RM, Engen PA, Ramirez V, Keshavarzian A. Diet in Parkinson's Disease: Critical Role for the Microbiome. Front Neurol 2019; 10:1245. [PMID: 31920905 PMCID: PMC6915094 DOI: 10.3389/fneur.2019.01245] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Parkinson's disease (PD) is the most common movement disorder affecting up to 1% of the population above the age of 60 and 4–5% of those above the age of 85. Little progress has been made on efforts to prevent disease development or halt disease progression. Diet has emerged as a potential factor that may prevent the development or slow the progression of PD. In this review, we discuss evidence for a role for the intestinal microbiome in PD and how diet-associated changes in the microbiome may be a viable approach to prevent or modify disease progression. Methods: We reviewed studies demonstrating that dietary components/foods were related to risk for PD. We reviewed evidence for the dysregulated intestinal microbiome in PD patients including abnormal shifts in the intestinal microbiota composition (i.e., dysbiosis) characterized by a loss of short chain fatty acid (SCFA) bacteria and increased lipopolysaccharide (LPS) bacteria. We also examined several candidate mechanisms by which the microbiota can influence PD including the NLRP3 inflammasome, insulin resistance, mitochondrial function, vagal nerve signaling. Results: The PD-associated microbiome is associated with decreased production of SCFA and increased LPS and it is believed that these changes may contribute to the development or exacerbation of PD. Diet robustly impacts the intestinal microbiome and the Western diet is associated with increased risk for PD whereas the Mediterranean diet (including high intake of dietary fiber) decreases PD risk. Mechanistically this may be the consequence of changes in the relative abundance of SCFA-producing or LPS-containing bacteria in the intestinal microbiome with effects on intestinal barrier function, endotoxemia (i.e., systemic LPS), NLRP3 inflammasome activation, insulin resistance, and mitochondrial dysfunction, and the production of factors such as glucagon like peptide 1 (GLP-1) and brain derived neurotrophic factor (BDNF) as well as intestinal gluconeogenesis. Conclusions: This review summarizes a model of microbiota-gut-brain-axis regulation of neuroinflammation in PD including several new mechanisms. We conclude with the need for clinical trials in PD patients to test this model for beneficial effects of Mediterranean based high fiber diets.
Collapse
Affiliation(s)
- Aeja Jackson
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Christopher B Forsyth
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Maliha Shaikh
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Robin M Voigt
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Phillip A Engen
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Vivian Ramirez
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Ali Keshavarzian
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| |
Collapse
|
111
|
Venugopal A, Sundaramoorthy K, Vellingiri B. Therapeutic potential of Hsp27 in neurological diseases. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0023-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AbstractBackgroundHeat shock proteins (Hsps) are widely reported in normal cellular dynamics under stress and non-stress conditions, and parallelly, the studies regarding its role in disease condition are also progressing steadily. The function of Hsps in neurodegenerative disorders is puzzling and not fully understood. This review aims to focus on the role of Hsp27 in normal and diseased conditions and emphasize its therapeutic potential.Hsp27Hsp27, in particular, has shown to be involved in cell viability and actin cytoskeleton remodeling and also shown to improve many disease conditions. Phosphorylated Hsp27 modulates the p53 pathway by downregulating cellular senescence and also lowers reactive oxygen species to protect TNFα-mediated apoptosis. Hsp27 is also known to interfere with mitochondria-dependent and mitochondria-independent cell apoptotic stimulation.ConclusionThis article will highlight the various functions of Hsp27 especially as an anti-apoptotic factor and stress response factor and its therapeutic potential in preventing neuronal apoptosis in neurological diseases. This review also includes a comparison of the therapeutic potential of Hsp27 with regard to other small Hsps.
Collapse
|
112
|
Kim KB, Lee S, Kim JH. Neuroprotective effects of urolithin A on H 2O 2-induced oxidative stress-mediated apoptosis in SK-N-MC cells. Nutr Res Pract 2019; 14:3-11. [PMID: 32042368 PMCID: PMC6997143 DOI: 10.4162/nrp.2020.14.1.3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/11/2019] [Accepted: 09/06/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND/OBJECTIVES Oxidative stress causes cell damage and death, which contribute to the pathogenesis of neurodegenerative diseases. Urolithin A (UA), a gut microbial-derived metabolite of ellagitannins and ellagic acid, has high bioavailability and various health benefits such as antioxidant and anti-inflammatory effects. However, it is unknown whether it has protective effects against oxidative stress-induced cell death. We investigated whether UA ameliorates H2O2-induced neuronal cell death. MATERIALS/METHODS We induced oxidative damage with 300 µM H2O2 after UA pretreatment at concentrations of 1.25, 2.5, and 5 µM in SK-N-MC cells. Cytotoxicity and cell viability were determined using the CCK-8 assay. The formation of reactive oxygen species (ROS) was measured using a 2,7-dichlorofluorescein diacetate assay. Hoechst 33342 staining was used to characterize morphological changes in apoptotic cells. The expressions of apoptosis proteins were measured using Western blotting. RESULTS UA significantly increased cell viability and decreased intracellular ROS production in a dose-dependent manner in SK-N-MC cells. It also decreased the Bax/Bcl-2 ratio and the expressions of cytochrome c, cleaved caspase-9, cleaved caspase-3, and cleaved PARP. In addition, it suppressed the phosphorylation of the p38 mitogen-activated protein kinase (MAPK) pathway. CONCLUSIONS UA attenuates oxidative stress-induced apoptosis via inhibiting the mitochondrial-related apoptosis pathway and modulating the p38 MAPK pathway, suggesting that it may be an effective neuroprotective agent.
Collapse
Affiliation(s)
- Kkot Byeol Kim
- Research Institute, Seoul Medical Center, Seoul 02053, Korea
| | - Seonah Lee
- Research Institute, Seoul Medical Center, Seoul 02053, Korea
| | - Jung Hee Kim
- Research Institute, Seoul Medical Center, Seoul 02053, Korea.,Department of Neurosurgery, Seoul Medical Center, 156 Shinnea-ro, Seoul 02053, Korea
| |
Collapse
|
113
|
Nielsen BE, Bermudez I, Bouzat C. Flavonoids as positive allosteric modulators of α7 nicotinic receptors. Neuropharmacology 2019; 160:107794. [PMID: 31560909 DOI: 10.1016/j.neuropharm.2019.107794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/09/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
The use of positive allosteric modulators (PAM) of α7 nicotinic receptors is a promising therapy for neurodegenerative, inflammatory and cognitive disorders. Flavonoids are polyphenolic compounds showing neuroprotective, anti-inflammatory and pro-cognitive actions. Besides their well-known antioxidant activity, flavonoids trigger intracellular pathways and interact with receptors, including α7. To reveal how the beneficial actions of flavonoids are linked to α7 function, we evaluated the effects of three representative flavonoids -genistein, quercetin and the neoflavonoid 5,7-dihydroxy-4-phenylcoumarin- on whole-cell and single-channel currents. All flavonoids increase the maximal currents elicited by acetylcholine with minimal effects on desensitization and do not reactivate desensitized receptors, a behaviour consistent with type I PAMs. At the single-channel level, they increase the duration of the open state and produce activation in long-duration episodes with a rank order of efficacy of genistein > quercetin ≥ neoflavonoid. By using mutant and chimeric α7 receptors, we demonstrated that flavonoids share transmembrane structural determinants with other PAMs. The α7-PAM activity of flavonoids results in decreased cell levels of reactive oxygen species. Thus, allosteric potentiation of α7 may be an additional mechanism underlying neuroprotective actions of flavonoids, which may be used as scaffolds for designing new therapeutic agents.
Collapse
Affiliation(s)
- Beatriz Elizabeth Nielsen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Isabel Bermudez
- Department of Medical and Biological Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina.
| |
Collapse
|
114
|
Namsi A, Nury T, Khan AS, Leprince J, Vaudry D, Caccia C, Leoni V, Atanasov AG, Tonon MC, Masmoudi-Kouki O, Lizard G. Octadecaneuropeptide (ODN) Induces N2a Cells Differentiation through a PKA/PLC/PKC/MEK/ERK-Dependent Pathway: Incidence on Peroxisome, Mitochondria, and Lipid Profiles. Molecules 2019; 24:molecules24183310. [PMID: 31514417 PMCID: PMC6767053 DOI: 10.3390/molecules24183310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022] Open
Abstract
Neurodegenerative diseases are characterized by oxidative stress, mitochondrial damage, and death of neuronal cells. To counteract such damage and to favor neurogenesis, neurotrophic factors could be used as therapeutic agents. Octadecaneuropeptide (ODN), produced by astrocytes, is a potent neuroprotective agent. In N2a cells, we studied the ability of ODN to promote neuronal differentiation. This parameter was evaluated by phase contrast microscopy, staining with crystal violet, cresyl blue, and Sulforhodamine 101. The effect of ODN on cell viability and mitochondrial activity was determined with fluorescein diacetate and DiOC6(3), respectively. The impact of ODN on the topography of mitochondria and peroxisomes, two tightly connected organelles involved in nerve cell functions and lipid metabolism, was evaluated by transmission electron microscopy and fluorescence microscopy: detection of mitochondria with MitoTracker Red, and peroxisome with an antibody directed against the ABCD3 peroxisomal transporter. The profiles in fatty acids, cholesterol, and cholesterol precursors were determined by gas chromatography, in some cases coupled with mass spectrometry. Treatment of N2a cells with ODN (10-14 M, 48 h) induces neurite outgrowth. ODN-induced neuronal differentiation was associated with modification of topographical distribution of mitochondria and peroxisomes throughout the neurites and did not affect cell viability and mitochondrial activity. The inhibition of ODN-induced N2a differentiation with H89, U73122, chelerythrine and U0126 supports the activation of a PKA/PLC/PKC/MEK/ERK-dependent signaling pathway. Although there is no difference in fatty acid profile between control and ODN-treated cells, the level of cholesterol and some of its precursors (lanosterol, desmosterol, lathosterol) was increased in ODN-treated cells. The ability of ODN to induce neuronal differentiation without cytotoxicity reinforces the interest for this neuropeptide with neurotrophic properties to overcome nerve cell damage in major neurodegenerative diseases.
Collapse
Affiliation(s)
- Amira Namsi
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté (UBFC)/Inserm, 21000 Dijon, France.
- Faculty of Science of Tunis, University Tunis El Manar, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia.
| | - Thomas Nury
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté (UBFC)/Inserm, 21000 Dijon, France.
| | - Amira S Khan
- Physiology of Nutrition & Toxicology (NUTox), Inserm U1231, University UBFC, 21000 Dijon, France.
| | - Jérôme Leprince
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie University, 76000 Rouen, France.
- UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie University, 76000 Rouen, France.
| | - David Vaudry
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie University, 76000 Rouen, France.
- UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie University, 76000 Rouen, France.
| | - Claudio Caccia
- Laboratory of Medical Genetics and Neurogenetics, Foundation IRCCS Istituto Neurologico Carlo Besta, 20100 Milan, Italy.
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, 20100 Milan, Italy.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland.
- Department of Pharmacognosy, University of Vienna, 1010 Vienna, Austria.
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria.
| | - Marie-Christine Tonon
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie University, 76000 Rouen, France.
| | - Olfa Masmoudi-Kouki
- Faculty of Science of Tunis, University Tunis El Manar, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia.
| | - Gérard Lizard
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté (UBFC)/Inserm, 21000 Dijon, France.
| |
Collapse
|
115
|
Nutritional Risk Factors, Microbiota and Parkinson's Disease: What Is the Current Evidence? Nutrients 2019; 11:nu11081896. [PMID: 31416163 PMCID: PMC6722832 DOI: 10.3390/nu11081896] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is a frequent neurodegenerative disease among elderly people. Genetic and underlying environmental factors seem to be involved in the pathogenesis of PD related to degeneration of dopaminergic neurons in the striatum. In previous experimental researches oxidative stress, mitochondrial dysfunction, homocysteine, and neuroinflammation have been reported as potential mechanisms. Among environmental factors, nutrition is one of the most investigated areas as it is a potentially modifiable factor. The purpose of this review is to provide current knowledge regarding the relation between diet and PD risk. We performed a comprehensive review including the most relevant studies from the year 2000 onwards including prospective studies, nested case-control studies, and meta-analysis. Among dietary factors we focused on specific nutrients and food groups, alcoholic beverages, uric acid, and dietary patterns. Furthermore, we included studies on microbiota as recent findings have shown a possible impact on neurodegeneration. As a conclusion, there are still many controversies regarding the relationship between PD and diet which, beside methodological differences among studies, may be due to underlying genetic and gender-specific factors. However, some evidence exists regarding a potential protective effect of uric acid, poly-unsaturated fatty acids, coffee, and tea but mainly in men, whereas dairy products, particularly milk, might increase PD risk through contaminant mediated effect.
Collapse
|
116
|
Hamzehloei L, Rezvani ME, Rajaei Z. Effects of carvacrol and physical exercise on motor and memory impairments associated with Parkinson's disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 77:493-500. [PMID: 31365641 DOI: 10.1590/0004-282x20190079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/06/2019] [Indexed: 12/28/2022]
Abstract
The present study was undertaken to investigate the effects of carvacrol and treadmill exercise on memory deficit, rotational behavior and oxidative stress biomarkers in a 6-OHDA-lesioned rat model of Parkinson's disease. Wistar rats were treated with carvacrol at a dose of 25 mg/kg and/or ran on a treadmill for a week. Then, 6-OHDA was microinjected into the medial forebrain bundle and treatments continued for six more weeks. Aversive memory, rotational behavior and oxidative stress biomarkers were assessed at the end of week six. The 6-OHDA-lesioned group showed a significant increase in rotational behavior and a decrease in step-through latency in the passive avoidance test compared with the sham group. These behaviors were accompanied by increased lipid peroxidation levels and decreased total thiol concentration in the striatum and/or hippocampus of the hemiparkinsonian rats. Moreover, treatment with carvacrol and exercise reduced rotational behavior and improved aversive memory deficit, which was accompanied by decreased lipid peroxidation levels and increased total thiol concentration in the striatum and/or hippocampus. In conclusion, treatment with carvacrol and treadmill exercise ameliorated motor and memory deficits by modulating oxidative stress in the striatum and hippocampus of hemiparkinsonian rats. Therefore, the combination of carvacrol and treadmill exercise could be an effective therapeutic tool for treatment of neurobehavioral deficits in Parkinson's disease patients.
Collapse
Affiliation(s)
- Leila Hamzehloei
- Shahid Sadoughi University of Medical Sciences, Department of Physiology, School of Medicine, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Shahid Sadoughi University of Medical Sciences, Department of Physiology, School of Medicine, Yazd, Iran
| | - Ziba Rajaei
- Isfahan University of Medical Sciences, School of Medicine, Department of Physiology, Isfahan, Iran
| |
Collapse
|
117
|
Badillo-Ramírez I, Saniger JM, Rivas-Arancibia S. 5-S-cysteinyl-dopamine, a neurotoxic endogenous metabolite of dopamine: Implications for Parkinson's disease. Neurochem Int 2019; 129:104514. [PMID: 31369776 DOI: 10.1016/j.neuint.2019.104514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/04/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide and is characterized for being an idiopathic and multifactorial disease. Extensive research has been conducted to explain the origin of the disease, but it still remains elusive. It is well known that dopamine oxidation, through the endogenous formation of toxic metabolites, is a key process in the activation of a cascade of molecular events that leads to cellular death in the hallmark of PD. Thio-catecholamines, such as 5-S-cysteinyl-dopamine, 5-S-glutathionyl-dopamine and derived benzothiazines, are endogenous metabolites formed in the dopamine oxidative degradation pathway. Those metabolites have been shown to be highly toxic to neurons in the substantia nigra pars compacta, activating molecular mechanisms that ultimately lead to neuronal death. In this review we describe the origin, formation and the toxic effects of 5-S-cysteinyl-dopamine and its oxidative derivatives that cause death to dopaminergic neurons. Furthermore, we correlate the formation of those metabolites with the neurodegeneration progress in PD. In addition, we present the reported neuroprotective strategies of products that protect against the cellular damage of those thio-catecholamines. Finally, we discuss the advantages in the use of 5-S-cysteinyl-dopamine as a potential biomarker for PD.
Collapse
Affiliation(s)
- Isidro Badillo-Ramírez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito externo S/N, Cd. Universitaria, 04510, Ciudad de México, Mexico; Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito externo S/N, Cd. Universitaria, 04510, Ciudad de México, Mexico
| | - José M Saniger
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito externo S/N, Cd. Universitaria, 04510, Ciudad de México, Mexico.
| | - Selva Rivas-Arancibia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito externo S/N, Cd. Universitaria, 04510, Ciudad de México, Mexico.
| |
Collapse
|
118
|
Ortega-Arellano HF, Jimenez-Del-Rio M, Velez-Pardo C. Neuroprotective Effects of Methanolic Extract of Avocado Persea americana (var. Colinred) Peel on Paraquat-Induced Locomotor Impairment, Lipid Peroxidation and Shortage of Life Span in Transgenic knockdown Parkin Drosophila melanogaster. Neurochem Res 2019; 44:1986-1998. [PMID: 31309393 DOI: 10.1007/s11064-019-02835-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with oxidative stress. Therefore, finding new antioxidant sources might be beneficial for its treatment. Avocado Persea americana is a fruit widely cultivated in tropical and subtropical climates worldwide. Although avocado by-products in the form of peel, seed coat and seeds are currently of no commercial use, they constitute a natural source of bioactive compounds. Methanolic (80%) extract obtained from lyophilized ground peels, seed coats, and seeds of the avocado Hass, Fuerte, Reed and Colinred varieties were analyzed for their total phenolic content (TPC) and their correlations with antioxidant capacity (AC) were assessed by ABTS, FRAP, and ORAC assays. For all varieties, the var. Colinred peel shows the highest TPC and AC. Further analysis showed that the var. Colinred peel presented major phenolic compounds B-type procyanidins and epicatechin according to HPLC-MS. The antioxidant effect of peel extract was evaluated upon in vivo oxidative stress (OS) model. We show for the first time that the peel extract can protect and/or prevent transgenic parkinDrosophila melanogaster fly against paraquat-induced OS, movement impairment and lipid peroxidation, as model of PD. Our findings offer an exceptional opportunity to test natural disease-modifying substances from avocado's by-products.
Collapse
Affiliation(s)
- Hector Flavio Ortega-Arellano
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia.
| |
Collapse
|
119
|
Tosato M, Di Marco V. Metal Chelation Therapy and Parkinson's Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs. Biomolecules 2019; 9:E269. [PMID: 31324037 PMCID: PMC6681387 DOI: 10.3390/biom9070269] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
The present review reports a list of approximately 800 compounds which have been used, tested or proposed for Parkinson's disease (PD) therapy in the year range 2014-2019 (April): name(s), chemical structure and references are given. Among these compounds, approximately 250 have possible or established metal-chelating properties towards Cu(II), Cu(I), Fe(III), Fe(II), Mn(II), and Zn(II), which are considered to be involved in metal dyshomeostasis during PD. Speciation information regarding the complexes formed by these ions and the 250 compounds has been collected or, if not experimentally available, has been estimated from similar molecules. Stoichiometries and stability constants of the complexes have been reported; values of the cologarithm of the concentration of free metal ion at equilibrium (pM), and of the dissociation constant Kd (both computed at pH = 7.4 and at total metal and ligand concentrations of 10-6 and 10-5 mol/L, respectively), charge and stoichiometry of the most abundant metal-ligand complexes existing at physiological conditions, have been obtained. A rigorous definition of the reported amounts is given, the possible usefulness of this data is described, and the need to characterize the metal-ligand speciation of PD drugs is underlined.
Collapse
Affiliation(s)
- Marianna Tosato
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Valerio Di Marco
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
120
|
The Potential of Flavonoids for the Treatment of Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20123056. [PMID: 31234550 PMCID: PMC6627573 DOI: 10.3390/ijms20123056] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/07/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), currently affect more than 6 million people in the United States. Unfortunately, there are no treatments that slow or prevent disease development and progression. Regardless of the underlying cause of the disorder, age is the strongest risk factor for developing these maladies, suggesting that changes that occur in the aging brain put it at increased risk for neurodegenerative disease development. Moreover, since there are a number of different changes that occur in the aging brain, it is unlikely that targeting a single change is going to be effective for disease treatment. Thus, compounds that have multiple biological activities that can impact the various age-associated changes in the brain that contribute to neurodegenerative disease development and progression are needed. The plant-derived flavonoids have a wide range of activities that could make them particularly effective for blocking the age-associated toxicity pathways associated with neurodegenerative diseases. In this review, the evidence for beneficial effects of multiple flavonoids in models of AD, PD, HD, and ALS is presented and common mechanisms of action are identified. Overall, the preclinical data strongly support further investigation of specific flavonoids for the treatment of neurodegenerative diseases.
Collapse
|
121
|
Lange KW, Nakamura Y, Chen N, Guo J, Kanaya S, Lange KM, Li S. Diet and medical foods in Parkinson’s disease. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
122
|
Javed H, Azimullah S, Meeran MFN, Ansari SA, Ojha S. Neuroprotective Effects of Thymol, a Dietary Monoterpene Against Dopaminergic Neurodegeneration in Rotenone-Induced Rat Model of Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20071538. [PMID: 30934738 PMCID: PMC6480243 DOI: 10.3390/ijms20071538] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD), a multifactorial movement disorder that involves progressive degeneration of the nigrostriatal system affecting the movement ability of the patient. Oxidative stress and neuroinflammation both are shown to be involved in the etiopathogenesis of PD. The aim of this study was to evaluate the therapeutic potential of thymol, a dietary monoterpene phenol in rotenone (ROT)-induced neurodegeneration in rats that precisely mimics PD in humans. Male Wistar rats were injected ROT at a dose of 2.5 mg/kg body weight for 4 weeks, to induce PD. Thymol was co-administered for 4 weeks at a dose of 50 mg/kg body weight, 30 min prior to ROT injection. The markers of dopaminergic neurodegeneration, oxidative stress and inflammation were estimated using biochemical assays, enzyme-linked immunosorbent assay, western blotting and immunocytochemistry. ROT challenge increased the oxidative stress markers, inflammatory enzymes and cytokines as well as caused significant damage to nigrostriatal dopaminergic system of the brain. Thymol treatment in ROT challenged rats appears to significantly attenuate dopaminergic neuronal loss, oxidative stress and inflammation. The present study showed protective effects of thymol in ROT-induced neurotoxicity and neurodegeneration mediated by preservation of endogenous antioxidant defense networks and attenuation of inflammatory mediators including cytokines and enzymes.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| | - M F Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| |
Collapse
|
123
|
Szurpnicka A, Zjawiony JK, Szterk A. Therapeutic potential of mistletoe in CNS-related neurological disorders and the chemical composition of Viscum species. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:241-252. [PMID: 30458281 DOI: 10.1016/j.jep.2018.11.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viscum album L., commonly known as mistletoe, has been used for centuries in traditional medicine to treat various neurological diseases, including epilepsy, hysteria, nervousness, hysterical psychosis, dizziness and headaches. AIM OF THE STUDY The aim of this review is to summarize existing evidence confirming the influence of mistletoe on the central nervous system and to investigate the compounds that may be responsible for this activity. MATERIALS AND METHODS Available information from studies of various species of the Viscum L. genus was collected from scientific journals, books, and reports via a library and an electronic data search (Elsevier, Google Scholar, PubMed, Springer, Science Direct, ResearchGate, and ACS). RESULTS The main chemical constituents of Viscum L. species are viscotoxins, lectins, flavonoids, phenolic acids, terpenoids, sterols, phenylpropanoids, and alkaloids. Various extracts of Viscum album L. showed central nervous system activity, including antiepileptic, sedative, antipsychotic, anxiolytic, antidepressant and antinociceptive effects in mice and rats. Additionally, the extracts increased the level of brain-derived neurotrophic factor, prevented apoptotic neuronal death induced by amyloid β and weakly inhibited cholinesterase activity. CONCLUSIONS Numerous historical references describe the use of mistletoe for the treatment of central nervous system disorders. In recent years, studies have started to confirm the antiepileptic, antipsychotic, sedative and antinociceptive effects of mistletoe. Additionally, mistletoe can be used as a complementary treatment for Alzheimer's disease. The therapeutic effect of mistletoe might be a result of the synergistic interactions of various secondary metabolites, including mistletoe-specific lectins. Further studies of the chemical composition and CNS activity of mistletoe are required. The mechanisms of action, target sites, pharmacokinetics, metabolic mechanisms, adverse effects and interactions of mistletoe with other drugs must also be investigated, as well.
Collapse
Affiliation(s)
- Anna Szurpnicka
- Department of Natural Medicinal Products and Dietary Supplements, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland.
| | - Jordan K Zjawiony
- Department of BioMolecular Sciences, Division of Pharmacognosy, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States.
| | - Arkadiusz Szterk
- Department of Spectrometric Methods, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland.
| |
Collapse
|
124
|
|