101
|
Abstract
Invasion of epithelial cells by Shigella is a critical step in the pathogenesis of bacillary dysentery. In this issue of Cell Host & Microbe, Bergounioux et al. (2012) uncover a complex interplay of proinvasion, prosurvival, and prodeath signals centered on the activation of calpain protease by the Shigella VirA protein.
Collapse
Affiliation(s)
- Thomas Rudel
- Biocenter, Department of Microbiology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
102
|
Bergounioux J, Elisee R, Prunier AL, Donnadieu F, Sperandio B, Sansonetti P, Arbibe L. Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium's epithelial niche. Cell Host Microbe 2012; 11:240-52. [PMID: 22423964 DOI: 10.1016/j.chom.2012.01.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 09/15/2011] [Accepted: 01/20/2012] [Indexed: 01/22/2023]
Abstract
The enteropathogen Shigella flexneri invades epithelial cells, leading to inflammation and tissue destruction. We report that Shigella infection of epithelial cells induces an early genotoxic stress, but the resulting p53 response and cell death are impaired due to the bacterium's ability to promote p53 degradation, mainly through calpain protease activation. Calpain activation is promoted by the Shigella virulence effector VirA and dependent on calcium flux and the depletion of the endogenous calpain inhibitor calpastatin. Further, although VirA-induced calpain activity is critical for regulating cytoskeletal events driving bacterial uptake, calpain activation ultimately leads to necrotic cell death, thereby restricting Shigella intracellular growth. Therefore, calpains work at multiple steps in regulating Shigella pathogenesis by disrupting the p53-dependent DNA repair response early during infection and regulating both formation and ultimate death of the Shigella epithelial replicative niche.
Collapse
Affiliation(s)
- Jean Bergounioux
- Unité de Pathogénie Microbienne Moléculaire, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
103
|
Chen X, Qiao H, Liu T, Yang Z, Xu L, Xu Y, Ge HM, Tan RX, Li E. Inhibition of herpes simplex virus infection by oligomeric stilbenoids through ROS generation. Antiviral Res 2012; 95:30-6. [PMID: 22584350 DOI: 10.1016/j.antiviral.2012.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/24/2012] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
Abstract
Stilbenoids including resveratrol contain the basic structural unit of 1,2-diphenylethylene. Naturally occurring stilbenoids have broad structural features due to oligomerization and modifications and some have demonstrated potent biological activities. In an effort to identify bioactive stilbenoids, we screened a group of dimeric and oligomeric stilbenoids against HSV-1 and HSV-2 infection. Several trimeric and tetrameric derivatives showed anti-herpetic activity at single digit micromolar concentrations. HSV-1 and HSV-2 replication requires for NF-κB and MAPK activation. The compounds showed no inhibitory activity against NF-κB and Erk/MAPK activation, instead those compounds promoted rapid and transient release of reactive oxygen species (ROS). Addition of N-acetylcysteine (NAC), a scavenger of ROS, reversed the inhibitory effect of those compounds against HSV replication. In addition to the identification of resveratrol derivatives with potent anti-HSV activity, our results uncover a mechanism of polyphenol-mediated anti-HSV response, linking anti-herpetic activity of oligomeric stilbenoids to innate immunity.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Nanjing University School of Medicine and Jiangsu Laboratory of Molecular Medicine, Nanjing Jiangsu 210093, China
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Taura M, Suico MA, Koyama K, Komatsu K, Miyakita R, Matsumoto C, Kudo E, Kariya R, Goto H, Kitajima S, Takahashi C, Shuto T, Nakao M, Okada S, Kai H. Rb/E2F1 regulates the innate immune receptor Toll-like receptor 3 in epithelial cells. Mol Cell Biol 2012; 32:1581-1590. [PMID: 22310660 PMCID: PMC3318576 DOI: 10.1128/mcb.06454-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/25/2012] [Indexed: 12/16/2022] Open
Abstract
Tumor suppressor genes regulate the antiviral host defense through molecular mechanisms that are not yet well explored. Here, we show that the tumor suppressor retinoblastoma (Rb) protein positively regulates Toll-like receptor 3 (TLR3) expression, the sensing receptor for viral double-stranded RNA and poly(I · C). TLR3 expression was lower in Rb knockout (Rb(-/-)) mouse embryonic fibroblasts (MEF) and in mammalian epithelial cells transfected with Rb small-interfering RNA (siRNA) than in control cells. Consequently, induction of cytokines interleukin-8 and beta interferon after poly(I · C) stimulation was impaired in Rb(-/-) MEF and Rb siRNA-transfected cells compared to controls. TLR3 promoter analysis showed that Rb modulates the transcription factor E2F1, which directly binds to the proximal promoter of TLR3. Exogenous addition of E2F1 decreased TLR3 promoter activity, while Rb dose dependently curbed the effect of E2F1. Interestingly, poly(I · C) increased the Rb expression, and the poly(I · C)-induced TLR3 expression was impaired in Rb-depleted cells, suggesting the importance of Rb in TLR3 induction by poly(I · C). Together, these data indicated that E2F1 suppresses TLR3 transcription, but during immune stimulation, Rb is upregulated to block the inhibitory effect of E2F1 on TLR3, highlighting a role of Rb-E2F1 axis in the innate immune response in epithelial cells.
Collapse
Affiliation(s)
- Manabu Taura
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, Kumamoto, Japan
| | - Kosuke Koyama
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, Kumamoto, Japan
| | - Kensei Komatsu
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, Kumamoto, Japan
| | - Rui Miyakita
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, Kumamoto, Japan
| | - Chizuru Matsumoto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, Kumamoto, Japan
| | - Eriko Kudo
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Hiroki Goto
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Shunsuke Kitajima
- Division of Oncology and Molecular Biology, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, Kumamoto, Japan
| |
Collapse
|