101
|
Germann LS, Arhangelskis M, Etter M, Dinnebier RE, Friščić T. Challenging the Ostwald rule of stages in mechanochemical cocrystallisation. Chem Sci 2020; 11:10092-10100. [PMID: 34094270 PMCID: PMC8162427 DOI: 10.1039/d0sc03629c] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mechanochemistry provides an efficient, but still poorly understood route to synthesize and screen for polymorphs of organic solids. We present a hitherto unexplored effect of the milling assembly on the polymorphic outcome of mechanochemical cocrystallisation, tentatively related to the efficiency of mechanical energy transfer to the milled sample. Previous work on mechanochemical cocrystallisation has established that introducing liquid or polymer additives to milling systems can be used to direct polymorphic behavior, leading to extensive studies how the amount and nature of grinding additive affect reaction outcome and polymorphism. Here, focusing on a model pharmaceutical cocrystal of nicotinamide and adipic acid, we demonstrate that changes to the choice of milling media (i.e. number and material of milling balls) and/or the choice of milling assembly (i.e. jar material) can be used to direct polymorphism of mechanochemical cocrystallisation, enabling the selective synthesis, and even reversible and repeatable interconversion of cocrystal polymorphs. While real-time mechanistic studies of mechanochemical transformations of metal–organic materials have previously suggested that reactions follow a path described by Ostwald's rule of stages, i.e. from metastable to increasingly more stable product structures, the herein presented systematic study presents an exception to that rule, revealing that modification of energy input in the mechanochemical system, combined with a small energy difference between polymorphs, permits the selective synthesis of either the more stable room temperature form, or the new metastable high-temperature form, of the target cocrystal. The choice of milling assembly (jar and ball material, number and size of balls) can be used to direct polymorphism in mechanochemical cocrystallisation, enabling the selective synthesis, and even reversible interconversion of cocrystal polymorphs.![]()
Collapse
Affiliation(s)
- Luzia S Germann
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany.,Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Mihails Arhangelskis
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada .,Faculty of Chemistry, University of Warsaw 1 Pasteura Street 02-109 Warsaw Poland
| | - Martin Etter
- Deutsches Elektronen Synchrotron (DESY) Notkestraße 85 22607 Hamburg Germany
| | - Robert E Dinnebier
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| | - Tomislav Friščić
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| |
Collapse
|
102
|
Avila-Ortiz CG, Juaristi E. Novel Methodologies for Chemical Activation in Organic Synthesis under Solvent-Free Reaction Conditions. Molecules 2020; 25:E3579. [PMID: 32781678 PMCID: PMC7464687 DOI: 10.3390/molecules25163579] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
One central challenge for XXI century chemists is the development of sustainable processes that do not represent a risk either to humanity or to the environment. In this regard, the search for more efficient and clean alternatives to achieve the chemical activation of molecules involved in chemical transformations has played a prominent role in recent years. The use of microwave or UV-Vis light irradiation, and mechanochemical activation is already widespread in many laboratories. Nevertheless, an additional condition to achieve "green" processes comes from the point of view of so-called atom economy. The removal of solvents from chemical reactions generally leads to cleaner, more efficient and more economical processes. This review presents several illustrative applications of the use of sustainable protocols in the synthesis of organic compounds under solvent-free reaction conditions.
Collapse
Affiliation(s)
- Claudia Gabriela Avila-Ortiz
- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, 07360 Ciudad de México, Mexico
| | - Eusebio Juaristi
- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, 07360 Ciudad de México, Mexico
- El Colegio Nacional, Donceles 104, Centro Histórico, 06020 Ciudad de México, Mexico
| |
Collapse
|
103
|
Dayaker G, Tan D, Biggins N, Shelam A, Do JL, Katsenis AD, Friščić T. Catalytic Room-Temperature C-N Coupling of Amides and Isocyanates by Using Mechanochemistry. CHEMSUSCHEM 2020; 13:2966-2972. [PMID: 32222112 DOI: 10.1002/cssc.201902576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/13/2020] [Indexed: 06/10/2023]
Abstract
A mechanochemical route is developed for room-temperature and solvent-free derivatization of different types of amides into carbamoyl isatins (up to 96 % conversion or yield), benzamides (up to 81 % yield), and imides (up to 92 % yield). In solution, this copper-catalyzed coupling either does not take place or requires high temperatures at which it may also be competing with alternative thermal reactivity, highlighting the beneficial role of mechanochemistry for this reaction. Such behavior resembles the previously investigated coupling with sulfonamide substrates, suggesting that this type of C-N coupling is an example of a mechanochemically favored reaction, for which mechanochemistry appears to be a favored environment over solution.
Collapse
Affiliation(s)
- Gandrath Dayaker
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| | - Davin Tan
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| | - Naomi Biggins
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| | - Asha Shelam
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| | - Jean-Louis Do
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| | - Athanassios D Katsenis
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| | - Tomislav Friščić
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| |
Collapse
|
104
|
Porcheddu A, Colacino E, De Luca L, Delogu F. Metal-Mediated and Metal-Catalyzed Reactions Under Mechanochemical Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00142] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 bivio per Sestu, 09042 Monserrato, Cagliari, Italy
- Consorzio C.I.N.M.P.I.S., 70125 Bari, Italy
| | | | - Lidia De Luca
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
105
|
Hosseinzadeh R, Fathalipour F, Tajbakhsh M, Mavvaji M, Pooryousef M. Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles Through a One-Pot Three Component Reaction of Boronic Acids, Sodium Azide and Active Methylene Compounds Under Ball-Milling Conditions. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1757473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Rahman Hosseinzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Fatemeh Fathalipour
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mohammad Mavvaji
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mona Pooryousef
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
106
|
Mechanochemical synthesis of fluorescein-based receptor for CN - ion detection in aqueous solution and cigarette smoke residue. Anal Bioanal Chem 2020; 412:3177-3186. [PMID: 32236658 DOI: 10.1007/s00216-020-02573-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
A facile green method for the mechanochemical synthesis of Schiff base phenylhydrazono-N-methylene fluorescein (PHMF) with 95% yields has been established. The synthesized receptor assists in the naked-eye detection of CN- ions in organic and aqueous media, and F- ions in acetonitrile over a series of anions with a color transfer from colorless to pink. A redshift of 160 nm of PHMF-CN- complex in the absorbance spectrum and a turn-on response in the fluorescence spectrum were observed, respectively, at λmax 345 to 515 and 519 nm. A strong interaction of PHMF with CN- and F- ions forming a 1:3 binding stoichiometry has been noted in this study. In an aqueous medium for CN- ion, the lower limit of detection (LOD) is defined as 9.204 nM, which is quite better in terms of sensitivity. In addition, PHMF's paper-strip sensor for rapid real-time CN- ion sensing was found to be sufficiently sensitive to successfully detect CN- ion in water and a solid state, resulting in a portable device for detecting cyanide ions. In acetonitrile, the receptor's ability to detect CN- ion in cigarette smoke residue was also satisfactorily achieved. Graphical Abstract.
Collapse
|
107
|
Harry NA, Radhika S, Neetha M, Anilkumar G. A novel catalyst‐free mechanochemical protocol for the synthesis of 2,3‐dihydro‐1H‐perimidines. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3880] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nissy Ann Harry
- School of Chemical SciencesMahatma Gandhi University Kottayam Kerala India
| | - Sankaran Radhika
- School of Chemical SciencesMahatma Gandhi University Kottayam Kerala India
| | - Mohan Neetha
- School of Chemical SciencesMahatma Gandhi University Kottayam Kerala India
| | - Gopinathan Anilkumar
- School of Chemical SciencesMahatma Gandhi University Kottayam Kerala India
- Advanced Molecular Materials Research Centre (AMMRC)Mahatma Gandhi University Kottayam Kerala India
| |
Collapse
|
108
|
Ali El-Remaily MAEAA, Soliman AMM, Elhady OM. Green Method for the Synthetic Ugi Reaction by Twin Screw Extrusion without a Solvent and Catalyst. ACS OMEGA 2020; 5:6194-6198. [PMID: 32226904 PMCID: PMC7098038 DOI: 10.1021/acsomega.0c00369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/03/2020] [Indexed: 05/04/2023]
Abstract
This study describes the solvent and catalyst-free Ugi reaction by way of twin screw extrusion (TSE). Multicomponent chemical synthesis can be converted into a single process without repeated use of solvents through TSE. High synthetic yields are achieved in short reaction times and produced in solvent-free conditions, which lead to a more environmentally friendly process.
Collapse
|
109
|
Halder A, Maiti D, De Sarkar S. Mechanochemical Synthesis of Functionalized Quinolines by Iodine Mediated Oxidative Annulation. Chem Asian J 2020; 15:577-580. [PMID: 32011806 DOI: 10.1002/asia.201901758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Indexed: 11/07/2022]
Abstract
An iodine-mediated environmentally benign synthesis of multi-substituted quinoline derivatives is developed using a solvent-free mechanochemical process. Appropriately designed and easily accessible protecting group-free aniline derivatives were used for the oxidative annulation reaction, and a series of quinoline derivatives with variable functionalities were synthesized up to 89 % isolated yield. Importantly, the activator iodine remains in the quinoline molecule and promotes further functionalizations. The present methodology is beneficial with regard to operational simplicity and mild reaction conditions.
Collapse
Affiliation(s)
- Atreyee Halder
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Debabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
110
|
Jędrzejewska H, Wielgus E, Kaźmierski S, Rogala H, Wierzbicki M, Wróblewska A, Pawlak T, Potrzebowski MJ, Szumna A. Porous Molecular Capsules as Non-Polymeric Transducers of Mechanical Forces to Mechanophores. Chemistry 2020; 26:1558-1566. [PMID: 31691377 DOI: 10.1002/chem.201904024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 11/05/2022]
Abstract
Mechanical grinding/milling can be regarded as historically the first technology for changing the properties of matter. Mechanically activated molecular units (mechanophores) can be present in various structures: polymers, macromolecules, or small molecules. However, only polymers have been reported to effectively transduce energy to mechanophores, which induces breakage of covalent bonds. In this paper, a second possibility is presented-molecular capsules as stress-sensitive units. Mechanochemical encapsulation of fullerenes in cystine-based covalent capsules indicates that complexation takes place in the solid state, despite the fact that the capsules do not possess large enough entrance portals. By using a set of solvent-free MALDI (sf-MALDI) and solid-state NMR (ss-NMR) experiments, it has been proven that encapsulation proceeds during milling and in this process hydrazones and disulfides get activated for breakage, exchange, and re-forming. The capsules are porous and therefore prone to collapse under solvent-free conditions and their conformational rigidity promotes the collapse by the breaking of covalent bonds.
Collapse
Affiliation(s)
- Hanna Jędrzejewska
- Institute of Organic Chemistry, Polish Academy of Sciences, M. Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Sławomir Kaźmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Halina Rogala
- Institute of Organic Chemistry, Polish Academy of Sciences, M. Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Michał Wierzbicki
- Institute of Organic Chemistry, Polish Academy of Sciences, M. Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Aneta Wróblewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Sciences, M. Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
111
|
Chiam SL, Pung SY, Yeoh FY. Recent developments in MnO 2-based photocatalysts for organic dye removal: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5759-5778. [PMID: 31933078 DOI: 10.1007/s11356-019-07568-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
The textile industry consumes a large volume of organic dyes and water. These organic dyes, which remained in the effluents, are usually persistent and difficult to degrade by conventional wastewater treatment techniques. If the wastewater is not treated properly and is discharged into water system, it will cause environmental pollution and risk to living organisms. To mitigate these impacts, the photo-driven catalysis process using semiconductor materials emerges as a promising approach. The semiconductor photocatalysts are able to remove the organic effluent through their mineralization and decolorization abilities. Besides the commonly used titanium dioxide (TiO2), manganese dioxide (MnO2) is a potential photocatalyst for wastewater treatment. MnO2 has a narrow bandgap energy of 1~2 eV. Thus, it possesses high possibility to be driven by visible light and infrared light for dye degradation. This paper reviews the MnO2-based photocatalysts in various aspects, including its fundamental and photocatalytic mechanisms, recent progress in the synthesis of MnO2 nanostructures in particle forms and on supporting systems, and regeneration of photocatalysts for repeated use. In addition, the effect of various factors that could affect the photocatalytic performance of MnO2 nanostructures are discussed, followed by the future prospects of the development of this semiconductor photocatalysts towards commercialization.
Collapse
Affiliation(s)
- Sin-Ling Chiam
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Swee-Yong Pung
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Fei-Yee Yeoh
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
112
|
Takahashi R, Kubota K, Ito H. Air- and moisture-stable Xantphos-ligated palladium dialkyl complex as a precatalyst for cross-coupling reactions. Chem Commun (Camb) 2020; 56:407-410. [DOI: 10.1039/c9cc06946a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A Xantphos-ligated palladium dialkyl complex can serve as a high performance precatalyst for various cross-coupling reactions, thus providing a convenient alternative to previously developed classes of precatalysts.
Collapse
Affiliation(s)
- Rina Takahashi
- Division of Applied Chemistry and Frontier Chemistry Center
- Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| | - Koji Kubota
- Division of Applied Chemistry and Frontier Chemistry Center
- Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| | - Hajime Ito
- Division of Applied Chemistry and Frontier Chemistry Center
- Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| |
Collapse
|
113
|
|
114
|
Carta M, James SL, Delogu F. Phenomenological Inferences on the Kinetics of a Mechanically Activated Knoevenagel Condensation: Understanding the "Snowball" Kinetic Effect in Ball Milling. Molecules 2019; 24:molecules24193600. [PMID: 31591289 PMCID: PMC6803908 DOI: 10.3390/molecules24193600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/03/2022] Open
Abstract
We focus on understanding the kinetics of a mechanically activated Knoevenagel condensation conducted in a ball mill, that is characterized by sigmoidal kinetics and the formation of a rubber-like cohesive intermediate state coating the milling ball. The previously described experimental findings are explained using a phenomenological kinetic model. It is assumed that reactants transform into products already at the very first collision of the ball with the wall of the jar. The portion of reactants that are transformed into products during each oscillation is taken to be a fraction of the amount of material that is trapped between the ball and the wall of the jar. This quantity is greater when the reaction mixture transforms from its initial powder form to the rubber-like cohesive coating on the ball. Further, the amount of reactants processed in each collision varies proportionally with the total area of the layer coating the ball. The total area of this coating layer is predicted to vary with the third power of time, thus accounting for the observed dramatic increase of the reaction rate. Supporting experiments, performed using a polyvinyl acetate adhesive as a nonreactive but cohesive material, confirm that the coating around the ball grows with the third power of time.
Collapse
Affiliation(s)
- Maria Carta
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari, Italy.
| | - Stuart L James
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK.
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari, Italy.
| |
Collapse
|
115
|
Seo T, Ishiyama T, Kubota K, Ito H. Solid-state Suzuki-Miyaura cross-coupling reactions: olefin-accelerated C-C coupling using mechanochemistry. Chem Sci 2019; 10:8202-8210. [PMID: 31857886 PMCID: PMC6836942 DOI: 10.1039/c9sc02185j] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/21/2019] [Indexed: 12/19/2022] Open
Abstract
The Suzuki-Miyaura cross-coupling reaction is one of the most reliable methods for the construction of carbon-carbon bonds in solution. However, examples for the corresponding solid-state cross-coupling reactions remain scarce. Herein, we report the first broadly applicable mechanochemical protocol for a solid-state palladium-catalyzed organoboron cross-coupling reaction using an olefin additive. Compared to previous studies, the newly developed protocol shows a substantially broadened substrate scope. Our mechanistic data suggest that olefin additives might act as dispersants for the palladium-based catalyst to suppress higher aggregation of the nanoparticles, and also as stabilizer for the active monomeric Pd(0) species, thus facilitating these challenging solid-state C-C bond forming cross-coupling reactions.
Collapse
Affiliation(s)
- Tamae Seo
- Division of Applied Chemistry and Frontier Chemistry Center , Faculty of Engineering , Hokkaido University , Sapporo , Hokkaido , Japan . ;
| | - Tatsuo Ishiyama
- Division of Applied Chemistry and Frontier Chemistry Center , Faculty of Engineering , Hokkaido University , Sapporo , Hokkaido , Japan . ;
| | - Koji Kubota
- Division of Applied Chemistry and Frontier Chemistry Center , Faculty of Engineering , Hokkaido University , Sapporo , Hokkaido , Japan . ;
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) , Hokkaido University , Sapporo , Hokkaido , Japan
| | - Hajime Ito
- Division of Applied Chemistry and Frontier Chemistry Center , Faculty of Engineering , Hokkaido University , Sapporo , Hokkaido , Japan . ;
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) , Hokkaido University , Sapporo , Hokkaido , Japan
| |
Collapse
|
116
|
Hu XM, Dong H, Li YD, Huang P, Tian Z, Wang PA. Tandem grinding reactions involving aldol condensation and Michael addition in sequence for synthesis of 3,4,5-trisubstituted isoxazoles. RSC Adv 2019; 9:27883-27887. [PMID: 35530461 PMCID: PMC9071175 DOI: 10.1039/c9ra04864b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/23/2019] [Indexed: 11/28/2022] Open
Abstract
A one-pot, base-catalyzed, tandem grinding process involving carrying out aldol condensation and Michael addition in sequence to produce 3,4,5-trisubstituted isoxazoles from 3,5-dimethyl-4-nitroisoxazole, aromatic aldehydes and activated methylene compounds has been developed. In the presence of 10 mol% of pyrrolidine, aldol condensations of 3,5-dimethyl-4-nitroisoxazole with various aromatic aldehydes were performed with 3-10 minutes of grinding to provide 5-styryl-3-methyl-4-nitroisoxazoles in good to quantitative yields without further purification. Then, Michael additions between 5-styryl-3-methyl-4-nitroisoxazoles and activated methylene compounds (including ethyl 2-nitroacetate and alkyl 2-cyanoacetates) were carried out in the presence of 10 mol% of Et3N in the same mortar with 3-5 minutes of continuous grinding to produce 3,4,5-trisubstituted isoxazoles in good to excellent yields.
Collapse
Affiliation(s)
- Xiao-Mu Hu
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University Changle Xilu 169 Xi'an 710032 P. R. China
| | - Hai Dong
- College of Pharmacy, Xi'an Medical University No. 1 Xinwang Rd, Weiyang Dist. Xi'an 710021 P. R. China
| | - Yue-Dan Li
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University Changle Xilu 169 Xi'an 710032 P. R. China
| | - Ping Huang
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University Changle Xilu 169 Xi'an 710032 P. R. China
| | - Zhuang Tian
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University Changle Xilu 169 Xi'an 710032 P. R. China
| | - Ping-An Wang
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University Changle Xilu 169 Xi'an 710032 P. R. China
| |
Collapse
|
117
|
Bollard HE, Banwell MG, Ward JS. (2 S,3 S,4 R,4a' R,5 R,5a' R,11a' R,12′ S,12a' R)-5-(Acetoxymethyl)-2′,2′,10′,10′-tetramethyloctahydro-3 H,8′ H-spiro[furan-2,7′-[1,3]dioxino[4′,5′:5,6]pyrano[3,2- d][1,3,6]trioxocine]-3,4,12′-triyl triacetate. IUCRDATA 2019. [DOI: 10.1107/s2414314619009866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
While the crystal structure analysis of the title compound, C26H38O15, a synthetic derivative of sucrose, was originally reported 40 years ago [Drew et al. (1979). Carbohydr. Res.
71, 35–42], the present work has allowed for the determination of its absolute configuration through the application of resonant scattering techniques.
Collapse
|
118
|
|
119
|
A Simple and Efficient Mechanochemical Route for the Synthesis of Salophen Ligands and of the Corresponding Zn, Ni, and Pd Complexes. Molecules 2019; 24:molecules24122314. [PMID: 31234486 PMCID: PMC6631197 DOI: 10.3390/molecules24122314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 11/17/2022] Open
Abstract
A number of salophen ligands and their Zn, Ni, and Pd complexes were synthesized by an efficient one-pot mechanosynthesis protocol. The reaction products were characterized by means of complementary solid-state techniques, i.e., powder X-ray diffraction, single-crystal X-ray diffraction, and solid-state NMR spectroscopy. Four new crystal structures of metal salophen complexes as DMSO solvates are here reported. The described simple and relatively fast (about 1 h for all derivatives) procedure is a good alternative to classical methods performed in organic solvents.
Collapse
|
120
|
Tigineh GT, Liu L. Systematic studies on mechanochemical synthesis: Schiff bases from solid aromatic primary amines and aldehydes. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Getinet Tamiru Tigineh
- Institute of ChemistryAcademia Sinica Taipei Taiwan
- Department of Chemical EngineeringNational Taiwan University of Science and Technology Taipei Taiwan
- Department of ChemistryBahir Dar University Bahir Dar Ethiopia
| | - Ling‐Kang Liu
- Institute of ChemistryAcademia Sinica Taipei Taiwan
- Department of ChemistryNational Taiwan University Taipei Taiwan
| |
Collapse
|
121
|
Kubota K, Takahashi R, Ito H. Mechanochemistry allows carrying out sensitive organometallic reactions in air: glove-box-and-Schlenk-line-free synthesis of oxidative addition complexes from aryl halides and palladium(0). Chem Sci 2019; 10:5837-5842. [PMID: 31293773 PMCID: PMC6566379 DOI: 10.1039/c9sc01711a] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022] Open
Abstract
Organic reactions that employ moisture- and/or oxygen-sensitive reagents or intermediates usually involve the use of glove-box or Schlenk-line techniques as well as dry and degassed solvents. Unfortunately, these requirements may greatly reduce the utility of the targeted organic molecules. Herein, we demonstrate that solvent-free mechanochemical synthetic techniques allow using highly oxygen-sensitive palladium(0) species in air for the stoichiometric oxidative addition of aryl halides. The low diffusion efficiency of gaseous oxygen in crystalline or amorphous solid-state reaction mixtures should be the main reason for the low impact of the presence of atmospheric oxygen on the sensitive oxidative addition reactions under the applied conditions. This study thus illustrates the outstanding potential of mechanochemistry to serve as an operationally simple, glove-box-and-Schlenk-line-free synthetic route to organometallic compounds and other valuable synthetic targets, even when sensitive reagents or intermediates are involved.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry and Frontier Chemistry Center , Faculty of Engineering , Hokkaido University , Sapporo , Hokkaido , Japan . ;
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) , Hokkaido University , Sapporo , Hokkaido , Japan
| | - Rina Takahashi
- Division of Applied Chemistry and Frontier Chemistry Center , Faculty of Engineering , Hokkaido University , Sapporo , Hokkaido , Japan . ;
| | - Hajime Ito
- Division of Applied Chemistry and Frontier Chemistry Center , Faculty of Engineering , Hokkaido University , Sapporo , Hokkaido , Japan . ;
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) , Hokkaido University , Sapporo , Hokkaido , Japan
| |
Collapse
|
122
|
Staleva P, Hernández JG, Bolm C. Mechanochemical Copper-Catalyzed Asymmetric Michael-Type Friedel-Crafts Alkylation of Indoles with Arylidene Malonates. Chemistry 2019; 25:9202-9205. [PMID: 31106927 DOI: 10.1002/chem.201901826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/18/2019] [Indexed: 12/12/2022]
Abstract
A mechanochemical version of the asymmetric Michael-type Friedel-Crafts alkylation of indoles with arylidene malonates was developed. The reaction proceeds under ambient atmosphere using a chiral bis(oxazoline)copper catalyst in a mixer mill. Under these reaction conditions nineteen 3-substituted indole derivatives were synthesized in good to excellent yields (up to 98 %), and with good enantioselectivities (up to 91:9 e.r.) after short milling times.
Collapse
Affiliation(s)
- Plamena Staleva
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - José G Hernández
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
123
|
Bose A, Mal P. Mechanochemistry of supramolecules. Beilstein J Org Chem 2019; 15:881-900. [PMID: 31019581 PMCID: PMC6466741 DOI: 10.3762/bjoc.15.86] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
The urge to use alternative energy sources has gained significant attention in the eye of chemists in recent years. Solution-based traditional syntheses are extremely useful, although they are often associated with certain disadvantages like generation of waste as by-products, use of large quantities of solvents which causes environmental hazard, etc. Contrastingly, achieving syntheses through mechanochemical methods are generally time-saving, environmentally friendly and more economical. This review is written to shed some light on supramolecular chemistry and the synthesis of various supramolecules through mechanochemistry.
Collapse
Affiliation(s)
- Anima Bose
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
124
|
Pang Y, Ishiyama T, Kubota K, Ito H. Iridium(I)‐Catalyzed C−H Borylation in Air by Using Mechanochemistry. Chemistry 2019; 25:4654-4659. [DOI: 10.1002/chem.201900685] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yadong Pang
- Division of Applied ChemistryGraduate School of EngineeringHokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Tatsuo Ishiyama
- Division of Applied ChemistryGraduate School of EngineeringHokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Koji Kubota
- Division of Applied ChemistryGraduate School of EngineeringHokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Hajime Ito
- Division of Applied ChemistryGraduate School of EngineeringHokkaido University Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD)Hokkaido University Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
125
|
Leonardi M, Estévez V, Villacampa M, Menéndez JC. Diversity‐Oriented Synthesis of Complex Pyrrole‐Based Architectures from Very Simple Starting Materials. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marco Leonardi
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de FarmaciaUniversidad Complutense 28040 Madrid Spain
| | - Verónica Estévez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de FarmaciaUniversidad Complutense 28040 Madrid Spain
| | - Mercedes Villacampa
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de FarmaciaUniversidad Complutense 28040 Madrid Spain
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de FarmaciaUniversidad Complutense 28040 Madrid Spain
| |
Collapse
|
126
|
Bolm C, Hernández JG. Mechanochemistry of Gaseous Reactants. Angew Chem Int Ed Engl 2019; 58:3285-3299. [DOI: 10.1002/anie.201810902] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Carsten Bolm
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - José G. Hernández
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
127
|
Affiliation(s)
- Carsten Bolm
- Institut für Organische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
| | - José G. Hernández
- Institut für Organische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
128
|
Andersen J, Brunemann J, Mack J. Exploring stable, sub-ambient temperatures in mechanochemistry via a diverse set of enantioselective reactions. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00027e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For mechanochemical reactions there is a fine balance between temperature and frequency. Although temperature is weighted heavily, frequency is critical.
Collapse
Affiliation(s)
- Joel Andersen
- Department of Chemistry
- University of Cincinnati
- Cincinnati
- USA
| | - James Brunemann
- Department of Chemistry
- University of Cincinnati
- Cincinnati
- USA
| | - James Mack
- Department of Chemistry
- University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
129
|
Yu J, Zhang C, Yang X, Su W. Decarboxylative acylation of N-free indoles enabled by a catalytic amount of copper catalyst and liquid-assisted grinding. Org Biomol Chem 2019; 17:4446-4451. [DOI: 10.1039/c9ob00622b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A mechanochemically Cu(ii)-catalyzed decarboxylative acylation of N-free indoles with O2 as a terminal oxidant was developed for the mild synthesis of 3-acylindoles.
Collapse
Affiliation(s)
- Jingbo Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- PR China
| | - Chao Zhang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- PR China
| | - Xinjie Yang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- PR China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- PR China
| |
Collapse
|
130
|
Belen’kii LI, Evdokimenkova YB. The literature of heterocyclic chemistry, part XVII, 2017. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019:337-418. [DOI: 10.1016/bs.aihch.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
131
|
Singh N, Dar AA, Kumar A. A Simple and Efficient Approach for the Synthesis of 1,3-Oxazolidines from β-Amino Alcohols Using Grinding Technique. ChemistrySelect 2018. [DOI: 10.1002/slct.201802369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nasseb Singh
- Synthetic Organic Chemistry Laboratory; Faculty of Sciences; Shri Mata Vaishno Devi University Katra; Jammu and Kashmir - 182320 India
| | - Alamgir A. Dar
- Bioorganic Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road, Jammu Tawi, J & K 180 001 India
- Research Centre for Residue and Quality Analysis; Sher-e-Kashmir University of Agricultural Sciences & Technology Kashmir; Srinagar - 190025, J & K India
| | - Anil Kumar
- Synthetic Organic Chemistry Laboratory; Faculty of Sciences; Shri Mata Vaishno Devi University Katra; Jammu and Kashmir - 182320 India
| |
Collapse
|
132
|
Howard JL, Brand MC, Browne DL. Switching Chemoselectivity: Using Mechanochemistry to Alter Reaction Kinetics. Angew Chem Int Ed Engl 2018; 57:16104-16108. [PMID: 30335216 PMCID: PMC6282732 DOI: 10.1002/anie.201810141] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 11/06/2022]
Abstract
A reaction manifold has been discovered in which the chemoselectivity can be altered by switching between neat milling and liquid assisted grinding (LAG) with polar additives. After investigation of the reaction mechanism, it has been established that this switching in reaction pathway is due to the neat mechanochemical conditions exhibiting different kinetics for a key step in the transformation. This proof of concept study demonstrates that mechanochemistry can be used to trap the kinetic product of a reaction. It is envisaged that, if this concept can be successfully applied to other transformations, novel synthetic processes could be discovered and known reaction pathways perturbed or diverted.
Collapse
Affiliation(s)
- Joseph L Howard
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3EQ, UK
| | - Michael C Brand
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3EQ, UK
| | - Duncan L Browne
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3EQ, UK
| |
Collapse
|
133
|
Howard JL, Brand MC, Browne DL. Switching Chemoselectivity: Using Mechanochemistry to Alter Reaction Kinetics. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810141] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joseph L. Howard
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3EQ UK
| | - Michael C. Brand
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3EQ UK
| | - Duncan L. Browne
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3EQ UK
| |
Collapse
|
134
|
Hussen AS, Pandey AP, Sharma A. Mechanochemical- (Hand-Grinding-) Assisted Domino Synthesis of Fused Pyran-Spirooxindoles under Solvent- and Catalyst-Free Condition. ChemistrySelect 2018. [DOI: 10.1002/slct.201802344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Abdulkadir Shube Hussen
- D-305; Medicinal Chemistry Laboratory; Department of Chemistry; Indian Institute of technology Roorkee; Roorkee 247667 India
| | - Amar Prakash Pandey
- D-305; Medicinal Chemistry Laboratory; Department of Chemistry; Indian Institute of technology Roorkee; Roorkee 247667 India
| | - Anuj Sharma
- D-305; Medicinal Chemistry Laboratory; Department of Chemistry; Indian Institute of technology Roorkee; Roorkee 247667 India
| |
Collapse
|
135
|
Tao Y, Lin J, Zhang Z, Guo Q, Zuo J, Fan C, Lu B. Supersonic gas flow for preparation of ultrafine silicon powders and mechanochemical synthesis. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181432. [PMID: 30564425 PMCID: PMC6281941 DOI: 10.1098/rsos.181432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/03/2018] [Indexed: 06/09/2023]
Abstract
We report the supersonic gas flow for crush and mechanochemical synthesis. The key instrument parameters for production of supersonic particle flow, such as annular nozzle, expansion angle and length of the accelerating duct, are theoretically designed and optimized. Based on the theoretical results, supersonic gas flow equipment is fabricated. The capacity of the present equipment for production of supersonic particle flow is demonstrated by particle image velocimetry measurement, and the maximum transient velocity of the particles achieves as much as 550 m s-1. Additionally, the present equipment is applied for continuous and physical preparation of ultrafine Si powders with a high scalability and mechanochemical synthesis of TiO2 and TiNx nanopowders at a high production rate.
Collapse
Affiliation(s)
- Yang Tao
- Author for correspondence: Yang Tao e-mail:
| | | | | | | | | | | | | |
Collapse
|
136
|
Alam MT, Maiti S, Mal P. The mechanochemical synthesis of quinazolin-4(3 H)-ones by controlling the reactivity of IBX. Beilstein J Org Chem 2018; 14:2396-2403. [PMID: 30254705 PMCID: PMC6142747 DOI: 10.3762/bjoc.14.216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/24/2018] [Indexed: 01/31/2023] Open
Abstract
Performing any synthesis using several arylamines and hypervalent iodine(V) reagents by direct mixing is unrealistic because of the high exothermic reaction or explosion. Herein we demonstrate, when anilines were substituted with an amide group at the ortho-position, successful chemical reactions could be performed due to intramolecular control. At maximum contact of the reacting substances, i.e., under solvent-free mechanochemical conditions, 2-aminobenzamides, aryl-, alkylaldehydes and the iodine(V) reagent o-iodoxybenzoic acid (IBX) led to substituted quinazolin-4(3H)-one derivatives in fair yields.
Collapse
Affiliation(s)
- Md Toufique Alam
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India; Tel: +919439613856
| | - Saikat Maiti
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India; Tel: +919439613856
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India; Tel: +919439613856
| |
Collapse
|
137
|
Andersen J, Mack J. Insights into Mechanochemical Reactions at Targetable and Stable, Sub‐ambient Temperatures. Angew Chem Int Ed Engl 2018; 57:13062-13065. [DOI: 10.1002/anie.201805263] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Joel Andersen
- Department of Chemistry University of Cincinnati 404 Crosley Tower Cincinnati Ohio USA
| | - James Mack
- Department of Chemistry University of Cincinnati 404 Crosley Tower Cincinnati Ohio USA
| |
Collapse
|
138
|
Andersen J, Mack J. Insights into Mechanochemical Reactions at Targetable and Stable, Sub‐ambient Temperatures. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805263] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Joel Andersen
- Department of Chemistry University of Cincinnati 404 Crosley Tower Cincinnati Ohio USA
| | - James Mack
- Department of Chemistry University of Cincinnati 404 Crosley Tower Cincinnati Ohio USA
| |
Collapse
|
139
|
Affiliation(s)
- Martin Obst
- Institut für Organische Chemie; Universität Regensburg; Universitätsstraße 31 93040 Regensburg Germany
| | - Burkhard König
- Institut für Organische Chemie; Universität Regensburg; Universitätsstraße 31 93040 Regensburg Germany
| |
Collapse
|
140
|
Schumacher C, Crawford DE, RaguŽ B, Glaum R, James SL, Bolm C, Hernández JG. Mechanochemical dehydrocoupling of dimethylamine borane and hydrogenation reactions using Wilkinson's catalyst. Chem Commun (Camb) 2018; 54:8355-8358. [PMID: 29993055 DOI: 10.1039/c8cc04487b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mechanochemistry enabled the selective synthesis of the recherché orange polymorph of Wilkinson's catalyst [RhCl(PPh3)3]. The mechanochemically prepared Rh-complex catalysed the solvent-free dehydrogenation of Me2NH·BH3 in a ball mill. The in situ-generated hydrogen (H2) could be utilised for Rh-catalysed hydrogenation reactions by ball milling.
Collapse
Affiliation(s)
- Christian Schumacher
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen D-52074, Germany.
| | | | | | | | | | | | | |
Collapse
|
141
|
Shao QL, Jiang ZJ, Su WK. Solvent-free mechanochemical Buchwald-Hartwig amination of aryl chlorides without inert gas protection. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.04.078] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
142
|
Howard JL, Sagatov Y, Browne DL. Mechanochemical electrophilic fluorination of liquid beta-ketoesters. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.11.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
143
|
Xu H, Liu HW, Chen K, Wang GW. One-Pot Multicomponent Mechanosynthesis of Polysubstituted trans-2,3-Dihydropyrroles and Pyrroles from Amines, Alkyne Esters, and Chalcones. J Org Chem 2018; 83:6035-6049. [PMID: 29745226 DOI: 10.1021/acs.joc.8b00665] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient and practical one-pot multicomponent reaction of amines with alkyne esters and chalcones promoted by I2/PhI(OAc)2 has been developed under solvent-free ball-milling conditions to afford a variety of polysubstituted trans-2,3-dihydropyrroles in moderate to good yields. The present method features a short reaction time, mild reaction conditions, broad substrate scope, and feasibility of large-scale synthesis. Intriguingly, this protocol can also furnish the corresponding synthetically more attractive pyrroles with the addition of an oxidant in a one-pot way.
Collapse
Affiliation(s)
- Hui Xu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Hong-Wei Liu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Kuan Chen
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Guan-Wu Wang
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China.,State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| |
Collapse
|
144
|
Bolm C, Hernández JG. From Synthesis of Amino Acids and Peptides to Enzymatic Catalysis: A Bottom-Up Approach in Mechanochemistry. CHEMSUSCHEM 2018; 11:1410-1420. [PMID: 29436773 DOI: 10.1002/cssc.201800113] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Recently, chemical reactions induced or facilitated by mechanical energy have gained recognition in diverse areas of chemical synthesis. In particular, mechanosyntheses of amino acids and short peptides, along with their applications in catalysis, have revealed the high degree of stability of peptide bonds in environments of harsh mechanical stress. These observations quickly led to the recent interest in developing mechanochemical enzymatic reactions. Experimentally, manual grinding, ball-milling techniques, and twin-screw extrusion technology have proven valuable to convey mechanical forces into a chemical synthesis. These practices have enabled the establishment of more sustainable alternatives for chemical synthesis by reducing the use of organic solvents and waste production, thereby having a direct impact on the E-factor of the chemical process. In this Minireview, the series of events that allowed the development of mechanochemical enzymatic reactions are described from a bottom-up perspective.
Collapse
Affiliation(s)
- Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - José G Hernández
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
145
|
Eguaogie O, Vyle JS, Conlon PF, Gîlea MA, Liang Y. Mechanochemistry of nucleosides, nucleotides and related materials. Beilstein J Org Chem 2018; 14:955-970. [PMID: 29765475 PMCID: PMC5942386 DOI: 10.3762/bjoc.14.81] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
The application of mechanical force to induce the formation and cleavage of covalent bonds is a rapidly developing field within organic chemistry which has particular value in reducing or eliminating solvent usage, enhancing reaction rates and also in enabling the preparation of products which are otherwise inaccessible under solution-phase conditions. Mechanochemistry has also found recent attention in materials chemistry and API formulation during which rearrangement of non-covalent interactions give rise to functional products. However, this has been known to nucleic acids science almost since its inception in the late nineteenth century when Miescher exploited grinding to facilitate disaggregation of DNA from tightly bound proteins through selective denaturation of the latter. Despite the wide application of ball milling to amino acid chemistry, there have been limited reports of mechanochemical transformations involving nucleoside or nucleotide substrates on preparative scales. A survey of these reactions is provided, the majority of which have used a mixer ball mill and display an almost universal requirement for liquid to be present within the grinding vessel. Mechanochemistry of charged nucleotide substrates, in particular, provides considerable benefits both in terms of efficiency (reducing total processing times from weeks to hours) and by minimising exposure to aqueous conditions, access to previously elusive materials. In the absence of large quantities of solvent and heating, side-reactions can be reduced or eliminated. The central contribution of mechanochemistry (and specifically, ball milling) to the isolation of biologically active materials derived from nuclei by grinding will also be outlined. Finally non-covalent associative processes involving nucleic acids and related materials using mechanochemistry will be described: specifically, solid solutions, cocrystals, polymorph transitions, carbon nanotube dissolution and inclusion complex formation.
Collapse
Affiliation(s)
- Olga Eguaogie
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Joseph S Vyle
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Patrick F Conlon
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Manuela A Gîlea
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Yipei Liang
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| |
Collapse
|
146
|
Denlinger KL, Ortiz-Trankina L, Carr P, Benson K, Waddell DC, Mack J. Liquid-assisted grinding and ion pairing regulates percentage conversion and diastereoselectivity of the Wittig reaction under mechanochemical conditions. Beilstein J Org Chem 2018; 14:688-696. [PMID: 29623132 PMCID: PMC5870152 DOI: 10.3762/bjoc.14.57] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/06/2018] [Indexed: 11/24/2022] Open
Abstract
Mechanochemistry is maturing as a discipline and continuing to grow, so it is important to continue understanding the rules governing the system. In a mechanochemical reaction, the reactants are added into a vessel along with one or more grinding balls and the vessel is shaken at high speeds to facilitate a chemical reaction. The dielectric constant of the solvent used in liquid-assisted grinding (LAG) and properly chosen counter-ion pairing increases the percentage conversion of stilbenes in a mechanochemical Wittig reaction. Utilizing stepwise addition/evaporation of ethanol in liquid-assisted grinding also allows for the tuning of the diastereoselectivity in the Wittig reaction.
Collapse
Affiliation(s)
- Kendra Leahy Denlinger
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| | - Lianna Ortiz-Trankina
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| | - Preston Carr
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| | - Kingsley Benson
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| | - Daniel C Waddell
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| | - James Mack
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| |
Collapse
|
147
|
Yu J, Hong Z, Yang X, Jiang Y, Jiang Z, Su W. Bromide-assisted chemoselective Heck reaction of 3-bromoindazoles under high-speed ball-milling conditions: synthesis of axitinib. Beilstein J Org Chem 2018; 14:786-795. [PMID: 29719575 PMCID: PMC5905281 DOI: 10.3762/bjoc.14.66] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/21/2018] [Indexed: 11/25/2022] Open
Abstract
A mechanically-activated chemoselective Heck coupling for the synthesis of 3-vinylindazoles has been developed with the aid of catalytic amounts of TBAB and NaBr as both dehalogenation restrainer and grinding auxiliary. After tuning of the chemical conditions and mechanical parameters, a series of non-activated 3-bromoindazoles and a broad scope of olefins worked well to give the corresponding coupling products in good to excellent yields. A further application of this protocol was performed in a two-step mechanochemical Heck/Migita cross coupling, which provided a highly efficient route for the synthesis of axitinib.
Collapse
Affiliation(s)
- Jingbo Yu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zikun Hong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xinjie Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yu Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhijiang Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
148
|
Mantovani AC, Hernández JG, Bolm C. Synthesis of 3-Iodobenzofurans by Electrophilic Cyclization under Solventless Conditions in a Ball Mill. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anderson C. Mantovani
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - José G. Hernández
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
149
|
Cheng H, Hernández JG, Bolm C. Mechanochemical Cobalt-Catalyzed C−H Bond Functionalizations by Ball Milling. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800161] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hanchao Cheng
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1, D- 52074 Aachen Germany
| | - José G. Hernández
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1, D- 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1, D- 52074 Aachen Germany
| |
Collapse
|
150
|
Leonardi M, Villacampa M, Menéndez JC. Multicomponent mechanochemical synthesis. Chem Sci 2018; 9:2042-2064. [PMID: 29732114 PMCID: PMC5909673 DOI: 10.1039/c7sc05370c] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Historically, the use of mechanochemical methods in synthesis has been almost negligible, but their perception by the synthetic community has changed in recent years and they are on their way to becoming mainstream. However, the hybridization of mechanochemical synthesis with methodologies designed to increase synthetic efficiency by allowing the generation of several bonds in a single operation has taken off only recently, but it already constitutes a very promising approach to sustainable chemistry. In this context, we provide in this Perspective a critical summary and discussion of the main known synthetic methods based on mechanochemical multicomponent reactions.
Collapse
Affiliation(s)
- Marco Leonardi
- Unidad de Química Orgánica y Farmacéutica , Departamento de Química en Ciencias Farmacéuticas , Facultad de Farmacia , Universidad Complutense , 28040 Madrid , Spain .
| | - Mercedes Villacampa
- Unidad de Química Orgánica y Farmacéutica , Departamento de Química en Ciencias Farmacéuticas , Facultad de Farmacia , Universidad Complutense , 28040 Madrid , Spain .
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica , Departamento de Química en Ciencias Farmacéuticas , Facultad de Farmacia , Universidad Complutense , 28040 Madrid , Spain .
| |
Collapse
|