101
|
Fan XL, Zhang Y, Li X, Fu QL. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci 2020; 77:2771-2794. [PMID: 31965214 PMCID: PMC7223321 DOI: 10.1007/s00018-020-03454-6] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) have been extensively investigated for the treatment of various diseases. The therapeutic potential of MSCs is attributed to complex cellular and molecular mechanisms of action including differentiation into multiple cell lineages and regulation of immune responses via immunomodulation. The plasticity of MSCs in immunomodulation allow these cells to exert different immune effects depending on different diseases. Understanding the biology of MSCs and their role in treatment is critical to determine their potential for various therapeutic applications and for the development of MSC-based regenerative medicine. This review summarizes the recent progress of particular mechanisms underlying the tissue regenerative properties and immunomodulatory effects of MSCs. We focused on discussing the functional roles of paracrine activities, direct cell-cell contact, mitochondrial transfer, and extracellular vesicles related to MSC-mediated effects on immune cell responses, cell survival, and regeneration. This will provide an overview of the current research on the rapid development of MSC-based therapies.
Collapse
Affiliation(s)
- Xing-Liang Fan
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Yuelin Zhang
- Department of Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Xin Li
- Department of Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou, 510080, People's Republic of China.
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
102
|
Chen Y, Du Q, Zou Y, Guo Q, Huang J, Tao L, Shen X, Peng J. Co-delivery of doxorubicin and epacadostat via heparin coated pH-sensitive liposomes to suppress the lung metastasis of melanoma. Int J Pharm 2020; 584:119446. [PMID: 32439586 DOI: 10.1016/j.ijpharm.2020.119446] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/22/2020] [Accepted: 05/16/2020] [Indexed: 12/14/2022]
Abstract
High metastasis is responsible for the failure in the treatment of melanoma. Chemoimmunotherapy has shown conspicuous inhibition effects not only on the growth of tumor in situ, but also on the metastasis to distant organs. Given that the indoleamine-2,3 dioxygenase (IDO) overexpressed in the microenvironment of tumor leads to the immune escape, the combination of chemotherapeutic drug and IDO inhibitor might be a promising chemoimmunotherapy. Besides, the hematogenous metastasis mediated by platelets was supposed to be blocked by the heparin (HP). Therefore, a drug delivery system with all these elements involved might be a potential treatment for melanoma. Here, we developed a pH-sensitive liposomal dual-delivery system for doxorubicin (DOX) and epacadostat (EPA) with HP coated (HP/LDE). It was confirmed to enhance cytotoxicity and apoptosis, reverse the platelets-activated epithelial mesenchymal transformation (EMT) and prevent the invasion and migration in vitro. After systemic administration, HP/LDE provided the optimum anti-metastasis effect on the melanoma. The results of evaluation on DC maturation, CD8+ cytotoxic T lymphocytes (CTLs) activation and T cell mediated cytotoxicity were consistent in vitro and in vivo. Taken together, our study established a functional liposomal dual-delivery system with ideal anti-metastasis efficacy on melanoma.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, ChinaThe High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Zou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, ChinaThe High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Qianqian Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, ChinaThe High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Jing Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, ChinaThe High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Ling Tao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, ChinaThe High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Xiangchun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, ChinaThe High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Jianqing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, ChinaThe High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
103
|
Sun L. Advances in the discovery and development of selective heme-displacing IDO1 inhibitors. Expert Opin Drug Discov 2020; 15:1223-1232. [DOI: 10.1080/17460441.2020.1781811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
104
|
Kremenovic M, Rombini N, Chan AA, Gruber T, Bäriswyl L, Lee DJ, Schenk M. Characterization of a Myeloid Activation Signature that Correlates with Survival in Melanoma Patients. Cancers (Basel) 2020; 12:E1431. [PMID: 32486450 PMCID: PMC7352688 DOI: 10.3390/cancers12061431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/31/2022] Open
Abstract
Understanding the cellular interactions within the tumor microenvironment (TME) of melanoma paved the way for novel therapeutic modalities, such as T cell-targeted immune checkpoint inhibitors (ICI). However, only a limited fraction of patients benefits from such therapeutic modalities, highlighting the need for novel predictive and prognostic biomarkers. As myeloid cells orchestrate the tumor-specific immune response and influence the efficacy of ICI, assessing their activation state within the TME is of clinical relevance. Here, we characterized a myeloid activation (MA) signature, comprising the three genes Cxcl11, Gbp1, and Ido1, from gene expression data of human myeloid cells stimulated with poly(I:C) or cGAMP. This MA signature positively correlated to overall survival in melanoma. In addition, increased expression of the MA signature was observed in melanoma patients responding to ICI (anti-PD-1), as compared to non-responders. Furthermore, the MA signature was validated in the murine B16F10 melanoma model where it was induced and associated with decreased tumor growth upon intratumoral administration of poly(I:C) and cGAMP. Finally, we were able to visualize co-expression of the MA signature genes in myeloid cells of human melanoma tissues using RNAscope in situ hybridization. In conclusion, the MA signature indicates the activation state of myeloid cells and represents a prognostic biomarker for the overall survival in melanoma patients.
Collapse
Affiliation(s)
- Mirela Kremenovic
- Institute of Pathology, Experimental Pathology, University of Bern, 3008 Bern, Switzerland; (M.K.); (N.R.); (T.G.); (L.B.))
| | - Nives Rombini
- Institute of Pathology, Experimental Pathology, University of Bern, 3008 Bern, Switzerland; (M.K.); (N.R.); (T.G.); (L.B.))
| | - Alfred A. Chan
- Division of Dermatology, Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (A.A.C.); (D.J.L.)
| | - Thomas Gruber
- Institute of Pathology, Experimental Pathology, University of Bern, 3008 Bern, Switzerland; (M.K.); (N.R.); (T.G.); (L.B.))
| | - Lukas Bäriswyl
- Institute of Pathology, Experimental Pathology, University of Bern, 3008 Bern, Switzerland; (M.K.); (N.R.); (T.G.); (L.B.))
| | - Delphine J. Lee
- Division of Dermatology, Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (A.A.C.); (D.J.L.)
| | - Mirjam Schenk
- Institute of Pathology, Experimental Pathology, University of Bern, 3008 Bern, Switzerland; (M.K.); (N.R.); (T.G.); (L.B.))
| |
Collapse
|
105
|
Immunohistochemical Features of Indoleamine 2,3-Dioxygenase (IDO) in Various Types of Lymphoma: A Single Center Experience. Diagnostics (Basel) 2020; 10:diagnostics10050275. [PMID: 32370297 PMCID: PMC7277988 DOI: 10.3390/diagnostics10050275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Indolamine-2,3-dioxygenase (IDO) is an intracellular enzyme that catalyzes amino acid tryptophan to L-kynurenine. IDO is overexpressed in various cancers and several IDO inhibitors have been assessed in multiple clinical trials. If an IDO inhibitor is to be commercialized, IDO immunohistochemistry will be an important method. In this study, 80% (28/35) of mature T- and natural killer (NK)-cell neoplasms showed positivity for IDO protein (score 1: five, score 2: one, score 3: seven, score 4: fifteen). In addition, 29.9% (23/77) of mature B-cell lymphomas showed positivity for IDO protein (score 1: three, score 2: tewelve, score 3: four, score 4: four). In mature B-cell lymphomas, 95.7% (22/23) of IDO positive cases were diffuse B-cell lymphomas. Our study includes various types of lymphoma that were previously unreported and shows various patterns of IDO stain according to the type. When the results are accumulated, IDO immunohistochemistry will be a useful tool to diagnose lymphomas and to predict their prognosis.
Collapse
|
106
|
Design, Synthesis and Biological Evaluation of Phenyl Urea Derivatives as IDO1 Inhibitors. Molecules 2020; 25:molecules25061447. [PMID: 32210078 PMCID: PMC7144934 DOI: 10.3390/molecules25061447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/31/2023] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-containing intracellular enzyme that catalyzes the first and rate-determining step of tryptophan metabolism and is an important immunotherapeutic target for the treatment of cancer. In this study, we designed and synthesized a new series of compounds as potential IDO1 inhibitors. These compounds were then evaluated for inhibitory activity against IDO1 and tryptophan 2,3-dioxygenase (TDO). Among them, the three phenyl urea derivatives i12, i23, i24 as showed potent IDO1 inhibition, with IC50 values of 0.1–0.6 μM and no compound exhibited TDO inhibitory activity. Using molecular docking, we predicted the binding mode of compound i12 within IDO1. Compound i12 was further investigated by determining its in vivo pharmacokinetic profile and anti-tumor efficacy. The pharmacokinetic study revealed that compound i12 had satisfactory properties in mice, with moderate plasma clearance (22.45 mL/min/kg), acceptable half-life (11.2 h) and high oral bioavailability (87.4%). Compound i12 orally administered at 15 mg/kg daily showed tumor growth inhibition (TGI) of 40.5% in a B16F10 subcutaneous xenograft model and 30 mg/kg daily showed TGI of 34.3% in a PAN02 subcutaneous xenograft model. In addition, the body weight of i12-treated mice showed no obvious reduction compared with the control group. Overall, compound i12 is a potent lead compound for developing IDO1 inhibitors and anti-tumor agents.
Collapse
|
107
|
Costa RLB, Czerniecki BJ. Clinical development of immunotherapies for HER2 + breast cancer: a review of HER2-directed monoclonal antibodies and beyond. NPJ Breast Cancer 2020; 6:10. [PMID: 32195333 PMCID: PMC7067811 DOI: 10.1038/s41523-020-0153-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
Human epidermal growth factor receptor 2-positive (HER2+) breast cancer accounts for ~25% of breast cancer cases. Monoclonal antibodies (mAbs) against HER2 have led to unparalleled clinical benefit for a subset of patients with HER2+ breast cancer. In this narrative review, we summarize advances in the understanding of immune system interactions, examine clinical developments, and suggest rationales for future investigation of immunotherapies for HER2+ breast cancer. Complex interactions have been found between different branches of the immune system, HER2+ breast cancer, and targeted treatments (approved and under investigation). A new wave of immunotherapies, such as novel HER2-directed mAbs, antibody drug conjugates, vaccines, and adoptive T-cell therapies, are being studied in a broad population of patients with HER2-expressing tumors. The development of immunotherapies for HER2+ breast cancer represents an evolving field that should take into account interactions between different components of the immune system.
Collapse
Affiliation(s)
- Ricardo L B Costa
- Departments of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Brian J Czerniecki
- Departments of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| |
Collapse
|
108
|
Abstract
Brazilian-born British biologist Dr. Peter Medawar played an integral role in developing the concepts of immunologic rejection and tolerance, which led to him receiving the Nobel Prize "for the discovery of acquired immunologic tolerance" and eventually made organ transplantation a reality. However, at the time of his early work in tolerance, a paradox to his theories was brought to his attention; how was pregnancy possible? Pregnancy resembles organ transplantation in that the fetus, possessing paternal antigens, is a semi-allogeneic graft that can survive without immunosuppression for 9 months. To answer this question, Medawar proposed three hypotheses of how a mother supports her fetus in utero, now known as "Medawar's Paradox." The mechanisms that govern fetomaternal tolerance are still incompletely understood but may provide critical insight into how to achieve immune tolerance in organ transplantation. Here, we review current understanding of the immune factors responsible for fetomaternal tolerance during pregnancy and discuss the potential implications for advances in transplantation science.
Collapse
Affiliation(s)
- Victoria Rendell
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Natalie M Bath
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Todd V Brennan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
109
|
He JG, Li BB, Zhou L, Yan D, Xie QL, Zhao W. Indoleamine 2,3-dioxgenase-transfected mesenchymal stem cells suppress heart allograft rejection by increasing the production and activity of dendritic cells and regulatory T cells. J Investig Med 2020; 68:728-737. [PMID: 31892638 DOI: 10.1136/jim-2019-001160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2019] [Indexed: 01/14/2023]
Abstract
Expression of indoleamine 2,3-dioxygenase (IDO) in mesenchymal stem cells (MSC) is thought to contribute to MSC-mediated immunosuppression. A lentiviral-based transgenic system was used to generate bone marrow stem cells (BMSC) which stably expressed IDO (IDO-BMSCs). Coculture of IDO-BMSCs with dendritic cells (DC) or T cells was used to evaluate the immunomodulatory effect of IDO-BMSCs. A heterotopic heart transplant model in rats was used to evaluate allograft rejection after IDO-BMSC treatment. Mechanisms of IDO-BMSC-mediated immunosuppression were investigated by evaluating levels of proinflammatory and anti-inflammatory cytokines, and production of Tregs. A significant decrease in DC marker-positive cells and a significant increase in Tregs were observed in IDO-BMSC cocultured. Treatment of transplanted rats with IDO-BMSCs was associated with significantly prolonged graft survival. Compared with the control groups, transplanted animals treated with IDO-BMSCs had a (1) significantly higher ejection fraction and fractional shortening, (2) significantly lower expression of CD86, CD80, and MHCII, and significantly higher expression in CD274, and Tregs, and (3) significantly higher levels of interleukin-10 (IL-10), transforming growth factor beta-1 (TGF-β1), TGF-β2, and TGF-β3, and significantly lower levels of IL-2 and interferon gamma. Our results expand our understanding of the molecular mechanisms underlying suppression of heart allograft rejection via IDO-expressing BMSCs.
Collapse
Affiliation(s)
- Ji-Gang He
- Department of Cardiac and Vascular Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Bei-Bei Li
- Department of Cardiac and Vascular Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Liang Zhou
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Dan Yan
- Intensive Care Unit, First People's Hospital of Yunnan Province, Kunming, China
| | - Qiao-Li Xie
- Department of Cardiac and Vascular Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Wei Zhao
- Department of Cardiac and Vascular Surgery, First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
110
|
Bonezi V, Cataneo AHD, Branquinho MSF, Silva MBB, Gonzalez-Dias P, Pereira SS, Ferreira LCDS, Nakaya HI, Campa A, Wowk PF, Silveira ELV. Flavivirus-Mediating B Cell Differentiation Into Antibody-Secreting Cells in Humans Is Associated With the Activation of the Tryptophan Metabolism. Front Immunol 2020; 11:20. [PMID: 32117223 PMCID: PMC7026258 DOI: 10.3389/fimmu.2020.00020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Patients infected with the Dengue virus (DENV) often present with a massive generation of DENV-specific antibody-secreting cells (ASCs) in the blood. In some cases, these ASCs represent more than 50% of the circulating B cells, a higher magnitude than those induced by other infections, vaccinations, and plasma cell lymphomas. However, it remains unclear how the DENV infection elicits this colossal response. To address this issue, we utilised an in vitro strategy to induce human PBMCs of healthy individuals incubated with DENV particles (DENV4 TVP/360) to differentiate into ASCs. As controls, PBMCs were incubated with a mitogen cocktail or supernatants of uninfected C6/36 cells (mock). The ASC phenotype and function were increasingly detected in the DENV and mitogen-cultured PBMCs as compared to mock-treated cells. In contrast to the in vivo condition, secreted IgG derived from the PBMC-DENV culture was not DENV-specific. Lower ASC numbers were observed when inactivated viral particles or purified B cells were added to the cultures. The physical contact was essential between B cells and the remaining PBMCs for the DENV-mediated ASC response. Considering the evidence for the activation of the tryptophan metabolism detected in the serum of Dengue patients, we assessed its relevance in the DENV-mediated ASC differentiation. For this, tryptophan and its respective metabolites were quantified in the supernatants of cell cultures through mass spectrophotometry. Tryptophan depletion and kynurenine accumulation were found in the supernatants of PBMC-DENV cultures, which presented enhanced detection of indoleamine 2,3-dioxygenase 1 and 2 transcripts as compared to controls. In PBMC-DENV cultures, tryptophan and kynurenine levels strongly correlated to the respective ASC numbers, while the kynurenine levels were directly proportional to the secreted IgG titers. Contrastingly, PBMCs incubated with Zika or attenuated Yellow Fever viruses showed no correlation between their kynurenine concentrations and ASC numbers. Therefore, our data revealed the existence of distinct pathways for the DENV-mediated ASC differentiation and suggest the involvement of the tryptophan metabolism in this cellular process triggered by flavivirus infections.
Collapse
Affiliation(s)
- Vivian Bonezi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Allan H D Cataneo
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/Fiocruz Paraná), Curitiba, Brazil
| | - Maryana S F Branquinho
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maysa B B Silva
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patricia Gonzalez-Dias
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Scientific Platform Pasteur, University of São Paulo, São Paulo, Brazil
| | - Samuel S Pereira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luís C de Souza Ferreira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Scientific Platform Pasteur, University of São Paulo, São Paulo, Brazil
| | - Ana Campa
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pryscilla F Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/Fiocruz Paraná), Curitiba, Brazil
| | - Eduardo L V Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
111
|
The Role of Extracellular Vesicles as Paracrine Effectors in Stem Cell-Based Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:175-193. [PMID: 31898787 DOI: 10.1007/978-3-030-31206-0_9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cells act in a paracrine manner through the secretion of biologically active cargo that acts on cells locally and systemically. These active molecules include not only soluble factors but also extracellular vesicles (EVs) that have recently emerged as a mechanism of cell-to-cell communication. EVs act as vehicles that transfer molecules between originator and recipient cells, thereby modifying the phenotype and function of the latter. As EVs released from stem cells may successfully activate regenerative processes in injured cells, their application as a form of therapy can be envisaged. EVs exert these proregenerative effects through the modulation of relevant cellular processes including proliferation, angiogenesis, oxidative stress, inflammation, and immunotolerance, among others. In this chapter, we review the preclinical studies that report the effect of stem cell-derived EVs in various pathological models of human disease.
Collapse
|
112
|
Improving Dendritic Cell Cancer Vaccine Potency Using RNA Interference. Methods Mol Biol 2020. [PMID: 32006405 DOI: 10.1007/978-1-0716-0290-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Dendritic cell cancer vaccines have already become a treatment modality for patients with various cancer types. However, the curative potential of this immunotherapy is limited by the existence of negative feedback mechanisms that control dendritic cells (DCs) and T-cell function. By inhibiting the expression of inhibitory factors using RNA interference technology, a new generation of DC vaccines was developed. Vaccine-stimulated T cells showed antitumor effects both in vitro and in cancer patients. Here, we describe the development and validation of a fully GMP-compliant production process of ex vivo DC cancer vaccines combined with the blockade of immunosuppressive pathways using small interfering RNAs. The protocol can be used for DC-based therapy for all cancer types.
Collapse
|
113
|
Adhikaree J, Moreno-Vicente J, Kaur AP, Jackson AM, Patel PM. Resistance Mechanisms and Barriers to Successful Immunotherapy for Treating Glioblastoma. Cells 2020; 9:E263. [PMID: 31973059 PMCID: PMC7072315 DOI: 10.3390/cells9020263] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is inevitably refractory to surgery and chemoradiation. The hope for immunotherapy has yet to be realised in the treatment of GBM. Immune checkpoint blockade antibodies, particularly those targeting the Programme death 1 (PD-1)/PD-1 ligand (PD-L1) pathway, have improved the prognosis in a range of cancers. However, its use in combination with chemoradiation or as monotherapy has proved unsuccessful in treating GBM. This review focuses on our current knowledge of barriers to immunotherapy success in treating GBM, such as diminished pre-existing anti-tumour immunity represented by low levels of PD-L1 expression, low tumour mutational burden and a severely exhausted T-cell tumour infiltrate. Likewise, systemic T-cell immunosuppression is seen driven by tumoural factors and corticosteroid use. Furthermore, unique anatomical differences with primary intracranial tumours such as the blood-brain barrier, the type of antigen-presenting cells and lymphatic drainage contribute to differences in treatment success compared to extracranial tumours. There are, however, shared characteristics with those known in other tumours such as the immunosuppressive tumour microenvironment. We conclude with a summary of ongoing and future immune combination strategies in GBM, which are representative of the next wave in immuno-oncology therapeutics.
Collapse
Affiliation(s)
- Jason Adhikaree
- Host-Tumour Interactions Group, Division of Cancer and Stem Cells, BioDiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; (A.P.K.); (A.M.J.); (P.M.P.)
| | - Julia Moreno-Vicente
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton, Southampton General Hospital, Southampton, Hants SO16 6YD, UK;
| | - Aanchal Preet Kaur
- Host-Tumour Interactions Group, Division of Cancer and Stem Cells, BioDiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; (A.P.K.); (A.M.J.); (P.M.P.)
| | - Andrew Mark Jackson
- Host-Tumour Interactions Group, Division of Cancer and Stem Cells, BioDiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; (A.P.K.); (A.M.J.); (P.M.P.)
| | - Poulam M. Patel
- Host-Tumour Interactions Group, Division of Cancer and Stem Cells, BioDiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; (A.P.K.); (A.M.J.); (P.M.P.)
| |
Collapse
|
114
|
Hua S, Chen F, Wang X, Gou S. Dual-functional conjugates improving cancer immunochemotherapy by inhibiting tubulin polymerization and indoleamine-2,3-dioxygenase. Eur J Med Chem 2020; 189:112041. [PMID: 31954880 DOI: 10.1016/j.ejmech.2020.112041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
A series of novel conjugates comprising tublin and IDO inhibitors were designed, synthesized and evaluated for their antiproliferative activity. Among them, HI5, composed of combretastatin A-4 (CA-4) and (D)-1-methyltryptophan (D-MT) by a linker, exhibited the most potent antitumor activity, in particular with higher IC50 value (0.07 μM) than CA-4 (0.21 μM) against HeLa cancer cell line. Mechanism studies indicated that HI5 can inhibit tubulin polymerization and cell migration, cause G2/M phase arrest, concurrent induce apoptosis via the mitochondrial dependent apoptosis pathway and cause reactive oxidative stress generation in HeLa cells. Furthermore, HI5 can inhibit IDO expression and decrease kynurenine production, leading to stimulating T cells activation and proliferation to enhance antitumor immunity in vitro. Interestingly, HI5 can effectively limit the tumor growth in the HeLa xenograft mice models without causing significant loss of body weight. Consequently, such a conjugation can be a potent and safe immunochemotherapeutic method for improving cancer therapy.
Collapse
Affiliation(s)
- Shixian Hua
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Xinyi Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
115
|
Opitz CA, Somarribas Patterson LF, Mohapatra SR, Dewi DL, Sadik A, Platten M, Trump S. The therapeutic potential of targeting tryptophan catabolism in cancer. Br J Cancer 2020; 122:30-44. [PMID: 31819194 PMCID: PMC6964670 DOI: 10.1038/s41416-019-0664-6] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
Based on its effects on both tumour cell intrinsic malignant properties as well as anti-tumour immune responses, tryptophan catabolism has emerged as an important metabolic regulator of cancer progression. Three enzymes, indoleamine-2,3-dioxygenase 1 and 2 (IDO1/2) and tryptophan-2,3-dioxygenase (TDO2), catalyse the first step of the degradation of the essential amino acid tryptophan (Trp) to kynurenine (Kyn). The notion of inhibiting IDO1 using small-molecule inhibitors elicited high hopes of a positive impact in the field of immuno-oncology, by restoring anti-tumour immune responses and synergising with other immunotherapies such as immune checkpoint inhibition. However, clinical trials with IDO1 inhibitors have yielded disappointing results, hence raising many questions. This review will discuss strategies to target Trp-degrading enzymes and possible down-stream consequences of their inhibition. We aim to provide comprehensive background information on Trp catabolic enzymes as targets in immuno-oncology and their current state of development. Details of the clinical trials with IDO1 inhibitors, including patient stratification, possible effects of the inhibitors themselves, effects of pre-treatments and the therapies the inhibitors were combined with, are discussed and mechanisms proposed that might have compensated for IDO1 inhibition. Finally, alternative approaches are suggested to circumvent these problems.
Collapse
Affiliation(s)
- Christiane A Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany.
| | - Luis F Somarribas Patterson
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Soumya R Mohapatra
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dyah L Dewi
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Surgical Oncology, Department of Surgery - Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Ahmed Sadik
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Saskia Trump
- Charité - Universitätsmedizin Berlin and Berlin Institute of Health, Unit for Molecular Epidemiology, Berlin, Germany
| |
Collapse
|
116
|
Neopterin levels and Kyn/Trp ratios were significantly increased in dengue virus patients and subsequently decreased after recovery. Int J Infect Dis 2019; 91:162-168. [PMID: 31821895 DOI: 10.1016/j.ijid.2019.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES During dengue fever, a pronounced gamma-interferon immune response produces neopterin and promotes tryptophan degradation by the enzyme indoleamine-2,3-dioxygenase 1 (IDO-1). Activated IDO-1 is indicated by an increased kynurenine to tryptophan ratio (Kyn/Trp) in patients. METHODS Plasma levels of neopterin, kynurenine, and tryptophan were measured in 72 hospitalized dengue virus (DENV) patients and 100 healthy individuals. Plasma levels of neopterin, kynurenine, and tryptophan were also measured prospectively in a second cohort of 13 DENV patients; on the day of hospitalization, on day 2-3 at discharge, and 7-10 days after discharge. DENV RNA positivity was determined by qualitative and quantitative methodologies. RESULTS DENV RNA-positive patients presented significantly higher levels of neopterin (mean 36.5nmol/l) and Kyn/Trp ratios (mean 102μmol/mmol) compared to DENV RNA-negative individuals. A significant correlation between neopterin levels and Kyn/Trp ratios was observed in both DENV RNA-positive (Spearman's rho=0.37, p< 0.01) and DENV RNA-negative (Spearman's rho=0.89, p<0.001) patients. Kyn/Trp ratios were negatively correlated with platelet counts (Spearman's rho=-0.43, p<0.01) and positively correlated with liver enzymes: AST (Spearman's rho=0.68, p<0.01) and ALT (Spearman's rho=0.51, p<0.05). In addition, the follow-up data presented a significant decrease in neopterin levels and Kyn/Trp ratios within 10 days after hospital entry. CONCLUSIONS Neopterin levels and Kyn/Trp ratios were significantly increased in DENV patients and subsequently decreased after recovery.
Collapse
|
117
|
Curry JM, Besmer DM, Erick TK, Steuerwald N, Das Roy L, Grover P, Rao S, Nath S, Ferrier JW, Reid RW, Mukherjee P. Indomethacin enhances anti-tumor efficacy of a MUC1 peptide vaccine against breast cancer in MUC1 transgenic mice. PLoS One 2019; 14:e0224309. [PMID: 31693710 PMCID: PMC6834267 DOI: 10.1371/journal.pone.0224309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/10/2019] [Indexed: 01/27/2023] Open
Abstract
In recent years, vaccines against tumor antigens have shown potential for combating invasive cancers, including primary tumors and metastatic lesions. This is particularly pertinent for breast cancer, which is the second-leading cause of cancer-related death in women. MUC1 is a glycoprotein that is normally expressed on glandular epithelium, but is overexpressed and under-glycosylated in most human cancers, including the majority of breast cancers. This under-glycosylation exposes the MUC1 protein core on the tumor-associated form of the protein. We have previously shown that a vaccine consisting of MUC1 core peptides stimulates a tumor-specific immune response. However, this immune response is dampened by the immunosuppressive microenvironment within breast tumors. Thus, in the present study, we investigated the effectiveness of MUC1 vaccination in combination with four different drugs that inhibit different components of the COX pathway: indomethacin (COX-1 and COX-2 inhibitor), celecoxib (COX-2 inhibitor), 1-methyl tryptophan (indoleamine 2,3 dioxygenase inhibitor), and AH6809 (prostaglandin E2 receptor antagonist). These treatment regimens were explored for the treatment of orthotopic MUC1-expressing breast tumors in mice transgenic for human MUC1. We found that the combination of vaccine and indomethacin resulted in a significant reduction in tumor burden. Indomethacin did not increase tumor-specific immune responses over vaccine alone, but rather appeared to reduce the proliferation and increase apoptosis of tumor cells, thus rendering them susceptible to immune cell killing.
Collapse
Affiliation(s)
- Jennifer M. Curry
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Dahlia M. Besmer
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Timothy K. Erick
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Nury Steuerwald
- Molecular Biology and Genomics Laboratory, Carolinas Medical Center, Charlotte, NC, United States of America
| | - Lopamudra Das Roy
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Priyanka Grover
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Shanti Rao
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Sritama Nath
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Jacob W. Ferrier
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Robert W. Reid
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- OncoTAb, Inc., Charlotte, NC, United States of America
- * E-mail:
| |
Collapse
|
118
|
Xu J, Ren X, Guo T, Sun X, Chen X, Patterson LH, Li H, Zhang J. NLG919/cyclodextrin complexation and anti-cancer therapeutic benefit as a potential immunotherapy in combination with paclitaxel. Eur J Pharm Sci 2019; 138:105034. [DOI: 10.1016/j.ejps.2019.105034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/10/2019] [Accepted: 08/01/2019] [Indexed: 01/21/2023]
|
119
|
Jena MK, Nayak N, Chen K, Nayak NR. Role of Macrophages in Pregnancy and Related Complications. Arch Immunol Ther Exp (Warsz) 2019; 67:295-309. [PMID: 31286151 PMCID: PMC7140981 DOI: 10.1007/s00005-019-00552-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
Macrophages (MФs) are the leukocytes produced from differentiation of monocytes and are located in almost all tissues of human body. They are involved in various processes, such as phagocytosis, innate and adaptive immunity, proinflammatory (M1) and anti-inflammatory (M2) activity, depending on the tissue microenvironment. They play a crucial role in pregnancy, and their dysfunction or alteration of polarity is involved in pregnancy disorders, like preeclampsia, recurrent spontaneous abortion, infertility, intrauterine growth restriction, and preterm labor. About 50-60% of decidual leukocytes are natural killer (NK) cells followed by MФs (the second largest population). MФs are actively involved in trophoblast invasion, tissue and vascular remodeling during early pregnancy, besides their role as major antigen-presenting cells in the decidua. These cells have different phenotypes and polarities in different stages of pregnancy. They have also been observed to enhance tumor growth by their anti-inflammatory activity (M2 type) and prevent immunogenic rejection. Targeted alteration of polarity (M1-M2 or vice versa) could be a major focus in the future treatment of pregnancy complications. This review is focused on the role of MФs in pregnancy, their involvement in pregnancy disorders, and decidual MФs as possible therapeutic targets for the treatment of pregnancy complications.
Collapse
Affiliation(s)
- Manoj K Jena
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India.
| | - Neha Nayak
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Nihar R Nayak
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
120
|
Zimmer P, Schmidt ME, Prentzell MT, Berdel B, Wiskemann J, Kellner KH, Debus J, Ulrich C, Opitz CA, Steindorf K. Resistance Exercise Reduces Kynurenine Pathway Metabolites in Breast Cancer Patients Undergoing Radiotherapy. Front Oncol 2019; 9:962. [PMID: 31612110 PMCID: PMC6773833 DOI: 10.3389/fonc.2019.00962] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose: Evidence from preclinical studies and trials in healthy volunteers suggests that exercise may modulate the levels of tryptophan (TRP) metabolites along the kynurenine (KYN) pathway. As KYN and downstream KYN metabolites are known to promote cancer progression by inhibiting anti-tumor immune responses and by promoting the motility of cancer cells, we investigated if resistance exercise can also control the levels of KYN pathway metabolites in breast cancer patients undergoing radiotherapy (NCT01468766). Patients and Methods: Chemotherapy-naïve breast cancer patients (n = 96) were either randomized to an exercise/intervention group (IG) or a control group (CG). The IG participated in a 12-week supervised progressive resistance exercise program twice a week, whereas the CG received a supervised relaxation program. Serum levels of TRP and KYN as well as urine levels of kynurenic acid (KYNA) and neurotoxic quinolinic acid (QUINA) were assessed before (t0), after radiotherapy, and mid-term of the exercise intervention (t1) and after the exercise intervention (t2). Additionally, 24 healthy women (HIG) participated in the exercise program to investigate potential differences in its effects on KYN metabolites in comparison to the breast cancer patients. Results: At baseline (t0) the breast cancer patients showed a significantly elevated serum KYN/TRP ratio and urine QUINA/KYNA ratio, as well as increased urine QUINA levels in comparison to the healthy women. In response to exercise the healthy women and the breast cancer patients differed significantly in the levels of urine QUINA and the QUINA/KYNA ratio. Most importantly, serum KYN levels and the KYN/TRP ratio were significantly reduced in exercising patients (IG) compared to non-exercising patients (CG) both at t1 and t2. Conclusion: Resistance exercise may represent a potent non-pharmacological avenue to counteract an activation of the KYN pathway in breast cancer patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Philipp Zimmer
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Martina E Schmidt
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Mirja Tamara Prentzell
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca Berdel
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joachim Wiskemann
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | | | - Jürgen Debus
- Department of Radiation Oncology, National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), University Hospital Heidelberg, Heidelberg, Germany
| | - Cornelia Ulrich
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Christiane A Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Karen Steindorf
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
121
|
Li H, Bullock K, Gurjao C, Braun D, Shukla SA, Bossé D, Lalani AKA, Gopal S, Jin C, Horak C, Wind-Rotolo M, Signoretti S, McDermott DF, Freeman GJ, Van Allen EM, Schreiber SL, Stephen Hodi F, Sellers WR, Garraway LA, Clish CB, Choueiri TK, Giannakis M. Metabolomic adaptations and correlates of survival to immune checkpoint blockade. Nat Commun 2019; 10:4346. [PMID: 31554815 PMCID: PMC6761178 DOI: 10.1038/s41467-019-12361-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/29/2019] [Indexed: 01/05/2023] Open
Abstract
Despite remarkable success of immune checkpoint inhibitors, the majority of cancer patients have yet to receive durable benefits. Here, in order to investigate the metabolic alterations in response to immune checkpoint blockade, we comprehensively profile serum metabolites in advanced melanoma and renal cell carcinoma patients treated with nivolumab, an antibody against programmed cell death protein 1 (PD1). We identify serum kynurenine/tryptophan ratio increases as an adaptive resistance mechanism associated with worse overall survival. This advocates for patient stratification and metabolic monitoring in immunotherapy clinical trials including those combining PD1 blockade with indoleamine 2,3-dioxygenase/tryptophan 2,3-dioxygenase (IDO/TDO) inhibitors.
Collapse
Affiliation(s)
- Haoxin Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Kevin Bullock
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Carino Gurjao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - David Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Sachet A Shukla
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Dominick Bossé
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Aly-Khan A Lalani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Shuba Gopal
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Chelsea Jin
- Bristol-Myers Squibb, Princeton, NJ, 08540, USA
| | | | | | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | | | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Stuart L Schreiber
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - William R Sellers
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
122
|
Yazdanifar M, Zhou R, Grover P, Williams C, Bose M, Moore LJ, Wu ST, Maher J, Dreau D, Mukherjee P. Overcoming Immunological Resistance Enhances the Efficacy of A Novel Anti-tMUC1-CAR T Cell Treatment against Pancreatic Ductal Adenocarcinoma. Cells 2019; 8:cells8091070. [PMID: 31514488 PMCID: PMC6770201 DOI: 10.3390/cells8091070] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells have shown remarkable success in treating hematologic cancers. However, this efficacy has yet to translate to treatment in solid tumors. Pancreatic ductal adenocarcinoma (PDA) is a fatal malignancy with poor prognosis and limited treatment options. We have developed a second generation CAR T cell using the variable fragments of a novel monoclonal antibody, TAB004, which specifically binds the tumor-associated-MUC1 (tMUC1). tMUC1 is overexpressed on ~85% of all human PDA. We present data showing that TAB004-derived CAR T cells specifically bind to tMUC1 on PDA cells and show robust killing activity; however, they do not bind or kill normal epithelial cells. We further demonstrated that the tMUC1-CAR T cells control the growth of orthotopic pancreatic tumors in vivo. We witnessed that some PDA cells (HPAFII and CFPAC) were refractory to CAR T cell treatment. qPCR analysis of several genes revealed overexpression of indoleamine 2, 3-dioxygenases-1 (IDO1), cyclooxygenase 1 and 2 (COX1/2), and galectin-9 (Gal-9) in resistant PDA cells. We showed that combination of CAR T cells and biological inhibitors of IDO1, COX1/2, and Gal-9 resulted in significant enhancement of CAR T cell cytotoxicity against PDA cells. Overcoming PDA resistance is a significant advancement in the field.
Collapse
Affiliation(s)
- Mahboubeh Yazdanifar
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Ru Zhou
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Priyanka Grover
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Chandra Williams
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Mukulika Bose
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Laura J. Moore
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Shu-ta Wu
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - John Maher
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Hospital Campus, Great Maze Pond, London SE1 9RT, UK;
| | - Didier Dreau
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
- Correspondence:
| |
Collapse
|
123
|
Tsai CY, Sakakibara S, Yasui T, Minamitani T, Okuzaki D, Kikutani H. Bystander inhibition of humoral immune responses by Epstein-Barr virus LMP1. Int Immunol 2019; 30:579-590. [PMID: 30137504 DOI: 10.1093/intimm/dxy053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023] Open
Abstract
Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1), which mimics a constitutively active receptor, is required for viral transformation of primary B cells. LMP1 is expressed in EBV-infected germinal center (GC) B cells of immunocompetent individuals, suggesting that it may contribute to persistent EBV infection. In this study, we generated and analyzed mice that expressed LMP1 under the control of the CD19 or activation-induced cytidine deaminase (AID) promoter. Expression of LMP1 induced activation of B cells but severely inhibited their differentiation into antibody-secreting cells (ASCs) in vitro and GC B cells in vivo. LMP1-expressing (LMP1+) B cells not only suppressed the functions of wild-type (WT) B cells in in vitro co-culture, but also blocked differentiation of WT B cells into GC B cells and ASCs in immunized bone marrow chimeric mice. Microarray analysis revealed that the gene encoding indoleamine 2,3-dioxygenase 1 (IDO1), a major enzyme involved in the tryptophan metabolic process, was highly induced by LMP1. Either inhibition of IDO1 activity by methyl-l-tryptophan or knockout of Ido1 in LMP1+ B cells could rescue WT B cells from such suppression. IDO1-induced tryptophan consumption and production of tryptophan metabolites appeared to be responsible for inhibition of B-cell function. We conclude that LMP1 expression in antigen-committed B cells not only directly impairs GC B-cell differentiation, but also indirectly inhibits the functions of neighboring B cells, resulting in suppression of humoral immune responses. Such bystander inhibition by LMP1+ B cells may contribute to immune evasion by EBV.
Collapse
Affiliation(s)
- Chao-Yuan Tsai
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Teruhito Yasui
- Laboratory of Infectious Diseases and Immunity, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki City, Osaka, Japan
| | - Takeharu Minamitani
- Laboratory of Infectious Diseases and Immunity, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki City, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hitoshi Kikutani
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
124
|
Moreno-Vicente J, Beers SA, Gray JC. PD-1/PD-L1 blockade in paediatric cancers: What does the future hold? Cancer Lett 2019; 457:74-85. [PMID: 31055109 DOI: 10.1016/j.canlet.2019.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/28/2022]
Abstract
Checkpoint blockade (CPB) immunotherapy has shown unprecedented success in a wide range of adult malignancies, and is increasingly being employed in the treatment of advanced cancers. However, the experience in the paediatric population remains limited and the small number of single agent studies reported have shown disappointing response rates. Paediatric cancers offer unique challenges that can hinder the translation of CPB into the paediatric clinic, and combinational therapies are likely to be needed to achieve therapeutic success. As the number of paediatric trials using CPB rapidly increases, understanding the challenges that these agents may encounter in this population is of special significance to allow the design of optimal combinatorial strategies for each tumour type. Here, we offer an overview of the unique biological and immunological features of paediatric cancers as compared to adult malignancies, and how these might impact the overall success of CPB in the paediatric population. We review the growing body of pre-clinical and clinical experiences to date, and discuss future strategies involving the combination of CPB with traditionally used therapies (chemotherapy and radiotherapy) or with other newly developed immunotherapies.
Collapse
Affiliation(s)
- Julia Moreno-Vicente
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Department of Paediatric Oncology, Southampton, Hants, SO16 6YD, UK
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Department of Paediatric Oncology, Southampton, Hants, SO16 6YD, UK
| | - Juliet C Gray
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Department of Paediatric Oncology, Southampton, Hants, SO16 6YD, UK.
| |
Collapse
|
125
|
Seo Y, Shin TH, Kim HS. Current Strategies to Enhance Adipose Stem Cell Function: An Update. Int J Mol Sci 2019; 20:E3827. [PMID: 31387282 PMCID: PMC6696067 DOI: 10.3390/ijms20153827] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) emerged as a promising therapeutic tool targeting a variety of inflammatory disorders due to their multiple remarkable properties, such as superior immunomodulatory function and tissue-regenerative capacity. Although bone marrow (BM) is a dominant source for adult MSCs, increasing evidence suggests that adipose tissue-derived stem cells (ASCs), which can be easily obtained at a relatively high yield, have potent therapeutic advantages comparable with BM-MSCs. Despite its outstanding benefits in pre-clinical settings, the practical efficacy of ASCs remains controversial since clinical trials with ASC application often resulted in unsatisfactory outcomes. To overcome this challenge, scientists established several strategies to generate highly functional ASCs beyond the naïve cells, including (1) pre-conditioning of ASCs with various stimulants such as inflammatory agents, (2) genetic manipulation of ASCs and (3) modification of culture conditions with three-dimensional (3D) aggregate formation and hypoxic culture. Also, exosomes and other extracellular vesicles secreted from ASCs can be applied directly to recapitulate the beneficial performance of ASCs. This review summarizes the current strategies to improve the therapeutic features of ASCs for successful clinical implementation.
Collapse
Affiliation(s)
- Yoojin Seo
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Tae-Hoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyung-Sik Kim
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea.
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
126
|
Mazzarella L, Duso BA, Trapani D, Belli C, D'Amico P, Ferraro E, Viale G, Curigliano G. The evolving landscape of ‘next-generation’ immune checkpoint inhibitors: A review. Eur J Cancer 2019; 117:14-31. [DOI: 10.1016/j.ejca.2019.04.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022]
|
127
|
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the first and rate-limiting reaction of l-tryptophan (Trp) conversion into l-kynurenine (Kyn). The depletion of Trp, and the accumulation of Kyn have been proposed as mechanisms that contribute to the suppression of the immune response-primarily evidenced by in vitro study. IDO1 is therefore considered to be an immunosuppressive modulator and quantification of IDO1 metabolism may be critical to understanding its role in select immunopathologies, including autoimmune- and oncological-conditions, as well as for determining the potency of IDO1 enzyme inhibitors. Because tryptophan 2,3-dioxygenase (TDO), and to a significantly lesser extent, IDO2, also catabolize Trp into Kyn, it's important to differentiate the contribution of each enzyme to Trp catabolism and Kyn generation. Moreover, a great variety of detection methods have been developed for the quantification of Trp metabolites, but choosing the suitable protocol remains challenging. Here, we review the differential expression of IDO1/TDO/IDO2 in normal and malignant tissues, followed by a comprehensive analysis of methodologies for quantifying Trp and Kyn in vitro and in vivo, with an emphasis on the advantages/disadvantages for each application.
Collapse
|
128
|
Abstract
PURPOSE OF REVIEW Mesenchymal stromal cells (MSC) have emerged as one of the most promising candidates for immunomodulatory cell therapy in kidney transplantation. Here we describe novel insights into the MSC mechanism of action and provide an overview of initial safety and feasibility studies with MSC in kidney transplantation. RECENT FINDINGS Clinical studies of MSC-based cell therapy in kidney transplant recipients demonstrated the safety and feasibility of cell therapy and provide the first encouraging evidence of the efficacy of MSC in enabling the minimization of immunosuppressive drugs. In our initial experience with MSC-based therapy in kidney transplant recipients we carried out extensive clinical and immunological monitoring of MSC-treated patients and found possible biomarkers of MSC immunomodulation in some of them. Based on these biomarkers we identified a patient in whom complete discontinuation of immunosuppression has been achieved safely and successfully. SUMMARY Many issues should be addressed before MSC-based therapy becomes a standard treatment protocol for kidney transplantation. A better understanding of the MSC mechanism of action and the identification of biomarkers of response to therapy will inform the rational design of the most effective clinical protocol and the selection of patients amenable to safe immunosuppressive drug withdrawal.
Collapse
|
129
|
Pandey MR, Ernstoff MS. Mechanism of resistance to immune checkpoint inhibitors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:178-188. [PMID: 35582715 PMCID: PMC8992621 DOI: 10.20517/cdr.2018.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/16/2019] [Accepted: 05/08/2019] [Indexed: 11/15/2022]
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized the management of cancer over the last decade. Instead of targeting the cancer cell directly these agents work by augmenting the immune response towards tumor. Although they are associated with improved responses compared to traditional treatments in several malignancies, a majority of the patients don't respond to ICIs even when used in the frontline setting. In patients who do respond, a significant number eventually develop resistance. We will review ICI mechanisms of action and resistance. We will also discuss new therapeutic options and combinations with other agents that are currently being evaluated to overcome resistance to ICI.
Collapse
Affiliation(s)
- Manu R. Pandey
- Department of Medicine, Roswell Park Comprehensive Cancer Center, NY 14203, USA
| | - Marc S. Ernstoff
- Department of Medicine, Roswell Park Comprehensive Cancer Center, NY 14203, USA
| |
Collapse
|
130
|
Detection of Epstein-Barr Virus Infection in Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11060759. [PMID: 31159203 PMCID: PMC6627930 DOI: 10.3390/cancers11060759] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
Previous investigations proposed a link between the Epstein-Barr virus (EBV) and lung cancer (LC), but the results are highly controversial largely due to the insufficient sample size and the inherent limitation of the traditional viral screening methods such as PCR. Unlike PCR, current next-generation sequencing (NGS) utilizes an unbiased method for the global assessment of all exogenous agents within a cancer sample with high sensitivity and specificity. In our current study, we aim to resolve this long-standing controversy by utilizing our unbiased NGS-based informatics approaches in conjunction with traditional molecular methods to investigate the role of EBV in a total of 1127 LC. In situ hybridization analysis of 110 LC and 10 normal lung samples detected EBV transcripts in 3 LC samples. Comprehensive virome analyses of RNA sequencing (RNA-seq) data sets from 1017 LC and 110 paired adjacent normal lung specimens revealed EBV transcripts in three lung squamous cell carcinoma and one lung adenocarcinoma samples. In the sample with the highest EBV coverage, transcripts from the BamHI A region accounted for the majority of EBV reads. Expression of EBNA-1, LMP-1 and LMP-2 was observed. A number of viral circular RNA candidates were also detected. Thus, we for the first time revealed a type II latency-like viral transcriptome in the setting of LC in vivo. The high-level expression of viral BamHI A transcripts in LC suggests a functional role of these transcripts, likely as long non-coding RNA. Analyses of cellular gene expression and stained tissue sections indicated an increased immune cell infiltration in the sample expressing high levels of EBV transcripts compared to samples expressing low EBV transcripts. Increased level of immune checkpoint blockade factors was also detected in the sample with higher levels of EBV transcripts, indicating an induced immune tolerance. Lastly, inhibition of immune pathways and activation of oncogenic pathways were detected in the sample with high EBV transcripts compared to the EBV-low LC indicating the direct regulation of cancer pathways by EBV. Taken together, our data support the notion that EBV likely plays a pathological role in a subset of LC.
Collapse
|
131
|
Awuah D, Alobaid M, Latif A, Salazar F, Emes RD, Ghaemmaghami AM. The Cross-Talk between miR-511-3p and C-Type Lectin Receptors on Dendritic Cells Affects Dendritic Cell Function. THE JOURNAL OF IMMUNOLOGY 2019; 203:148-157. [PMID: 31118225 DOI: 10.4049/jimmunol.1801108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 04/29/2019] [Indexed: 12/20/2022]
Abstract
MicroRNAs are small, noncoding RNAs that function as posttranscriptional modulators of gene expression by binding target mRNAs and inhibiting translation. They are therefore crucial regulators of several biological as well as immunological events. Recently, miR-511-3p has been implicated in the development and differentiation of APCs, such as dendritic cells (DCs), and regulating several human diseases. Interestingly, miR-511-3p is embedded within the human MRC1 gene that encodes the mannose receptor. In this study, we sought to examine the impact of miR-511-3p up- or downregulation on human DC surface phenotype, cytokine profile, immunogenicity (using IDO activity as a surrogate), and downstream T cell polarization. Using gene silencing and a selection of microRNA mimics, we could successfully suppress or induce the expression of miR-511-3p in DCs. Consequently, we show for the first time, to our knowledge, that inhibition and/or overexpression of miR-511-3p has opposing effects on the expression levels of two key C-type lectin receptors, namely the mannose receptor and DC-specific ICAM 3 nonintegrin at protein and mRNA levels, thereby affecting C-type lectin receptor-induced modulation of IDO activity in DCs. Furthermore, we show that downregulation of miR-511-3p drives an anti-inflammatory DC response characterized by IL-10 production. Interestingly, the miR-511-3plow DCs also promoted IL-4 secretion and suppressed IL-17 in cocultures with autologous T cells. Together, our data highlight the potential role of miR-511 in regulating DC function and downstream events leading to Th polarization and immune modulation.
Collapse
Affiliation(s)
- Dennis Awuah
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Meshal Alobaid
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Arsalan Latif
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Fabián Salazar
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5NT, United Kingdom; and.,Advanced Data Analysis Centre, University of Nottingham, Leicestershire LE12 5NT, United Kingdom
| | - Amir M Ghaemmaghami
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom;
| |
Collapse
|
132
|
Benavente FM, Soto JA, Pizarro-Ortega MS, Bohmwald K, González PA, Bueno SM, Kalergis AM. Contribution of IDO to human respiratory syncytial virus infection. J Leukoc Biol 2019; 106:933-942. [PMID: 31091352 PMCID: PMC7166882 DOI: 10.1002/jlb.4ru0219-051rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 12/18/2022] Open
Abstract
IDO is an enzyme that participates in the degradation of tryptophan (Trp), which is an essential amino acid necessary for vital cellular processes. The degradation of Trp and the metabolites generated by the enzymatic activity of IDO can have immunomodulating effects, notably over T cells, which are particularly sensitive to the absence of Trp and leads to the inhibition of T cell activation, cell death, and the suppression of T cell effector functions. Noteworthy, T cells participate in the cellular immune response against the human respiratory syncytial virus (hRSV) and are essential for viral clearance, as well as the total recovery of the host. Furthermore, inadequate or non‐optimal polarization of T cells is often seen during the acute phase of the disease caused by this pathogen. Here, we discuss the capacity of hRSV to exploit the immunosuppressive features of IDO to reduce T cell function, thus acquiring relevant aspects during the biology of the virus. Additionally, we review studies on the influence of IDO over T cell activation and its relationship with hRSV infection.
Collapse
Affiliation(s)
- Felipe M Benavente
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena S Pizarro-Ortega
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
133
|
Jain S, Bhardwaj B, Amin SA, Adhikari N, Jha T, Gayen S. Exploration of good and bad structural fingerprints for inhibition of indoleamine-2,3-dioxygenase enzyme in cancer immunotherapy using Monte Carlo optimization and Bayesian classification QSAR modeling. J Biomol Struct Dyn 2019; 38:1683-1696. [PMID: 31057090 DOI: 10.1080/07391102.2019.1615000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) is an extrahepatic, heme-containing and tryptophan-catalyzing enzyme responsible for causing blockade of T-cell proliferation and differentiation by depleting tryptophan level in cancerous cells. Therefore, inhibition of IDO1 may be a useful strategy for immunotherapy against cancer. In this study, 448 structurally diverse IDO1 inhibitors with a wide range of activity has been taken into consideration for classification QSAR analysis through Monte Carlo Optimization by using different splits as well as different combinations of SMILES-based, graph-based and hybrid descriptors. The best model from Monte Carlo optimization was interpreted to find out the good and bad structural fingerprints for IDO1 and further justified by using Bayesian classification QSAR modeling. Among the three splits in Monte Carlo optimization, the statistics of the best model was obtained from Split 3: sensitivity = 0.87, specificity = 0.91, accuracy = 0.89 and MCC = 0.78. In Bayesian classification modeling, the ROC scores for training and test set were found to be 0.91 and 0.86, respectively. The combined modeling analysis revealed that the presence of aryl hydrazyl sulphonyl moiety, furazan ring, halogen substitution, nitro group and hetero atoms in aromatic system can be very useful in designing IDO1 inhibitors. All the good and bad structural fingerprints for IDO1 were identified and are justified by correlating these fragments to the inhibition of IDO1 enzyme. These structural fingerprints will guide the researchers in this field to design better inhibitors against IDO1 enzyme for cancer immunotherapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanskar Jain
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| | - Bhagwati Bhardwaj
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, West Bengal, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, West Bengal, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| |
Collapse
|
134
|
Yang F, Li Y, Zou W, Xu Y, Wang H, Wang W, Zhao Y. Adoptive transfer of IFN-γ-induced M-MDSCs promotes immune tolerance to allografts through iNOS pathway. Inflamm Res 2019; 68:545-555. [DOI: 10.1007/s00011-019-01237-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/19/2019] [Accepted: 04/22/2019] [Indexed: 01/12/2023] Open
|
135
|
Wculek SK, Khouili SC, Priego E, Heras-Murillo I, Sancho D. Metabolic Control of Dendritic Cell Functions: Digesting Information. Front Immunol 2019; 10:775. [PMID: 31073300 PMCID: PMC6496459 DOI: 10.3389/fimmu.2019.00775] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) control innate and adaptive immunity by patrolling tissues to gather antigens and danger signals derived from microbes and tissue. Subsequently, DCs integrate those environmental cues, orchestrate immunity or tolerance, and regulate tissue homeostasis. Recent advances in the field of immunometabolism highlight the notion that immune cells markedly alter cellular metabolic pathways during differentiation or upon activation, which has important implications on their functionality. Previous studies showed that active oxidative phosphorylation in mitochondria is associated with immature or tolerogenic DCs, while increased glycolysis upon pathogen sensing can promote immunogenic DC functions. However, new results in the last years suggest that regulation of DC metabolism in steady state, after immunogenic activation and during tolerance in different pathophysiological settings, may be more complex. Moreover, ontogenically distinct DC subsets show different functional specializations to control T cell responses. It is, thus, relevant how metabolism influences DC differentiation and plasticity, and what potential metabolic differences exist among DC subsets. Better understanding of the emerging connection between metabolic adaptions and functional DC specification will likely allow the development of therapeutic strategies to manipulate immune responses.
Collapse
Affiliation(s)
- Stefanie K Wculek
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sofía C Khouili
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Elena Priego
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ignacio Heras-Murillo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
136
|
Wang H, Xia Y, Yu J, Guan H, Wu Z, Ban D, Wang M. Expression of New York esophageal squamous cell carcinoma 1 and its association with Foxp3 and indoleamine-2,3-dioxygenase in microenvironment of nonsmall cell lung cancer. HLA 2019; 94:39-48. [PMID: 30953385 DOI: 10.1111/tan.13547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/27/2022]
Abstract
Lung cancer is one of the most prevalent and fatal cancer worldwide. The traditional treatments including surgery, radiotherapy, chemotherapy and targeted therapy are not satisfactory because of severe side effects and/or relapse. Genetically engineered T-cell-based immunotherapy for malignant cancer shows promise in recent clinical trials. T-cell receptor (TCR)-engineered T cells targeting New York esophageal squamous cell carcinoma 1 (NY-ESO-1) have been employed in a number of clinical trials for late stage melanoma, synovial sarcoma, multiple myeloma and other malignancies. Owing to the significant efficacy and controllable side effect, NY-ESO-1 has been considered as one of the most ideal TCR-engineered T cell therapy (TCR-T) cell target for solid tumors, including nonsmall cell lung cancer (NSCLC). However, the incidence of NY-ESO-1 expression and its relationship with immunosuppressive microenvironment of NSCLC are largely unclear. In this study, we analyzed the expression of NY-ESO-1 and two key immune regulators, Forkhead box P3 (Foxp3) and indoleamine-2,3-dioxygenase (IDO), in 156 NSCLC specimens by immunohistochemistry. Our results showed that NY-ESO-1 positive rate is 28.1% (44/156) and significantly higher in distal metastasis (P = 0.012) and late stage (P = 0.019) NSCLC patients. In addition, we found that NY-ESO-1 expression was positively associated with Foxp3 level but not IDO. These findings implied the potential role of NY-ESO-1 in tumor immune escape of NSCLC and indicated the requirement to remove Treg cells in TCR-T cell therapy for NSCLC patients.
Collapse
Affiliation(s)
- Huishan Wang
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China.,Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yuan Xia
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Jiaming Yu
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China.,Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hong Guan
- Pathology Department, Shenzhen Second Peoples' Hospital, Shenzhen, China
| | - Zhengsheng Wu
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Dongcheng Ban
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Mingjun Wang
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| |
Collapse
|
137
|
Zhao H, Sun P, Guo W, Wang Y, Zhang A, Meng L, Ding C. Discovery of Indoleamine 2,3-Dioxygenase 1 (IDO-1) Inhibitors Based on Ortho-Naphthaquinone-Containing Natural Product. Molecules 2019; 24:molecules24061059. [PMID: 30889860 PMCID: PMC6471201 DOI: 10.3390/molecules24061059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/24/2023] Open
Abstract
There is great interest in developing small molecules agents capable of reversing tumor immune escape to restore the body’s immune system. As an immunosuppressive enzyme, indoleamine 2,3-dioxygenase 1 (IDO-1) is considered a promising target for oncology immunotherapy. Currently, none of IDO-1 inhibitors have been launched for clinical practice yet. Thus, the discovery of new IDO-1 inhibitors is still in great demand. Herein, a series of diverse ortho-naphthaquinone containing natural product derivatives were synthesized as novel IDO-1 inhibitors. Among them, 1-ene-3-ketone-17-hydroxyl derivative 12 exhibited significantly improved enzymatic and cellular inhibitory activity against IDO-1 when compared to initial lead compounds. Besides, the molecular docking study disclosed that the two most potent compounds 11 and 12 have more interactions within the binding pocket of IDO-1 via hydrogen-bonding, which may account for their higher IDO-1 inhibitory activity.
Collapse
Affiliation(s)
- Hongchuan Zhao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Pu Sun
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Guo
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yi Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
- School of Life Scienece and Technology, ShanghaiTech University, Shanghai 20120, China.
| | - Linghua Meng
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunyong Ding
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
138
|
Domblides C, Lartigue L, Faustin B. Control of the Antitumor Immune Response by Cancer Metabolism. Cells 2019; 8:cells8020104. [PMID: 30708988 PMCID: PMC6406288 DOI: 10.3390/cells8020104] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
The metabolic reprogramming of tumor cells and immune escape are two major hallmarks of cancer cells. The metabolic changes that occur during tumorigenesis, enabling survival and proliferation, are described for both solid and hematological malignancies. Concurrently, tumor cells have deployed mechanisms to escape immune cell recognition and destruction. Additionally, therapeutic blocking of tumor-mediated immunosuppression has proven to have an unprecedented positive impact in clinical oncology. Increased evidence suggests that cancer metabolism not only plays a crucial role in cancer signaling for sustaining tumorigenesis and survival, but also has wider implications in the regulation of antitumor immune signaling through both the release of signaling molecules and the expression of immune membrane ligands. Here, we review these molecular events to highlight the contribution of cancer cell metabolic reprogramming on the shaping of the antitumor immune response.
Collapse
Affiliation(s)
- Charlotte Domblides
- Bordeaux University, CNRS, UMR 5164, ImmunoConcEpT, 33000 Bordeaux, France.
- Department of Medical Oncology, Hôpital Saint-André, Bordeaux University Hospital-CHU, 33000 Bordeaux, France.
| | - Lydia Lartigue
- Curematch, Inc., 6440 Lusk Bvld, San Diego, CA 92121, USA.
| | - Benjamin Faustin
- Bordeaux University, CNRS, UMR 5164, ImmunoConcEpT, 33000 Bordeaux, France.
- Cellomet, CGFB, 146 Rue léo Saignat, F-33000 Bordeaux, France.
| |
Collapse
|
139
|
Hassouna A, M. Abd Elgwad M, Fahmy H. Stromal Stem Cells: Nature, Biology and Potential Therapeutic Applications. STROMAL CELLS - STRUCTURE, FUNCTION, AND THERAPEUTIC IMPLICATIONS 2019. [DOI: 10.5772/intechopen.77346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
140
|
|
141
|
Solvang SEH, Nordrehaug JE, Tell GS, Nygård O, McCann A, Ueland PM, Midttun Ø, Meyer K, Vedeler CA, Aarsland D, Refsum H, Smith AD, Giil LM. The kynurenine pathway and cognitive performance in community-dwelling older adults. The Hordaland Health Study. Brain Behav Immun 2019; 75:155-162. [PMID: 30675874 DOI: 10.1016/j.bbi.2018.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/17/2018] [Accepted: 10/23/2018] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Tryptophan, its downstream metabolites in the kynurenine pathway and neopterin have been associated with inflammation and dementia. We aimed to study the associations between plasma levels of these metabolites and cognitive function in community-dwelling, older adults. METHODS This cross-sectional study included 2174 participants aged 70-72 years of the community-based Hordaland Health Study. Tryptophan, kynurenine, neopterin and eight downstream kynurenines were measured in plasma. Kendrick Object Learning Test (KOLT), Digit Symbol Test (DST) and the Controlled Oral Word Association Test (COWAT) were all outcomes in standardized Zellner's regression. The Wald test of a composite linear hypothesis of an association with each metabolite was adjusted by the Bonferroni method. Age, body mass index, C-reactive protein, depressive symptoms, diabetes, education, glomerular filtration rate, hypertension, previous myocardial infarction, prior stroke, pyridoxal 5'phosphate, sex and smoking were considered as potential confounders. RESULTS Higher levels of the kynurenine-to-tryptophan ratio (KTR) and neopterin were significantly associated with poorer, overall cognitive performance (p < 0.002). Specifically, KTR was negatively associated with KOLT (β -0.08, p = 0.001) and COWAT (β -0.08, p = 0.001), but not with DST (β -0.03, p = 0.160). This pattern was also seen for neopterin (KOLT: β -0.07; p = 0.001; COWAT: β -0.06, p = 0.010; DST: β -0.01, p = 0.800). The associations were not confounded by the examined variables. No significant associations were found between the eight downstream kynurenines and cognition. CONCLUSION Higher KTR and neopterin levels, biomarkers of cellular immune activation, were associated with reduced cognitive performance, implying an association between the innate immune system, memory, and language.
Collapse
Affiliation(s)
- Stein-Erik Hafstad Solvang
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway; Institute of Clinical Science, University of Bergen, Norway.
| | - Jan Erik Nordrehaug
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway; Institute of Clinical Science, University of Bergen, Norway
| | - Grethe S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Norway; Division of Mental and Physical Health, Norwegian Institute of Public Health, Bergen, Norway
| | - Ottar Nygård
- Institute of Clinical Science, University of Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | | - Dag Aarsland
- Department of Old Age Psychiatry, King's College University, London, UK
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway; Department of Pharmacology, University of Oxford, UK
| | - A David Smith
- Department of Pharmacology, University of Oxford, UK
| | - Lasse Melvaer Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway; Institute of Clinical Science, University of Bergen, Norway
| |
Collapse
|
142
|
Richardson JR, Armbruster NS, Günter M, Henes J, Autenrieth SE. Staphylococcus aureus PSM Peptides Modulate Human Monocyte-Derived Dendritic Cells to Prime Regulatory T Cells. Front Immunol 2018; 9:2603. [PMID: 30555457 PMCID: PMC6282063 DOI: 10.3389/fimmu.2018.02603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/23/2018] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus (Sa), as one of the major human pathogens, has very effective strategies to subvert the human immune system. Virulence of the emerging community-associated methicillin-resistant Sa (CA-MRSA) depends on the secretion of phenol-soluble modulin (PSM) peptide toxins e.g., by binding to and modulation of innate immune cells. Previously, by using mouse bone marrow-derived dendritic cells we demonstrated that PSMs in combination with various Toll-like receptor (TLR) ligands induce a tolerogenic DC phenotype (tDC) characterized by the production of IL-10 and impaired secretion of pro-inflammatory cytokines. Consequently, PSM-induced tDCs favored priming of CD4+CD25+FoxP3+ Tregs with suppressor function while impairing the Th1 response. However, the relevance of these findings for the human system remained elusive. Here, we analyzed the impact of PSMα3 on the maturation, cytokine production, antigen uptake, and T cell stimulatory capacity of human monocyte-derived DCs (moDCs) treated simultaneously with either LPS (TLR4 ligand) or Sa cell lysate (TLR2 ligand). Herein, we demonstrate that PSMs indeed modulate human moDCs upon treatment with TLR2/4 ligands via multiple mechanisms, such as transient pore formation, impaired DC maturation, inhibited pro- and anti-inflammatory cytokine secretion, as well as reduced antigen uptake. As a result, the adaptive immune response was altered shown by an increased differentiation of naïve and even CD4+ T cells from patients with Th1/Th17-induced diseases (spondyloarthritis and rheumatoid arthritis) into CD4+CD127−CD25hiCD45RA−FoxP3hi regulatory T cells (Tregs) with suppressor function. This Treg induction was mediated most predominantly by direct DC-T-cell interaction. Thus, PSMs from highly virulent Sa strains affect DC functions not only in the mouse, but also in the human system, thereby modulating the adaptive immune response and probably increasing the tolerance toward the bacteria. Moreover, PSMα3 might be a novel peptide for tolerogenic DC induction that may be used for DC vaccination strategies.
Collapse
Affiliation(s)
| | - Nicole S Armbruster
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Manina Günter
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Jörg Henes
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Stella E Autenrieth
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| |
Collapse
|
143
|
Mardpour S, Hamidieh AA, Taleahmad S, Sharifzad F, Taghikhani A, Baharvand H. Interaction between mesenchymal stromal cell-derived extracellular vesicles and immune cells by distinct protein content. J Cell Physiol 2018; 234:8249-8258. [PMID: 30378105 DOI: 10.1002/jcp.27669] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSCs) can effectively contribute to tissue regeneration inside the inflammatory microenvironment mostly through modulating immune responses. MSC-derived extracellular vesicles (MSC-EVs) display immunoregulatory functions similar to parent cells. Interactions between MSC-EVs and immune cells make them an ideal therapeutic candidate for infectious, inflammatory, and autoimmune diseases. These properties of MSC-EVs have encouraged researchers to perform extensive studies on multiple factors that mediate MSC-EVs immunomodulatory effects. Investigation of proteins involved in the complex interplay of MSC-EVs and immune cells may help us to better understand their functions. Here, we performed a comprehensive proteomic analysis of MSC-EVs that was previously reported by ExoCarta database. A total of 938 proteins were identified as MSC-EV proteome using quantitative proteomics techniques. Kyoto Encyclopedia of Genes and Genomes analysis demonstrates that ECM-receptor interaction, focal adhesion, and disease-specific pathways are enriched in MSC-EVs. By detail analysis of proteins presence in immune system process, we found that expression of some cytokines, chemokines, and chemokine receptors such as IL10, HGF, LIF, CCL2, VEGFC, and CCL20, which leads to migration of MSC-EVs to injured sites, suppression of inflammation and promotion of regeneration in inflammatory and autoimmune diseases. Also, some chemoattractant proteins such as CXCL2, CXCL8, CXCL16, DEFA1, HERC5, and IFITM2 were found in MSC-EV proteome. They may actively recruit immune cells to the proximity of MSC or MSC-EVs, may result in boosting immune response under specific circumstances, and may have protective role in infectious diseases. In this review, we summarize available information about immunomodulation of MSC-EVs with particular emphasis on their proteomics analysis.
Collapse
Affiliation(s)
- Soura Mardpour
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Stem Cell Transplant Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farzaneh Sharifzad
- Department of Applied Cell Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Adeleh Taghikhani
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
144
|
Wang G, Wang JJ, Guan R, Sun Y, Shi F, Gao J, Fu XL. Targeting Strategies for Glucose Metabolic Pathways and T Cells in Colorectal Cancer. Curr Cancer Drug Targets 2018; 19:534-550. [PMID: 30360743 DOI: 10.2174/1568009618666181015150138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 11/23/2017] [Accepted: 12/24/2017] [Indexed: 11/22/2022]
Abstract
Colorectal cancer is a heterogeneous group of diseases that result from the accumulation of different sets of genomic alterations, together with epigenomic alterations, and it is influenced by tumor-host interactions, leading to tumor cell growth and glycolytic imbalances. This review summarizes recent findings that involve multiple signaling molecules and downstream genes in the dysregulated glycolytic pathway. This paper further discusses the role of the dysregulated glycolytic pathway in the tumor initiation, progression and the concomitant systemic immunosuppression commonly observed in colorectal cancer patients. Moreover, the relationship between colorectal cancer cells and T cells, especially CD8+ T cells, is discussed, while different aspects of metabolic pathway regulation in cancer cell proliferation are comprehensively defined. Furthermore, this study elaborates on metabolism in colorectal cancer, specifically key metabolic modulators together with regulators, glycolytic enzymes, and glucose deprivation induced by tumor cells and how they inhibit T-cell glycolysis and immunogenic functions. Moreover, metabolic pathways that are integral to T cell function, differentiation, and activation are described. Selective metabolic inhibitors or immunemodulation agents targeting these pathways may be clinically useful to increase effector T cell responses for colorectal cancer treatment. However, there is a need to identify specific antigens using a cancer patient-personalized approach and combination strategies with other therapeutic agents to effectively target tumor metabolic pathways.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Rui Guan
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province 442000, China
| | - Yan Sun
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province 442000, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province 212001, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province 212001, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province 212001, China
| |
Collapse
|
145
|
Švajger U, Rožman P. Induction of Tolerogenic Dendritic Cells by Endogenous Biomolecules: An Update. Front Immunol 2018; 9:2482. [PMID: 30416505 PMCID: PMC6212600 DOI: 10.3389/fimmu.2018.02482] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
The importance of microenvironment on dendritic cell (DC) function and development has been strongly established during the last two decades. Although DCs with general tolerogenic characteristics have been isolated and defined as a particular sub-population, it is predominantly their unequivocal biological plasticity, which allows for unparalleled responsiveness to environmental ques and shaping of their tolerogenic characteristics when interacting with tolerance-inducing biomolecules. Dendritic cells carry receptors for a great number of endogenous factors, which, after ligation, can importantly influence the development of their activation state. For this there is ample evidence merely by observation of DC characteristics isolated from various anatomical niches, e.g., the greater immunosuppressive potential of DCs isolated from intestine compared to conventional blood DCs. Endogenous biomolecules present in these environments most likely play a major role as a determinant of their phenotype and function. In this review, we will concisely summarize in what way various, tolerance-inducing endogenous factors influence DC biology, the development of their particular tolerogenic state and their subsequent actions in context of immune response inhibition and induction of regulatory T cells.
Collapse
Affiliation(s)
- Urban Švajger
- Department for Therapeutic Services, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Primož Rožman
- Department for Therapeutic Services, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
146
|
Acovic A, Simovic Markovic B, Gazdic M, Arsenijevic A, Jovicic N, Gajovic N, Jovanovic M, Zdravkovic N, Kanjevac T, Harrell CR, Fellabaum C, Dolicanin Z, Djonov V, Arsenijevic N, Lukic ML, Volarevic V. Indoleamine 2,3-dioxygenase-dependent expansion of T-regulatory cells maintains mucosal healing in ulcerative colitis. Therap Adv Gastroenterol 2018; 11:1756284818793558. [PMID: 30159037 PMCID: PMC6109841 DOI: 10.1177/1756284818793558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/21/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Dendritic cell (DC)-derived indolamine 2,3-dioxygenase (IDO) degrades tryptophan to kynurenine, which promotes conversion of inflammatory T cells in immunosuppressive regulatory T cells (Tregs). We analyzed the significance of the IDO:Treg axis for inducing and maintaining mucosal healing in ulcerative colitis (UC). METHODS Dextran sodium sulphate (DSS)-induced colitis in BALB/c mice (model for mucosal healing) and C57BL/6 mice (model for persistent disease) was used. Serum, fecal samples and colon-infiltrating immune cells of 65 patients with UC with mucosal healing or persistent colitis were analyzed. RESULTS Significantly higher serum levels of kynurenine and downregulated inflammatory cytokines were noticed in DSS-treated BALB/c mice compared with C57BL/6 mice. Increased IDO activity and attenuated capacity for antigen presentation and production of inflammatory cytokines, observed in BALB/c DCs, was followed by a significantly lower number of inflammatory T helper 1 (Th1) and Th17 cells and a notably increased number of Tregs in the colons of DSS-treated BALB/c mice. DCs and Tregs were crucially important for the maintenance of mucosal healing since their depletion aggravated colitis. Mucosal healing, followed by an increase in kynurenine and intestinal Tregs, was re-established when BALB/c DCs were transferred into DC-depleted or Treg-depleted DSS-treated BALB/c mice. This phenomenon was completely abrogated by the IDO inhibitor. Significantly higher serum and fecal levels of kynurenine, accompanied by an increased presence of intestinal Tregs, were noticed in patients with UC with mucosal healing and negatively correlated with disease severity, fecal calprotectin, colon-infiltrating interferon γ and interleukin-17-producing cells, serum and fecal levels of inflammatory cytokines. CONCLUSION IDO-dependent expansion of endogenous Tregs should be further explored as a new approach for the induction and maintenance of mucosal healing in patients with UC.
Collapse
Affiliation(s)
- Aleksandar Acovic
- Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia,Department of Dentistry, University of Kragujevac, Kragujevac, Serbia
| | - Bojana Simovic Markovic
- Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic
- Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Marina Jovanovic
- Center for Gastroenterology, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Natasa Zdravkovic
- Center for Gastroenterology, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia,Department of Dentistry, University of Kragujevac, Kragujevac, Serbia
| | | | | | - Zana Dolicanin
- State University of Novi Pazar, Department of Biomedical Sciences, Novi Pazar, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse, Switzerland
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L. Lukic
- Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | | |
Collapse
|
147
|
Botticelli A, Cerbelli B, Lionetto L, Zizzari I, Salati M, Pisano A, Federica M, Simmaco M, Nuti M, Marchetti P. Can IDO activity predict primary resistance to anti-PD-1 treatment in NSCLC? J Transl Med 2018; 16:219. [PMID: 30081936 PMCID: PMC6080500 DOI: 10.1186/s12967-018-1595-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/02/2018] [Indexed: 12/27/2022] Open
Abstract
Background Immune checkpoint inhibitors have revolutionized the treatment paradigm of highly lethal malignancies like advanced non-small cell lung cancer (NSCLC), demonstrating long-term tumour control and extended patient survival. Unfortunately, only 25–30% of patients experience a durable benefit, while the vast majority demonstrate primary or acquired resistance. Recently, indoleamine 2,3-dioxygenase (IDO) activity has been proposed as a possible mechanism of resistance to anti-PD-1 treatment leading to an immunosuppressive microenvironment. Methods Pre-treatment serum concentrations of tryptophan (trp) and kynurenine (kyn) were measured by high-performance liquid chromatography tandem mass spectrometry in NSCLC patients treated with second-line nivolumab. The IDO activity was expressed with kyn/trp ratio. The associations between kyn/trp ratio and early progression, performance status (PS), age, sex, brain metastases, pleural effusion, progression free survival (PFS) and overall survival (OS) were analyzed using Spearman test and Mann–Whitney test. Results Twenty-six NSCLC patients were included in our study; 14 of them (54%) presented early progression (< 3 months) to nivolumab treatment. The median value of kyn/trp ratio was 0.06 µg/ml and the median value of quinolinic acid was 68.45 ng/ml. A significant correlation between early progression and higher kyn/trp ratio and quinolinic acid concentration was observed (p = 0.017 and p = 0.005, respectively). Patients presenting lower values of kyn/trp ratio and quinolinic acid levels showed longer PFS (median PFS not reached versus 3 months; HR: 0.3; p = 0.018) and OS (median OS not reached vs 3 months; HR: 0.18; p = 0.0005). Conclusion IDO activity, expressed as kyn/trp ratio, is associated with response to immunotherapy; in particular, higher kyn/trp ratio could predict resistance to anti-PD-1 treatment. These preliminary results suggest the possibility of using anti-PD-1 plus IDO inhibitor in those patients with high level of kyn/trp ratio.
Collapse
Affiliation(s)
- Andrea Botticelli
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035-1037, 00189, Rome, Italy.
| | - Bruna Cerbelli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Luana Lionetto
- Experimental Immunology Laboratory, Biochemistry Laboratory, IDI-IRCCS FLMM, Rome, Italy
| | - Ilaria Zizzari
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Massimiliano Salati
- Department of Oncology, Università di Modena e Reggio Emilia, Policlinico di Modena, Modena, Italy
| | - Annalinda Pisano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Mazzuca Federica
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035-1037, 00189, Rome, Italy
| | - Maurizio Simmaco
- Advanced Molecular Diagnostics Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Marianna Nuti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035-1037, 00189, Rome, Italy
| |
Collapse
|
148
|
Liu M, Wang X, Wang L, Ma X, Gong Z, Zhang S, Li Y. Targeting the IDO1 pathway in cancer: from bench to bedside. J Hematol Oncol 2018; 11:100. [PMID: 30068361 PMCID: PMC6090955 DOI: 10.1186/s13045-018-0644-y] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023] Open
Abstract
Indoleamine 2, 3-dioxygenases (IDO1 and IDO2) and tryptophan 2, 3-dioxygenase (TDO) are tryptophan catabolic enzymes that catalyze the conversion of tryptophan into kynurenine. The depletion of tryptophan and the increase in kynurenine exert important immunosuppressive functions by activating T regulatory cells and myeloid-derived suppressor cells, suppressing the functions of effector T and natural killer cells, and promoting neovascularization of solid tumors. Targeting IDO1 represents a therapeutic opportunity in cancer immunotherapy beyond checkpoint blockade or adoptive transfer of chimeric antigen receptor T cells. In this review, we discuss the function of the IDO1 pathway in tumor progression and immune surveillance. We highlight recent preclinical and clinical progress in targeting the IDO1 pathway in cancer therapeutics, including peptide vaccines, expression inhibitors, enzymatic inhibitors, and effector inhibitors.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China. .,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Xu Wang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lei Wang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xiaodong Ma
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Zhaojian Gong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
149
|
Wang G, Cao K, Liu K, Xue Y, Roberts AI, Li F, Han Y, Rabson AB, Wang Y, Shi Y. Kynurenic acid, an IDO metabolite, controls TSG-6-mediated immunosuppression of human mesenchymal stem cells. Cell Death Differ 2018; 25:1209-1223. [PMID: 29238069 PMCID: PMC6030103 DOI: 10.1038/s41418-017-0006-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been demonstrated to be anti-inflammatory against various immune disorders through several factors, including indoleamine 2,3-dioxygenase (IDO) and TNF-stimulated gene 6 (TSG-6). However, little is known about the necessity for both of these key immunosuppressive factors. Here we employed the mouse lipopolysaccharide (LPS)-induced acute lung injury (ALI) model, and found that IDO is necessary to achieve the effect of human umbilical cord-derived MSC (hUC-MSC)-based treatment on ALI. Notably, when IDO was deleted or inhibited, the expression of TSG-6 was decreased. This specific IDO-mediated regulation of TSG-6 expression was found to be exerted through its metabolite, kynurenic acid (KYNA), as inhibition of KYNA production led to decreased TSG-6 expression. Importantly, KYNA pretreatment of human MSCs enhanced their therapeutic effect on ALI. Mechanistically, KYNA activates aryl hydrocarbon receptor (AhR), which directly binds to the TSG-6 promoter to enhance TSG-6 expression. Therefore, our study has uncovered a novel link between IDO and TSG-6, and demonstrates that a metabolite of IDO controls the TSG-6-mediated anti-inflammatory therapeutic effects of human MSCs.
Collapse
Affiliation(s)
- Guan Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University of Medicine; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Kai Cao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University of Medicine; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Keli Liu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University of Medicine; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yueqing Xue
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University of Medicine; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Arthur I Roberts
- Child Health Institute, Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, 89 French Street, Piscataway, NJ, 08901, USA
| | - Fengying Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University of Medicine; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yanyan Han
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University of Medicine; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Arnold B Rabson
- Child Health Institute, Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, 89 French Street, Piscataway, NJ, 08901, USA
| | - Ying Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University of Medicine; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University of Medicine; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- The First Affiliated Hospital of Soochow University and Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123, China.
| |
Collapse
|
150
|
Graubner FR, Gram A, Kautz E, Bauersachs S, Aslan S, Agaoglu AR, Boos A, Kowalewski MP. Uterine responses to early pre-attachment embryos in the domestic dog and comparisons with other domestic animal species. Biol Reprod 2018. [PMID: 28651344 PMCID: PMC5803782 DOI: 10.1093/biolre/iox063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the dog, there is no luteolysis in the absence of pregnancy. Thus, this species lacks any anti-luteolytic endocrine signal as found in other species that modulate uterine function during the critical period of pregnancy establishment. Nevertheless, in the dog an embryo-maternal communication must occur in order to prevent rejection of embryos. Based on this hypothesis, we performed microarray analysis of canine uterine samples collected during pre-attachment phase (days 10-12) and in corresponding non-pregnant controls, in order to elucidate the embryo attachment signal. An additional goal was to identify differences in uterine responses to pre-attachment embryos between dogs and other mammalian species exhibiting different reproductive patterns with regard to luteolysis, implantation, and preparation for placentation. Therefore, the canine microarray data were compared with gene sets from pigs, cattle, horses, and humans. We found 412 genes differentially regulated between the two experimental groups. The functional terms most strongly enriched in response to pre-attachment embryos related to extracellular matrix function and remodeling, and to immune and inflammatory responses. Several candidate genes were validated by semi-quantitative PCR. When compared with other species, best matches were found with human and equine counterparts. Especially for the pig, the majority of overlapping genes showed opposite expression patterns. Interestingly, 1926 genes did not pair with any of the other gene sets. Using a microarray approach, we report the uterine changes in the dog driven by the presence of embryos and compare these results with datasets from other mammalian species, finding common-, contrary-, and exclusively canine-regulated genes.
Collapse
Affiliation(s)
- Felix R Graubner
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ewa Kautz
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Stefan Bauersachs
- Institute of Agricultural Sciences, Animal Physiology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Selim Aslan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Near East University, Nicosia, North Cyprus
| | - Ali R Agaoglu
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|