101
|
Dormond M, Gutierrez RL, Porter CK. Giardia lamblia infection increases risk of chronic gastrointestinal disorders. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2016; 2:17. [PMID: 28883961 PMCID: PMC5530925 DOI: 10.1186/s40794-016-0030-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Giardia lamblia is a common parasitic cause of infectious gastroenteritis in the United States and the world and may be linked to an increased risk of chronic gastrointestinal (GI) disorders. We sought to assess the risk of several chronic GI disorders following Giardia infection among active duty US military personnel. METHODS This study was designed as a retrospective cohort study in which active duty military personnel with documented G. lamblia infection were assessed for the subsequent risk of developing a chronic GI disorder including irritable bowel syndrome (IBS), dyspepsia and gastroesophageal reflux disease (GERD). Post-giardia chronic GI disorder risk was compared to risk in uninfected personnel matched on several demographic characteristics and medical encounter information. Data were obtained from the Defense Medical Surveillance System and exposures (1998-2009) with outcomes identified based on documented medical encounters with specific medical billing codes. Modified Poisson regression was used to evaluate the relationship between G. lamblia infection and chronic GI disorders. RESULTS A total of 80 Giardia cases were identified for an estimated incidence of 0.55 cases per 100,000 person-years. Cases were matched to 294 unexposed subjects. After adjusting for important covariates, there was an increased risk of IBS (relative risk: 2.1, p = 0.03) associated with antecedent Giardia infection. CONCLUSION These data add to a growing body of literature and demonstrate an increased risk of IBS after infection with G. lamblia.
Collapse
Affiliation(s)
- Megan Dormond
- Enteric Disease Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA.,George Washington University, Washington, USA
| | - Ramiro L Gutierrez
- Enteric Disease Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| | - Chad K Porter
- Enteric Disease Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| |
Collapse
|
102
|
Herreros Martínez B. Gastric microbiota and carcinogenesis - Current evidence and controversy. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2016; 108:527-9. [PMID: 27562819 DOI: 10.17235/reed.2016.4559/2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Growing research on the human microbiome, even beyond the gastrointestinal area, is not surprising mainly due to significant advances in study methods. Current reporting in this area is so intensive that clinicians are changing the unsuitable "bacterial flora" expression for more appropriate terms such as "microbiota" (the entire microbial community colonizing an ecologic niche), "microbiome" (their collective genome), or "dysbiosis" (microbial composition imbalance with respect to the normatively considered pattern). Since the diseases involved in the altered microbiota hypothesis are increasing, its implication for cancer should come as no surprise to us.
Collapse
|
103
|
Raskov H, Burcharth J, Pommergaard HC, Rosenberg J. Irritable bowel syndrome, the microbiota and the gut-brain axis. Gut Microbes 2016; 7:365-83. [PMID: 27472486 PMCID: PMC5046167 DOI: 10.1080/19490976.2016.1218585] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Irritable bowel syndrome is a common functional gastrointestinal disorder and it is now evident that irritable bowel syndrome is a multi-factorial complex of changes in microbiota and immunology. The bidirectional neurohumoral integrated communication between the microbiota and the autonomous nervous system is called the gut-brain-axis, which integrates brain and GI functions, such as gut motility, appetite and weight. The gut-brain-axis has a central function in the perpetuation of irritable bowel syndrome and the microbiota plays a critical role. The purpose of this article is to review recent research concerning the epidemiology of irritable bowel syndrome, influence of microbiota, probiota, gut-brain-axis, and possible treatment modalities on irritable bowel syndrome.
Collapse
Affiliation(s)
- Hans Raskov
- Speciallægecentret ved Diakonissestiftelsen, Frederiksberg, Denmark
| | - Jakob Burcharth
- Department of Surgery, Zealand University Hospital, University of Copenhagen, Copenhagen, Denmark,Centre for Perioperative Optimization, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Hans-Christian Pommergaard
- Centre for Perioperative Optimization, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark,Department of Surgery, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Rosenberg
- Centre for Perioperative Optimization, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
104
|
Li K, Nie YQ. Relationship between gastrointestinal micro-ecological imbalance and development of gastric cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:2324-2330. [DOI: 10.11569/wcjd.v24.i15.2324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human body and microorganisms present in the body form a symbiotic system as the relationship between eukaryotes and prokaryotes. Therefore, it is not enough to study human diseases only in terms of human body. Recent studies have pointed out that microorganisms are involved in the occurrence of a large number of malignant tumors. According to a conservative estimate, at least 15% of cancer cases are associated with infectious agents. Gastric cancer is the second major cause of global cancer deaths. For a long period of time, researchers believe that Helicobacter pylori associated with chronic gastritis is the strongest risk factor for the occurrence of gastric cancer. However, with the progress of molecular biology research, it has been found that there is a close interaction between the large microbial flora and Helicobacter pylori in the gastrointestinal tract. The changes of microbial community composition have important effects on the formation, development and intervention of gastric cancer. This article will review the occurrence and development of gastrointestinal microorganism and gastric cancer.
Collapse
|
105
|
Forsythe P, Kunze W, Bienenstock J. Moody microbes or fecal phrenology: what do we know about the microbiota-gut-brain axis? BMC Med 2016; 14:58. [PMID: 27090095 PMCID: PMC4836158 DOI: 10.1186/s12916-016-0604-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The microbiota-gut-brain axis is a term that is commonly used and covers a broad set of functions and interactions between the gut microbiome, endocrine, immune and nervous systems and the brain. The field is not much more than a decade old and so large holes exist in our knowledge. DISCUSSION At first sight it appears gut microbes are largely responsible for the development, maturation and adult function of the enteric nervous system as well as the blood brain barrier, microglia and many aspects of the central nervous system structure and function. Given the state of the art in this exploding field and the hopes, as well as the skepticism, which have been engendered by its popular appeal, we explore recent examples of evidence in rodents and data derived from studies in humans, which offer insights as to pathways involved. Communication between gut and brain depends on both humoral and nervous connections. Since these are bi-directional and occur through complex communication pathways, it is perhaps not surprising that while striking observations have been reported, they have often either not yet been reproduced or their replication by others has not been successful. CONCLUSIONS We offer critical and cautionary commentary on the available evidence, and identify gaps in our knowledge that need to be filled so as to achieve translation, where possible, into beneficial application in the clinical setting.
Collapse
Affiliation(s)
- Paul Forsythe
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada. .,McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada. .,Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, Ontario, Canada.
| | - Wolfgang Kunze
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - John Bienenstock
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| |
Collapse
|
106
|
Distrutti E, Monaldi L, Ricci P, Fiorucci S. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World J Gastroenterol 2016; 22:2219-2241. [PMID: 26900286 PMCID: PMC4734998 DOI: 10.3748/wjg.v22.i7.2219] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 12/05/2015] [Accepted: 12/30/2015] [Indexed: 02/07/2023] Open
Abstract
In the last decade the impressive expansion of our knowledge of the vast microbial community that resides in the human intestine, the gut microbiota, has provided support to the concept that a disturbed intestinal ecology might promote development and maintenance of symptoms in irritable bowel syndrome (IBS). As a correlate, manipulation of gut microbiota represents a new strategy for the treatment of this multifactorial disease. A number of attempts have been made to modulate the gut bacterial composition, following the idea that expansion of bacterial species considered as beneficial (Lactobacilli and Bifidobacteria) associated with the reduction of those considered harmful (Clostridium, Escherichia coli, Salmonella, Shigella and Pseudomonas) should attenuate IBS symptoms. In this conceptual framework, probiotics appear an attractive option in terms of both efficacy and safety, while prebiotics, synbiotics and antibiotics still need confirmation. Fecal transplant is an old treatment translated from the cure of intestinal infective pathologies that has recently gained a new life as therapeutic option for those patients with a disturbed gut ecosystem, but data on IBS are scanty and randomized, placebo-controlled studies are required.
Collapse
|
107
|
Moloney RD, Johnson AC, O'Mahony SM, Dinan TG, Greenwood‐Van Meerveld B, Cryan JF. Stress and the Microbiota-Gut-Brain Axis in Visceral Pain: Relevance to Irritable Bowel Syndrome. CNS Neurosci Ther 2016; 22:102-17. [PMID: 26662472 PMCID: PMC6492884 DOI: 10.1111/cns.12490] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 02/06/2023] Open
Abstract
Visceral pain is a global term used to describe pain originating from the internal organs of the body, which affects a significant proportion of the population and is a common feature of functional gastrointestinal disorders (FGIDs) such as irritable bowel syndrome (IBS). While IBS is multifactorial, with no single etiology to completely explain the disorder, many patients also experience comorbid behavioral disorders, such as anxiety or depression; thus, IBS is described as a disorder of the gut-brain axis. Stress is implicated in the development and exacerbation of visceral pain disorders. Chronic stress can modify central pain circuitry, as well as change motility and permeability throughout the gastrointestinal (GI) tract. More recently, the role of the gut microbiota in the bidirectional communication along the gut-brain axis, and subsequent changes in behavior, has emerged. Thus, stress and the gut microbiota can interact through complementary or opposing factors to influence visceral nociceptive behaviors. This review will highlight the evidence by which stress and the gut microbiota interact in the regulation of visceral nociception. We will focus on the influence of stress on the microbiota and the mechanisms by which microbiota can affect the stress response and behavioral outcomes with an emphasis on visceral pain.
Collapse
Affiliation(s)
- Rachel D. Moloney
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Present address:
Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Anthony C. Johnson
- Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Siobhain M. O'Mahony
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| | - Timothy G. Dinan
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkCorkIreland
| | - Beverley Greenwood‐Van Meerveld
- Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
- V.A. Medical CenterOklahoma CityOKUSA
| | - John F. Cryan
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| |
Collapse
|
108
|
Cannabinoid Receptors in Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance. Handb Exp Pharmacol 2016; 239:343-362. [PMID: 28161834 DOI: 10.1007/164_2016_105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cannabinoid receptors are fundamentally involved in all aspects of intestinal physiology, such as motility, secretion, and epithelial barrier function. They are part of a broader entity, the so-called endocannabinoid system which also includes their endocannabinoid ligands and the ligands' synthesizing/degrading enzymes. The system has a strong impact on the pathophysiology of the gastrointestinal tract and is believed to maintain homeostasis in the gut by controlling hypercontractility and by promoting regeneration after injury. For instance, genetic knockout of cannabinoid receptor 1 leads to inflammation and cancer of the intestines. Derivatives of Δ9-tetrahydrocannabinol, such as nabilone and dronabinol, activate cannabinoid receptors and have been introduced into the clinic to treat chemotherapy-induced emesis and loss of appetite; however, they may cause many psychotropic side effects. New drugs that interfere with endocannabinoid degradation to raise endocannabinoid levels circumvent this obstacle and could be used in the future to treat emesis, intestinal inflammation, and functional disorders associated with visceral hyperalgesia.
Collapse
|
109
|
O’ Mahony SM, Stilling RM, Dinan TG, Cryan JF. The microbiome and childhood diseases: Focus on brain-gut axis. ACTA ACUST UNITED AC 2015; 105:296-313. [DOI: 10.1002/bdrc.21118] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Siobhain M. O’ Mahony
- Department of Anatomy and Neuroscience, University College Cork; Cork Ireland
- Laboratory of Neurogastroenterology; APC Microbiome Institute; Cork Ireland
| | - Roman M. Stilling
- Laboratory of Neurogastroenterology; APC Microbiome Institute; Cork Ireland
| | - Timothy G. Dinan
- Laboratory of Neurogastroenterology; APC Microbiome Institute; Cork Ireland
- Department of Psychiatry and Neurobehavioural Science; University College Cork; Cork Ireland
| | - John F. Cryan
- Department of Anatomy and Neuroscience, University College Cork; Cork Ireland
- Laboratory of Neurogastroenterology; APC Microbiome Institute; Cork Ireland
| |
Collapse
|
110
|
Li M, Liang P, Li Z, Wang Y, Zhang G, Gao H, Wen S, Tang L. Fecal microbiota transplantation and bacterial consortium transplantation have comparable effects on the re-establishment of mucosal barrier function in mice with intestinal dysbiosis. Front Microbiol 2015. [PMID: 26217323 PMCID: PMC4493656 DOI: 10.3389/fmicb.2015.00692] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is a promising therapy, despite some reports of adverse side effects. Bacterial consortia transplantation (BCT) for targeted restoration of the intestinal ecosystem is considered a relatively safe and simple procedure. However, no systematic research has assessed the effects of FMT and BCT on immune responses of intestinal mucosal barrier in patients. We conducted complementary studies in animal models on the effects of FMT and BCT, and provide recommendations for improving the clinical outcomes of these treatments. To establish the dysbiosis model, male BALB/c mice were treated with ceftriaxone intra-gastrically for 7 days. After that, FMT and BCT were performed on ceftriaxone-treated mice for 3 consecutive days to rebuild the intestinal ecosystem. Post-FMT and post-BCT changes of the intestinal microbial community and mucosal barrier functions were investigated and compared. Disruption of intestinal microbial homeostasis impacted the integrity of mucosal epithelial layer, resulting in increased intestinal permeability. These outcomes were accompanied by overexpression of Muc2, significant decrease of SIgA secretion, and overproduction of defensins and inflammatory cytokines. After FMT and BCT, the intestinal microbiota recovered quickly, this was associated with better reconstruction of mucosal barriers and re-establishment of immune networks compared with spontaneous recovery (SR). Although based on a short-term study, our results suggest that FMT and BCT promote the re-establishment of intestinal microbial communities in mice with antibiotic-induced dysbiosis, and contribute to the temporal and spatial interactions between microbiota and mucosal barriers. The effects of BCT are comparable to that of FMT, especially in normalizing the intestinal levels of Muc2, SIgA, and defensins.
Collapse
Affiliation(s)
- Ming Li
- Department of Microecology, School of Basic Medical Science, Dalian Medical University Dalian, China ; Key Microecology Laboratory of Liaoning Province Dalian, China
| | - Pin Liang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University Dalian, China
| | - Zhenzhen Li
- Department of Microecology, School of Basic Medical Science, Dalian Medical University Dalian, China
| | - Ying Wang
- Department of Microecology, School of Basic Medical Science, Dalian Medical University Dalian, China
| | - Guobin Zhang
- Department of Microecology, School of Basic Medical Science, Dalian Medical University Dalian, China
| | - Hongwei Gao
- Department of Microecology, School of Basic Medical Science, Dalian Medical University Dalian, China
| | - Shu Wen
- Department of Microecology, School of Basic Medical Science, Dalian Medical University Dalian, China ; Key Microecology Laboratory of Liaoning Province Dalian, China
| | - Li Tang
- Department of Microecology, School of Basic Medical Science, Dalian Medical University Dalian, China ; Key Microecology Laboratory of Liaoning Province Dalian, China
| |
Collapse
|
111
|
Chichlowski M, Rudolph C. Visceral pain and gastrointestinal microbiome. J Neurogastroenterol Motil 2015; 21:172-81. [PMID: 25829337 PMCID: PMC4398233 DOI: 10.5056/jnm15025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 12/20/2022] Open
Abstract
A complex set of interactions between the microbiome, gut and brain modulate responses to visceral pain. These interactions occur at the level of the gastrointestinal mucosa, and via local neural, endocrine or immune activity; as well as by the production of factors transported through the circulatory system, like bacterial metabolites or hormones. Various psychological, infectious and other stressors can disrupt this harmonious relationship and alter both the microbiome and visceral pain responses. There are critical sensitive periods that can impact visceral pain responses in adulthood. In this review we provide a brief background of the intestinal microbiome and emerging concepts of the bidirectional interactions between the microbiome, gut and brain. We also discuss recent work in animal models, and human clinical trials using prebiotics and probiotics that alter the microbiome with resultant alterations in visceral pain responses.
Collapse
Affiliation(s)
| | - Colin Rudolph
- Mead Johnson Nutrition, Evansville, IN, USA.,Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|