101
|
Abstract
The incidence of colorectal cancer (CRC) is rapidly growing worldwide, and there is therefore a greater emphasis on studies of the treatment or prevention of CRC pathogenesis. Recent studies suggested that consideration of the microbiota is unavoidable to understand inflammation and tumorigenesis in the gastrointestinal tract. We demonstrate, using a mouse model of colitis-associated CRC, that human commensal B. fragilis protects against colon tumorigenesis. The protective role against tumor formation provided by B. fragilis is associated with inhibition of expression of the chemokine receptor CCR5 in the colon. The molecular mechanism for protection against CRC provided by B. fragilis is dependent on polysaccharide A production and is mediated by TLR2 signaling. Our results suggest that the commensal microorganism B. fragilis can be used to prevent inflammation-associated CRC development and may provide an effective therapeutic strategy for CRC. Many patients with chronic inflammation of the gut, such as that observed in inflammatory bowel disease (IBD), develop colorectal cancer (CRC). Recent studies have reported that the development of IBD and CRC partly results from an imbalanced composition of intestinal microbiota and that intestinal inflammation in these diseases can be modulated by the microbiota. The human commensal Bacteroides fragilis is best exemplified playing a protective role against the development of experimental colitis in several animal disease models. In this study, we found that gut inflammation caused by dextran sulfate sodium (DSS) treatment was inhibited by B. fragilis colonization in mice. Further, we reveal a protective role of B. fragilis treatment against colon tumorigenesis using an azoxymethane (AOM)/DSS-induced model of colitis-associated colon cancer in mice and demonstrate that the decreased tumorigenesis by B. fragilis administration is accompanied by inhibited expression of C-C chemokine receptor 5 (CCR5) in the gut. We show direct evidence that the inhibition of tumor formation provided by B. fragilis in colitis-associated CRC animals was dependent on the production of polysaccharide A (PSA) from B. fragilis and that Toll-like receptor 2 (TLR2) signaling was responsible for the protective function of B. fragilis. IMPORTANCE The incidence of colorectal cancer (CRC) is rapidly growing worldwide, and there is therefore a greater emphasis on studies of the treatment or prevention of CRC pathogenesis. Recent studies suggested that consideration of the microbiota is unavoidable to understand inflammation and tumorigenesis in the gastrointestinal tract. We demonstrate, using a mouse model of colitis-associated CRC, that human commensal B. fragilis protects against colon tumorigenesis. The protective role against tumor formation provided by B. fragilis is associated with inhibition of expression of the chemokine receptor CCR5 in the colon. The molecular mechanism for protection against CRC provided by B. fragilis is dependent on polysaccharide A production and is mediated by TLR2 signaling. Our results suggest that the commensal microorganism B. fragilis can be used to prevent inflammation-associated CRC development and may provide an effective therapeutic strategy for CRC.
Collapse
|
102
|
Insights Into the Relationship Between Gut Microbiota and Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2018. [DOI: 10.1007/s11888-018-0419-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
103
|
Rebuilding the Gut Microbiota Ecosystem. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081679. [PMID: 30087270 PMCID: PMC6121872 DOI: 10.3390/ijerph15081679] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/04/2018] [Indexed: 11/17/2022]
Abstract
A microbial ecosystem in which bacteria no longer live in a mutualistic association is called dysbiotic. Gut microbiota dysbiosis is a condition related with the pathogenesis of intestinal illnesses (irritable bowel syndrome, celiac disease, and inflammatory bowel disease) and extra-intestinal illnesses (obesity, metabolic disorder, cardiovascular syndrome, allergy, and asthma). Dysbiosis status has been related to various important pathologies, and many therapeutic strategies aimed at restoring the balance of the intestinal ecosystem have been implemented. These strategies include the administration of probiotics, prebiotics, and synbiotics; phage therapy; fecal transplantation; bacterial consortium transplantation; and a still poorly investigated approach based on predatory bacteria. This review discusses the various aspects of these strategies to counteract intestinal dysbiosis.
Collapse
|
104
|
Yu Z, Song G, Liu J, Wang J, Zhang P, Chen K. Beneficial effects of extracellular polysaccharide from Rhizopus nigricans on the intestinal immunity of colorectal cancer mice. Int J Biol Macromol 2018; 115:718-726. [DOI: 10.1016/j.ijbiomac.2018.04.128] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
|
105
|
Majeed M, Majeed S, Nagabhushanam K, Arumugam S, Natarajan S, Beede K, Ali F. Galactomannan from Trigonella foenum- graecum L. seed: Prebiotic application and its fermentation by the probiotic Bacillus coagulans strain MTCC 5856. Food Sci Nutr 2018; 6:666-673. [PMID: 29876118 PMCID: PMC5980318 DOI: 10.1002/fsn3.606] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 01/13/2023] Open
Abstract
Health benefits of dietary fibers are currently being widely recognized. However, the assessment of dietary fiber as a prebiotic is essential and also important for the development of an improved synbiotic commercial preparation. Thus, the aim of this study was to evaluate the potential of galactomannan extracted from fenugreek seeds as a prebiotic fiber and also its fermentation by the probiotic strain Bacillus coagulans MTCC 5856. Nondigestibility by the gastric acid and pancreatic enzyme hydrolysis of galactomannan were determined using an in vitro model mimicking the in vivo conditions. Further, anaerobic fermentation and utilization of galactomannan by the B. coagulans MTCC 5856 was investigated followed by selective inhibition of Escherichia coli ATCC 25922. The galactomannan from fenugreek seeds was found to be nondigestible to gastric acid and also to pancreatic enzymatic hydrolysis. The galactomannan was fermented and utilized (71.4%) by the B. coagulans MTCC 5856, and also significant amount of short-chain fatty acids production was also observed. Furthermore, B. coagulans MTCC 5856 inhibited the E. coli ATCC 25922 growth when cocultured with galactomannan suggesting competitive fermentation of probiotic bacteria. Galactomannan exhibited prebiotic activity and also showed suitability with probiotic B. coagulans MTCC 5856 in a synbiotic combination. This study provides the first scientific evidence of galactomannan from fenugreek seeds as a prebiotic that may play an important role in modulating gut flora by acting as substrate to beneficial microbes.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami Labs LimitedBangaloreKarnatakaIndia
- Sabinsa CorporationEast WindsorNJUSA
| | - Shaheen Majeed
- Sami Labs LimitedBangaloreKarnatakaIndia
- Sabinsa CorporationEast WindsorNJUSA
- Sabinsa CorporationPaysonUTUSA
| | | | | | | | | | - Furqan Ali
- Sami Labs LimitedBangaloreKarnatakaIndia
| |
Collapse
|
106
|
Nath A, Haktanirlar G, Varga Á, Molnár MA, Albert K, Galambos I, Koris A, Vatai G. Biological Activities of Lactose-Derived Prebiotics and Symbiotic with Probiotics on Gastrointestinal System. ACTA ACUST UNITED AC 2018; 54:medicina54020018. [PMID: 30344249 PMCID: PMC6037253 DOI: 10.3390/medicina54020018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Lactose-derived prebiotics provide wide ranges of gastrointestinal comforts. In this review article, the probable biochemical mechanisms through which lactose-derived prebiotics offer positive gastrointestinal health are reported along with the up-to-date results of clinical investigations; this might be the first review article of its kind, to the best of our knowledge. Lactose-derived prebiotics have unique biological and functional values, and they are confirmed as ‘safe’ by the Food and Drug Administration federal agency. Medical practitioners frequently recommend them as therapeutics as a pure form or combined with dairy-based products (yoghurt, milk and infant formulas) or fruit juices. The biological activities of lactose-derived prebiotics are expressed in the presence of gut microflora, mainly probiotics (Lactobacillus spp. in the small intestine and Bifidobacterium spp. in the large intestine). Clinical investigations reveal that galacto-oligosaccharide reduces the risks of several types of diarrhea (traveler’s diarrhea, osmotic diarrhea and Clostridium difficile associated relapsing diarrhea). Lactulose and lactosucrose prevent inflammatory bowel diseases (Crohn’s disease and ulcerative colitis). Lactulose and lactitol reduce the risk of hepatic encephalopathy. Furthermore, lactulose, galacto-oligosaccharide and lactitol prevent constipation in individuals of all ages. It is expected that the present review article will receive great attention from medical practitioners and food technologists.
Collapse
Affiliation(s)
- Arijit Nath
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
- Soós Ernő Water Technology Research Centre, Faculty of Engineering, University of Pannonia, Zrínyi M. u. 18, H-8800 Nagykanizsa, Hungary.
| | - Gokce Haktanirlar
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Áron Varga
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Máté András Molnár
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Krisztina Albert
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Ildikó Galambos
- Soós Ernő Water Technology Research Centre, Faculty of Engineering, University of Pannonia, Zrínyi M. u. 18, H-8800 Nagykanizsa, Hungary.
| | - András Koris
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Gyula Vatai
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| |
Collapse
|
107
|
Thilakarathna WPDW, Langille MGI, Rupasinghe HPV. Polyphenol-based prebiotics and synbiotics: potential for cancer chemoprevention. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
108
|
Irecta-Nájera CA, Del Rosario Huizar-López M, Casas-Solís J, Castro-Félix P, Santerre A. Protective Effect of Lactobacillus casei on DMH-Induced Colon Carcinogenesis in Mice. Probiotics Antimicrob Proteins 2018; 9:163-171. [PMID: 28316010 DOI: 10.1007/s12602-017-9253-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The administration of probiotics is a promising approach to reduce the prevalence of colon cancer, a multifactorial disease, with hereditary factors, as well as environmental lifestyle-related risk factors. Biogenic polyamines, putrescine, spermidine, and spermine are small cationic molecules with great roles in cell proliferation and differentiation as well as regulation of gene expression. Ornithine decarboxylase is the first rate-limiting enzyme for polyamine synthesis, and upregulation of ornithine decarboxylase activity and polyamine metabolism has been associated with abnormal cell proliferation. This paper is focused on studying the protective role of Lactobacillus casei ATCC 393 in a chemically induced mouse model of colon carcinogenesis, directing our attention on aberrant crypt foci as preneoplastic markers, and on polyamine metabolism as a possible key player in carcinogenesis. BALB/c mice were administered 1,2-dimethylhydrazine dihydrochloride (DMH) to induce colon cancer (20 mg/kg body weight, subcutaneous, twice a week for 24 weeks). L. casei ATCC 393 was given orally (106 CFU, twice a week), 2 weeks before DMH administration. Hematoxylin and eosin staining, high-performance liquid chromatography, and Western blotting were used to evaluate aberrant crypt foci, urinary polyamines, and ornithine decarboxylase expression in the colon. The experimental data showed that the preventive administration of L. casei ATCC 393 may delay the onset of cancer as it significantly reduced the number of DMH-induced aberrant crypt foci, the levels of putrescine, and the expression of ornithine decarboxylase. Hence, this probiotic strain has a prospective role in protection against colon carcinogenesis, and its antimutagenic activity may be associated with the maintenance of polyamine metabolism.
Collapse
Affiliation(s)
- Cesar Antonio Irecta-Nájera
- Departamento de Salud, El Colegio de La Frontera Sur, Periférico Sur s/n, María Auxiliadora, 29290, San Cristóbal de Las Casas, Chiapas, Mexico
| | - María Del Rosario Huizar-López
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, C.P. 45110, Zapopan, Jalisco, Mexico
| | - Josefina Casas-Solís
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, C.P. 45110, Zapopan, Jalisco, Mexico
| | - Patricia Castro-Félix
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, C.P. 45110, Zapopan, Jalisco, Mexico
| | - Anne Santerre
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, C.P. 45110, Zapopan, Jalisco, Mexico.
| |
Collapse
|
109
|
Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, Li T, Yin Y. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front Cell Infect Microbiol 2018; 8:13. [PMID: 29468141 PMCID: PMC5808205 DOI: 10.3389/fcimb.2018.00013] [Citation(s) in RCA: 741] [Impact Index Per Article: 123.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota influences the health of the host, especially with regard to gut immune homeostasis and the intestinal immune response. In addition to serving as a nutrient enhancer, L-tryptophan (Trp) plays crucial roles in the balance between intestinal immune tolerance and gut microbiota maintenance. Recent discoveries have underscored that changes in the microbiota modulate the host immune system by modulating Trp metabolism. Moreover, Trp, endogenous Trp metabolites (kynurenines, serotonin, and melatonin), and bacterial Trp metabolites (indole, indolic acid, skatole, and tryptamine) have profound effects on gut microbial composition, microbial metabolism, the host's immune system, the host-microbiome interface, and host immune system-intestinal microbiota interactions. The aryl hydrocarbon receptor (AhR) mediates the regulation of intestinal immunity by Trp metabolites (as ligands of AhR), which is beneficial for immune homeostasis. Among Trp metabolites, AhR ligands consist of endogenous metabolites, including kynurenine, kynurenic acid, xanthurenic acid, and cinnabarinic acid, and bacterial metabolites, including indole, indole propionic acid, indole acetic acid, skatole, and tryptamine. Additional factors, such as aging, stress, probiotics, and diseases (spondyloarthritis, irritable bowel syndrome, inflammatory bowel disease, colorectal cancer), which are associated with variability in Trp metabolism, can influence Trp-microbiome-immune system interactions in the gut and also play roles in regulating gut immunity. This review clarifies how the gut microbiota regulates Trp metabolism and identifies the underlying molecular mechanisms of these interactions. Increased mechanistic insight into how the microbiota modulates the intestinal immune system through Trp metabolism may allow for the identification of innovative microbiota-based diagnostics, as well as appropriate nutritional supplementation of Trp to prevent or alleviate intestinal inflammation. Moreover, this review provides new insight regarding the influence of the gut microbiota on Trp metabolism. Additional comprehensive analyses of targeted Trp metabolites (including endogenous and bacterial metabolites) are essential for experimental preciseness, as the influence of the gut microbiota cannot be neglected, and may explain contradictory results in the literature.
Collapse
Affiliation(s)
- Jing Gao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kang Xu
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Hongnan Liu
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Gang Liu
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Miaomiao Bai
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Can Peng
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Tiejun Li
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Life Science, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
110
|
Zhang N, Ju Z, Zuo T. Time for food: The impact of diet on gut microbiota and human health. Nutrition 2018; 51-52:80-85. [PMID: 29621737 DOI: 10.1016/j.nut.2017.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023]
Abstract
There is growing recognition of the role of diet on modulating the composition and metabolic activity of the human gut microbiota, which in turn influence health. Dietary ingredients and food additives have a substantial impact on the gut microbiota and hence affect human health. Updates on current understanding of the gut microbiota in diseases and metabolic disorders are addressed in this review, providing insights into how this can be transferred from bench to bench side as gut microbes are integrated with food. The potency of microbiota-targeted biomarkers as a state-of-art tool for diagnosis of diseases was also discussed, and it would instruct individuals with healthy dietary consumption. Herein, recent advances in understanding the effect of diet on gut microbiota from an ecological perspective, and how these insights might promote health by guiding development of prebiotic and probiotic strategies and functional foods, were explored.
Collapse
Affiliation(s)
- Na Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhongjie Ju
- Yantai Center for Food and Drug Control, Yantai, Shandong, China
| | - Tao Zuo
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Institute of Digestive Disease, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.
| |
Collapse
|
111
|
Krumbeck JA, Walter J, Hutkins RW. Synbiotics for Improved Human Health: Recent Developments, Challenges, and Opportunities. Annu Rev Food Sci Technol 2018; 9:451-479. [PMID: 29350558 DOI: 10.1146/annurev-food-030117-012757] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Research on combining pro- and prebiotics as synbiotics to enhance human and animal health has accelerated in the past 10 years, including many clinical trials that have assessed a diverse range of synbiotic formulations. In this review, we summarize these studies as well as the commercial applications of synbiotics that are available. In particular, we critically assess the claimed health benefits of synbiotic applications and the ecological and therapeutic factors to consider when designing synbiotics and discuss the implications of these concepts for future research in this field.
Collapse
Affiliation(s)
- Janina A Krumbeck
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Jens Walter
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2R3.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Robert W Hutkins
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska 68588, USA;
| |
Collapse
|
112
|
|
113
|
de Moura NA, Caetano BFR, de Moraes LN, Carvalho RF, Rodrigues MAM, Barbisan LF. Enhancement of colon carcinogenesis by the combination of indole-3 carbinol and synbiotics in hemin-fed rats. Food Chem Toxicol 2017; 112:11-18. [PMID: 29269057 DOI: 10.1016/j.fct.2017.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
Abstract
The risk of developing colorectal cancer (CRC) could be associated with red and processed meat intake. Experimental data supports that hemin iron, found abundantly in red meat, promotes CRC in mice and rats, while indole-3 carbinol (I3C) and synbiotics (syn) exert anti-carcinogenic activities in most studies of colon carcinogenesis. This study aimed to investigate the modifying effects of I3C and syn (inulin + Bifidobacterium lactis), given separately or together, on dimethylhidrazine (DMH)-induced colon carcinogenesis in hemin-fed rats. All animals were given four subcutaneous DMH injections and then, two weeks after carcinogen exposure, they began a basal diet containing hemin, hemin + I3C, hemin + syn, or hemin + I3C + syn for 23 weeks. The combination of I3C + syn significantly increased fecal water genotoxicity, tumor volume and invasiveness when compared to the hemin-fed control group. The groups fed I3C or syn alone had a significant reduction in the number of preneoplastic aberrant crypt foci (ACF) lesions compared to the hemin-fed group. Dietary I3C also reduced fecal water genotoxicity. Gene expression analysis of colorectal tumors demonstrated that the combination of dietary I3C + syn increased transcript levels for Raf1 and decreased tumor progression and invasiveness related to the genes Cdh1 and Appl1. This analysis also revealed that the Tnf and Cdh1 genes were significantly up- and down-regulated, respectively, in tumors of rats that received I3C, in comparison with the hemin-fed group. These findings reveal that the joint administration of I3C and syn enhanced the development of colon tumors induced by DMH in hemin-fed rats, while they potentially reduced ACF development when given alone.
Collapse
Affiliation(s)
- Nelci A de Moura
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP 18618-689, Brazil
| | - Brunno F R Caetano
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP 18618-689, Brazil
| | - Leonardo N de Moraes
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP 18618-689, Brazil
| | - Robson F Carvalho
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP 18618-689, Brazil
| | - Maria A M Rodrigues
- Department of Pathology, School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP 18610-307, Brazil
| | - Luis F Barbisan
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP 18618-689, Brazil.
| |
Collapse
|
114
|
Prete R, Tofalo R, Federici E, Ciarrocchi A, Cenci G, Corsetti A. Food-Associated Lactobacillus plantarum and Yeasts Inhibit the Genotoxic Effect of 4-Nitroquinoline-1-Oxide. Front Microbiol 2017; 8:2349. [PMID: 29234315 PMCID: PMC5712336 DOI: 10.3389/fmicb.2017.02349] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022] Open
Abstract
Lactic acid bacteria and yeasts, representing the prevailing microbiota associated with different foods generally consumed without any cooking, were identified and characterized in vitro for some functional properties, such as acid-bile tolerance and antigenotoxic activity. In particular, 22 Lactobacillus plantarum strains and 14 yeasts were studied. The gastro-intestinal tract tolerance of all the strains was determined by exposing washed cell suspensions at 37°C to a simulated gastric juice (pH 2.0), containing pepsin (0.3% w/v) and to a simulated small intestinal juice (pH 8.0), containing pancreatin (1 mg mL-1) and bile extract (0.5%), thus monitoring changes in total viable count. In general, following a strain-dependent behavior, all the tested strains persisted alive after combined acid-bile challenge. Moreover, many strains showed high in vitro inhibitory activity against a model genotoxin, 4-nitroquinoline-1-oxide (4-NQO), as determined by the short-term method, SOS-Chromotest. Interestingly, the supernatants from bacteria- or yeasts-genotoxin co-incubations exhibited a suppression on SOS-induction produced by 4-NQO on the tester strain Escherichia coli PQ37 (sfiA::lacZ) exceeding, in general, the value of 75%. The results highlight that food associated microorganisms may reach the gut in viable form and prevent genotoxin DNA damage in situ. Our experiments can contribute to elucidate the functional role of food-associated microorganisms general recognized as safe ingested with foods as a part of the diet.
Collapse
Affiliation(s)
- Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ermanno Federici
- Laboratory of Microbiology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Aurora Ciarrocchi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giovanni Cenci
- Laboratory of Microbiology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
115
|
Grancieri M, Costa NMB, Vaz Tostes MDG, de Oliveira DS, Nunes LDC, Marcon LDN, Veridiano TA, Viana ML. Yacon flour (Smallanthus sonchifolius) attenuates intestinal morbidity in rats with colon cancer. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
116
|
Aguirre-Portolés C, Fernández LP, Ramírez de Molina A. Precision Nutrition for Targeting Lipid Metabolism in Colorectal Cancer. Nutrients 2017; 9:nu9101076. [PMID: 28956850 PMCID: PMC5691693 DOI: 10.3390/nu9101076] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
Cancer is a multistage and multifactorial condition with genetic and environmental factors modulating tumorogenesis and disease progression. Nevertheless, cancer is preventable, as one third of cancer deaths could be avoided by modifying key risk factors. Nutrients can directly affect fundamental cellular processes and are considered among the most important risk factors in colorectal cancer (CRC). Red and processed meat, poultry consumption, fiber, and folate are the best-known diet components that interact with colorectal cancer susceptibility. In addition, the direct association of an unhealthy diet with obesity and dysbiosis opens new routes in the understanding of how daily diet nutrients could influence cancer prognosis. In the “omics” era, traditional nutrition has been naturally evolved to precision nutrition where technical developments have contributed to a more accurate discipline. In this sense, genomic and transcriptomic studies have been extensively used in precision nutrition approaches. However, the relation between CRC carcinogenesis and nutrition factors is more complex than originally expected. Together with classical diet-nutrition-related genes, nowadays, lipid-metabolism-related genes have acquired relevant interest in precision nutrition studies. Lipids regulate very diverse cellular processes from ATP synthesis and the activation of essential cell-signaling pathways to membrane organization and plasticity. Therefore, a wide range of tumorogenic steps can be influenced by lipid metabolism, both in primary tumours and distal metastasis. The extent to which genetic variants, together with the intake of specific dietary components, affect the risk of CRC is currently under investigation, and new therapeutic or preventive applications must be explored in CRC models. In this review, we will go in depth into the study of co-occurring events, which orchestrate CRC tumorogenesis and are essential for the evolution of precision nutrition paradigms. Likewise, we will discuss the application of precision nutrition approaches to target lipid metabolism in CRC.
Collapse
Affiliation(s)
- Cristina Aguirre-Portolés
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, E-28049 Madrid, Spain.
| | - Lara P Fernández
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, E-28049 Madrid, Spain.
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, E-28049 Madrid, Spain.
| |
Collapse
|
117
|
Abstract
PURPOSE OF REVIEW Probiotics can be used as an adjuvant for cancer prevention or/and treatment through their abilities to modulate intestinal microbiota and host immune response. Although most of the recent reviews have focused on the potential role of probiotics against colon cancer, only few of them include the probiotic effect on extraintestinal cancers. The present review covers the most important findings from the literature published during the past 20 months (from January 2015 to August 2016) regarding the probiotics-mediated suppression of both gastrointestinal and extraintestinal cancers and the underlying mechanisms. RECENT FINDINGS A comprehensive literature search in Pubmed, Science direct and Google scholar databases was conducted to locate all relevant articles that investigated the effect of probiotics on prevention/treatment of both gastrointestinal and extraintestinal cancers. Different mechanisms for the beneficial effects of probiotics against cancer were also discussed, mainly via modulation of gut microbiota which thereby influences host metabolism and immunity. SUMMARY Despite laboratory-based studies having demonstrated encouraging outcomes that probiotics possess antitumor effects, the benefits should not be exaggerated before we get more results from human clinical trials. These are very important before the medical community can accept the use of probiotics as an alternative therapy for cancer control.
Collapse
|
118
|
CHAIYASUT C, PATTANANANDECHA T, SIRILUN S, SUWANNALERT P, PEERAJAN S, SIVAMARUTHI BS. Synbiotic preparation with Lactic acid bacteria and inulin as a functional food: In vivo evaluation of microbial activities, and preneoplastic aberrant crypt foci. FOOD SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1590/1678-457x.26216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
119
|
Abstract
Microbial fermentation has been used historically for the preservation of foods, the health benefits of which have since come to light. Early dairy fermentations depended on the spontaneous activity of the indigenous microbiota of the milk. Modern fermentations rely on defined starter cultures with desirable characteristics to ensure consistency and commercial viability. The selection of defined starters depends on specific phenotypes that benefit the product by guaranteeing shelf life and ensuring safety, texture, and flavour. Lactic acid bacteria can produce a number of bioactive metabolites during fermentation, such as bacteriocins, biogenic amines, exopolysaccharides, and proteolytically released peptides, among others. Prebiotics are added to food fermentations to improve the performance of probiotics. It has also been found that prebiotics fermented in the gut can have benefits that go beyond helping probiotic growth. Studies are now looking at how the fermentation of prebiotics such as fructo-oligosaccharides can help in the prevention of diseases such as osteoporosis, obesity, and colorectal cancer. The potential to prevent or even treat disease through the fermentation of food is a medically and commercially attractive goal and is showing increasing promise. However, the stringent regulation of probiotics is beginning to detrimentally affect the field and limit their application.
Collapse
Affiliation(s)
- Daragh Hill
- Department of Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland.,The School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Ivan Sugrue
- Department of Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Elke Arendt
- APC Microbiome Institute, University College Cork, Cork, Ireland.,The School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Department of Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland.,College of Science Engineering and Food Science, University College Cork, Cork, Ireland
| |
Collapse
|
120
|
Mitra D, Basu A, Das B, Jena AK, De A, Das M, Bhattacharya S, Samanta A. Gum odina: an emerging gut modulating approach in colorectal cancer prevention. RSC Adv 2017. [DOI: 10.1039/c7ra04077f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study is focused on Gum Odina (GO), a reported prebiotic in our earlier work, and its impact on colorectal cancer (CRC).
Collapse
Affiliation(s)
- Debmalya Mitra
- Division of Microbiology
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
- India
| | - Abhishek Basu
- Department of Cancer Chemoprevention
- Chittaranjan National Cancer Institute
- Kolkata
- India
| | - Bhaskar Das
- Division of Microbiology
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
- India
| | - Aditya Kr. Jena
- Division of Microbiology
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
- India
| | - Arnab De
- Division of Microbiology
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
- India
| | - Mousumi Das
- Division of Microbiology
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
- India
| | - Sudin Bhattacharya
- Department of Cancer Chemoprevention
- Chittaranjan National Cancer Institute
- Kolkata
- India
| | - Amalesh Samanta
- Division of Microbiology
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
- India
| |
Collapse
|
121
|
Yang Y, Xia Y, Chen H, Hong L, Feng J, Yang J, Yang Z, Shi C, Wu W, Gao R, Wei Q, Qin H, Ma Y. The effect of perioperative probiotics treatment for colorectal cancer: short-term outcomes of a randomized controlled trial. Oncotarget 2016; 7:8432-40. [PMID: 26824990 PMCID: PMC4885004 DOI: 10.18632/oncotarget.7045] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/13/2016] [Indexed: 12/14/2022] Open
Abstract
This study was designed to mainly evaluate the anti-infective effects of perioperative probiotic treatment in patients receiving confined colorectal cancer (CRC) respective surgery. From November 2011 to September 2012, a total of 60 patients diagnosed with CRC were randomly assigned to receive probiotic (n = 30) or placebo (n = 30) treatment. The operative and post-operative clinical results including intestinal cleanliness, days to first - flatus, defecation, fluid diet, solid diet, duration of pyrexia, average heart rate, length of intraperitoneal drainage, length of antibiotic therapy, blood index changes, rate of infectious and non-infectious complications, postoperative hospital stay, and mortality were investigated. The patient demographics were not significantly different (p > 0.05) between the probiotic treated and the placebo groups. The days to first flatus (3.63 versus 3.27, p = 0.0274) and the days to first defecation (4.53 versus 3.87, p = 0.0268) were significantly improved in the probiotic treated patients. The incidence of diarrhea was significantly lower (p = 0.0352) in probiotics group (26.67%, 8/30) compared to the placebo group (53.33%, 16/30). There were no statistical differences (p > 0.05) in other infectious and non-infectious complication rates including wound infection, pneumonia, urinary tract infection, anastomotic leakage, and abdominal distension. In conclusion, for those patients undergoing confined CRC resection, perioperative probiotic administration significantly influenced the recovery of bowel function, and such improvement may be of important clinical significance in reducing the short-term infectious complications such as bacteremia.
Collapse
Affiliation(s)
- Yongzhi Yang
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Yang Xia
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongqi Chen
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Leiming Hong
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Junlan Feng
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jun Yang
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhe Yang
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Chenzhang Shi
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Wen Wu
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Renyuan Gao
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Huanlong Qin
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Yanlei Ma
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
122
|
Sharma M, Shukla G. Metabiotics: One Step ahead of Probiotics; an Insight into Mechanisms Involved in Anticancerous Effect in Colorectal Cancer. Front Microbiol 2016; 7:1940. [PMID: 27994577 PMCID: PMC5133260 DOI: 10.3389/fmicb.2016.01940] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is closely associated with environment, diet and lifestyle. Normally it is treated with surgery, radiotherapy or chemotherapy but increasing systemic toxicity, resistance and recurrence is prompting scientists to devise new potent and safer alternate prophylactic or therapeutic strategies. Among these, probiotics, prebiotics, synbiotics, and metabiotics are being considered as the promising candidates. Metabiotics or probiotic derived factors can optimize various physiological functions of the host and offer an additional advantage to be utilized even in immunosuppressed individuals. Interestingly, anti colon cancer potential of probiotic strains has been attributable to metabiotics that have epigenetic, antimutagenic, immunomodulatory, apoptotic, and antimetastatic effects. Thus, it's time to move one step further to utilize metabiotics more smartly by avoiding the risks associated with probiotics even in certain normal/or immuno compromised host. Here, an attempt is made to provide insight into the adverse effects associated with probiotics and beneficial aspects of metabiotics with main emphasis on the modulatory mechanisms involved in colon cancer.
Collapse
Affiliation(s)
- Mridul Sharma
- Department of Microbiology, Panjab University Chandigarh, India
| | - Geeta Shukla
- Department of Microbiology, Panjab University Chandigarh, India
| |
Collapse
|
123
|
Li H, Zhang P. Role of intestinal microecology in precision treatment of colorectal cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:4354-4361. [DOI: 10.11569/wcjd.v24.i32.4354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recently, the role of intestinal microecology in diseases has attracted increasing attention. Some progress has been achieved in the study of the colorectum, which is the carrier of intestinal microecology, and the role of intestinal microecology in colorectal cancer (CRC) formation and progression has been clarified gradually. More and more studies show that intestinal microecology plays a key role in CRC related precision treatments, such as tumor immunotherapy, chemotherapy and probiotic intervention, which have achieved certain curative effects in clinical treatment, although the mechanism still needs further study. This review briefly discusses the intestinal microecology related precision treatments for CRC and their potential mechanisms.
Collapse
|
124
|
Kahouli I, Malhotra M, Westfall S, Alaoui-Jamali MA, Prakash S. Design and validation of an orally administrated active L. fermentum-L. acidophilus probiotic formulation using colorectal cancer Apc Min/+ mouse model. Appl Microbiol Biotechnol 2016; 101:1999-2019. [PMID: 27837314 DOI: 10.1007/s00253-016-7885-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/06/2016] [Accepted: 09/20/2016] [Indexed: 12/27/2022]
Abstract
Probiotics have been shown to have beneficial properties in attenuating the risk of colorectal cancer (CRC) development. However, functional evidence to support such effects for some probiotic bacteria are relatively unknown. Here, we document a significant antioxidant, anti-proliferative and pro-apoptotic activities of Lactobacillus acidophilus ATCC 314 and Lactobacillus fermentum NCIMB 5221 on CRC cells, particularly when used in combination (La-Lf). Furthermore, a superior synergistic activity on the inhibition of tumor growth and modulation of cell proliferation and epithelial markers in the Apc Min/+ CRC mouse model was explored, based on the expression levels of Ki-67, E-cadherin, β-catenin, and cleaved caspase-3 (CC3) proteins. The anti-cancer activity of La-Lf co-culture was significantly enhanced in vitro with significant reduced proliferation (38.8 ± 6.9 %, P = 0.009) and increased apoptosis (413 RUL, P < 0.001) towards cancer cells, as well as significant protection of normal colon cell growth from toxic treatment (18.6 ± 9.8 %, P = 0.001). La-Lf formulation (1010cfu/animal/day) altered aspects of intestinal tumorigenesis by significantly reducing intestinal tumor multiplicity (1.7-fold, P = 0.016) and downregulating cellular proliferation markers, including β-catenin (P = 0.041) and Ki-67 (P = 0.008). In conclusion, La-Lf showed greater protection against intestinal tumorigenesis supporting a potential use as a biotherapeutic for the prevention of CRC.
Collapse
Affiliation(s)
- Imen Kahouli
- Department of Experimental Medicine, Faculty of Medicine, McGill University, 1110 Pine Avenue West, Montreal, QC, H3A 1A3, Canada.,Department of Biomedical Engineering, Faculty of Medicine, Biomedical Technology and Cell Therapy Research Laboratory, McGill University, 3775 University Street, Montreal, QC, H3A 2B4, Canada.,Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, 3755 Côte-Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Meenakshi Malhotra
- Department of Biomedical Engineering, Faculty of Medicine, Biomedical Technology and Cell Therapy Research Laboratory, McGill University, 3775 University Street, Montreal, QC, H3A 2B4, Canada.,Department of Microbiology, Immunology and Infectious Diseases, CHU St. Justine Research Center, University of Montreal, 3175 Cote-Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Susan Westfall
- Department of Biomedical Engineering, Faculty of Medicine, Biomedical Technology and Cell Therapy Research Laboratory, McGill University, 3775 University Street, Montreal, QC, H3A 2B4, Canada
| | - Moulay A Alaoui-Jamali
- Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, 3755 Côte-Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada.,Departments of Medicine and Oncology, Faculty of Medicine, Gerald Bronfman Centre, McGill University, Room 210, 546 Pine Avenue West, Montreal, QC, H2W 1S6, Canada
| | - Satya Prakash
- Department of Experimental Medicine, Faculty of Medicine, McGill University, 1110 Pine Avenue West, Montreal, QC, H3A 1A3, Canada. .,Department of Biomedical Engineering, Faculty of Medicine, Biomedical Technology and Cell Therapy Research Laboratory, McGill University, 3775 University Street, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
125
|
Khorshidian N, Yousefi Asli M, Hosseini H, Shadnoush M, Mortazavian AM. Potential Anticarcinogenic Effects of Lactic Acid Bacteria and Probiotics in Detoxification of Process-Induced Food Toxicants. IRANIAN JOURNAL OF CANCER PREVENTION 2016. [DOI: 10.17795/ijcp-7920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
126
|
Caetano BFR, de Moura NA, Almeida APS, Dias MC, Sivieri K, Barbisan LF. Yacon (Smallanthus sonchifolius) as a Food Supplement: Health-Promoting Benefits of Fructooligosaccharides. Nutrients 2016; 8:nu8070436. [PMID: 27455312 PMCID: PMC4963912 DOI: 10.3390/nu8070436] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 01/19/2023] Open
Abstract
Yacon (Smallanthus sonchifolius), a perennial plant of the family Asteraceae native to the Andean regions of South America, is an abundant source of fructooligosaccharides (FOS). This comprehensive review of the literature addressed the role of yacon supplementation in promoting health and reducing the risk of chronic diseases. According to several preclinical and clinical trials, FOS intake favors the growth of health-promoting bacteria while reducing pathogenic bacteria populations. Moreover, the endproducts of FOS fermentation by the intestinal microbiota, short chain fatty acids (SCFA), act as substrates or signaling molecules in the regulation of the immune response, glucose homeostasis and lipid metabolism. As a result, glycemic levels, body weight and colon cancer risk can be reduced. Based on these findings, most studies reviewed concluded that due to their functional properties, yacon roots may be effectively used as a dietary supplement to prevent and treat chronic diseases.
Collapse
Affiliation(s)
- Brunno F R Caetano
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu 18618-689, Brazil.
| | - Nelci A de Moura
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu 18618-689, Brazil.
| | - Ana P S Almeida
- Departament of Food and Nutrition, Faculty of Pharmaceutical Sciences, Sao Paulo State University, Araraquara 14800-903, Brazil.
| | - Marcos C Dias
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-000, Mato Grosso, Brazil.
| | - Kátia Sivieri
- Departament of Food and Nutrition, Faculty of Pharmaceutical Sciences, Sao Paulo State University, Araraquara 14800-903, Brazil.
| | - Luís F Barbisan
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu 18618-689, Brazil.
| |
Collapse
|
127
|
Sepahi S, Jafarian-Dehkordi A, Mirlohi M, Shirani K, Etebari M. Protective role of Lactobacillus plantarum A7 against irinotecan-induced genotoxicity. AVICENNA JOURNAL OF PHYTOMEDICINE 2016; 6:329-35. [PMID: 27462556 PMCID: PMC4930540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/05/2015] [Accepted: 09/08/2015] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Irinotecan is a botanical derivative and an anti-cancer drug with cytotoxic and genotoxic effects. The present study evaluated the effect of Lactobacillus plantarum A7 on the genotoxic activity of irinotecan in a hepatocellular carcinoma cell line (HepG2) by comet assay. MATERIALS AND METHODS HepG2 were incubated with irinotecan (100 µM), heat-killed cells (0.025 µg/ml) + irinotecan (100 µM), and cell-free supernatants (0.5 and 1 µg/ml) of L. plantarum A7 + irinotecan (100 µM). Phosphate buffered saline (PBS) was used as negative control. RESULTS Irinotecan was shown to induce DNA damage in HepG2 cells. The results showed that heat-killed cells (0.025 µg/ml) and cell-free supernatants (0.5 and 1 µg/ml) of L. plantarum significantly reduce irinotecan- induced DNA damage. CONCLUSION Our results indicate that L. plantarum A7 can decrease the genotoxic effects of irinotecan in HepG2 cells, in vitro. This finding may be supportive for the optimization of therapeutic efficacy in irinotecan treatment.
Collapse
Affiliation(s)
- Soheila Sepahi
- Department of Pharmacology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Jafarian-Dehkordi
- Department of Pharmacology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Mirlohi
- Food Security Research Centre, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kobra Shirani
- Department of Pharmacodynamy and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Etebari
- Department of Pharmacology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
128
|
Zaets IY, Podolich OV, Reva ON, Kozyrovska NO. DNA metabarcoding of microbial communities for healthcare. ACTA ACUST UNITED AC 2016. [DOI: 10.7124/bc.000906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- I. Ye. Zaets
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| | - O. V. Podolich
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| | | | | |
Collapse
|
129
|
Ambalam P, Raman M, Purama RK, Doble M. Probiotics, prebiotics and colorectal cancer prevention. Best Pract Res Clin Gastroenterol 2016; 30:119-31. [PMID: 27048903 DOI: 10.1016/j.bpg.2016.02.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 01/31/2023]
Abstract
Colorectal cancer (CRC), the third major cause of mortality among various cancer types in United States, has been increasing in developing countries due to varying diet and dietary habits and occupational hazards. Recent evidences showed that composition of gut microbiota could be associated with the development of CRC and other gut dysbiosis. Modulation of gut microbiota by probiotics and prebiotics, either alone or in combination could positively influence the cross-talk between immune system and microbiota, would be beneficial in preventing inflammation and CRC. In this review, role of probiotics and prebiotics in the prevention of CRC has been discussed. Various epidemiological and experimental studies, specifically gut microbiome research has effectively improved the understanding about the role of probiotics and microbial treatment as anticarcinogenic agents. A few human studies support the beneficial effect of probiotics and prebiotics; hence, comprehensive understanding is urgent to realize the clinical applications of probiotics and prebiotics in CRC prevention.
Collapse
Affiliation(s)
- Padma Ambalam
- Department of Biotechnology, Christ College, Rajkot, India.
| | - Maya Raman
- Bioengineering and Drug Design Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences and Bioengineering, Indian Institute of Technology, Chennai, India
| | - Ravi Kiran Purama
- School of Biotechnology, Chemical Building, East Campus, NIT Calicut, Calicut, India
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences and Bioengineering, Indian Institute of Technology, Chennai, India
| |
Collapse
|
130
|
Liang HL, Hu AP, Li SL, Xie JP, Ma QZ, Liu JY. MiR-454 prompts cell proliferation of human colorectal cancer cells by repressing CYLD expression. Asian Pac J Cancer Prev 2016; 16:2397-402. [PMID: 25824771 DOI: 10.7314/apjcp.2015.16.6.2397] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Previous studies have shown that miR-454 plays an important role in a variety of biological processes in various human cancer cells. However, the underlying mechanisms of this microRNA in colorectal cancer (CRC) cells remain largely unknown. In the present study, we investigated the miR-454 role in CRC cell proliferation. We found that miR-454 expression is markedly upregulated in CRC tissues and CRC cells compared with the matched tumor adjacent tissues and the FHC normal colonic cell line. Ectopic expression of miR-454 promoted the proliferation and anchorage-independent growth of CRC cells, whereas inhibition of miR-454 reduced this effect. Bioinformatics analysis further revealed cylindromatosis (CYLD), a putative tumor suppressor as a potential target of miR-454. Data from luciferase reporter assays showed that miR-454 directly binds to the 3'-untranslated region (3'-UTR) of CYLD mRNA and repressed expression at both transcriptional and translational levels. In functional assays, CYLD-silenced in miR-454-in-transfected SW480 cells have positive effect to promote cell proliferation, suggesting that direct CYLD downregulation is required for miR-454-induced CRC cell proliferation. In sum, our data provide compelling evidence that miR-454 functions as an onco-miRNA, playing a crucial role in the promoting cell proliferation in CRC, and its oncogenic effect is mediated chiefly through direct suppression of CYLD expression.
Collapse
Affiliation(s)
- Hong-Liang Liang
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, China E-mail :
| | | | | | | | | | | |
Collapse
|
131
|
Santhanam S, Alvarado DM, Ciorba MA. Therapeutic targeting of inflammation and tryptophan metabolism in colon and gastrointestinal cancer. Transl Res 2016; 167:67-79. [PMID: 26297050 PMCID: PMC4684437 DOI: 10.1016/j.trsl.2015.07.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/14/2015] [Accepted: 07/23/2015] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer death in the United States. Cytotoxic therapies cause significant adverse effects for most patients and do not offer cure in many advanced cases of CRC. Immunotherapy is a promising new approach to harness the body's own immune system and inflammatory response to attack and clear the cancer. Tryptophan metabolism along the kynurenine pathway (KP) is a particularly promising target for immunotherapy. Indoleamine 2,3-dioxygenase 1 (IDO1) is the most well studied of the enzymes that initiate this pathway and it is commonly overexpressed in CRC. Herein, we provide an in-depth review of how tryptophan metabolism and KP metabolites shape factors important to CRC pathogenesis including the host mucosal immune system, pivotal transcriptional pathways of neoplastic growth, and luminal microbiota. This pathway's role in other gastrointestinal (GI) malignancies such as gastric, pancreatic, esophageal, and GI stromal tumors is also discussed. Finally, we highlight how currently available small molecule inhibitors and emerging methods for therapeutic targeting of IDO1 might be applied to colon, rectal, and colitis-associated cancer.
Collapse
Affiliation(s)
- Srikanth Santhanam
- Division of Gastroenterology, Washington University School of Medicine, Saint Louis, Mo
| | - David M Alvarado
- Division of Gastroenterology, Washington University School of Medicine, Saint Louis, Mo
| | - Matthew A Ciorba
- Division of Gastroenterology, Washington University School of Medicine, Saint Louis, Mo.
| |
Collapse
|
132
|
Abedin-Do A, Taherian-Esfahani Z, Ghafouri-Fard S, Ghafouri-Fard S, Motevaseli E. Immunomodulatory effects of Lactobacillus strains: emphasis on their effects on cancer cells. Immunotherapy 2015; 7:1307-29. [PMID: 26595390 DOI: 10.2217/imt.15.92] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lactobacilli are a group of normal microbiota whose immunomodulatory effects have been known for a long time. Recently, they have gained more attention for their direct and indirect effects on cancer cells. Several cell line experiments, animal model studies as well as clinical trials have indicated their inhibitory effects on cancer initiation and progression. Different lactobacilli strains could modulate innate and adoptive immune system. Such effects have been documented in modulation of function of T cells, dendritic cells and macrophages as well as cytokine production. In this review, the various immunomodulatory effects of lactobacilli on tumor cells as well as their direct cytotoxic effects on cancer cells are discussed.
Collapse
Affiliation(s)
- Atieh Abedin-Do
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Zahra Taherian-Esfahani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Somayyeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
133
|
Ambalam P, Kondepudi KK, Balusupati P, Nilsson I, Wadström T, Ljungh Å. Prebiotic preferences of human lactobacilli strains in co-culture with bifidobacteria and antimicrobial activity against Clostridium difficile. J Appl Microbiol 2015; 119:1672-82. [PMID: 26381324 DOI: 10.1111/jam.12953] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 02/02/2023]
Abstract
AIM To evaluate robustness, prebiotic utilization of Lactobacillus paracasei F8 and Lactobacillus plantarum F44 in mono- and co-cultures with Bifidobacterium breve 46 and Bifidobacterium animalis sub sp. lactis 8 : 8 and antimicrobial activity of co-culture against Clostridium difficile. METHODS AND RESULTS The two Lactobacillus strains showed a high acid and bile tolerance. Lactobacillus plantarum F44 showed maximum growth in de Man Rogosa Sharpe basal broth with glucose and lactulose compared to growth in galacto-oligosaccharides (GOS) and isomalto-oligosaccharides (IMOS). In co-culture system, the amylolytic Bif. breve 46 stimulated the growth of a nonamylolytic Lact. paracasei F8, probably by producing intermediate metabolites of starch metabolism. A higher growth of four strains Lact. paracasei F8, Lact. plantarum F44, Bif. breve 46 and Bif. animalis ssp lactis 8 : 8 with different prebiotic combinations was found in a MRSC basal broth with SS (soluble starch) + IMOS + GOS and IMOS + GOS respectively. The two Lactobacillus strains exhibited a high antimicrobial activity against four clinical Cl. difficile strains and a hypervirulent NAP1/027strain and suppressed the toxin titres possibly through the production of organic acids and heat stable antimicrobial proteins when grown on glucose and through the production of acids when grown on prebiotics. Culture supernatants from synbiotic combinations inhibited the growth of the Cl. difficile NAP1/027 strain and its toxin titres. CONCLUSION Lactobacillus paracasei F8, Lact. plantarum F44 exhibited potential probiotic properties. Further, the two Lactobacillus and two bifidobacteria strains were compatible with each other and exhibited high growth in co-cultures in presence of prebiotics and SS and antimicrobial activity against clinical Cl. difficile strains and a hypervirulent NAPI/027 strain. SIGNIFICANCE AND IMPACT OF THE STUDY Results are promising for the development of a multi-strain synergistic synbiotic supplement for protection against Cl. difficile infection.
Collapse
Affiliation(s)
- P Ambalam
- Department of Clinical Microbiology, Labmedicine Skåne, Lund, Sweden.,Christ College, Saurashtra University, Gujrat, India
| | - K K Kondepudi
- Department of Clinical Microbiology, Labmedicine Skåne, Lund, Sweden.,Danish Innovation Institute, Copenhagen, Denmark.,National Agri-Food Biotechnology Institute, S. A. S. Nagar, Punjab, India
| | - P Balusupati
- Department of Clinical Microbiology, Labmedicine Skåne, Lund, Sweden
| | - I Nilsson
- Department of Clinical Microbiology, Labmedicine Skåne, Lund, Sweden
| | - T Wadström
- Department of Clinical Microbiology, Labmedicine Skåne, Lund, Sweden
| | - Å Ljungh
- Department of Clinical Microbiology, Labmedicine Skåne, Lund, Sweden
| |
Collapse
|
134
|
Abstract
BACKGROUND Intestinal microbiota influences the progression of colitis-associated colorectal cancer. With diet being a key determinant of the gut microbial ecology, dietary interventions are an attractive avenue for the prevention of colitis-associated colorectal cancer. Curcumin is the most active constituent of the ground rhizome of the Curcuma longa plant, which has been demonstrated to have anti-inflammatory, antioxidative, and antiproliferative properties. METHODS Il10 mice on 129/SvEv background were used as a model of colitis-associated colorectal cancer. Starting at 10 weeks of age, wild-type or Il10 mice received 6 weekly intraperitoneal injections of azoxymethane (AOM) or phosphate-buffered saline (PBS) and were started on either a control or a curcumin-supplemented diet. Stools were collected every 4 weeks for microbial community analysis. Mice were killed at 30 weeks of age. RESULTS Curcumin-supplemented diet increased survival, decreased colon weight/length ratio, and, at 0.5%, entirely eliminated tumor burden. Although colonic histology indicated improvement with curcumin, no effects of mucosal immune responses have been observed in PBS/Il10 mice and limited effects were seen in AOM/Il10 mice. In wild-type and in Il10 mice, curcumin increased bacterial richness, prevented age-related decrease in alpha diversity, increased the relative abundance of Lactobacillales, and decreased Coriobacterales order. Taxonomic profile of AOM/Il10 mice receiving curcumin was more similar to those of wild-type mice than those fed control diet. CONCLUSIONS In AOM/Il10 model, curcumin reduced or eliminated colonic tumor burden with limited effects on mucosal immune responses. The beneficial effect of curcumin on tumorigenesis was associated with the maintenance of a more diverse colonic microbial ecology.
Collapse
|
135
|
Zakharevich NV, Averina OV, Klimina KM, Kudryavtseva AV, Kasianov AS, Makeev VJ, Danilenko VN. Complete Genome Sequence of Bifidobacterium longum GT15: Identification and Characterization of Unique and Global Regulatory Genes. MICROBIAL ECOLOGY 2015; 70:819-834. [PMID: 25894918 DOI: 10.1007/s00248-015-0603-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
In this study, we report the first completely annotated genome sequence of the Russia origin Bifidobacterium longum subsp. longum strain GT15. Comparative genomic analysis of this genome with other available completely annotated genome sequences of B. longum strains isolated from other countries has revealed a high degree of conservation and synteny across the entire genomes. However, it was discovered that the open reading frames to 35 genes were detected only from the B. longum GT15 genome and absent from other genomes B. longum strains (not of Russian origin). These so-called unique genes (UGs) represent a total length of 39,066 bp, with G + C content ranging from 37 to 65 %. Interestingly, certain genes were detected in other B. longum strains of Russian origin. In our analysis, we examined genes for global regulatory systems: proteins of toxin-antitoxin (TA) systems type II, serine/threonine protein kinases (STPKs) of eukaryotic type, and genes of the WhiB-like family proteins. In addition, we have made in silico analysis of all the most significant probiotic genes and considered genes involved in epigenetic regulation and genes responsible for producing various neuromediators. This genome sequence may elucidate the biology of this probiotic strain as a promising candidate for practical (pharmaceutical) applications.
Collapse
Affiliation(s)
| | - Olga V Averina
- Vavilov Institute of General Genetics, Gubkina str. 3, 119991, Moscow, Russia
| | - Ksenia M Klimina
- Vavilov Institute of General Genetics, Gubkina str. 3, 119991, Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Vavilova str. 32, 119991, Moscow, Russia
| | - Artem S Kasianov
- Vavilov Institute of General Genetics, Gubkina str. 3, 119991, Moscow, Russia
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Gubkina str. 3, 119991, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Vavilova str. 32, 119991, Moscow, Russia
| | - Valery N Danilenko
- Vavilov Institute of General Genetics, Gubkina str. 3, 119991, Moscow, Russia
| |
Collapse
|
136
|
Pithva SP, Ambalam PS, Ramoliya JM, Dave JM, Vyas BRM. Antigenotoxic and Antimutagenic Activities of Probiotic Lactobacillus rhamnosus Vc against N-Methyl-N'-Nitro-N-Nitrosoguanidine. Nutr Cancer 2015; 67:1142-50. [PMID: 26312410 DOI: 10.1080/01635581.2015.1073751] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study provides experimental evidence of in vivo reduction of genotoxic and mutagenic activities of potent carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) by the strain Lactobacillus rhamnosus Vc. In vitro studies revealed that coincubation of MNNG with viable cells of L. rhamnosus Vc resulted in the detoxification of the parent compound accompanied with reduction in genotoxicity (69%) and mutagenicity (61%) as evaluated by SOS-Chromotest and Ames test, respectively. Oral feeding of probiotic bacteria L. rhamnosus Vc (10(9) cfu) to Gallus gallus (chicks) for 30 days provided protection against MNNG-induced damage as evidenced from the significant decrease (P = 0.009) in glutathione S-transferase activity in the L. rhamnosus Vc+MNNG-treated chicks in comparison to the MNNG-treated chicks. Histopathology of colon and liver showed intact cells and mild inflammation in the L. rhamnosus Vc+MNNG-treated chicks, whereas heavy inflammation and degenerative changes were observed in MNNG-treated chicks. The results indicate that the probiotic L. rhamnosus Vc provided in vivo protection against MNNG-induced colon damage by detoxification of MNNG to less toxic metabolites.
Collapse
Affiliation(s)
- Sheetal P Pithva
- a Department of Biosciences , Saurashtra University , Rajkot , India
| | - Padma S Ambalam
- b Department of Biotechnology , Christ College , Rajkot , India
| | | | | | | |
Collapse
|
137
|
Szilagyi A. Adaptation to Lactose in Lactase Non Persistent People: Effects on Intolerance and the Relationship between Dairy Food Consumption and Evalution of Diseases. Nutrients 2015; 7:6751-79. [PMID: 26287234 PMCID: PMC4555148 DOI: 10.3390/nu7085309] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 02/07/2023] Open
Abstract
Dairy foods contain complex nutrients which interact with the host. Yet, evolution of lactase persistence has divided the human species into those that can or cannot digest lactose in adulthood. Such a ubiquitous trait has differential effects on humanity. The literature is reviewed to explore how the divide affects lactose handling by lactase non persistent persons. There are two basic differences in digesters. Firstly, maldigesters consume less dairy foods, and secondly, excess lactose is digested by colonic microflora. Lactose intolerance in maldigesters may occur with random lactose ingestion. However, lactose intolerance without maldigestion tends to detract from gaining a clear understanding of the mechanisms of symptoms formation and leads to confusion with regards to dairy food consumption. The main consequence of intolerance is withholding dairy foods. However, regular dairy food consumption by lactase non persistent people could lead to colonic adaptation by the microbiome. This process may mimic a prebiotic effect and allows lactase non persistent people to consume more dairy foods enhancing a favorable microbiome. This process then could lead to alterations in outcome of diseases in response to dairy foods in lactose maldigesters. The evidence that lactose is a selective human prebiotic is reviewed and current links between dairy foods and some diseases are discussed within this context. Colonic adaptation has not been adequately studied, especially with modern microbiological techniques.
Collapse
Affiliation(s)
- Andrew Szilagyi
- Division of Gastroenterology, Department of Medicine, Jewish General Hospital, McGill University School of Medicine; 3755, Chemin de la Cote-Ste-Catherine Rd, Rm E110, Montreal H3T 1E2, QC, Canada.
| |
Collapse
|
138
|
Nozari A, Motamedifar M, Seifi N, Hatamizargaran Z, Ranjbar MA. The Effect of Iranian Customary Used Probiotic Yogurt on the Children's Salivary Cariogenic Microflora. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2015; 16:81-6. [PMID: 26046102 PMCID: PMC4445856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
STATEMENT OF THE PROBLEM Dental caries is the most common disease of childhood. Using probiotics has recently been introduced to reduce the incidence of dental caries.It consists of live microbial food supplements that beneficially affect the host, and hence are considered an alternative way to eradicate the infections. PURPOSE The aim of this study is to evaluate the effect of consumption of probiotic yogurt on the children's salivary cariogenic microflora. MATERIALS AND METHOD A double-blind randomized study was performed recruiting 2 parallel groups; 24 healthy children in the case and 25 children in the control group. All healthy children were followed- up over 4 periods. Periods 1 and 3 were wash-out periods with duration of 1 and 2 weeks, respectively. During periods 2 and 4 (2weeks duration each), the case group consumed 200g yogurt containing Bifidobacterium lactis (1×10(6) per gram) once daily and the control group consumed normal yogurt. Salivary Streptococci mutans and Lactobacilli were enumerated before and after the yogurt consumption periods. Pre- and post-treatment values within and between regimens were compared using the t-test and paired samples. RESULTS There was a reduction in Streptococcus mutans and Lactobacillus counts in the control group, but for Streptococcus mutans, the count reduction between phases 1 and 4 was statistically significant (p= 0.009). In the case group, neither the Streptococcus mutans count nor the Lactobacilli count was significantly reduced. CONCLUSION Based on the findings of this study, short-term daily consumption of probiotic yogurt containing Bifidobacterium lactis could not reduce the levels of salivary Streptococcus mutans and Lactobacilli in 6 to 12 year-old children, while normal yogurt could reduce the Streptococcus mutans counts significantly.
Collapse
Affiliation(s)
- Ali Nozari
- Dept. of Pediatric Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Mohammad Motamedifar
- Dept. of Bacteriology & Virology, Shiraz HIV/AIDS Research Center, School of Medincne, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Nasim Seifi
- Dept. of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Zeynab Hatamizargaran
- Dept. of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran;
| | - Mohammad Ali Ranjbar
- Dept. of Oral and Maxillofacial Pathology, Shiraz University of Medical Sciences, Shiraz, Iran;
| |
Collapse
|
139
|
Ten years of subproteome investigations in lactic acid bacteria: A key for food starter and probiotic typing. J Proteomics 2015; 127:332-9. [PMID: 25957532 DOI: 10.1016/j.jprot.2015.04.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/22/2015] [Accepted: 04/26/2015] [Indexed: 12/29/2022]
Abstract
The definition of safety and efficacy of food-employed bacteria as well as probiotic strains is a continuous, often unattended, challenge. Proteomic techniques such as 2DE, DIGE and LC/LC-MS/MS are suitable and powerful tools to reveal new aspects (positive and negative) of "known" and "unknown" strains that can be employed in food making and as nutraceutical supplements for human health. Unfortunately, these techniques are not used as extensively as it should be wise. The present report describes the most significant results obtained by our research group in 10years of study on subproteomes in bacteria, chiefly lactic acid bacteria. Production of desired and undesired metabolites, differences between strains belonging to same species but isolated from different ecological niches, the effect of cryoprotectants on survival to lyophilization as well as the adhesive capability of strains, were elucidated by analysis of cytosolic, membrane-enriched, surface and extracellular proteomes. The present review opens a window on a yet largely underexplored field and highlights the huge potential of subproteome investigations for more rational choice of microbial strains as food starters, probiotics and for production of nutraceuticals. These analyses will hopefully contribute to manufacturing safer and healthier food and food supplements in the near future. This article is part of a Special Issue entitled: HUPO 2014.
Collapse
|
140
|
Efficacy of perioperative synbiotics treatment for the prevention of surgical site infection after laparoscopic colorectal surgery: a randomized controlled trial. Surg Today 2015; 46:479-90. [PMID: 25933911 DOI: 10.1007/s00595-015-1178-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/13/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of this study was to assess the effect of perioperative oral administration of synbiotics on the surgical outcome in patients undergoing laparoscopic colorectal resection. METHODS In this single-center randomized, controlled trial, patients scheduled to undergo elective laparoscopic colorectal surgery were eligible to participate and randomly assigned to a synbiotics group or a control group. The primary study outcome was the development of infectious complications, particularly surgical site infection (SSI), within 30 days of surgery. RESULTS In this study, 379 patients were enrolled and randomly assigned (173 to the synbiotics group and 206 to the control group), of whom 362 patients (168 to the synbiotics group and 194 to the control group) were eligible for this study. SSI occurred in 29 (17.3%) patients in the synbiotics group and 44 (22.7%) patients in the control group (OR: 0.761, 95% CI 0.50-1.16; p = 0.20). Overall, the rate of postoperative complications, including anastomotic leakage, did not differ significantly between the two groups. Synbiotics treatment reversed the changes in fecal bacteria and organic acids after surgery and suppressed the increases in potentially pathogenic species, such as Clostridium difficile. CONCLUSION The efficacy of perioperative administration of synbiotics was not validated as a treatment for reducing the incidence of infectious complications after laparoscopic colorectal resection. However, the microbial imbalance, in addition to the reduction in organic acids, could be improved by perioperative synbiotics treatment.
Collapse
|
141
|
Chiu YH, Lin SL, Tsai JJ, Lin MY. Probiotic actions on diseases: implications for therapeutic treatments. Food Funct 2014; 5:625-34. [PMID: 24549263 DOI: 10.1039/c3fo60600g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ecology of gut microflora, which colonizes all body surfaces, has long coevolved with its hosts in a complicated fashion. Health benefits conferred by gut microflora include defense against invading pathogens, improvement of nutritional bioavailability, and development of the regional and systemic immune systems. The past decade has witnessed growing interest in the fact that the gut microflora affects the host's energy homeostasis by means of various mechanisms, including supplying nourishment from indigestible compounds, producing small biomolecules responsible for lipid profiles, and participating in the absorption, distribution, metabolism and excretion of nutrition. Much in vitro and in vivo research has indicated that aberrant gut microflora plays an important role in the pathogenesis of a wide spectrum of diseases. This is accomplished by a shift in focus, from laying an emphasis on pharmacotherapy to placing more effort on gut microflora normalization. The objectives of this review include illustrating trends in the clinical application of probiotics on diseases, as well as discussing current methodology limitations on probiotic selection. Furthermore, it is expected to shed light on the nature of probiotics, with the aim of giving greater insight into the implications for clinical use of probiotics in the treatment of diseases.
Collapse
Affiliation(s)
- Yi-Heng Chiu
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan, ROC.
| | | | | | | |
Collapse
|
142
|
Kothari D, Patel S, Goyal A. Therapeutic Spectrum of Nondigestible Oligosaccharides: Overview of Current State and Prospect. J Food Sci 2014; 79:R1491-8. [DOI: 10.1111/1750-3841.12536] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/12/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Damini Kothari
- Dept. of Biotechnology, Indian Inst. of Technology Guwahati; Guwahati 781 039 Assam India
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center; San Diego State Univ; San Diego 92182 CA U.S.A
| | - Arun Goyal
- Dept. of Biotechnology, Indian Inst. of Technology Guwahati; Guwahati 781 039 Assam India
| |
Collapse
|
143
|
Strickertsson JAB, Desler C, Rasmussen LJ. Impact of bacterial infections on aging and cancer: impairment of DNA repair and mitochondrial function of host cells. Exp Gerontol 2014; 56:164-74. [PMID: 24704713 DOI: 10.1016/j.exger.2014.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/19/2014] [Accepted: 03/26/2014] [Indexed: 02/06/2023]
Abstract
The commensal floras that inhabit the gastrointestinal tract play critical roles in immune responses, energy metabolism, and even cancer prevention. Pathogenic and out of place commensal bacteria, can however have detrimental effects on the host, by introducing genomic instability and mitochondrial dysfunction, which are hallmarks of both aging and cancer. Helicobacter pylori and Enterococcus faecalis are bacteria of the gastrointestinal tract that have been demonstrated to affect these two hallmarks. These, and other bacteria, have been shown to decrease the transcription and translation of essential DNA repair subunits of major DNA repair pathways and increase production of reactive oxygen species (ROS). Defects in DNA repair cause mutations and genomic instability and are found in several cancers as well as in progeroid syndromes. This review describes our contemporary view on how bacterial infections impact DNA repair and damage, and the consequence on the mitochondrial and nuclear genomes. We argue that in the gastrointestinal tract, these mechanisms can contribute to tumorigenesis as well as cellular aging of the digestive system.
Collapse
Affiliation(s)
- Jesper A B Strickertsson
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Claus Desler
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
144
|
de Andrade Júnior MC, Andrade JS. Amazonian Fruits: An Overview of Nutrients, Calories and Use in Metabolic Disorders. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/fns.2014.517182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
145
|
Stem Cell Signaling Pathways in Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
146
|
Functional food ingredients for the management of obesity and associated co-morbidities – A review. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.04.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|