101
|
Kuipers OP. Back to nature: a revival of natural strain improvement methodologies. Microb Biotechnol 2014; 8:17-8. [PMID: 25488414 PMCID: PMC4321361 DOI: 10.1111/1751-7915.12232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Oscar P Kuipers
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| |
Collapse
|
102
|
Huang YW, Hu RM, Lin YT, Huang HH, Yang TC. The contribution of class 1 integron to antimicrobial resistance in Stenotrophomonas maltophilia. Microb Drug Resist 2014; 21:90-6. [PMID: 25243757 DOI: 10.1089/mdr.2014.0072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two hundred clinical isolates of Stenotrophomonas maltophilia were examined for the presence of class 1 integron and for the susceptibility to 12 different antimicrobials and detergents. The prevalence of class 1 integron in S. maltophilia isolates was 11%. The class 1 integron-positive isolates exhibited a higher resistance to kanamycin, tobramycin, and trimethoprim-sulfamethoxazole (SXT) than the class 1 integron-negative ones. Polymerase chain reaction (PCR), amplifying the variable region of the class 1 integron, showed the existence of six different amplicon sizes, indicating that there are at least six different class 1 integrons distributed in the 23 class 1 integron-positive isolates. Sequence analysis of six representative PCR amplicons revealed that qacK, aac(6')-Ib', qacK-aac(6')-Ib, qacK-aac(6')-Ib-aac(6')-Ib, and qacL-aadB-cmlA-aadA2 were identified in the 550-, 800-, 1,200-, 1,800, and 3,600-bp amplicons, respectively. The sequence analysis of the 150-bp PCR amplicon demonstrated no additional resistance-associated genes except the basic genetic elements of class 1 integron. The impact of class 1 integron acquisition on the antimicrobials susceptibility was assayed by isogenic integron deletion mutant construction and the susceptibility test. The most significant contribution of the class 1 integron acquisition to S. maltophilia is the increased resistance to SXT.
Collapse
Affiliation(s)
- Yi-Wei Huang
- 1 Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University , Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
103
|
Tatavarthy A, Luna VA, Amuso PT. How multidrug resistance in typhoid fever affects treatment options. Ann N Y Acad Sci 2014; 1323:76-90. [PMID: 25069595 DOI: 10.1111/nyas.12490] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Salmonella enterica serotype Typhi (S. Typhi) is an enteric pathogen that causes typhoid fever. The infection can be severe, with significant morbidity and mortality, requiring antimicrobial therapy. Cases of S. Typhi infection in the United States and other developed countries are often associated with travel to endemic regions. The empirical use of first-line drugs for therapy, including ampicillin, chloramphenicol, and trimethoprim/sulfamethoxazole, has resulted in transmissible multidrug resistance. With the global increase in multidrug-resistant S. Typhi, use of ciprofloxacin, with excellent oral absorption, few side effects, and cost-effectiveness, has become popular for treatment. However, decreased ciprofloxacin susceptibility due to point mutations in the S. Typhi genes gyrA and/or parC has caused treatment failures, necessitating alternative therapeutic options. S. Typhi is typically genetically homogenous, with phylogenetic and epidemiological studies showing that identical clones and diverse S. Typhi types often coexist in the same geographic region. Studies investigating point mutations have demonstrated that selective pressure from empirical use of first-line drugs and fluoroquinolones has led to the global emergence of haplotype H-58. Antibiotic resistance is subject to high selective pressure in S. Typhi and thus demands careful use of antimicrobials.
Collapse
Affiliation(s)
- Aparna Tatavarthy
- Center for Biological Defense, College of Public Health, University of South Florida, Tampa, Florida
| | | | | |
Collapse
|
104
|
Lopes GV, Michael GB, Cardoso M, Schwarz S. Identification and characterization ofSalmonella entericasubsp.entericaserovar Derby isolates carrying a newaadA26gene cassette in a class 1 integron obtained at pig slaughterhouses. FEMS Microbiol Lett 2014; 356:71-8. [DOI: 10.1111/1574-6968.12473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/15/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
- Graciela Volz Lopes
- Departamento de Medicina Veterinária Preventiva; Universidade Federal do Rio Grande do Sul (UFGRS); Porto Alegre Brazil
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut (FLI); Neustadt-Mariensee Germany
| | - Geovana Brenner Michael
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut (FLI); Neustadt-Mariensee Germany
| | - Marisa Cardoso
- Departamento de Medicina Veterinária Preventiva; Universidade Federal do Rio Grande do Sul (UFGRS); Porto Alegre Brazil
| | - Stefan Schwarz
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut (FLI); Neustadt-Mariensee Germany
| |
Collapse
|
105
|
Ravi A, Avershina E, Ludvigsen J, L'Abée-Lund TM, Rudi K. Integrons in the intestinal microbiota as reservoirs for transmission of antibiotic resistance genes. Pathogens 2014; 3:238-48. [PMID: 25437798 PMCID: PMC4243444 DOI: 10.3390/pathogens3020238] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 12/13/2022] Open
Abstract
The human intestinal microbiota plays a major beneficial role in immune development and resistance to pathogens. The use of antibiotics, however, can cause the spread of antibiotic resistance genes within the resident intestinal microbiota. Important vectors for this are integrons. This review therefore focuses on the integrons in non-pathogenic bacteria as a potential source for the development and persistence of multidrug resistance. Integrons are a group of genetic elements which are assembly platforms that can capture specific gene cassettes and express them. Integrons in pathogenic bacteria have been extensively investigated, while integrons in the intestinal microbiota have not yet gained much attention. Knowledge of the integrons residing in the microbiota, however, can potentially aid in controlling the spread of antibiotic resistance genes to pathogens.
Collapse
Affiliation(s)
- Anuradha Ravi
- Norwegian University of Life Sciences, Chemistry, Biotechnology and Food science department (IKBM), Campus Ås, Ås 1432, Norway.
| | - Ekaterina Avershina
- Norwegian University of Life Sciences, Chemistry, Biotechnology and Food science department (IKBM), Campus Ås, Ås 1432, Norway.
| | - Jane Ludvigsen
- Norwegian University of Life Sciences, Chemistry, Biotechnology and Food science department (IKBM), Campus Ås, Ås 1432, Norway.
| | - Trine M L'Abée-Lund
- Norwegian University of Life Sciences, Department of Food Safety and Infection Biology, Campus Adamstuen, Oslo 0454, Norway.
| | - Knut Rudi
- Norwegian University of Life Sciences, Chemistry, Biotechnology and Food science department (IKBM), Campus Ås, Ås 1432, Norway.
| |
Collapse
|
106
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
107
|
Bickhart DM, Liu GE. The challenges and importance of structural variation detection in livestock. Front Genet 2014; 5:37. [PMID: 24600474 PMCID: PMC3927395 DOI: 10.3389/fgene.2014.00037] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/31/2014] [Indexed: 01/25/2023] Open
Abstract
Recent studies in humans and other model organisms have demonstrated that structural variants (SVs) comprise a substantial proportion of variation among individuals of each species. Many of these variants have been linked to debilitating diseases in humans, thereby cementing the importance of refining methods for their detection. Despite progress in the field, reliable detection of SVs still remains a problem even for human subjects. Many of the underlying problems that make SVs difficult to detect in humans are amplified in livestock species, whose lower quality genome assemblies and incomplete gene annotation can often give rise to false positive SV discoveries. Regardless of the challenges, SV detection is just as important for livestock researchers as it is for human researchers, given that several productive traits and diseases have been linked to copy number variations (CNVs) in cattle, sheep, and pig. Already, there is evidence that many beneficial SVs have been artificially selected in livestock such as a duplication of the agouti signaling protein gene that causes white coat color in sheep. In this review, we will list current SV and CNV discoveries in livestock and discuss the problems that hinder routine discovery and tracking of these polymorphisms. We will also discuss the impacts of selective breeding on CNV and SV frequencies and mention how SV genotyping could be used in the future to improve genetic selection.
Collapse
Affiliation(s)
- Derek M Bickhart
- Animal Improvement Programs Laboratory, United States Department of Agriculture-Agricultural Research Service Beltsville, MD, USA
| | - George E Liu
- Bovine Functional Genomics Laboratory, United States Department of Agriculture-Agricultural Research Service Beltsville, MD, USA
| |
Collapse
|
108
|
|
109
|
Nielsen KM, Bøhn T, Townsend JP. Detecting rare gene transfer events in bacterial populations. Front Microbiol 2014; 4:415. [PMID: 24432015 PMCID: PMC3882822 DOI: 10.3389/fmicb.2013.00415] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/16/2013] [Indexed: 11/23/2022] Open
Abstract
Horizontal gene transfer (HGT) enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research.
Collapse
Affiliation(s)
- Kaare M Nielsen
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø Tromsø, Norway ; GenØk-Centre for Biosafety, The Science Park Tromsø, Norway
| | - Thomas Bøhn
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø Tromsø, Norway ; GenØk-Centre for Biosafety, The Science Park Tromsø, Norway
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale University New Haven, CT, USA ; Program in Computational Biology and Bioinformatics, Yale University New Haven, CT, USA ; Program in Microbiology, Yale University New Haven, CT, USA
| |
Collapse
|