101
|
Alkhnbashi OS, Costa F, Shah SA, Garrett RA, Saunders SJ, Backofen R. CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci. ACTA ACUST UNITED AC 2015; 30:i489-96. [PMID: 25161238 PMCID: PMC4147912 DOI: 10.1093/bioinformatics/btu459] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION The discovery of CRISPR-Cas systems almost 20 years ago rapidly changed our perception of the bacterial and archaeal immune systems. CRISPR loci consist of several repetitive DNA sequences called repeats, inter-spaced by stretches of variable length sequences called spacers. This CRISPR array is transcribed and processed into multiple mature RNA species (crRNAs). A single crRNA is integrated into an interference complex, together with CRISPR-associated (Cas) proteins, to bind and degrade invading nucleic acids. Although existing bioinformatics tools can recognize CRISPR loci by their characteristic repeat-spacer architecture, they generally output CRISPR arrays of ambiguous orientation and thus do not determine the strand from which crRNAs are processed. Knowledge of the correct orientation is crucial for many tasks, including the classification of CRISPR conservation, the detection of leader regions, the identification of target sites (protospacers) on invading genetic elements and the characterization of protospacer-adjacent motifs. RESULTS We present a fast and accurate tool to determine the crRNA-encoding strand at CRISPR loci by predicting the correct orientation of repeats based on an advanced machine learning approach. Both the repeat sequence and mutation information were encoded and processed by an efficient graph kernel to learn higher-order correlations. The model was trained and tested on curated data comprising >4500 CRISPRs and yielded a remarkable performance of 0.95 AUC ROC (area under the curve of the receiver operator characteristic). In addition, we show that accurate orientation information greatly improved detection of conserved repeat sequence families and structure motifs. We integrated CRISPRstrand predictions into our CRISPRmap web server of CRISPR conservation and updated the latter to version 2.0. AVAILABILITY CRISPRmap and CRISPRstrand are available at http://rna.informatik.uni-freiburg.de/CRISPRmap. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Omer S Alkhnbashi
- Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany, Department of Biology, University of Copenhagen, Archaea Centre, Ole Maaloes Vej 5, DK2200 Copenhagen, Denmark and BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, University of Freiburg, Germany
| | - Fabrizio Costa
- Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany, Department of Biology, University of Copenhagen, Archaea Centre, Ole Maaloes Vej 5, DK2200 Copenhagen, Denmark and BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, University of Freiburg, Germany
| | - Shiraz A Shah
- Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany, Department of Biology, University of Copenhagen, Archaea Centre, Ole Maaloes Vej 5, DK2200 Copenhagen, Denmark and BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, University of Freiburg, Germany
| | - Roger A Garrett
- Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany, Department of Biology, University of Copenhagen, Archaea Centre, Ole Maaloes Vej 5, DK2200 Copenhagen, Denmark and BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, University of Freiburg, Germany
| | - Sita J Saunders
- Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany, Department of Biology, University of Copenhagen, Archaea Centre, Ole Maaloes Vej 5, DK2200 Copenhagen, Denmark and BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, University of Freiburg, Germany
| | - Rolf Backofen
- Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany, Department of Biology, University of Copenhagen, Archaea Centre, Ole Maaloes Vej 5, DK2200 Copenhagen, Denmark and BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, University of Freiburg, Germany Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany, Department of Biology, University of Copenhagen, Archaea Centre, Ole Maaloes Vej 5, DK2200 Copenhagen, Denmark and BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, University of Freiburg, Germany
| |
Collapse
|
102
|
Peng W, Feng M, Feng X, Liang YX, She Q. An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference. Nucleic Acids Res 2015; 43:406-17. [PMID: 25505143 PMCID: PMC4288192 DOI: 10.1093/nar/gku1302] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems provide a small RNA-based mechanism to defend against invasive genetic elements in archaea and bacteria. To investigate the in vivo mechanism of RNA interference by two type III-B systems (Cmr-α and Cmr-β) in Sulfolobus islandicus, a genetic assay was developed using plasmids carrying an artificial mini-CRISPR (AC) locus with a single spacer. After pAC plasmids were introduced into different strains, Northern analyses confirmed that mature crRNAs were produced from the plasmid-borne CRISPR loci, which then guided gene silencing to target gene expression. Spacer mutagenesis identified a trinucleotide sequence in the 3'-region of crRNA that was crucial for RNA interference. Studying mutants lacking Cmr-α or Cmr-β system showed that each Cmr complex exhibited RNA interference. Strikingly, these analyses further revealed that the two Cmr systems displayed distinctive interference features. Whereas Cmr-β complexes targeted transcripts and could be recycled in RNA cleavage, Cmr-α complexes probably targeted nascent RNA transcripts and remained associated with the substrate. Moreover, Cmr-β exhibited much stronger RNA cleavage activity than Cmr-α. Since we previously showed that S. islandicus Cmr-α mediated transcription-dependent DNA interference, the Cmr-α constitutes the first CRISPR system exhibiting dual targeting of RNA and DNA.
Collapse
Affiliation(s)
- Wenfang Peng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Mingxia Feng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xu Feng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yun Xiang Liang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qunxin She
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
103
|
Maier LK, Stachler AE, Saunders SJ, Backofen R, Marchfelder A. An active immune defense with a minimal CRISPR (clustered regularly interspaced short palindromic repeats) RNA and without the Cas6 protein. J Biol Chem 2014; 290:4192-201. [PMID: 25512373 PMCID: PMC4326828 DOI: 10.1074/jbc.m114.617506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The prokaryotic immune system CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) is a defense system that protects prokaryotes against foreign DNA. The short CRISPR RNAs (crRNAs) are central components of this immune system. In CRISPR-Cas systems type I and III, crRNAs are generated by the endonuclease Cas6. We developed a Cas6b-independent crRNA maturation pathway for the Haloferax type I-B system in vivo that expresses a functional crRNA, which we termed independently generated crRNA (icrRNA). The icrRNA is effective in triggering degradation of an invader plasmid carrying the matching protospacer sequence. The Cas6b-independent maturation of the icrRNA allowed mutation of the repeat sequence without interfering with signals important for Cas6b processing. We generated 23 variants of the icrRNA and analyzed them for activity in the interference reaction. icrRNAs with deletions or mutations of the 3′ handle are still active in triggering an interference reaction. The complete 3′ handle could be removed without loss of activity. However, manipulations of the 5′ handle mostly led to loss of interference activity. Furthermore, we could show that in the presence of an icrRNA a strain without Cas6b (Δcas6b) is still active in interference.
Collapse
Affiliation(s)
| | | | - Sita J Saunders
- the Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, and
| | - Rolf Backofen
- the Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, and the BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, Albert-Ludwigs-University Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | | |
Collapse
|
104
|
Luk AWS, Williams TJ, Erdmann S, Papke RT, Cavicchioli R. Viruses of haloarchaea. Life (Basel) 2014; 4:681-715. [PMID: 25402735 PMCID: PMC4284463 DOI: 10.3390/life4040681] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/26/2022] Open
Abstract
In hypersaline environments, haloarchaea (halophilic members of the Archaea) are the dominant organisms, and the viruses that infect them, haloarchaeoviruses are at least ten times more abundant. Since their discovery in 1974, described haloarchaeoviruses include head-tailed, pleomorphic, spherical and spindle-shaped morphologies, representing Myoviridae, Siphoviridae, Podoviridae, Pleolipoviridae, Sphaerolipoviridae and Fuselloviridae families. This review overviews current knowledge of haloarchaeoviruses, providing information about classification, morphotypes, macromolecules, life cycles, genetic manipulation and gene regulation, and host-virus responses. In so doing, the review incorporates knowledge from laboratory studies of isolated viruses, field-based studies of environmental samples, and both genomic and metagenomic analyses of haloarchaeoviruses. What emerges is that some haloarchaeoviruses possess unique morphological and life cycle properties, while others share features with other viruses (e.g., bacteriophages). Their interactions with hosts influence community structure and evolution of populations that exist in hypersaline environments as diverse as seawater evaporation ponds, to hot desert or Antarctic lakes. The discoveries of their wide-ranging and important roles in the ecology and evolution of hypersaline communities serves as a strong motivator for future investigations of both laboratory-model and environmental systems.
Collapse
Affiliation(s)
- Alison W S Luk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Susanne Erdmann
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA.
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
105
|
Sokolowski RD, Graham S, White MF. Cas6 specificity and CRISPR RNA loading in a complex CRISPR-Cas system. Nucleic Acids Res 2014; 42:6532-41. [PMID: 24753403 PMCID: PMC4041471 DOI: 10.1093/nar/gku308] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas is an adaptive prokaryotic immune system, providing protection against viruses and other mobile genetic elements. In type I and type III CRISPR-Cas systems, CRISPR RNA (crRNA) is generated by cleavage of a primary transcript by the Cas6 endonuclease and loaded into multisubunit surveillance/effector complexes, allowing homology-directed detection and cleavage of invading elements. Highly studied CRISPR-Cas systems such as those in Escherichia coli and Pseudomonas aeruginosa have a single Cas6 enzyme that is an integral subunit of the surveillance complex. By contrast, Sulfolobus solfataricus has a complex CRISPR-Cas system with three types of surveillance complexes (Cascade/type I-A, CSM/type III-A and CMR/type III-B), five Cas6 paralogues and two different CRISPR-repeat families (AB and CD). Here, we investigate the kinetic properties of two different Cas6 paralogues from S. solfataricus. The Cas6-1 subtype is specific for CD-family CRISPR repeats, generating crRNA by multiple turnover catalysis whilst Cas6-3 has a broader specificity and also processes a non-coding RNA with a CRISPR repeat-related sequence. Deep sequencing of crRNA in surveillance complexes reveals a biased distribution of spacers derived from AB and CD loci, suggesting functional coupling between Cas6 paralogues and their downstream effector complexes.
Collapse
Affiliation(s)
- Richard D Sokolowski
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Shirley Graham
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|