101
|
Bai Y, Ren H, Bian L, Zhou Y, Wang X, Xiong Z, Liu Z, Han B, Yao H. Regulation of Glial Function by Noncoding RNA in Central Nervous System Disease. Neurosci Bull 2023; 39:440-452. [PMID: 36161582 PMCID: PMC10043107 DOI: 10.1007/s12264-022-00950-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of functional RNAs that play critical roles in different diseases. NcRNAs include microRNAs, long ncRNAs, and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes of central nervous system (CNS) diseases. Mounting evidence indicates that ncRNAs play key roles in CNS diseases. Further elucidating the mechanisms of ncRNA underlying the process of regulating glial function that may lead to the identification of novel therapeutic targets for CNS diseases.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Hui Ren
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Liang Bian
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - You Zhou
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xinping Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zhongli Xiong
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ziqi Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
102
|
LncRNA PANTR1 is Associated with Poor Prognostic and Suppresses Apoptosis in Glioma. JOURNAL OF ONCOLOGY 2023; 2023:8537036. [PMID: 36861062 PMCID: PMC9970703 DOI: 10.1155/2023/8537036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/27/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023]
Abstract
Glioma is the most common tumor in the central nervous system. High-grade gliomas confer a poor prognosis, being a serious health and economic burden. Current literature suggests the important role of long noncoding RNA (lncRNA) in mammals, especially in tumorigenesis of various tumors. The functions of lncRNA POU3F3 adjacent noncoding transcript 1 (PANTR1) have been investigated in hepatocellular carcinoma but remain yet unclear in gliomas. We evaluated the role of PANTR1 in glioma cells using published data from The Cancer Genome Atlas (TCGA), then validated it by ex vivo experiments. To investigate the potential cellular mechanism of different levels of PANTR1 expression in glioma cells, we used siRNA-mediated knockdown in low-grade (grade II) cell lines and GBM (grade IV) cell lines (SW1088 and SHG44, respectively). On the molecular level, low expression of PANTR1 caused significantly reduced glioma cell viability and enhanced cell death. Moreover, we identified the importance of PANTR1 expression for cell migration in both cell lines, a critical foundation for invasiveness in recurrent gliomas. In conclusion, this study provides the first evidence that PANTR1 has a relevant role in human glioma by influencing cell viability and cell death.
Collapse
|
103
|
Tsuji Y. Optimization of Biotinylated RNA or DNA Pull-Down Assays for Detection of Binding Proteins: Examples of IRP1, IRP2, HuR, AUF1, and Nrf2. Int J Mol Sci 2023; 24:3604. [PMID: 36835018 PMCID: PMC9965622 DOI: 10.3390/ijms24043604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Investigation of RNA- and DNA-binding proteins to a defined regulatory sequence, such as an AU-rich RNA and a DNA enhancer element, is important for understanding gene regulation through their interactions. For in vitro binding studies, an electrophoretic mobility shift assay (EMSA) was widely used in the past. In line with the trend toward using non-radioactive materials in various bioassays, end-labeled biotinylated RNA and DNA oligonucleotides can be more practical probes to study protein-RNA and protein-DNA interactions; thereby, the binding complexes can be pulled down with streptavidin-conjugated resins and identified by Western blotting. However, setting up RNA and DNA pull-down assays with biotinylated probes in optimum protein binding conditions remains challenging. Here, we demonstrate the step-by step optimization of pull-down for IRP (iron-responsive-element-binding protein) with a 5'-biotinylated stem-loop IRE (iron-responsive element) RNA, HuR, and AUF1 with an AU-rich RNA element and Nrf2 binding to an antioxidant-responsive element (ARE) enhancer in the human ferritin H gene. This study was designed to address key technical questions in RNA and DNA pull-down assays: (1) how much RNA and DNA probes we should use; (2) what binding buffer and cell lysis buffer we can use; (3) how to verify the specific interaction; (4) what streptavidin resin (agarose or magnetic beads) works; and (5) what Western blotting results we can expect from varying to optimum conditions. We anticipate that our optimized pull-down conditions can be applicable to other RNA- and DNA-binding proteins along with emerging non-coding small RNA-binding proteins for their in vitro characterization.
Collapse
Affiliation(s)
- Yoshiaki Tsuji
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA
| |
Collapse
|
104
|
CircRNA-PTPRA Knockdown Inhibits Atherosclerosis Progression by Repressing ox-LDL-Induced Endothelial Cell Injury via Sponging of miR-671-5p. Biochem Genet 2023; 61:187-201. [PMID: 35817886 DOI: 10.1007/s10528-022-10256-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/22/2022] [Indexed: 01/24/2023]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease with high morbidity and mortality rates worldwide. This study aimed to investigate the role of circular RNA protein tyrosine phosphatase receptor type A (circRNA_PTPRA) in oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cell (HUVECs) injury and its underlying molecular mechanism. The expression of circRNA-PTPRA and microRNA (miR)-671-5p was assessed by quantitative reverse transcription PCR (qRT-PCR). The interaction between circRNA-PTPRA and miR-671-5p was predicted using bioinformatic analysis. Cell viability and apoptosis were determined using the Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Inflammation in HUVECs was analyzed by measuring the secretion of tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), and IL-6 using enzyme-linked immunosorbent assay (ELISA). Cleaved-caspase-3 expression was assessed using western blotting. The results indicated that circRNA-PTPRA expression was significantly increased and miR-671-5p expression was decreased in the serum of patients with AS and in ox-LDL-treated HUVECs. The interaction between circRNA-PTPRA and miR-671-5p was verified by dual luciferase reporter and RNA pull-down assays. In HUVECs, downregulation of circRNA-PTPRA reversed ox-LDL-induced reduction in cell viability, increase in apoptosis, and enhanced inflammation, whereas all these effects mediated by circRNA-PTPRA downregulation in ox-LDL-treated HUVECs were abolished by miR-671-5p downregulation. In conclusion, circRNA-PTPRA downregulation protects against ox-LDL-induced HUVECs injury by upregulating miR-671-5p, thereby providing potential therapeutic targets for AS.
Collapse
|
105
|
Wang D, Guan H, Wang Y, Song G, Xia Y. N6-methyladenosine modification in trophoblasts promotes circSETD2 expression, inhibits miR-181a-5p, and elevates MCL1 transcription to reduce apoptosis of trophoblasts. ENVIRONMENTAL TOXICOLOGY 2023; 38:422-435. [PMID: 36260529 DOI: 10.1002/tox.23683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Preeclampsia (PE) is an obstetric disorder. N6-methyladenosine (m6A) modification is related to PE trophoblast biological behaviors. This study explored the mechanism of m6A-modified circSETD2 in trophoblast biological behaviors. Chorionic trophoblast apoptosis and circSETD2 expression in PE rat models were detected. HTR8/SVneo cells were induced by CoCl2 to establish PE trophoblast models. circSETD2 was silenced or overexpressed to evaluate its effect on cell proliferation, invasion, and apoptosis. m6A level of circSETD2 in trophoblasts was changed by pcDNA3.1-METTL3 and pcDNA3.1-FTO. The targeting relations among miR-181a-5p, circSETD2, and MCL1 were verified by dual-luciferase assay. miR-181a-5p and MCL1 expressions were interfered with to confirm the effect of m6A-modified circSETD2. m6A methylation level was changed in PE rats for in vivo validation. PE rats showed diminished circSETD2 expression and increased apoptosis index. circSETD2 overexpression promoted trophoblast proliferation and invasion, and reduced apoptosis. METTL3 overexpression increased total m6A, circSETD2 m6A, and circSETD2 levels. m6A modification mediated circSETD2 upregulation. circSETD2 was a sponge of miR-181a-5p to elevate MCL1 transcription. miR-181a-5p overexpression or MCL1 silencing annulled the role of m6A-modified circSETD2. circSETD2 inhibition negated suppression of METTL3 overexpression on chorionic trophoblast apoptosis in vivo. Collectively, m6A modification of circSETD2 suppressed miR-181a-5p and increased MCL1 transcription, thus regulating trophoblasts.
Collapse
Affiliation(s)
- Dan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongbo Guan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guiyu Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yajun Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
106
|
A novel circ_0018553 protects against angiotensin-induced cardiac hypertrophy in cardiomyocytes by modulating the miR-4731/SIRT2 signaling pathway. Hypertens Res 2023; 46:421-436. [PMID: 36474029 DOI: 10.1038/s41440-022-01111-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022]
Abstract
Due to the complicated pathophysiology of cardiac hypertrophy, there are no effective therapies for the treatment of pathological cardiac hypertrophy. Accumulating evidence has demonstrated that circRNAs participate in the pathophysiology of cardiac hypertrophy. In this study, we investigated the regulatory mechanisms of the novel circ_0018553 in angiotensin II (Ang II)-induced cardiac hypertrophy. Circ_0018553 was enriched in endothelial progenitor cell (EPC)-derived exosomes, and circ_0018553 expression was downregulated in a cellular model of Ang II-induced cardiac hypertrophy. Silencing circ_0018553 promoted cardiac hypertrophy in the Ang II-induced cardiac hypertrophy cellular model, while overexpression of circ_0018553 significantly attenuated Ang II-induced cardiac hypertrophy in cardiomyocytes. Moreover, mechanistic studies revealed that circ_0018553 acted as a sponge for miR-4731 and that miR-4731 repressed sirtuin 2 (SIRT2) expression by targeting the 3'UTR of SIRT2. MiR-4731 overexpression promoted cardiac hypertrophy in the Ang II-induced cardiac hypertrophy cellular model, while inhibition of miR-4731 significantly attenuated Ang II-induced cardiac hypertrophy in cardiomyocytes. The rescue experiments showed that miR-4731 overexpression attenuated the protective effects of circ_0018553 overexpression on the cardiac hypertrophy induced by Ang II; SIRT2 silencing also attenuated the protective effects of miR-4731 inhibition on the Ang II-induced cardiac hypertrophy. In conclusion, our results indicated that EPC-derived exosomal circ_0018553 protected against Ang II-induced cardiac hypertrophy by modulating the miR-4731/SIRT2 signaling pathway.
Collapse
|
107
|
Ma CX, Wei ZR, Sun T, Yang MH, Sun YQ, Kai KL, Shi JC, Zhou MJ, Wang ZW, Chen J, Li W, Wang TQ, Zhang SF, Xue L, Zhang M, Yin Q, Zang MX. Circ-sh3rf3/GATA-4/miR-29a regulatory axis in fibroblast-myofibroblast differentiation and myocardial fibrosis. Cell Mol Life Sci 2023; 80:50. [PMID: 36694058 PMCID: PMC11072806 DOI: 10.1007/s00018-023-04699-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
The transdifferentiation from cardiac fibroblasts to myofibroblasts is an important event in the initiation of cardiac fibrosis. However, the underlying mechanism is not fully understood. Circ-sh3rf3 (circular RNA SH3 domain containing Ring Finger 3) is a novel circular RNA which was induced in hypertrophied ventricles by isoproterenol hydrochloride, and our work has established that it is a potential regulator in cardiac hypertrophy, but whether circ-sh3rf3 plays a role in cardiac fibrosis remains unclear, especially in the conversion of cardiac fibroblasts into myofibroblasts. Here, we found that circ-sh3rf3 was down-regulated in isoproterenol-treated rat cardiac fibroblasts and cardiomyocytes as well as during fibroblast differentiation into myofibroblasts. We further confirmed that circ-sh3rf3 could interact with GATA-4 proteins and reduce the expression of GATA-4, which in turn abolishes GATA-4 repression of miR-29a expression and thus up-regulates miR-29a expression, thereby inhibiting fibroblast-myofibroblast differentiation and myocardial fibrosis. Our work has established a novel Circ-sh3rf3/GATA-4/miR-29a regulatory cascade in fibroblast-myofibroblast differentiation and myocardial fibrosis, which provides a new therapeutic target for myocardial fibrosis.
Collapse
Affiliation(s)
- Cai-Xia Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Zhi-Ru Wei
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Ming-Hui Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Yu-Qie Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Kun-Lun Kai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Jia-Chen Shi
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng-Jiao Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Zi-Wei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Wei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Tian-Qi Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Shan-Feng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Lixiang Xue
- Medical Research Center, Peking University Third Hospital, 49 Huayuan North Road, Beijing, 100191, China
| | - Min Zhang
- Cardiovascular Division, Department of Cardiology, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Qianqian Yin
- Medical Research Center, Peking University Third Hospital, 49 Huayuan North Road, Beijing, 100191, China.
| | - Ming-Xi Zang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China.
| |
Collapse
|
108
|
CircAMOTL1 RNA and AMOTL1 Protein: Complex Functions of AMOTL1 Gene Products. Int J Mol Sci 2023; 24:ijms24032103. [PMID: 36768425 PMCID: PMC9916871 DOI: 10.3390/ijms24032103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The complexity of the cellular proteome facilitates the control of a wide range of cellular processes. Non-coding RNAs, including microRNAs and long non-coding RNAs, greatly contribute to the repertoire of tools used by cells to orchestrate various functions. Circular RNAs (circRNAs) constitute a specific class of non-coding RNAs that have recently emerged as a widely generated class of molecules produced from many eukaryotic genes that play essential roles in regulating cellular processes in health and disease. This review summarizes current knowledge about circRNAs and focuses on the functions of AMOTL1 circRNAs and AMOTL1 protein. Both products from the AMOTL1 gene have well-known functions in physiology, cancer, and other disorders. Using AMOTL1 as an example, we illustrate how focusing on both circRNAs and proteins produced from the same gene contributes to a better understanding of gene functions.
Collapse
|
109
|
The Differential Expression of Circular RNAs and the Role of circAFF1 in Lens Epithelial Cells of High-Myopic Cataract. J Clin Med 2023; 12:jcm12030813. [PMID: 36769461 PMCID: PMC9918043 DOI: 10.3390/jcm12030813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
High-myopic cataract (HMC) is a complex cataract with earlier onset and more rapid progress than age-related cataract (ARC). Circular RNAs (circRNAs) have been implicated in many diseases. However, their involvement in HMC remain largely unexplored. To investigate the role of dysregulated circRNAs in HMC, lens epithelium samples from 24 HMC and 24 ARC patients were used for whole transcriptome sequencing. Compared with ARC, HMC had 3687 uniquely expressed circRNAs and 1163 significantly differentially expressed circRNAs (DEcRs) (|log2FC| > 1, p < 0.05). A putative circRNA-miRNA-mRNA network was constructed based on correlation analysis. We validated the differential expression of 3 DEcRs by quantitative polymerase chain reaction (qPCR) using different sets of samples. We further investigated the role of circAFF1 in cultured lens epithelial cells (LECs) and found that the overexpression of circAFF1 promoted cell proliferation, migration and inhibited apoptosis. We also showed that circAFF1 upregulated Tropomyosin 1 (TPM1) expression by sponging miR-760, which was consistent with the network prediction. Collectively, our study suggested the involvement of circRNAs in the pathogenesis of HMC and provide a resource for further study on this topic.
Collapse
|
110
|
Zhang W, Shi Z, Chen S, Shen S, Tu S, Yang J, Qiu Y, Lin Y, Dai X. Circular RNA hsa_circ_0075323 promotes glioblastoma cells proliferation and invasion via regulation of autophagy. Cell Div 2023; 18:1. [PMID: 36650519 PMCID: PMC9843830 DOI: 10.1186/s13008-023-00084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Protein p62 (sequestosome 1) encoded by gene SQSTM1 plays a vital role in mediating protectively selective autophagy in tumor cells under stressed conditions. CircSQSTM1 (hsa_circ_0075323) is a circular transcript generated from gene SQSTM1 (chr5:179260586-179260782) by back-splicing. However, the potential role of hsa_hsa_circ_0075323 in glioblastoma (GBM) remains unclear. Here, we aimed to explore the biological function of hsa_circ_0075323 in GBM and its relationship with autophagy regulation. RESULTS Hsa_circ_0075323 is highly expressed in GBM cells and mainly locates in the cytoplasm. Inhibition of hsa_circ_0075323 in U87-MG and T98G cells attenuated proliferation and invasion ability significantly, while upregulation of has_ circ_0075323 enhanced proliferation and migration of U251-MG and A172 cells. Mechanistically, depletion of hsa_circ_0075323 in GBM cells resulted in impaired autophagy, as indicated by increased expression of p62 and decreased expression of LC3B. CONCLUSIONS Hsa_circ_0075323 regulates p62-mediated autophagy pathway to promote GBM progression and may serve as a prognostic biomarker potentially.
Collapse
Affiliation(s)
- Wenrui Zhang
- grid.16821.3c0000 0004 0368 8293Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Room 1626, Building 17, 1630 Dongfang Road, Pudong Distric, Shanghai, 200127 People’s Republic of China
| | - Zhonggang Shi
- grid.16821.3c0000 0004 0368 8293Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Room 1626, Building 17, 1630 Dongfang Road, Pudong Distric, Shanghai, 200127 People’s Republic of China
| | - Shouren Chen
- grid.256112.30000 0004 1797 9307Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, NO. 59th West Shengli Road, Zhangzhou, 363000 China
| | - Shaoshan Shen
- grid.256112.30000 0004 1797 9307Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, NO. 59th West Shengli Road, Zhangzhou, 363000 China
| | - Songjie Tu
- grid.256112.30000 0004 1797 9307Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, NO. 59th West Shengli Road, Zhangzhou, 363000 China
| | - Jian Yang
- grid.16821.3c0000 0004 0368 8293Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Room 1626, Building 17, 1630 Dongfang Road, Pudong Distric, Shanghai, 200127 People’s Republic of China
| | - Yongming Qiu
- grid.16821.3c0000 0004 0368 8293Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Room 1626, Building 17, 1630 Dongfang Road, Pudong Distric, Shanghai, 200127 People’s Republic of China
| | - Yingying Lin
- grid.16821.3c0000 0004 0368 8293Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Room 1626, Building 17, 1630 Dongfang Road, Pudong Distric, Shanghai, 200127 People’s Republic of China
| | - Xuejun Dai
- grid.256112.30000 0004 1797 9307Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, NO. 59th West Shengli Road, Zhangzhou, 363000 China
| |
Collapse
|
111
|
Liang Q, Zhou Z, Li H, Tao Q, Wang Y, Lin A, Xu J, Zhang B, Wu Y, Min H, Wang L, Song S, Wang D, Gao Q. Identification of pathological-related and diagnostic potential circular RNAs in Stanford type A aortic dissection. Front Cardiovasc Med 2023; 9:1074835. [PMID: 36712253 PMCID: PMC9880160 DOI: 10.3389/fcvm.2022.1074835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Stanford type A aortic dissection (TAAD) is one of the lethal macrovascular diseases caused by the invasion of blood into the media layer of ascending aortic wall. Inflammation, smooth muscle dysfunction, and extracellular matrix (ECM) degradation were regarded as the major pathology in affected tissue. However, the expression pattern and its regulation especially through circular RNAs (circRNAs) as an overall characteristic of TAAD molecular pathology remain unclear. Methods We employed CIRCexplorer2 to identify circRNAs based on the RNA sequencing (RNA-seq) data of human ascending aortic tissues to systematically assess the role of circRNA in the massive alterations of gene expression in TAAD aortas. The key circRNAs were determined by LASSO model and functionally annotated by competing endogenous RNAs (ceRNA) network and co-analysis with mRNA profile. The expression level and diagnostic capability of the 4 key circRNAs in peripheral serum were confirmed by real-time polymerase chain reaction (RT-PCR). Results The 4 key circRNAs, namely circPTGR1 (chr9:114341075-114348445[-]), circNOX4 (chr11:89069012-89106660[-]), circAMN1 (chr12:31854796-31862359[-]) and circUSP3 (chr15:63845913-63855207[+]), demonstrated a high power to discriminate between TAAD and control tissues, suggesting that these molecules stand for a major difference between the tissues at gene regulation level. Functionally, the ceRNA network of circRNA-miRNA-mRNA predicted by the online databases, combining gene set enrichment analysis (GSEA) and cell component prediction, revealed that the identified circRNAs covered all the aspects of primary TAAD pathology, centralized with increasing inflammatory factors and cells, and ECM destruction and loss of vascular inherent cells along with the circRNAs. Importantly, we validated the high concentration and diagnostic capability of the 4 key circRNAs in the peripheral serum in TAAD patients. Discussion This study reinforces the vital status of circRNAs in TAAD and the possibility of serving as promising diagnostic biomarkers.
Collapse
Affiliation(s)
- Qiao Liang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Zeyi Zhou
- Department of Thoracic and Cardiovascular Surgery, Institute of Cardiothoracic Vascular Disease, Nanjing University, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hui Li
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yali Wang
- Department of Thoracic and Cardiovascular Surgery, Institute of Cardiothoracic Vascular Disease, Nanjing University, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Anqi Lin
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jing Xu
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Bin Zhang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China,Central Laboratory, Nanjing Chest Hospital, Nanjing Medical University, Nanjing, China
| | - Yongzheng Wu
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Haiyan Min
- Central Laboratory, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Wang
- Department of Clinical Laboratory, Jiangsu Provincial Hospital of Integrated Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Institute of Cardiothoracic Vascular Disease, Nanjing University, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China,*Correspondence: Qian Gao ✉
| | - Qian Gao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China,Dongjin Wang ✉
| |
Collapse
|
112
|
Liu C, Wu X, Gokulnath P, Li G, Xiao J. The Functions and Mechanisms of Translatable Circular RNAs. J Pharmacol Exp Ther 2023; 384:52-60. [PMID: 35609922 DOI: 10.1124/jpet.122.001085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/03/2022] [Accepted: 04/29/2022] [Indexed: 12/27/2022] Open
Abstract
Circular RNAs (circRNAs) are covalently closed RNA produced by back-splicing. CircRNAs have been considered as a type of noncoding RNAs for a long time. However, recent studies have shown that circRNAs can be translated into functional proteins. Proteins specifically encoded by circRNAs have been proved to play important roles in cancer pathology. In this review, we introduce the methods commonly used to identify and validate circRNA translation in detail. We also describe the major mechanisms driving the translation of these circRNAs. In addition, we summarize the main functions of the circRNA-encoded proteins in both physiologic and pathologic conditions. Finally, we discuss the therapeutic potential and challenges in the usage of synthetic translatable circRNAs. This brief review highlights recent discoveries made in this field and the progress of therapy based on translatable circRNAs. SIGNIFICANCE STATEMENT: Understanding the translation of circRNA could facilitate the identification of novel drug targets in various diseases. Moreover, some circRNA encoded proteins were demonstrated to have therapeutic functions in cancer. The application of synthetic circRNAs as carriers to achieve stable protein expression in vitro and in vivo has tremendous therapeutic potential.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China (C.L., X.W., J.X.); Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China (C.L., X.W., J.X.); and Cardiovascular Division of the Massachusetts General Hospitaland Harvard Medical School, Boston, Massachusetts (P.G., G.L.)
| | - Xinying Wu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China (C.L., X.W., J.X.); Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China (C.L., X.W., J.X.); and Cardiovascular Division of the Massachusetts General Hospitaland Harvard Medical School, Boston, Massachusetts (P.G., G.L.)
| | - Priyanka Gokulnath
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China (C.L., X.W., J.X.); Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China (C.L., X.W., J.X.); and Cardiovascular Division of the Massachusetts General Hospitaland Harvard Medical School, Boston, Massachusetts (P.G., G.L.)
| | - Guoping Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China (C.L., X.W., J.X.); Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China (C.L., X.W., J.X.); and Cardiovascular Division of the Massachusetts General Hospitaland Harvard Medical School, Boston, Massachusetts (P.G., G.L.)
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China (C.L., X.W., J.X.); Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China (C.L., X.W., J.X.); and Cardiovascular Division of the Massachusetts General Hospitaland Harvard Medical School, Boston, Massachusetts (P.G., G.L.)
| |
Collapse
|
113
|
Yu Q, Dai J, Shu M. Circular RNA-0072309 has antitumor influences in Hep3B cell line by targeting microRNA-665. Biofactors 2023; 49:79-89. [PMID: 32048412 DOI: 10.1002/biof.1618] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
Liver cancer is a malignant tumor that occurs in the liver and has a high mortality rate. We strived to detect the role and mechanism of circRNA-0072309 in liver cancer. Hep3B cell line was transfected with pc-circ and si-circ for viability, colony formation, apoptosis, migration, and invasion tests, which were individually performed by CCK-8, colony formation detection, flow cytometry assay, migration and invasion assays. What is more, the luciferase reporter assay was conducted to determine the target relationship between the circRNA-0072309 and microRNA (miR)-665. The expression of circRNA-0072309 was examined by qRT-PCR. The expression of proteins was examined via western blot. CircRNA-0072309 was lowly expressed in liver cancer tissues and positively associated with 5-year survival rate. The viability, colony formation, invasive and migratory ability were inhibited by abundant circRNA-0072309, which promoted cell apoptosis on the contrary. CircRNA-0072309 knockdown induced opposite effects, but could not affect apoptosis. Overexpressed miR-665 in tumor tissues was targeted and negatively controlled by circRNA-0072309. The PI3K/AKT and Wnt/β-catenin pathways were inhibited by abundant circRNA-0072309. miR-665 overexpression disturbed those effects derived from pc-circ. The circRNA-0072309 had antitumor influences in Hep3B cell line through targeting miR-665 relying on the deactivation of PI3K/AKT and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Qiuyun Yu
- Department of Clinical Laboratory, Hwa Mei Hospital, University of Chinese Academy of Science (Ningbo No.2 Hospital), Ningbo, Zhejiang, China
| | - Jinhua Dai
- Department of Clinical Laboratory, Hwa Mei Hospital, University of Chinese Academy of Science (Ningbo No.2 Hospital), Ningbo, Zhejiang, China
| | - Ming Shu
- Department of Hepatobiliary Surgery, Hwa Mei Hospital, University of Chinese Academy of Science (Ningbo No.2 Hospital), Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
- Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, Zhejiang, China
| |
Collapse
|
114
|
Lei J, Zhu J, Hui B, Jia C, Yan X, Jiang T, Wang X. Circ-HSP90A expedites cell growth, stemness, and immune evasion in non-small cell lung cancer by regulating STAT3 signaling and PD-1/PD-L1 checkpoint. Cancer Immunol Immunother 2023; 72:101-124. [PMID: 35750765 DOI: 10.1007/s00262-022-03235-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 05/31/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are important participators in tumor progression for their stable structure and high tissue-specific expression. The purpose of this research was to clarify the potential and mechanism of a novel circRNA-circ-HSP90A in non-small cell lung cancer (NSCLC). METHODS Biological potentials of circ-HSP90A in NSCLC were measured by functional assays. Molecular interaction was assessed by bioinformatics analysis and mechanical assays. RESULTS Results depicted that circ-HSP90A was cyclization from its host gene heat shock protein 90 alpha (HSP90A) and was up-regulated in NSCLC cells. Circ-HSP90A depletion retarded proliferation, migration, invasion, and immune evasion. Mechanistically, circ-HSP90A recruited ubiquitin specific peptidase 30 (USP30) to stabilize HSP90A and then stimulated the signal transducer and activator of transcription 3 (STAT3) signaling. Meanwhile, circ-HSP90A sponged miR-424-5p to programmed cell death ligand 1 (PD-L1). CONCLUSIONS Our study firstly showed that circ-HSP90A promoted cell growth, stemness, and immune evasion in NSCLC through regulating STAT3 signaling and programmed cell death 1 (PD-1)/PD-L1 checkpoint, mirroring that targeting circ-HSP90A might become a novel target of immunotherapy in NSCLC.
Collapse
Affiliation(s)
- Jie Lei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Jianfei Zhu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Bengang Hui
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Chenghui Jia
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Tao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Xiaoping Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
115
|
Liao J, Zhang Q, Huang J, He H, Lei J, Shen Y, Wang J, Xiao Y. The emerging role of circular RNAs in Parkinson's disease. Front Neurosci 2023; 17:1137363. [PMID: 36925739 PMCID: PMC10012279 DOI: 10.3389/fnins.2023.1137363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and the most common movement disorder. It involves a gradual loss of dopaminergic neurons in the substantia nigra. Although many studies have been conducted, the underlying molecular pathways of PD remain largely unknown. Circular RNAs (circRNAs), a novel class of non-coding RNAs with a covalently closed loop structure, are common in the brain. They are stable, conserved molecules that are widely expressed in eukaryotes in tissue-, cell-, and development-specific patterns. Many circRNAs have recently been identified in nervous system diseases, and some circRNA expression profiles have been linked to PD. Given that recent research has indicated the essential roles of various circRNAs in the development and progression of neurodegenerative diseases, the identification of individual circRNAs may be a promising strategy for finding new treatment targets for PD. Moreover, the search for circRNAs with high specificity and sensitivity will open up new avenues for the early diagnosis and treatment of PD. Herein, we address the biogenesis, properties, and roles of circRNAs and review their potential utility as biomarkers and therapeutic targets in PD.
Collapse
Affiliation(s)
- Jiajia Liao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Rehabilitation Medicine, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qinxin Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinjun Huang
- Department of Rehabilitation, Guiping People's Hospital, Guiping, China
| | - Honghu He
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiang Lei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuefei Shen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
116
|
Circular RNAs: Emerging regulators of glucose metabolism in cancer. Cancer Lett 2023; 552:215978. [PMID: 36283584 DOI: 10.1016/j.canlet.2022.215978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022]
Abstract
Aberrant glucose metabolism is one of the most striking characteristics of metabolic reprogramming in cancer. Thus, clarifying the regulatory mechanism of glucose metabolism is crucial to understanding tumor progression and developing novel therapeutic strategies for cancer patients. Recent developments in circular RNAs have explained the regulatory mechanism of glucose metabolism from a new dimension. In this review, we briefly summarize the recent advances in circRNA research on cancer glucose metabolism and emphasize the different regulatory mechanisms, including acting as miRNA sponges, interacting with proteins and being translated into proteins. Additionally, we discuss the future research directions of circular RNAs in the field of glucose metabolism.
Collapse
|
117
|
Galardi A, Colletti M, Palma A, Di Giannatale A. An Update on Circular RNA in Pediatric Cancers. Biomedicines 2022; 11:biomedicines11010036. [PMID: 36672544 PMCID: PMC9856195 DOI: 10.3390/biomedicines11010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded closed noncoding RNA molecules which are formed as a result of reverse splicing of mRNAs. Despite their relative abundance, only recently there appeared an increased interest in the understanding of their regulatory importance. Among their most relevant characteristics are high stability, abundance and evolutionary conservation among species. CircRNAs are implicated in several cellular functions, ranging from miRNA and protein sponges to transcriptional modulation and splicing. Additionally, circRNAs' aberrant expression in pathological conditions is bringing to light their possible use as diagnostic and prognostic biomarkers. Their use as indicator molecules of pathological changes is also supported by their peculiar covalent closed cyclic structure which bestows resistance to RNases. Their regulatory role in cancer pathogenesis and metastasis is supported by studies involving human tumors that have investigated different expression profiles of these molecules. As endogenous competitive RNA, circRNAs can regulate tumor proliferation and invasion and they arouse great consideration as potential therapeutic biomarkers and targets for cancer. In this review, we describe the most recent findings on circRNAs in the most common pediatric solid cancers (such as brain tumors, neuroblastomas, and sarcomas) and in more rare ones (such as Wilms tumors, hepatoblastomas, and retinoblastomas).
Collapse
Affiliation(s)
- Angela Galardi
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
| | - Marta Colletti
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
| | - Alessandro Palma
- Translational Cytogenomics Research Unit, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
| | - Angela Di Giannatale
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
118
|
Gu L, Sang Y, Nan X, Zheng Y, Liu F, Meng L, Sang M, Shan B. circCYP24A1 facilitates esophageal squamous cell carcinoma progression through binding PKM2 to regulate NF-κB-induced CCL5 secretion. Mol Cancer 2022; 21:217. [PMID: 36514094 PMCID: PMC9746112 DOI: 10.1186/s12943-022-01686-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a common gastrointestinal malignant tumor, while the molecular mechanisms have not been fully elucidated. Multiple circular RNAs have been reported to involve in the onset and progression of malignant tumors through various molecular mechanisms. However, the clinical significance and functional mechanism of most circRNAs involved in the progression of ESCC remains obscure. METHODS RNA-Seq was used to explore potential circRNAs in participated in 5 pairs of ESCC and their corresponding normal esophageal tissues. The up-regulated circCYP24A1 was selected. Fluorescence in situ hybridization was cunducted to verificated the expression and intracellular localization of circCYP24A1 by using the tissue microarray. The Kaplan-Meier method and Cox proportional hazards model was used to examine the potential prognostic value of circCYP24A1 on overall survival of ESCC patients. The biological function were confirmed by gain- and loss-of-function approaches in vivo. mRNA expression profile microarray was proformed to investigate the downstream signaling pathways involved in circCYP24A1. RNA pull-down assay and mass spectrometry were performed to identify the proteins associated with circCYP24A1. Rescue experiments were carried out to identified hypothetical regulatory role of circCYP24A1 on ESCC progression in vivo and in virto. RESULTS In this study, we identified circCYP24A1 in ESCC tissues by RNA sequencing, which is up-regulated in 114 cases of ESCC tissues and acts as a novel prognosis-related factor. Moreover, circCYP24A1 promoted the ability of proliferation, migration, invasion and clone formation in vitro, as well as tumor growth in vivo. Mechanistically, chemokine (C-Cmotif) ligand 5 (CCL5) is functional downstream mediator for circCYP24A1, which is screened by mRNA microarray. Moreover, circCYP24A1 physically interacts with M2 isoform of pyruvate kinase (PKM2). Rescue experiments showed that PKM2 knockdown partly reverses the promotional effects of circCYP24A1. It was revealed that circCYP24A1 increases secretion of CCL5 through the mechanism mainly by interacting with PKM2, an activator of NF-κB pathway, and thereby accelerate malignant progression of ESCC. CONCLUSIONS Up-regulated circCYP24A1 could activate NF-κB pathway by binding PKM2, which promotes the secretion of CCL5 and accelerate malignant progression of ESCC. Our fndings recommended a novel function for circCYP24A1 as a potential effective biomarker for judging prognosis and a therapeutic target in ESCC.
Collapse
Affiliation(s)
- Lina Gu
- grid.452582.cResearch Center, the Fourth Hospital of Hebei Medical University, 050017 Shijiazhuang, Hebei People’s Republic of China
| | - Yang Sang
- grid.452582.cAnimal Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei People’s Republic of China
| | - Xixi Nan
- grid.452582.cResearch Center, the Fourth Hospital of Hebei Medical University, 050017 Shijiazhuang, Hebei People’s Republic of China
| | - Yang Zheng
- grid.452582.cTumor Research Institute, the Fourth Hospital of Hebei Medical University, 050017 Shijiazhuang, Hebei People’s Republic of China
| | - Fei Liu
- grid.452582.cResearch Center, the Fourth Hospital of Hebei Medical University, 050017 Shijiazhuang, Hebei People’s Republic of China
| | - Lingjiao Meng
- grid.452582.cTumor Research Institute, the Fourth Hospital of Hebei Medical University, 050017 Shijiazhuang, Hebei People’s Republic of China
| | - Meixiang Sang
- grid.452582.cResearch Center, the Fourth Hospital of Hebei Medical University, 050017 Shijiazhuang, Hebei People’s Republic of China ,grid.452582.cTumor Research Institute, the Fourth Hospital of Hebei Medical University, 050017 Shijiazhuang, Hebei People’s Republic of China
| | - Baoen Shan
- grid.452582.cResearch Center, the Fourth Hospital of Hebei Medical University, 050017 Shijiazhuang, Hebei People’s Republic of China ,grid.452582.cTumor Research Institute, the Fourth Hospital of Hebei Medical University, 050017 Shijiazhuang, Hebei People’s Republic of China
| |
Collapse
|
119
|
Zhang J, Wang C, Jia C, Zhang Y, Qing X, Zhang Y, Liu J, Xu S, Pan Z. The Role of Circular RNAs in the Physiology and Pathology of the Mammalian Ovary. Int J Mol Sci 2022; 23:15204. [PMID: 36499522 PMCID: PMC9737273 DOI: 10.3390/ijms232315204] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are an abundant class of endogenous non-coding RNAs (ncRNAs) generated from exonic, intronic, or untranslated regions of protein-coding genes or intergenic regions. The diverse, stable, and specific expression patterns of circRNAs and their possible functions through cis/trans regulation and protein-coding mechanisms make circRNA a research hotspot in various biological and pathological processes. It also shows practical value as biomarkers, diagnostic indicators, and therapeutic targets. This review summarized the characteristics, classification, biogenesis and elimination, detection and confirmation, and functions of circRNAs. We focused on research advances circRNAs in the mammalian ovary under conditions including ovarian cancer, polycystic ovarian syndrome (PCOS), and maternal aging, as well as during reproductive status, including ovarian follicle development and atresia. The roles of circRNAs in high reproductive traits in domestic animals were also summarized. Finally, we outlined some obstructive factors and prospects to work with circRNA, aiming to provide insights into the functional research interests of circRNAs in the reproduction and gynecology areas.
Collapse
Affiliation(s)
- Jinbi Zhang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Caixia Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinxin Qing
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuge Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingge Liu
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Shiyong Xu
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
120
|
Mao Y, Zhou Q, Wang J, Zhao R, Yang X, Shi Y, Yin J, Jiang C, He Y. CircP50 functions through the phosphorylation- and acetylation-activated p53 pathway to mediate inorganic arsenic-induced apoptosis in A549 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:91232-91240. [PMID: 35881289 DOI: 10.1007/s11356-022-22094-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
As a class I carcinogen, arsenic has been reported to cause diseases accompanied by circRNAs regulating proliferation and apoptosis at the molecular level, but whether circP50 (circBase ID: hsa_circ_0008012) does the same has not been demonstrated. The aim of this study is to provide the basis for anti-lung cancer mechanism research, by studying the expression of circP50 under arsenic-induced conditions, and the effect and mechanism on the proliferation and apoptosis of A549 cells based on the circP50 knockdown models. To explore whether the circP50 is responsive to arsenic exposure, the qRT-PCR was applied to discover that the relative expression of circP50 in A549 cells increased only with increasing NaAsO2 dose and independent of its metabolites. We further determined the mechanism of circP50 by establishing circP50 knockdown models. The results of cell viability and EdU assays indicated the proliferation of A549 cells. According to the western blotting, phosphorylation of p53 at Ser15, Ser376, and Ser392 and acetylation of p53 at Lys370 and Lys382 were inhibited, resulting in the deficiency of p53 expression. Subsequently, the expression of genes downstream of p53 was reduced, including p21, PUMA, Caspase3, and Bcl-xS. Furthermore, the expressions of IKB-α, p65, and p50 decreased, but C-myc expression did not change significantly, referring to the NF-κB pathway was not dominant. The results suggest that circP50 mainly functions through the p53 pathway to mediate apoptosis in response to arsenic exposure.
Collapse
Affiliation(s)
- Yizhu Mao
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Qian Zhou
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Jinhua Wang
- Bijie Weining Autonomous County Maternal and Child Health Hospital, No.166 Mingzhu Avenue, Haibin Street, Weining Autonomous County, Bijie, Guizhou Province, China
| | - Ruihuan Zhao
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Xuefei Yang
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Ya Shi
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Jinyao Yin
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Chenglan Jiang
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China
| | - Yuefeng He
- School of Public Health, Kunming Medical University, No.1168 Chunrongxi Road Chenggong District, Kunming, Yunnan Province, China.
| |
Collapse
|
121
|
Gareev I, Kudriashov V, Sufianov A, Begliarzade S, Ilyasova T, Liang Y, Beylerli O. The role of long non-coding RNA ANRIL in the development of atherosclerosis. Noncoding RNA Res 2022; 7:212-216. [PMID: 36157350 PMCID: PMC9467859 DOI: 10.1016/j.ncrna.2022.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022] Open
Abstract
Atherosclerosis is an important pathological basis of coronary heart disease, and the antisense non-coding RNA in the INK4 locus (ANRIL) is located in the genetically susceptible segment with the strongest correlation with it - the short arm 2 region 1 of chromosome 9 (Chr9p21). ANRIL can produce linear, circular and other transcripts through different transcriptional splicing methods, which can regulate the proliferation and apoptosis of related cells and closely related to the development of atherosclerotic plaques. Linear ANRIL can regulate proliferation of vascular smooth muscle cells (VSMCs) in plaques by chromatin modification, as well as affecting on proliferation and the apoptosis of macrophages at the transcriptional level; circular ANRIL can affect on proliferation and apoptosis of VSMCs by chromatin modification as well as interfering with rRNA maturation. In this review we describe the evolutionary characteristics of ANRIL, the formation and structure of transcripts, and the mechanism by which each transcript regulates the proliferation and apoptosis of vascular cells and then participates in atherosclerosis.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Educational and Scientific Institute of Neurosurgery, Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| | | | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation.,Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sema Begliarzade
- Republican Clinical Perinatal Center, Republic of Bashkortostan, 450106, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Republic of Bashkortostan, Ufa, 450008, Russia
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| |
Collapse
|
122
|
Zhang XP, Pei JP, Zhang CD, Yusupu M, Han MH, Dai DQ. Exosomal circRNAs: A key factor of tumor angiogenesis and therapeutic intervention. Biomed Pharmacother 2022; 156:113921. [DOI: 10.1016/j.biopha.2022.113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022] Open
|
123
|
Lu L, Liu Y, Zhang G, Xu Y, Hu D, Ji G, Xu H. The circRNA expression profile of colorectal inflammatory cancer transformation revealed potential predictive biomarkers. Aging (Albany NY) 2022; 14:9280-9299. [PMID: 36446351 PMCID: PMC9740358 DOI: 10.18632/aging.204406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors in the world, and most colorectal cancer is transformed from colorectal adenoma (CRA). Identifying biomarkers for the early prediction of colorectal cancer would be an important finding. Circular RNA (circRNA) plays a key role in the occurrence and development of tumors, and its biological characteristics make it a potential biomarker for the early diagnosis of diseases. Therefore, we explored the relationship between circRNA and the malignant transformation from colorectal adenoma to colorectal cancer. We constructed inflammation-based tumorigenesis mouse models and performed high-throughput RNA sequencing to determine the expression profile of circRNAs in tissues at different stages of disease. Subsequent STEM analysis showed that with the development of the disease, 30 circRNAs were significantly downregulated, and 10 circRNAs were significantly upregulated. After qRT-PCR and Fish analysis verification, it was clear that mmu_circ_0008035 and mmu_circ_0000420 were significantly and continuously overexpressed in the development of colorectal cancer in our mouse model. Next, through homology analysis of circRNA in human and mouse and validation of clinical normal tissues, adenoma tissues and CRC tissues, we found biomarkers of has_circ0101338 ahashsa_circ0022426 that could predict the malignant transformation of human colorectal inflammation into CRC and have certain diagnostic value. In conclusion, our results may shed light on the mechanism of progression from precancerous adenoma to cancer and provide biomarkers that may be used in the early diagnosis of CRC.
Collapse
Affiliation(s)
- Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yujing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yangxian Xu
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Dan Hu
- Department of Internal Medicine, Shanghai Pudong New Area Hospital of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
124
|
Circular RNAs in Epithelial Ovarian Cancer: From Biomarkers to Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14225711. [PMID: 36428803 PMCID: PMC9688053 DOI: 10.3390/cancers14225711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer, and more than 70% of patients are diagnosed at advanced stages. Despite the application of surgery and chemotherapy, the prognosis remains poor due to the high relapse rate. It is urgent to identify novel biomarkers and develop novel therapeutic strategies for EOC. Circular RNAs (circRNAs) are a class of noncoding RNAs generated from the "back-splicing" of precursor mRNA. CircRNAs exert their functions via several mechanisms, including acting as miRNA sponges, interacting with proteins, regulating transcription, and encoding functional proteins. Recent studies have identified many circRNAs that are dysregulated in EOC and may be used as diagnostic and prognostic markers. Increasing evidence has revealed that circRNAs play a critical role in ovarian cancer progression by regulating various cellular processes, including proliferation, apoptosis, metastasis, and chemosensitivity. The circRNA-based therapy may be a novel strategy that is worth exploring in the future. Here, we provide an overview of EOC and circRNA biogenesis and functions. We then discuss the dysregulations of circRNAs in EOC and the possibility of using them as diagnostic/prognostic markers. We also summarize the role of circRNAs in regulating ovarian cancer development and speculate their potential as therapeutic targets.
Collapse
|
125
|
Deng Y, Xu X, Meng F, Lou J, Liao Y, Li Q, Zhuang M, Sun Y. PRP8-Induced CircMaml2 Facilitates the Healing of the Intestinal Mucosa via Recruiting PTBP1 and Regulating Sec62. Cells 2022; 11:3460. [PMID: 36359856 PMCID: PMC9654005 DOI: 10.3390/cells11213460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Multiple organ dysfunction syndrome (MODS) occurs in the gastrointestinal tract and injured intestinal mucosa is the anatomical basis for various diseases. The expression of circular RNAs (circRNAs) is implicated in many diseases; however, the role of circRNAs in intestinal mucosal injury is yet to be discovered. Our preliminary gene microarray analysis revealed a novel circular RNA, circMaml2, with a significant intestinal mucosal protection effect. Its expression was found to decrease in severely burned intestinal mucosal tissue, whereas its overexpression might facilitate the reconstruction of the injured intestinal mucous membrane. METHODS The function of circMaml2 in cell proliferation and migration was studied in MC38 cells. The repair function of circMaml2 was tested on the intestinal mucosa of mice. RNA-binding protein polypyrimidine tract-binding protein 1(PTBP1) was selected by pull-down assay and mass spectrometry (MS). RNA immunoprecipitation (RIP) was performed to confirm the binding of circMaml2 and PTBP1 and to study PTBP1 and its downstream target, early B-cell factor 1(Ebf1). Bioinformatics software forecast analysis and dual-luciferase reporter assay were performed to ascertain miR-683 and Sec62 as the downstream targets of circMaml2 and miR-683, respectively. Furthermore, PRP8 was discovered to promote the biogenesis of circMaml2. RESULTS CircMaml2 promotes cell proliferation and migration of MC38 cells and the repair of the intestinal mucosa of mice. This effect is brought about by combining with PTBP1 to improve Ebf1 and interacting with miR-683 to regulate Sec2. Furthermore, PRP8 was discovered to promote the biogenesis of circMaml2. CONCLUSIONS This is the first reported study of the effect of circMaml2 on intestinal mucosal repair.
Collapse
Affiliation(s)
- Yuequ Deng
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Xiaoqing Xu
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Fanze Meng
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Jiaqi Lou
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Yu Liao
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Qi Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Mengmeng Zhuang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Yong Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| |
Collapse
|
126
|
Xu CY, Zeng XX, Xu LF, Liu M, Zhang F. Circular RNAs as diagnostic biomarkers for gastric cancer: A comprehensive update from emerging functions to clinical significances. Front Genet 2022; 13:1037120. [PMID: 36386850 PMCID: PMC9650219 DOI: 10.3389/fgene.2022.1037120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/10/2022] [Indexed: 08/30/2023] Open
Abstract
The incidence and mortality of gastric cancer ranks as a fouth leading cause of cancer death worldwide, especially in East Asia. Due to the lack of specific early-stage symptoms, the majority of patients in most developing nations are diagnosed at an advanced stage. Therefore, it is urgent to find more sensitive and reliable biomarkers for gastric cancer screening and diagnosis. Circular RNAs (circRNAs), a novel type of RNAs with covalently closed loops, are becoming a latest hot spot in the field of. In recent years, a great deal of research has demonstrated that abnormal expression of circRNAs was associated with the development of gastric cancer, and suggested that circRNA might serve as a potential biomarker for gastric cancer diagnosis. In this review, we summarize the structural characteristics, formation mechanism and biological function of circRNAs, and elucidate research progress and existing problems in early screening of gastric cancer.
Collapse
Affiliation(s)
- Chun-Yi Xu
- Zhejiang Chinese Medical University, Hangzhou, China
- Core Facility, Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Xi-Xi Zeng
- Core Facility, Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Li-Feng Xu
- Core Facility, Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Ming Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- The Joint Innovation Center for Engineering in Medicine, Quzhou, China
- University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhang
- Core Facility, Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
127
|
Feng H, Yousuf S, Liu T, Zhang X, Huang W, Li A, Xie L, Miao X. The comprehensive detection of miRNA and circRNA in the regulation of intramuscular and subcutaneous adipose tissue of Laiwu pig. Sci Rep 2022; 12:16542. [PMID: 36192451 PMCID: PMC9530237 DOI: 10.1038/s41598-022-21045-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractcircRNAs, as miRNA sponges, participate in many important biological processes. However, it remains unclear whether circRNAs can regulate lipid metabolism. This study aimed to explore the competing endogenouse RNA (ceRNA) regulatory network that affects the difference between intramuscular fat (IMF) and subcutaneous fat (SCF) deposition, and to screen key circRNAs and their regulatory genes. In this experiment, we identified 265 differentially expressed circRNAs, of which 187 up-regulated circRNA and 78 down-regulated circRNA in IMF. Subsequently, we annotated the function of DEcircRNA's host genes, and found that DEcircRNA's host genes were mainly involved in GO terms (including cellular response to fatty acids, lysophosphatidic acid acyltransferase activity, R-SMAD binding, etc.) and signaling pathways (fatty acid biosynthesis, Citrate cycle, TGF- β Signal pathway) related to adipogenesis, differentiation and lipid metabolism. By constructing a circRNA-miRNA network, we screened out DEcircRNA that can competitively bind to more miRNAs as key circRNAs (circRNA_06424 and circRNA_08840). Through the functional annotation of indirect target genes and protein network analysis, we found that circRNA_06424 affects the expression of PPARD, MMP9, UBA7 and other indirect target genes by competitively binding to miRNAs such as ssc-miR-339-5p, ssc-miR-744 and ssc-miR-328, and participates in PPAR signaling pathway, Wnt signaling pathway, unsaturated fatty acid and other signaling pathways, resulting in the difference of fat deposition between IMF and SCF. This study provide a theoretical basis for further research investigating the differences of lipid metabolism in different adipose tissues, providing potential therapeutic targets for ectopic fat deposition and lipid metabolism diseases.
Collapse
|
128
|
Meng Q, Wang J, Cui J, Li B, Wu S, Yun J, Aschner M, Wang C, Zhang L, Li X, Chen R. Prediction of COPD acute exacerbation in response to air pollution using exosomal circRNA profile and Machine learning. ENVIRONMENT INTERNATIONAL 2022; 168:107469. [PMID: 36041244 PMCID: PMC9939562 DOI: 10.1016/j.envint.2022.107469] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/19/2022] [Accepted: 08/10/2022] [Indexed: 05/11/2023]
Abstract
Ambient fine particulate matter (PM2.5) is linked to an increased risk of chronic obstructive pulmonary disease (COPD) exacerbations, which significantly increase the risk of mortality in COPD patients. Identifying the subtype of COPD patients who are sensitive to environmental aggressions is necessary. Using in vitro and in vivo PM2.5 exposure models, we demonstrate that exosomal hsa_circ_0005045 is upregulated by PM2.5 and binds to the protein cargo peroxiredoxin2, which functionally aggravates hallmarks of COPD by recruiting neutrophil elastase and triggering in situ release of tumor necrosis factor (TNF)-α by inflammatory cells. The biological function of hsa_circ_0005045 associated with aggravation of COPD is validated using exosome-transplantation and conditional circRNA-knockdown murine models. By sorting the major components of PM2.5, we find that PM2.5-bound heavy metals, which are distinguishable from the components of cigarette smoke, trigger the elevation of exosomal hsa_circ_0005045. Finally, using machine learning models in a cohort with 327 COPD patients, the PM2.5 exposure-sensitive COPD patients are characterized by relatively high hsa_circ_0005045 expression, non-smoking, and group C (mMRC 0-1 (or CAT < 10) and ≥ 2 exacerbations (or ≥ 1 exacerbation leading to hospital admission) in the past year). Thus, our results suggest that environmental reduction in PM2.5 emission provides a targeted approach to protecting non-smoking COPD patients against air pollution-related disease exacerbation.
Collapse
Affiliation(s)
- Qingtao Meng
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Jiajia Wang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Jian Cui
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87, Ding Jia Qiao Road, Nanjing 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Bin Li
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Shenshen Wu
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Jun Yun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Luo Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, 100005, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing China; Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100005, China.
| | - Xiaobo Li
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, PR China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, PR China; School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, PR China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
129
|
N6-methyladenosine-modified circular RNA QSOX1 promotes colorectal cancer resistance to anti-CTLA-4 therapy through induction of intratumoral regulatory T cells. Drug Resist Updat 2022; 65:100886. [DOI: 10.1016/j.drup.2022.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
|
130
|
Curcumin Targeting Non-Coding RNAs in Colorectal Cancer: Therapeutic and Biomarker Implications. Biomolecules 2022; 12:biom12101339. [PMID: 36291546 PMCID: PMC9599102 DOI: 10.3390/biom12101339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is one of the most common gastrointestinal malignancies, with high incidence rates, a low rate of early diagnosis, and complex pathogenesis. In recent years, there has been progress made in its diagnosis and treatment methods, but tumor malignant proliferation and metastasis after treatment still seriously affect the survival and prognosis of patients. Therefore, it is an extremely urgent task of current medicine to find new anti-tumor drugs with high efficiency and safety and low toxicity. Curcumin has shown potent anti-tumor and anti-inflammatory effects and is considered a hot spot in the research and development of anti-tumor drugs due to its advantages of precise efficacy, lower toxic side effects, and less drug resistance. Recent studies have revealed that curcumin has anti-tumor effects exerted on the epigenetic regulation of tumor-promoting/tumor-suppressing gene expression through the alteration of expression levels of non-coding RNAs (e.g., lncRNAs, miRNAs, and circRNAs). Herein, we summarize the interaction between curcumin and non-coding RNAs on the occurrence and development of colorectal cancer. The information complied in this review will serve as a scientific and reliable basis and viewpoint for the clinical application of non-coding RNAs in colorectal cancer.
Collapse
|
131
|
Chen Z, Song M, Wang T, Gao J, Lin F, Dai H, Zhang C. Role of circRNA in E3 Modification under Human Disease. Biomolecules 2022; 12:biom12091320. [PMID: 36139159 PMCID: PMC9496110 DOI: 10.3390/biom12091320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Circular RNA (circRNA) is often regarded as a special kind of non-coding RNA, involved in the regulation mechanism of various diseases, such as tumors, neurological diseases, and inflammation. In a broad spectrum of biological processes, the modification of the 76-amino acid ubiquitin protein generates a large number of signals with different cellular results. Each modification may change the result of signal transduction and participate in the occurrence and development of diseases. Studies have found that circRNA-mediated ubiquitination plays an important role in a variety of diseases. This review first introduces the characteristics of circRNA and ubiquitination and summarizes the mechanism of circRNA in the regulation of ubiquitination in various diseases. It is hoped that the emergence of circRNA-mediated ubiquitination can broaden the diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
- Zishuo Chen
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, China
| | - Minkai Song
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ting Wang
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, China
| | - Jiawen Gao
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fei Lin
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, China
| | - Hui Dai
- Hospital Office, Ganzhou People’s Hospital, Ganzhou 341000, China
- Hospital Office, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou 341000, China
- Correspondence: (H.D.); (C.Z.)
| | - Chao Zhang
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, China
- Hospital Office, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou 341000, China
- Correspondence: (H.D.); (C.Z.)
| |
Collapse
|
132
|
Rahmani-Kukia N, Abbasi A. New insights on circular RNAs and their potential applications as biomarkers, therapeutic agents, and preventive vaccines in viral infections: with a glance at SARS-CoV-2. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:705-717. [PMID: 35992045 PMCID: PMC9375856 DOI: 10.1016/j.omtn.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The occurrence of viral infections and approaches to handling them are very challenging and require prompt diagnosis and timely treatment. Recently, genomic medicine approaches have come up with the discovery of the competing endogenous RNA (ceRNA) network, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) on the basis of gene silencing. CircRNAs, as a group of non-encoded RNAs, make a loop-like structure by back-splicing through 3' and 5' ends. They are stable, abundant, specific, and highly conserved and can be quickly generated at large scales in vitro. CircRNAs have the potential to contribute in several cellular processes in a way that some serve as microRNA sponges, cellular transporters, protein-binding RNAs, transcriptional regulators, and immune system modulators. CircRNAs can even play an important role in modulating antiviral immune responses. In the present review, circRNAs' biogenesis, function, and biomarker and therapeutic potential as well as their prospective applications as vaccines against viral infections such as SARS-CoV-2 are explained. By considering their unique properties, their potential to be used as novel vaccines, biomarkers, and a therapeutic approach appears possible.
Collapse
Affiliation(s)
- Nasim Rahmani-Kukia
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
133
|
Rhim J, Baek W, Seo Y, Kim JH. From Molecular Mechanisms to Therapeutics: Understanding MicroRNA-21 in Cancer. Cells 2022; 11:cells11182791. [PMID: 36139366 PMCID: PMC9497241 DOI: 10.3390/cells11182791] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play an important role in regulating gene expression at a posttranscriptional level. As one of the first discovered oncogenic miRNAs, microRNA-21 (miR-21) has been highlighted for its critical role in cancers, such as glioblastoma, pancreatic adenocarcinoma, non-small cell lung cancer, and many others. MiR-21 targets many vital components in a wide range of cancers and acts on various cellular processes ranging from cancer stemness to cell death. Expression of miR-21 is elevated within cancer tissues and circulating miR-21 is readily detectable in biofluids, making it valuable as a cancer biomarker with significant potential for use in diagnosis and prognosis. Advances in RNA-based therapeutics have revealed additional avenues by which miR-21 can be utilized as a promising target in cancer. The purpose of this review is to outline the roles of miR-21 as a key modulator in various cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jiho Rhim
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Woosun Baek
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Yoona Seo
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
- Correspondence: ; Tel.: +82-31-920-2204
| |
Collapse
|
134
|
Chen SC, Jiang T, Liu QY, Liu ZT, Su YF, Su HT. Hsa_circ_0001485 promoted osteogenic differentiation by targeting BMPR2 to activate the TGFβ-BMP pathway. Stem Cell Res Ther 2022; 13:453. [PMID: 36064455 PMCID: PMC9446709 DOI: 10.1186/s13287-022-03150-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background Circular RNAs (circRNAs) are a new type of stable noncoding RNA and have been proven to play a crucial role in osteoporosis. This study explored the role and mechanism of hsa_circ_0001485 in osteogenic differentiation. Methods Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Ontology (GO) enrichment analysis were performed according to the previous sequencing data in human bone marrow mesenchymal stem cells (BMSC) before and after the induction of osteogenic differentiation on the differentially expressed circRNAs, to screen out signaling pathways associated with osteogenic differentiation. The hFOB 1.19 cells were used to verify the function and mechanism of specific circRNAs in osteogenic differentiation. Additionally, small interfering fragments and overexpression plasmids were used to determine the role of specific circRNAs during osteogenic differentiation. Furthermore, pull-down experiments and mass spectrometry were performed to determine the proteins that bind to specific circRNAs. Results The KEGG and GO enrichment analyses showed that the TGFβ-BMP signaling pathway was related to the osteogenic differentiation process, and four circRNAs were associated with the pathway. The quantitative polymerase chain reaction analysis revealed that hsa_circ_0001485 expression was increased during the osteogenic differentiation process of BMSCs. Knockdown of hsa_circ_0001485 suppressed the activity of the alkaline phosphatase enzyme and the expression of RUNX2, osteopontin, and osteocalcin in the osteogenic hFOB 1.19 cells, whereas overexpression of hsa_circ_0001485 promoted their expression. Additionally, we found that hsa_circ_0001485 and BMPR2 targeted binding to activate the TGFβ-BMP signaling pathway and promoted osteogenic differentiation through mass spectrometry analysis. Conclusion This study demonstrates that hsa_circ_0001485 is highly expressed in the osteogenic hFOB 1.19 cells, which activate the TGFβ-BMP pathway through targeted binding of BMPR2, and plays a positive role in regulating osteogenic differentiation.
Collapse
Affiliation(s)
- Shan-Chuang Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55 Inner Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| | - Tao Jiang
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55 Inner Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China.
| | - Qi-Yu Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55 Inner Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| | - Zi-Tao Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55 Inner Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| | - Yu-Fei Su
- Department of Rehabilitation and Recovery, Albury Wodonga Health, Albury, NSW, 2640, Australia
| | - Hai-Tao Su
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55 Inner Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
135
|
Gholami N, Haghparast A, Alipourfard I, Nazari M. Prostate cancer in omics era. Cancer Cell Int 2022; 22:274. [PMID: 36064406 PMCID: PMC9442907 DOI: 10.1186/s12935-022-02691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Recent advances in omics technology have prompted extraordinary attempts to define the molecular changes underlying the onset and progression of a variety of complex human diseases, including cancer. Since the advent of sequencing technology, cancer biology has become increasingly reliant on the generation and integration of data generated at these levels. The availability of multi-omic data has transformed medicine and biology by enabling integrated systems-level approaches. Multivariate signatures are expected to play a role in cancer detection, screening, patient classification, assessment of treatment response, and biomarker identification. This review reports current findings and highlights a number of studies that are both novel and groundbreaking in their application of multi Omics to prostate cancer.
Collapse
Affiliation(s)
- Nasrin Gholami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Iraj Alipourfard
- Institutitue of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Majid Nazari
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- , P.O. Box 14155-6117, Shiraz, Iran.
| |
Collapse
|
136
|
Huang Y, Li Y, Lin W, Fan S, Chen H, Xia J, Pi J, Xu JF. Promising Roles of Circular RNAs as Biomarkers and Targets for Potential Diagnosis and Therapy of Tuberculosis. Biomolecules 2022; 12:biom12091235. [PMID: 36139074 PMCID: PMC9496049 DOI: 10.3390/biom12091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, remains one of the most threatening infectious diseases worldwide. A series of challenges still exist for TB prevention, diagnosis and treatment, which therefore require more attempts to clarify the pathological and immunological mechanisms in the development and progression of TB. Circular RNAs (circRNAs) are a large class of non-coding RNA, mostly expressed in eukaryotic cells, which are generated by the spliceosome through the back-splicing of linear RNAs. Accumulating studies have identified that circRNAs are widely involved in a variety of physiological and pathological processes, acting as the sponges or decoys for microRNAs and proteins, scaffold platforms for proteins, modulators for transcription and special templates for translation. Due to the stable and widely spread characteristics of circRNAs, they are expected to serve as promising prognostic/diagnostic biomarkers and therapeutic targets for diseases. In this review, we briefly describe the biogenesis, classification, detection technology and functions of circRNAs, and, in particular, outline the dynamic, and sometimes aberrant changes of circRNAs in TB. Moreover, we further summarize the recent progress of research linking circRNAs to TB-related pathogenetic processes, as well as the potential roles of circRNAs as diagnostic biomarkers and miRNAs sponges in the case of Mtb infection, which is expected to enhance our understanding of TB and provide some novel ideas about how to overcome the challenges associated TB in the future.
Collapse
Affiliation(s)
- Yifan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaojiao Xia
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| |
Collapse
|
137
|
Wang K, Lin X. Circular RNA circMTO1 suppressed the progression of renal cell carcinoma progression by sponging miR-211 and miR-204. Mamm Genome 2022; 33:517-524. [PMID: 35092479 DOI: 10.1007/s00335-022-09944-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/11/2022] [Indexed: 12/01/2022]
Abstract
Despite considerable improvements in renal cell carcinoma (RCC) diagnostic and therapeutic strategy, the clinical prognosis of patients is far from satisfactory due to its recurrence and metastasis. Here, we attempted to explore the role of circMTO1 in RCC progression, and the underlying mechanism was further elucidated. We first detected the expression of circMTO1 in 90 pairs of RCC tissues and adjacent normal tissues using qRT-PCR. Besides, circMTO1, miR-211, miR-204 and KLF6 expression levels in RCC cells were also measured using qRT-PCR. MTT assay, cell migration, flow cytometry analysis, qRT-PCR and western blotting analysis were applied to evaluating the effect of circMTO1 in RCC cells. The bioinformatics analysis and the rescue experiment were devoted to the underlying mechanism. The results demonstrated CircMTO1 expression was significantly down-regulated in RCC tissues and cell lines. Besides, CircMTO1 inhibited cell proliferation, migration and invasion, induced apoptosis in RCC cells. In addition, CircMTO1 serves as a sponge for miR-211 and miR-204, KLF6 is a direct target of miR-211 and miR-204. Furthermore, circMTO1 and KLF6 overexpression rescued the suppression of miR-211/204 in RCC cell proliferation. In short, circMTO1 repressed RCC progression by regulating KLF6 via sponging miR-211 and miR-204, which may provide new idea of diagnosis and treatment in renal cell carcinoma.
Collapse
Affiliation(s)
- Ke Wang
- Department of Urology, The First People's Hospital of Xianyang, Xianyang, 712000, Shaanxi Province, China
| | - Xiaofeng Lin
- Department of Urology, People's Hospital of Wuqi County, Wuqi County Middle Street, Yan'an City, 717600, Shaanxi Province, China.
| |
Collapse
|
138
|
Hsa_circ_0044301 Regulates Gastric Cancer Cell’s Proliferation, Migration, and Invasion by Modulating the Hsa-miR-188-5p/DAXX Axis and MAPK Pathway. Cancers (Basel) 2022; 14:cancers14174183. [PMID: 36077718 PMCID: PMC9454757 DOI: 10.3390/cancers14174183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This study aimed to investigate whether circRNA could be potential prognosis or therapeutic target. And we found the upregulated hsa_circ_0044301 was positively correlated with the 5-year survival rate of patients, which also could influence the proliferation, migration and invasion of gastric cancer cells in vitro and in vivo. Mechanically, it could act as the sponge of hsa-miR-188-5p and regulate the expression and function of targeted gene DAXX. In addition, this circRNA could also modulate the effect of GDC-0994 on ERK1/2 or 5-FU in cells. These findings have made a significant contribution to the study of circRNA in the treatment field of gastric cancer. Meanwhile this is the first detailed investigation of hsa_circ_0044301 in gastric cancer, and the circRNA has the value of further animal and clinical translation. Abstract Background: Despite advances in diagnostic and therapeutic technologies, the prognosis of patients with gastric cancer (GC) remains poor, necessitating further search for more effective therapeutic targets and markers for prognosis prediction. Circular RNA (circRNA) plays a role in various diseases, including GC. Methods: CircRNA expression in GC tissues was detected by circRNA microarray and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The correlation between circRNA-0044301 and patient survival was analyzed by log-rank test and Cox regression analysis. Next, in vitro characterization and functional analysis of circRNA-0044301 was done by various assays using RNase R, actinomycin D, and RNA fluorescence in situ hybridization, as well as investigations into its use as a drug to treat tumors in a subcutaneous tumorigenesis model. RNA immunoprecipitation and dual-luciferase reporter assays were used to identify circRNA-0044301-related miRNA (miRNA-188-5p), key proteins of the related pathway (ERK1/2), and the downstream target DAXX. Finally, we investigated the relationship between circRNA-0044301 and ravoxertinib (GDC-0994) and 5-fluorouracil (5-FU) using qRT-PCR, Western blotting, and CCK8 assays. Results: CircRNA-0044301 was upregulated in tissues and cancer cells compared to its levels in controls, related to patient prognosis, and its specific siRNA-vivo could slow tumor growth. On the mechanism, it acted as a sponge of miRNA-188-5p, could regulate the downstream target DAXX, and modulated the effect of GDC-0994 on ERK1/2 and 5-FU in cells. Conclusions: CircRNA-0044301/miRNA-188-5p/DAXX (ERK1/2) may be a key axis in GC progression, and circRNA-0044301 has immense potential to be a therapeutic target for GC.
Collapse
|
139
|
Wang H, Gao X, Yu S, Wang W, Liu G, Jiang X, Sun D. Circular RNAs regulate parental gene expression: A new direction for molecular oncology research. Front Oncol 2022; 12:947775. [PMID: 36091137 PMCID: PMC9453195 DOI: 10.3389/fonc.2022.947775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
CircRNAs have been the focus of research in recent years. They are differentially expressed in various human tumors and can regulate oncogenes and tumor suppressor genes expression through various mechanisms. The diversity, stability, evolutionary conservatism and cell- or tissue-specific expression patterns of circRNAs also endow them with important regulatory roles in promoting or inhibiting tumor cells malignant biological behaviors progression. More interestingly, emerging studies also found that circRNAs can regulate not only other genes expression, but also their parental gene expression and thus influence tumors development. Apart from some conventional features, circRNAs have a certain specificity in the regulation of parental gene expression, with a higher proportion affecting parental gene transcription and easier translation into protein to regulate parental gene expression. CircRNAs are generally thought to be unable to produce proteins and therefore the protein-coding ability exhibited by circRNAs in regulating parental gene expression is unique and indicates that the regulatory effects of parental gene expression by circRNAs are not only a competitive binding relationship, but also a more complex molecular relationship between circRNAs and parental gene, which deserves further study. This review summarizes the molecular mechanisms of circRNAs regulating parental gene expression and their biological roles in tumorigenesis and development, aiming to provide new ideas for the clinical application of circRNAs in tumor-targeted therapy.
Collapse
Affiliation(s)
- Haicun Wang
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Gao
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shaobo Yu
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weina Wang
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanglin Liu
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingming Jiang
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xingming Jiang, ; Dongsheng Sun,
| | - Dongsheng Sun
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xingming Jiang, ; Dongsheng Sun,
| |
Collapse
|
140
|
Ren L, Jiang M, Xue D, Wang H, Lu Z, Ding L, Xie H, Wang R, Luo W, Xu L, Wang M, Yu S, Cheng S, Xia L, Yu H, Huang P, Xu N, Li G. Nitroxoline suppresses metastasis in bladder cancer via EGR1/circNDRG1/miR-520h/smad7/EMT signaling pathway. Int J Biol Sci 2022; 18:5207-5220. [PMID: 35982887 PMCID: PMC9379395 DOI: 10.7150/ijbs.69373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer is one of the most common and deadly cancer worldwide. Current chemotherapy has shown limited efficacy in improving outcomes for patients. Nitroxoline, an old and widely used oral antibiotic, which was known to treat for urinary tract infection for decades. Recent studies suggested that nitroxoline suppressed the tumor progression and metastasis, especially in bladder cancer. However, the underlying mechanism for anti-tumor activity of nitroxoline remains unclear. Methods: CircRNA microarray was used to explore the nitroxoline-mediated circRNA expression profile of bladder cancer lines. Transwell and wound-healing assay were applied to evaluate the capacity of metastasis. ChIP assay was chosen to prove the binding of promotor and transcription factor. RNA-pulldown assay was performed to explore the sponge of circRNA and microRNA. Results: We first identified the circNDRG1 (has_circ_0085656) as a novel candidate circRNA. Transwell and wound-healing assay demonstrated that circNDRG1 inhibited the metastasis of bladder cancer. ChIP assay showed that circNDRG1 was regulated by the transcription factor EGR1 by binding the promotor of host gene NDRG1. RNA-pulldown assay proved that circNDRG1 sponged miR-520h leading to the overexpression of smad7, which was a negative regulatory protein of EMT. Conclusions: Our research revealed that nitroxoline may suppress metastasis in bladder cancer via EGR1/circNDRG1/miR-520h/smad7/EMT signaling pathway.
Collapse
Affiliation(s)
- Liangliang Ren
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minxiao Jiang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei Xue
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyun Xie
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shicheng Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Cheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haifeng Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Huang
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Naijin Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
141
|
Lv B, Cheng Z, Yu Y, Chen Y, Gan W, Li S, Zhao K, Yang C, Zhang Y. Therapeutic perspectives of exosomes in glucocorticoid-induced osteoarthrosis. Front Surg 2022; 9:836367. [PMID: 36034358 PMCID: PMC9405187 DOI: 10.3389/fsurg.2022.836367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Exosomes are widely involved in a variety of physiological and pathological processes. These important roles are also hidden in the physiological processes related to bone. Chondrocytes, osteoblasts, synovial fibroblasts, and bone marrow mesenchymal stem cells produce and secrete exosomes, thereby affecting the biology process of target cells. Furthermore, in the primary pathogenesis of osteoarthrosis induced by steroid hormones, mainly involve glucocorticoid (GC), the exosomes have also widely participated. Therefore, exosomes may also play an important role in glucocorticoid-induced osteoarthrosis and serve as a promising treatment for early intervention of osteoarthrosis in addition to playing a regulatory role in malignant tumors. This review summarizes the previous results on this direction, systematically combs the role and therapeutic potential of exosomes in GC-induced osteoarthrosis, discusses the potential role of exosomes in the treatment and prevention of GC-induced osteoarthrosis, and reveals the current challenges we confronted.
Collapse
Affiliation(s)
- Bin Lv
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| | | | | | | | | | | | - Kangcheng Zhao
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| | - Cao Yang
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| | - Yukun Zhang
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| |
Collapse
|
142
|
Liu J, Zhang Z, Zhu W, Shen Y, Gu Y, Zhang X, He L, Du J. CircFBXW4 regulates human trophoblast cell proliferation and invasion via targeting miR-324–3p/TJP1 axis in recurrent spontaneous abortion. Placenta 2022; 126:1-11. [DOI: 10.1016/j.placenta.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/14/2022] [Accepted: 05/26/2022] [Indexed: 12/01/2022]
|
143
|
So BYF, Yap DYH, Chan TM. Circular RNAs in Acute Kidney Injury: Roles in Pathophysiology and Implications for Clinical Management. Int J Mol Sci 2022; 23:ijms23158509. [PMID: 35955644 PMCID: PMC9369393 DOI: 10.3390/ijms23158509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical condition, results in patient morbidity and mortality, and incurs considerable health care costs. Sepsis, ischaemia-reperfusion injury (IRI) and drug nephrotoxicity are the leading causes. Mounting evidence suggests that perturbations in circular RNAs (circRNAs) are observed in AKI of various aetiologies, and have pathogenic significance. Aberrant circRNA expressions can cause altered intracellular signalling, exaggerated oxidative stress, increased cellular apoptosis, excess inflammation, and tissue injury in AKI due to sepsis or IRI. While circRNAs are dysregulated in drug-induced AKI, their roles in pathogenesis are less well-characterised. CircRNAs also show potential for clinical application in diagnosis, prognostication, monitoring, and treatment. Prospective observational studies are needed to investigate the role of circRNAs in the clinical management of AKI, with special focus on the safety of therapeutic interventions targeting circRNAs and the avoidance of untoward off-target effects.
Collapse
|
144
|
Liu K, Fan XE, Zhang L, Yang Y, Zhou XL. Circ-NCX1 inhibits LPS-induced chondrocyte apoptosis by regulating the miR-133a/SIRT1 axis. Kaohsiung J Med Sci 2022; 38:992-1000. [PMID: 35894157 DOI: 10.1002/kjm2.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 02/08/2022] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease, which is characterized by the degeneration of articular cartilage, thickening of subchondral bone, and inflammation of the synovial membrane. In this study, we aimed to investigate the effects and underlying mechanisms of circ-NCX1 in lipopolysaccharide (LPS)-induced injury in SW1353 chondrocytes, an in vitro model of OA. The levels of circ-NCX1, miR-133a, and related apoptotic proteins were determined by RT-qPCR. MTT assay was used to evaluate the cell viability. The apoptosis was determined by flow cytometry, whereas the expression of apoptosis proteins was detected by Western blot. Immunofluorescence was used to detect cleaved caspase-3 expression in cells. Luciferase reporter assay was used to verify the interaction between circ-NCX1 and miR-133a, and between miR-133a and Silent information regulator 2 homolog 1 (Sirt1). The results showed that the overexpression of circ-NCX1 significantly upregulated the chondrocyte viability and proliferation, and alleviated apoptosis in LPS-induced SW1353 cells. Immunofluorescence results showed that the overexpression of circ-NCX1 significantly reduced expression of LPS-stimulated cleaved Caspase-3. The RT-qPCR results showed that the overexpression of circ-NCX1 inhibited mRNA levels of cleaved Caspase-3 and Bax, and promoted mRNA levels of Bcl-2. Luciferase reporter assay showed that circ-NCX1 targeted miR-133a, and miR-133a directly targeted the Sirt1. In addition, overexpression of circ-NCX1 inhibited chondrocyte apoptosis and promoted Akt phosphorylation via the miR-133a/Sirt1 axis in LPS-induced chondrocytes. In conclusion, circ-NCX1 may serve as an important regulator of LPS-induced chondrocyte apoptosis through the miR-133a/Sirt1 axis, and may be involved in the development of OA.
Collapse
Affiliation(s)
- Kai Liu
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Xiao-E Fan
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Li Zhang
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Ying Yang
- Yan'an University, Yan'an City, Shaanxi Province, China
| | - Xiao-Ling Zhou
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| |
Collapse
|
145
|
UPF1/circRPPH1/ATF3 feedback loop promotes the malignant phenotype and stemness of GSCs. Cell Death Dis 2022; 13:645. [PMID: 35871061 PMCID: PMC9308777 DOI: 10.1038/s41419-022-05102-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 01/21/2023]
Abstract
Glioblastoma multiforme (GBM) is the most lethal type of craniocerebral gliomas. Glioma stem cells (GSCs) are fundamental reasons for the malignancy and recurrence of GBM. Revealing the critical mechanism within GSCs' self-renewal ability is essential. Our study found a novel circular RNA (circRPPH1) that was up-regulated in GSCs and correlated with poor survival. The effect of circRPPH1 on the malignant phenotype and self-renewal of GSCs was detected in vitro and in vivo. Mechanistically, UPF1 can bind to circRPPH1 and maintain its stability. Therefore, more existing circRPPH1 can interact with transcription factor ATF3 to further transcribe UPF1 and Nestin expression. It formed a feedback loop to keep a stable stream for stemness biomarker Nestin to strengthen tumorigenesis of GSCs continually. Besides, ATF3 can activate the TGF-β signaling to drive GSCs for tumorigenesis. Knocking down the expression of circRPPH1 significantly inhibited the proliferation and clonogenicity of GSCs both in vitro and in vivo. The overexpression of circRPPH1 enhanced the self-renewal of GSCs. Our findings suggest that UPF1/circRPPH1/ATF3 maintains the potential self-renewal of GSCs through interacting with RNA-binding protein and activating the TGF-β signal pathway. Breaking the feedback loop against self-renewing GSCs may represent a novel therapeutic target in GBM treatment.
Collapse
|
146
|
Small noncoding RNAs play superior roles in maintaining hematopoietic stem cell homeostasis. BLOOD SCIENCE 2022; 4:125-132. [DOI: 10.1097/bs9.0000000000000123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
|
147
|
Wang S, Wang Y, Li Q, Li X, Feng X. A novel circular RNA confers trastuzumab resistance in human epidermal growth factor receptor 2-positive breast cancer through regulating ferroptosis. ENVIRONMENTAL TOXICOLOGY 2022; 37:1597-1607. [PMID: 35234341 DOI: 10.1002/tox.23509] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/19/2022] [Indexed: 05/27/2023]
Abstract
HER2-positive breast cancer is an aggressive subtype of breast cancer, characterized by high malignancy and poor prognosis. Trastuzumab, the first HER2-targeted monoclonal antibody therapy, has a crucial role in a curative setting in HER2-positive breast cancer. However, frequent drug resistance inhibits its clinical efficacy. Herein, by performing circular RNA (circRNA) profiling, we identified a novel circRNA, circ-BGN, as a key contributor in trastuzumab resistance. Circ-BGN was evidently increased in trastuzumab-resistant breast cancer cells and tissues, linking to poor overall survival. Knockdown of circ-BGN inhibited breast cancer cell viability and notably restored its sensitivity to trastuzumab. Further, we found that circ-BGN could directly bind to OTUB1 and SLC7A11, enhancing OTUB1-mediated SLC7A11 deubiquitination and thereby inhibiting ferroptosis, a newly recognized form of cell death that is distinct from apoptosis, necrosis, and autophagy. Moreover, erastin, a small-molecule ferroptosis inducer, could effectively restore the anti-tumor effect of trastuzumab. Pre-clinically, the orthotopic tumor model showed that erastin significantly reduced tumor volume generated by trastuzumab-resistant breast cancer cells, which was more pronounced after combined circ-BGN knockdown. Collectively, our data reveal a novel circRNA controlling trastuzumab resistance via regulation of ferroptosis, providing a promising therapeutic strategy for trastuzumab-resistant breast cancer patients.
Collapse
Affiliation(s)
- Shengting Wang
- Department of Clinical Medicine, Xi'an Peihua University, Xi'an, China
| | - Yufang Wang
- Department of Clinical Medicine, Xi'an Peihua University, Xi'an, China
| | - Qian Li
- Department of Clinical Medicine, Xi'an Peihua University, Xi'an, China
| | - Xiaoming Li
- Department of Clinical Medicine, Xi'an Peihua University, Xi'an, China
| | - Xinghua Feng
- Department of Clinical Medicine, Xi'an Peihua University, Xi'an, China
| |
Collapse
|
148
|
circ_0072464 Shuttled by Bone Mesenchymal Stem Cell-Secreted Extracellular Vesicles Inhibits Nucleus Pulposus Cell Ferroptosis to Relieve Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2948090. [PMID: 35814268 PMCID: PMC9259290 DOI: 10.1155/2022/2948090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022]
Abstract
Ferroptosis, as an iron-dependent form of necrotic cell death, has been reported to affect activities of nucleus pulposus cells (NPCs). However, its role in the pathogenesis of intervertebral disc degeneration (IDD) is largely unknown. Notably, our bioinformatics analysis predicted that circ_0072464 was downregulated in nucleus pulposus of IDD mice. Therefore, this study is aimed at clarifying the mechanisms of extracellular vesicle- (EV-) encapsulated circ_0072464 derived from bone marrow mesenchymal stem cells (BMSCs) in NPC ferroptosis in IDD. EVs were extracted from mouse BMSCs (BMSC-EVs) and then cocultured with IL-1β-induced NPCs, followed by detection of matrix synthesis, proliferation, and ferroptosis of NPCs based on gain- or loss-of-function experiments. It was found that the uptake of BMSC-EVs by NPCs alleviated IDD. circ_0072464 and NRF2 were downregulated, and miR-431 was upregulated in IDD. Mechanistically, circ_0072464 competitively bound to miR-431, which targeted and inhibited NRF2 expression. BMSC-derived EVs carrying circ_0072464 inhibited NPC ferroptosis to promote matrix synthesis and proliferation of NPCs by inhibiting miR-431 and upregulating NRF2. Besides, in vivo experiments also confirmed that BMSC-EVs alleviated intervertebral disc lesions in mice with IDD through the circ_0072464/miR-431/NRF2 axis. Collectively, BMSC-EV-loaded circ_0072464 inhibited NPC ferroptosis to relieve IDD via upregulation of miR-431-mediated NRF2, therefore providing a potential therapeutic target against IDD.
Collapse
|
149
|
Wei SH, Liu M, Hu J, Zhang CY. Target-Initiated Cascade Signal Amplification Lights up a G-Quadruplex for a Label-Free Detection of Circular Ribonucleic Acids. Anal Chem 2022; 94:9193-9200. [PMID: 35703015 DOI: 10.1021/acs.analchem.2c01901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Circular ribonucleic acids (circRNAs) are a type of RNA that originates through back-splicing events from linear primary transcripts. CircRNAs display high structural resistance and tissue specificity. Accurate quantification of the circRNA expression level is of vital importance to disease diagnosis. Herein, we construct a label-free fluorescent biosensor for ultrasensitive analysis of circRNAs based on the integration of target-initiated cascade signal amplification strategy with a light-up G-quadruplex. This assay involves only one assistant probe that targets the circRNA-specific back-splice junction. When circRNA is present, it hybridizes with the assistant probe to initiate the duplex-specific nuclease (DSN)-catalyzed cyclic cleavage reaction, producing abundant triggers with 3'OH termini. Then, terminal deoxynucleotidyl transferase (TdT) catalyzes the addition of dGTP and dATP at the 3'-OH termini of the resultant triggers to obtain abundant long G-rich DNA sequences that can form efficient G-quadruplex products. The addition of Thioflavin T (ThT) can light up G-quadruplex, generating an enhanced fluorescence. This assay may be performed isothermally without the involvement of any nucleic acid templates, exogenous primers, and specific labeled probes. Importantly, this biosensor can discriminate target circRNA from one-base mismatched circRNA and exhibits good performance in human serum. Moreover, it can accurately detect circRNA in cancer cells at a single-cell level and even differentiate the circRNA levels in the tissues of healthy persons and nonsmall cell lung cancer (NSCLC) patients, with promising applications in circRNA-related cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Shu-Hua Wei
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
150
|
Non-Coding RNA Networks as Potential Novel Biomarker and Therapeutic Target for Sepsis and Sepsis-Related Multi-Organ Failure. Diagnostics (Basel) 2022; 12:diagnostics12061355. [PMID: 35741168 PMCID: PMC9222180 DOI: 10.3390/diagnostics12061355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
According to “Sepsis-3” consensus, sepsis is a life-threatening clinical syndrome caused by a dysregulated inflammatory host response to infection. A rapid identification of sepsis is mandatory, as the extent of the organ damage triggered by both the pathogen itself and the host’s immune response could abruptly evolve to multiple organ failure and ultimately lead to the death of the patient. The most commonly used therapeutic strategy is to provide hemodynamic and global support to the patient and to rapidly initiate broad-spectrum empiric antibiotic therapy. To date, there is no gold standard diagnostic test that can ascertain the diagnosis of sepsis. Therefore, once sepsis is suspected, the presence of organ dysfunction can be assessed using the Sepsis-related Organ Failure Assessment (SOFA) score, although the diagnosis continues to depend primarily on clinical judgment. Clinicians can now rely on several serum biomarkers for the diagnosis of sepsis (e.g., procalcitonin), and promising new biomarkers have been evaluated, e.g., presepsin and adrenomedullin, although their clinical relevance in the hospital setting is still under discussion. Non-codingRNA, including long non-codingRNAs (lncRNAs), circularRNAs (circRNAs) and microRNAs (miRNAs), take part in a complex chain of events playing a pivotal role in several important regulatory processes in humans. In this narrative review we summarize and then analyze the function of circRNAs-miRNA-mRNA networks as putative novel biomarkers and therapeutic targets for sepsis, focusing only on data collected in clinical settings in humans.
Collapse
|