101
|
Nieva C, Pryor J, Williams GM, Hoedt EC, Burns GL, Eslick GD, Talley NJ, Duncanson K, Keely S. The Impact of Dietary Interventions on the Microbiota in Inflammatory Bowel Disease: A Systematic Review. J Crohns Colitis 2024; 18:920-942. [PMID: 38102104 PMCID: PMC11147801 DOI: 10.1093/ecco-jcc/jjad204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND AIMS Diet plays an integral role in the modulation of the intestinal environment, with the potential to be modified for management of individuals with inflammatory bowel disease [IBD]. It has been hypothesised that poor 'Western-style' dietary patterns select for a microbiota that drives IBD inflammation and, that through dietary intervention, a healthy microbiota may be restored. This study aimed to systematically review the literature and assess current available evidence regarding the influence of diet on the intestinal microbiota composition in IBD patients, and how this may affect disease activity. METHODS MEDLINE, EMBASE, Scopus, Web of Science, and Cochrane Library were searched from January 2013 to June 2023, to identify studies investigating diet and microbiota in IBD. RESULTS Thirteen primary studies met the inclusion criteria and were selected for narrative synthesis. Reported associations between diet and microbiota in IBD were conflicting due to the considerable degree of heterogeneity between studies. Nine intervention studies trialled specific diets and did not demonstrate significant shifts in the diversity and abundance of intestinal microbial communities or improvement in disease outcomes. The remaining four cross-sectional studies did not find a specific microbial signature associated with habitual dietary patterns in IBD patients. CONCLUSIONS Diet modulates the gut microbiota, and this may have implications for IBD; however, the body of evidence does not currently support clear dietary patterns or food constituents that are associated with a specific microbiota profile or disease marker in IBD patients. Further research is required with a focus on robust and consistent methodology to achieve improved identification of associations.
Collapse
Affiliation(s)
- Cheenie Nieva
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jennifer Pryor
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Georgina M Williams
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Emily C Hoedt
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Grace L Burns
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Guy D Eslick
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
| | - Nicholas J Talley
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kerith Duncanson
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Simon Keely
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
102
|
Dominique GM, Hammond C, Stack MS. The Gut Microbiome in Aging and Ovarian Cancer. AGING AND CANCER 2024; 5:14-34. [PMID: 39132604 PMCID: PMC11309124 DOI: 10.1002/aac2.12071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/30/2024] [Indexed: 08/13/2024]
Abstract
The gut microbiome changes with age and affects regions beyond the gut, including the ovarian cancer tumor microenvironment. In this review summarizing the literature on the gut microbiome in ovarian cancer and in aging, we note trends in the microbiota composition common to both phenomena and trends that are distinctly opposite. Both ovarian cancer and aging are characterized by an increase in proinflammatory bacterial species, particularly those belonging to phylum Proteobacteria and genus Escherichia, and a decrease in short chain fatty acid producers, particularly those in Clostridium cluster XIVa (family Lachnospiraceae) and the Actinobacteria genus Bifidobacterium. However, while beneficial bacteria from family Porphyromonadaceae and genus Akkermansia tend to increase with normal, healthy aging, these bacteria tend to decrease in ovarian cancer, similar to what is observed in obesity or unhealthy aging. We also note a lack in the current literature of research demonstrating causal relationships between the gut microbiome and ovarian cancer outcomes and research on the gut microbiome in ovarian cancer in the context of aging, both of which could lead to improvements to ovarian cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Gena M Dominique
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | | | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| |
Collapse
|
103
|
Li X, Cole J, Vaughan D, Xiao Y, Walker D, Wall DM. Stratifying macrophages based on their infectious burden identifies novel host targets for intervention during Crohn's disease associated adherent-invasive Escherichia coli infection. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001470. [PMID: 38916198 PMCID: PMC11261827 DOI: 10.1099/mic.0.001470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024]
Abstract
Bacterial infection is a dynamic process resulting in a heterogenous population of infected and uninfected cells. These cells respond differently based on their bacterial load and duration of infection. In the case of infection of macrophages with Crohn's disease (CD) associated adherent-invasive Escherichia coli (AIEC), understanding the drivers of pathogen success may allow targeting of cells where AIEC replicate to high levels. Here we show that stratifying immune cells based on their bacterial load identifies novel pathways and therapeutic targets not previously associated with AIEC when using a traditional homogeneous infected population approach. Using flow cytometry-based cell sorting we stratified cells into those with low or high intracellular pathogen loads, or those which were bystanders to infection. Immune cells transcriptomics revealed a diverse response to the varying levels of infection while pathway analysis identified novel intervention targets that were directly related to increasing intracellular AIEC numbers. Chemical inhibition of identified targets reduced AIEC intracellular replication or inhibited secretion of tumour necrosis factor alpha (TNFα), a key cytokine associated with AIEC infection. Our results have identified new avenues of intervention in AIEC infection that may also be applicable to CD through the repurposing of already available inhibitors. Additionally, they highlight the applicability of immune cell stratification post-infection as an effective approach for the study of microbial pathogens.
Collapse
Affiliation(s)
- Xiang Li
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - John Cole
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Diane Vaughan
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yinbo Xiao
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Daniel Walker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Daniel M. Wall
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
104
|
Sánchez-Trigueros MI, Martínez-Vieyra IA, Pineda-Peña EA, Castañeda-Hernández G, Perez-Cruz C, Cerecedo D, Chávez-Piña AE. Role of antioxidative activity in the docosahexaenoic acid's enteroprotective effect in the indomethacin-induced small intestinal injury model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4275-4285. [PMID: 38085291 DOI: 10.1007/s00210-023-02881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/30/2023] [Indexed: 05/23/2024]
Abstract
Therapeutic effect of non-steroidal anti-inflammatory drugs (NSAIDs) has been related with gastrointestinal injury. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (PUFA), can prevent gastric and small intestinal damage. Nonetheless, contribution of antioxidative action in the protective effect of DHA has not been evaluated before in the small intestine injury after indomethacin treatment. Pathogenesis of NSAID-induced small intestinal injury is multifactorial, and reactive oxidative species have been related to indomethacin's small intestinal damage. The present work aimed to evaluate antioxidative activity in the protective action of DHA in the indomethacin-induced small intestinal damage. Female Wistar rats were gavage with DHA (3 mg/kg) or omeprazole (3 mg/kg) for 10 days. Each rat received indomethacin (3 mg/kg, orally) daily to induce small intestinal damage. The total area of intestinal ulcers and histopathological analysis were performed. In DHA-treated rats, myeloperoxidase and superoxide dismutase activity, glutathione, malondialdehyde, leukotriene, and lipopolysaccharide (LPS) levels were measured. Furthermore, the relative abundance of selective bacteria was assessed. DHA administration (3 mg/kg, p.o.) caused a significant decrease in indomethacin-induced small intestinal injury in Wistar rats after 10 days of treatment. DHA's enteroprotection resulted from the prevention of an increase in myeloperoxidase activity, and lipoperoxidation, as well as an improvement in the antioxidant defenses, such as glutathione levels and superoxide dismutase activity in the small intestine. Furthermore, we showed that DHA's enteroprotective effect decreased significantly LPS levels in indomethacin-induced injury in small intestine. Our data suggest that DHA's enteroprotective might be attributed to the prevention of oxidative stress.
Collapse
Affiliation(s)
- Martha Ivonne Sánchez-Trigueros
- Laboratorio de Farmacología, Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Mexico City, México
| | - Ivette Astrid Martínez-Vieyra
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, México
| | - Elizabeth Arlen Pineda-Peña
- Unidad Multidisciplinaria de Investigación Experimental (UMIEZ), Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de mayo esquina Fuerte de Loreto, Ejército de Oriente, Iztapalapa, 0930, Mexico City, México
| | | | - Claudia Perez-Cruz
- Departamento de Farmacología, Centro de Investigaciones y Estudios Avanzados, CINVESTAV, Mexico City, México
| | - Doris Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, México
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, ermo Massieu Helguera No. 239, Fraccionamiento "La Escalera", Ticomán, CDMX. C.P. 07320, México City, México
| | - Aracely Evangelina Chávez-Piña
- Laboratorio de Farmacología, Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Mexico City, México.
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, ermo Massieu Helguera No. 239, Fraccionamiento "La Escalera", Ticomán, CDMX. C.P. 07320, México City, México.
| |
Collapse
|
105
|
Muñoz-Fernandez SS, Garcez FB, Alencar JCG, Bastos AA, Morley JE, Cederholm T, Aprahamian I, de Souza HP, Avelino-Silva TJ, Bindels LB, Ribeiro SML. Gut microbiota disturbances in hospitalized older adults with malnutrition and clinical outcomes. Nutrition 2024; 122:112369. [PMID: 38422755 DOI: 10.1016/j.nut.2024.112369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Malnutrition is one of the most threatening conditions in geriatric populations. The gut microbiota has an important role in the host's metabolic and muscular health: however, its interplay with disease-related malnutrition is not well understood. We aimed to identify the association of malnutrition with the gut microbiota and predict clinical outcomes in hospitalized acutely ill older adults. METHODS We performed a secondary longitudinal analysis in 108 geriatric patients from a prospective cohort evaluated at admission and 72 h of hospitalization. We collected clinical, demographic, nutritional, and 16S rRNA gene-sequenced gut microbiota data. Microbiota diversity, overall composition, and differential abundance were calculated and compared between patients with and without malnutrition. Microbiota features associated with malnutrition were used to predict clinical outcomes. RESULTS Patients with malnutrition (51%) had a different microbiota composition compared to those who were well-nourished during hospitalization (ANOSIM R = 0.079, P = 0.003). Patients with severe malnutrition showed poorer α-diversity at admission (Shannon P = 0.012, Simpson P = 0.018) and follow-up (Shannon P = 0.023, Chao1 P = 0.008). Differential abundance of Lachnospiraceae NK4A136 group, Subdoligranulum, and Faecalibacterium prausnitzii were significantly lower and inversely associated with malnutrition, while Corynebacterium, Ruminococcaceae Incertae Sedis, and Fusobacterium were significantly increased and positively associated with malnutrition. Corynebacterium, Ruminococcaceae Incertae Sedis, and the overall composition were important predictors of critical care in patients with malnutrition during hospitalization. CONCLUSION Older adults with malnutrition, especially in a severe stage, may be subject to substantial gut microbial disturbances during hospitalization. The gut microbiota profile of patients with malnutrition might help us to predict worse clinical outcomes.
Collapse
Affiliation(s)
- Shirley S Muñoz-Fernandez
- Nutrition Department, School of Public Health, University of São Paulo, São Paulo, Sao Paulo, Brazil.
| | - Flavia B Garcez
- Laboratorio de Investigacao Medica em Envelhecimento (LIM 66), Servico de Geriatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Sao Paulo, Brazil; Departamento de Medicina, Hospital Universitario, Universidade Federal de Sergipe, Aracaju, Sergipe, Brazil
| | - Julio C G Alencar
- Disciplina de Emergencias Clínicas, Departamento de Clínica Medica, Faculty of Medicine, University of São Paulo, São Paulo, Sao Paulo, Brazil
| | - Amália A Bastos
- Nutrition Department, School of Public Health, University of São Paulo, São Paulo, Sao Paulo, Brazil
| | - John E Morley
- Division of Geriatric Medicine, School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Tommy Cederholm
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Ivan Aprahamian
- Division of Geriatrics, Department of Internal Medicine, Jundiaí Medical School, Group of Investigation on Multimorbidity and Mental Health in Aging (GIMMA), Jundiaí, Sao Paulo, Brazil
| | - Heraldo P de Souza
- Disciplina de Emergencias Clínicas, Departamento de Clínica Medica, Faculty of Medicine, University of São Paulo, São Paulo, Sao Paulo, Brazil
| | - Thiago J Avelino-Silva
- Laboratorio de Investigacao Medica em Envelhecimento (LIM 66), Servico de Geriatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Sao Paulo, Brazil
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Sandra M L Ribeiro
- Nutrition Department, School of Public Health, University of São Paulo, São Paulo, Sao Paulo, Brazil; School of Arts, Science, and Humanity, University of São Paulo, São Paulo, Sao Paulo, Brazil
| |
Collapse
|
106
|
Liou JS, Zhang WL, Hsu LW, Chen CC, Wang YT, Mori K, Hidaka K, Hamada M, Huang L, Watanabe K, Huang CH. Faecalibacterium taiwanense sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2024; 74:006413. [PMID: 38848117 PMCID: PMC11261667 DOI: 10.1099/ijsem.0.006413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/26/2024] [Indexed: 06/09/2024] Open
Abstract
Two Gram-stain-negative, straight rods, non-motile, asporogenous, catalase-negative and obligately anaerobic butyrate-producing strains, HLW78T and CYL33, were isolated from faecal samples of two healthy Taiwanese adults. Phylogenetic analyses of 16S rRNA and DNA mismatch repair protein MutL (mutL) gene sequences revealed that these two novel strains belonged to the genus Faecalibacterium. On the basis of 16S rRNA and mutL gene sequence similarities, the type strains Faecalibacterium butyricigenerans AF52-21T(98.3-98.1 % and 79.0-79.5 % similarity), Faecalibacterium duncaniae A2-165T(97.8-97.9 % and 70.9-80.1 %), Faecalibacterium hattorii APC922/41-1T(97.1-97.3 % and 80.3-80.5 %), Faecalibacterium longum CM04-06T(97.8-98.0% and 78.3 %) and Faecalibacterium prausnitzii ATCC 27768T(97.3-97.4 % and 82.7-82.9 %) were the closest neighbours to the novel strains HLW78T and CYL33. Strains HLW78T and CYL33 had 99.4 % both the 16S rRNA and mutL gene sequence similarities, 97.9 % average nucleotide identity (ANI), 96.3 % average amino acid identity (AAI), and 80.5 % digital DNA-DNA hybridization (dDDH) values, indicating that these two strains are members of the same species. Phylogenomic tree analysis indicated that strains HLW78T and CYL33 formed an independent robust cluster together with F. prausnitzii ATCC 27768T. The ANI, AAI and dDDH values between strain HLW78T and its closest neighbours were below the species delineation thresholds of 77.6-85.1 %, 71.4-85.2 % and 28.3-30.9 %, respectively. The two novel strains could be differentiated from the type strains of their closest Faecalibacterium species based on their cellular fatty acid compositions, which contained C18 : 1 ω7c and lacked C15 : 0 and C17 : 1 ω6c, respectively. Phenotypic, chemotaxonomic and genotypic test results demonstrated that the two novel strains HLW78T and CYL33 represented a single, novel species within the genus Faecalibacterium, for which the name Faecalibacterium taiwanense sp. nov. is proposed. The type strain is HLW78T (=BCRC 81397T=NBRC 116372T).
Collapse
Affiliation(s)
- Jong-Shian Liou
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan, ROC
| | - Wei-Ling Zhang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan, ROC
| | - Li-Wen Hsu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan, ROC
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
- Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
| | - Yu-Ting Wang
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei 11561, Taiwan, ROC
| | - Koji Mori
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Kohei Hidaka
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Moriyuki Hamada
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Lina Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan, ROC
| | - Koichi Watanabe
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Sec 3, Keelung Rd., Taipei 10673, Taiwan, ROC
| | - Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan, ROC
| |
Collapse
|
107
|
Rahman S, Lu E, Patel RK, Tsikitis VL, Martindale RG. Colorectal Disease and the Gut Microbiome: What a Surgeon Needs to Know. Surg Clin North Am 2024; 104:647-656. [PMID: 38677827 DOI: 10.1016/j.suc.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
The gut microbiome is defined as the microorganisms that reside within the gastrointestinal tract and produce a variety of metabolites that impact human health. These microbes play an intricate role in human health, and an imbalance in the gut microbiome, termed gut dysbiosis, has been implicated in the development of varying diseases. The purpose of this review is to highlight what is known about the microbiome and its impact on colorectal cancer, inflammatory bowel disease, constipation, Clostridioides difficile infection, the impact of bowel prep, and anastomotic leaks.
Collapse
Affiliation(s)
- Shahrose Rahman
- Department of Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L223, Portland, OR 97239, USA.
| | - Ethan Lu
- Department of Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L223, Portland, OR 97239, USA
| | - Ranish K Patel
- Department of Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L223, Portland, OR 97239, USA
| | - Vassiliki Liana Tsikitis
- Department of Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L223, Portland, OR 97239, USA
| | - Robert G Martindale
- Department of Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L223, Portland, OR 97239, USA
| |
Collapse
|
108
|
Mruk-Mazurkiewicz H, Kulaszyńska M, Czarnecka W, Podkówka A, Ekstedt N, Zawodny P, Wierzbicka-Woś A, Marlicz W, Skupin B, Stachowska E, Łoniewski I, Skonieczna-Żydecka K. Insights into the Mechanisms of Action of Akkermansia muciniphila in the Treatment of Non-Communicable Diseases. Nutrients 2024; 16:1695. [PMID: 38892628 PMCID: PMC11174979 DOI: 10.3390/nu16111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
This comprehensive review delineates the extensive roles of Akkermansia muciniphila in various health domains, spanning from metabolic and inflammatory diseases to neurodegenerative disorders. A. muciniphila, known for its ability to reside in the mucous layer of the intestine, plays a pivotal role in maintaining gut integrity and interacting with host metabolic processes. Its influence extends to modulating immune responses and potentially easing symptoms across several non-communicable diseases, including obesity, diabetes, inflammatory bowel disease, and cancer. Recent studies highlight its capacity to interact with the gut-brain axis, suggesting a possible impact on neuropsychiatric conditions. Despite the promising therapeutic potential of A. muciniphila highlighted in animal and preliminary human studies, challenges remain in its practical application due to stability and cultivation issues. However, the development of pasteurized forms and synthetic mediums offers new avenues for its use in clinical settings, as recognized by regulatory bodies like the European Food Safety Authority. This narrative review serves as a crucial resource for understanding the broad implications of A. muciniphila across different health conditions and its potential integration into therapeutic strategies.
Collapse
Affiliation(s)
- Honorata Mruk-Mazurkiewicz
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Wiktoria Czarnecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Albert Podkówka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Natalia Ekstedt
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Piotr Zawodny
- Medical Center Zawodny Clinic, Ku Słońcu 58, 71-047 Szczecin, Poland;
| | | | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Unii Lubelskiej, 71-252 Szczecin, Poland
| | - Błażej Skupin
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| |
Collapse
|
109
|
Averina OV, Poluektova EU, Zorkina YA, Kovtun AS, Danilenko VN. Human Gut Microbiota for Diagnosis and Treatment of Depression. Int J Mol Sci 2024; 25:5782. [PMID: 38891970 PMCID: PMC11171505 DOI: 10.3390/ijms25115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Nowadays, depressive disorder is spreading rapidly all over the world. Therefore, attention to the studies of the pathogenesis of the disease in order to find novel ways of early diagnosis and treatment is increasing among the scientific and medical communities. Special attention is drawn to a biomarker and therapeutic strategy through the microbiota-gut-brain axis. It is known that the symbiotic interactions between the gut microbes and the host can affect mental health. The review analyzes the mechanisms and ways of action of the gut microbiota on the pathophysiology of depression. The possibility of using knowledge about the taxonomic composition and metabolic profile of the microbiota of patients with depression to select gene compositions (metagenomic signature) as biomarkers of the disease is evaluated. The use of in silico technologies (machine learning) for the diagnosis of depression based on the biomarkers of the gut microbiota is given. Alternative approaches to the treatment of depression are being considered by balancing the microbial composition through dietary modifications and the use of additives, namely probiotics, postbiotics (including vesicles) and prebiotics as psychobiotics, and fecal transplantation. The bacterium Faecalibacterium prausnitzii is under consideration as a promising new-generation probiotic and auxiliary diagnostic biomarker of depression. The analysis conducted in this review may be useful for clinical practice and pharmacology.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Yana A. Zorkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Alexey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| |
Collapse
|
110
|
Nanlohy NM, Johannesson N, Wijnands L, Arroyo L, de Wit J, den Hartog G, Wolthers KC, Sridhar A, Fuentes S. Exploring host-commensal-pathogen dynamics in cell line and organotypic human intestinal epithelial models. iScience 2024; 27:109771. [PMID: 38711444 PMCID: PMC11070716 DOI: 10.1016/j.isci.2024.109771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Host and microbiome intricately interact in the ecosystem of the human digestive tract, playing a crucial role in our health. These interactions can initiate immune responses in the epithelial cells, which, in turn, activate downstream responses in other immune cells. Here, we used a CaCo-2 and a human intestinal enteroid (HIE) model to explore epithelial responses to both commensal and pathogenic bacteria, individually and combined. CaCo-2 cells were co-cultured with peripheral blood mononuclear cells, revealing downstream activation of immune cells. While both systems showed comparable cytokine profiles, they differed in their responses to the different bacteria, with the organoid system being more representative of responses observed in humans. We provide evidence of the pro-inflammatory responses associated with these bacteria. These models contribute to a deeper understanding of the interactions between the microbiota, intestinal epithelium, and immune cells in the gut, promoting advances in the field of host-microbe interactions.
Collapse
Affiliation(s)
- Nening M. Nanlohy
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Nina Johannesson
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Lucas Wijnands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Laura Arroyo
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Jelle de Wit
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Gerco den Hartog
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Laboratory of Medical Immunology, Radboudumc, Nijmegen, the Netherlands
| | - Katja C. Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Adithya Sridhar
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Susana Fuentes
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
111
|
Lin Z, Luo W, Zhang K, Dai S. Environmental and Microbial Factors in Inflammatory Bowel Disease Model Establishment: A Review Partly through Mendelian Randomization. Gut Liver 2024; 18:370-390. [PMID: 37814898 PMCID: PMC11096900 DOI: 10.5009/gnl230179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 10/11/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex condition resulting from environmental, microbial, immunologic, and genetic factors. With the advancement of Mendelian randomization research in IBD, we have gained new insights into the relationship between these factors and IBD. Many animal models of IBD have been developed using different methods, but few studies have attempted to model IBD by combining environmental factors and microbial factors. In this review, we examine how environmental factors and microbial factors affect the development and progression of IBD, and how they interact with each other and with the intestinal microbiota. We also summarize the current methods for creating animal models of IBD and compare their advantages and disadvantages. Based on the latest findings from Mendelian randomization studies on the role of environmental factors in IBD, we discuss which environmental and microbial factors could be used to construct a more realistic and reliable IBD experimental model. We propose that animal models of IBD should consider both environmental and microbial factors to better mimic human IBD pathogenesis and to reveal the underlying mechanisms of IBD at the immune and genetic levels. We highlight the importance of environmental and microbial factors in IBD pathogenesis and offer new perspectives and suggestions for improving experimental animal modeling. Our goal is to create a model that closely resembles the clinical picture of IBD.
Collapse
Affiliation(s)
- Zesheng Lin
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Wenjing Luo
- The Second Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Kaijun Zhang
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangzhou, ChinaNational Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shixue Dai
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangzhou, ChinaNational Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Geriatric Center, National Regional Medical Center, Ganzhou Hospital Affiliated to Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Ganzhou, China
| |
Collapse
|
112
|
Xiao X, Zhou Y, Li X, Jin J, Durham J, Ye Z, Wang Y, Hennig B, Deng P. 13C-Stable isotope resolved metabolomics uncovers dynamic biochemical landscape of gut microbiome-host organ communications in mice. MICROBIOME 2024; 12:90. [PMID: 38750595 PMCID: PMC11094917 DOI: 10.1186/s40168-024-01808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/04/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Gut microbiome metabolites are important modulators of host health and disease. However, the overall metabolic potential of the gut microbiome and interactions with the host organs have been underexplored. RESULTS Using stable isotope resolved metabolomics (SIRM) in mice orally gavaged with 13C-inulin (a tracer), we first observed dynamic enrichment of 13C-metabolites in cecum contents in the amino acids and short-chain fatty acid metabolism pathways. 13C labeled metabolites were subsequently profiled comparatively in plasma, liver, brain, and skeletal muscle collected at 6, 12, and 24 h after the tracer administration. Organ-specific and time-dependent 13C metabolite enrichments were observed. Carbons from the gut microbiome were preferably incorporated into choline metabolism and the glutamine-glutamate/GABA cycle in the liver and brain, respectively. A sex difference in 13C-lactate enrichment was observed in skeletal muscle, which highlights the sex effect on the interplay between gut microbiome and host organs. Choline was identified as an interorgan metabolite derived from the gut microbiome and fed the lipogenesis of phosphatidylcholine and lysophosphatidylcholine in host organs. In vitro and in silico studies revealed the de novo synthesis of choline in the human gut microbiome via the ethanolamine pathway, and Enterococcus faecalis was identified as a major choline synthesis species. These results revealed a previously underappreciated role for gut microorganisms in choline biosynthesis. CONCLUSIONS Multicompartmental SIRM analyses provided new insights into the current understanding of dynamic interorgan metabolite transport between the gut microbiome and host at the whole-body level in mice. Moreover, this study singled out microbiota-derived metabolites that are potentially involved in the gut-liver, gut-brain, and gut-skeletal muscle axes. Video Abstract.
Collapse
Affiliation(s)
- Xia Xiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Yixuan Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Xinwei Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Jing Jin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Jerika Durham
- Superfund Research Center, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Zifan Ye
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, KY, USA.
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, 900 S. Limestone St, 501 Wethington Health Sciences Bldg, Lexington, KY, 40536, USA.
| | - Pan Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China.
| |
Collapse
|
113
|
Kitson L, Becker AAMJ, Hartmann K, Bergmann M, Sepulveda-Garcia P, Canales N, Muller A. Characterizing the blood microbiota in healthy and febrile domestic cats via 16s rRNA sequencing. Sci Rep 2024; 14:10584. [PMID: 38719878 PMCID: PMC11079020 DOI: 10.1038/s41598-024-61023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
This study aimed to evaluate the blood bacterial microbiota in healthy and febrile cats. High-quality sequencing reads from the 16S rRNA gene variable region V3-V4 were obtained from genomic blood DNA belonging to 145 healthy cats, and 140 febrile cats. Comparisons between the blood microbiota of healthy and febrile cats revealed dominant presence of Actinobacteria, followed by Firmicutes and Proteobacteria, and a lower relative abundance of Bacteroidetes. Upon lower taxonomic levels, the bacterial composition was significantly different between healthy and febrile cats. The families Faecalibacterium and Kineothrix (Firmicutes), and Phyllobacterium (Proteobacteria) experienced increased abundance in febrile samples. Whereas Thioprofundum (Proteobacteria) demonstrated a significant decrease in abundance in febrile. The bacterial composition and beta diversity within febrile cats was different according to the affected body system (Oral/GI, systemic, skin, and respiratory) at both family and genus levels. Sex and age were not significant factors affecting the blood microbiota of febrile cats nor healthy ones. Age was different between young adult and mature adult healthy cats. Alpha diversity was unaffected by any factors. Overall, the findings suggest that age, health status and nature of disease are significant factors affecting blood microbiota diversity and composition in cats, but sex is not.
Collapse
Affiliation(s)
- Liam Kitson
- Graduate Program, Ross University School of Veterinary Medicine, West Farm, West Indies, Saint Kitts and Nevis
| | - Anne A M J Becker
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Biomedical Sciences Department, Ross University School of Veterinary Medicine, West Farm, West Indies, Saint Kitts and Nevis
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Michèle Bergmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Paulina Sepulveda-Garcia
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Nivia Canales
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Ananda Muller
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Biomedical Sciences Department, Ross University School of Veterinary Medicine, West Farm, West Indies, Saint Kitts and Nevis.
| |
Collapse
|
114
|
Pribac M, Motataianu A, Andone S, Mardale E, Nemeth S. Bridging the Gap: Harnessing Plant Bioactive Molecules to Target Gut Microbiome Dysfunctions in Amyotrophic Lateral Sclerosis. Curr Issues Mol Biol 2024; 46:4471-4488. [PMID: 38785539 PMCID: PMC11120375 DOI: 10.3390/cimb46050271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
The correlation between neurodegenerative diseases and the gut microbiome is increasingly evident, with amyotrophic lateral sclerosis (ALS) being particularly notable for its severity and lack of therapeutic options. The gut microbiota, implicated in the pathogenesis and development of ALS, plays a crucial role in the disease. Bioactive plant molecules, specifically volatile compounds in essential oils, offer a promising therapeutic avenue due to their anti-inflammatory properties and gut-modulating effects. Our narrative review aimed to identify microbiota-associated bacteria in ALS and analyze the benefits of administering bioactive plant molecules as much-needed therapeutic options in the management of this disease. A comprehensive search of PubMed database articles published before December 2023, encompassing research on cell, human, and animal ALS models, was conducted. After selecting, analyzing, and discussing key articles, bacteria linked to ALS pathogenesis and physiopathology were identified. Notably, positively highlighted bacteria included Akkermansia muciniphila (Verrucomicrobia phylum), Faecalibacterium prausnitzii, and Butyrivibrio spp. (Firmicutes phylum). Conversely, members of the Escherichia coli spp. (Proteobacteria phylum) and Ruminococcus spp. (Firmicutes phylum) stood out negatively in respect to ALS development. These bacteria were associated with molecular changes linked to ALS pathogenesis and evolution. Bioactive plant molecules can be directly associated with improvements in the microbiome, due to their role in reducing inflammation and oxidative stress, emerging as one of the most promising natural agents for enriching present-day ALS treatments.
Collapse
Affiliation(s)
- Mirela Pribac
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Anca Motataianu
- Ist Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | | | - Sebastian Nemeth
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
115
|
Unzueta-Medina JA, González-Chávez SA, Salas-Leiva JS, Silva-Sánchez SE, Pacheco-Tena C. Differential Composition and Structure of the Microbiota from Active and Inactive Stages of HLA-B27-associated Uveitis by Paired Fecal Metagenomes. Ocul Immunol Inflamm 2024:1-9. [PMID: 38709227 DOI: 10.1080/09273948.2024.2346818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE To compare the diversities and abundances of bacterial taxa in the microbiome of patients with HLA B27-positive acute anterior uveitis (AAU) in the active and inactive phases. METHODS An observational descriptive prospective and comparative study was conducted in ten HLA-B27-positive AAU patients (44.6 ± 13.4 years). The microbiome of the stool samples obtained in the active and inactive stages was analyzed by sequencing the V3 region of the 16S rRNA gene. RESULTS The differences in the bacteria profile between active and inactive stages in each individual were confirmed (p < 0.0001). Ten OTUs were found exclusively in the active phase of 90% of the individuals, suggesting a proinflammatory association. Blautia OUT_4 and Faecalibacterium OUT_2 abundances showed a direct relationship between abundance and severity of ocular inflammation. Two OTUs were exclusive of the inactive stage, suggesting an anti-inflammatory role. CONCLUSION The metagenomic profile of the fecal microbiota differs in the acute phase of the AAU compared to when the inflammation subsides, despite being the same individual and a short time-lapse. AAU is a fertile field for studying the connection between subtle rapid changes in microbiota and their systemic consequences.
Collapse
Affiliation(s)
- José Antonio Unzueta-Medina
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Susana Aideé González-Chávez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Joan Sebastian Salas-Leiva
- Departamento de medio ambiente y energía, CONAHCyT, Centro de Investigación en Materiales Avanzados, Chihuahua, México
| | - Sandra Estela Silva-Sánchez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - César Pacheco-Tena
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| |
Collapse
|
116
|
Ji Q, Du F, Yu Y, Li Y. Exploring the clinical significance of miR-148 expression variations in distinct subtypes of irritable bowel syndrome. Ann Hum Genet 2024; 88:247-258. [PMID: 38161272 DOI: 10.1111/ahg.12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Irritable bowel syndrome (IBS) belongs to chronic functional gastrointestinal diseases featured by abdominal pain and changes in bowel habits. This study aimed to investigate the clinical significance of serum miR-148 expression in different subtypes of IBS. We enrolled 86 IBS patients and 55 healthy controls. miR-148 expression levels were assessed in IBS patients classified into IBS-constipation (IBS-C), IBS-diarrhea (IBS-D), and IBS-mixed stool pattern (IBS-M) subtypes. Receiver-operating characteristic (ROC) curves were employed to evaluate the diagnostic potential of miR-148 in distinguishing among IBS subtypes. Additionally, we analyzed the correlation between miR-148 expression and clinical characteristics, including IBS symptom severity. miR-148 expression was highest in IBS-D (diarrhea) group, followed by IBS-M and IBS-C. With the exception of the IBS-C group, miR-148 expression was elevated in IBS patients compared to controls. ROC curve analysis demonstrated that serum miR-148 exhibited higher diagnostic accuracy for discriminating IBS-C and IBS-D than IBS-M. Correlation analysis revealed a positive relationship between serum miR-148 relative expression and IBS symptom severity system scores. Univariate logistic analysis indicated a positive association between miR-148 expression and IBS-D and a negative correlation with IBS-C. miR-148 expression exhibits differential patterns among IBS subtypes and holds a potential to distinguish IBS-C and IBS-D. Furthermore, miR-148 expression correlates with the severity of IBS symptoms.
Collapse
Affiliation(s)
- Qun Ji
- Department of General Practice, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia, China
| | - Fengxia Du
- Department of Hospital Infection Management, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia, China
| | - Yangyaxin Yu
- Department of General Practice, Baotou Jiuyuan District Hospital, Baotou, Inner Mongolia, China
| | - Ying Li
- Department of General Practice, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia, China
| |
Collapse
|
117
|
Li H, Huang Y, Liang L, Li H, Li S, Feng Y, Feng S, Wu K, Wu F. The relationship between the gut microbiota and oxidative stress in the cognitive function of schizophrenia: A pilot study in China. Schizophr Res 2024; 267:444-450. [PMID: 38643725 DOI: 10.1016/j.schres.2024.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/22/2024] [Accepted: 03/31/2024] [Indexed: 04/23/2024]
Abstract
Cognitive impairment is a core symptom of schizophrenia. The gut microbiota (GM) and oxidative stress may play important roles in the pathophysiological mechanisms of cognitive impairment. This study aimed to explore the relationship between GM and oxidative stress in the cognitive function of schizophrenia. GM obtained by 16S RNA sequencing and serum superoxide dismutase (SOD) levels from schizophrenia patients (N = 68) and healthy controls (HCs, N = 72) were analyzed. All psychiatric symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). Cognitive function was assessed using the MATRICS Consensus Cognitive Battery (MCCB). Correlation analysis was used to explore the relationship between GM, SOD, and cognitive function. Machine learning models were used to identify potential biomarkers. Compared to HCs, the relative abundances of Collinsella, undefined Ruminococcus, Lactobacillus, Eubacterium, Mogibacterium, Desulfovibrio, Bulleidia, Succinivibrio, Corynebacterium, and Atopobium were higher in patients with schizophrenia, but Faecalibacterium, Anaerostipes, Turicibacter, and Ruminococcus were lower. In patients with schizophrenia, the positive factor, general factor, and total score of MCCB positively correlated with Lactobacillus, Collinsella, and Lactobacillus, respectively; SOD negatively correlated with Eubacterium, Collinsella, Lactobacillus, Corynebacterium, Bulleidia, Mogibacterium, and Succinivibrio, but positively correlated with Faecalibacterium, Ruminococcus, and MCCB verbal learning index scores; Faecalibacterium and Turicibacter were positively correlated with MCCB visual learning index scores and speed of processing index scores, respectively. Our findings revealed a correlation between SOD and GM and confirmed that cognitive dysfunction in patients with schizophrenia involves abnormal SOD levels and GM changes.
Collapse
Affiliation(s)
- Hehua Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Huang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liqin Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Hanqiu Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shijia Li
- Swammerdam Institute for Life Sciences (SILS)-University of Amsterdam, Amsterdam, the Netherlands
| | - Yangdong Feng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shixuan Feng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
118
|
Wang C, Gu Y, Chu Q, Wang X, Ding Y, Qin X, Liu T, Wang S, Liu X, Wang B, Cao H. Gut microbiota and metabolites as predictors of biologics response in inflammatory bowel disease: A comprehensive systematic review. Microbiol Res 2024; 282:127660. [PMID: 38442454 DOI: 10.1016/j.micres.2024.127660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Nonresponse to biologic agents in patients with inflammatory bowel disease (IBD) poses a significant public health burden, and the prediction of response to biologics offers valuable insights for IBD management. Given the pivotal role of gut microbiota and their endogenous metabolites in IBD, we conducted a systematic review to investigate the potential of fecal microbiota and mucosal microbiota and endogenous metabolomic markers as predictors for biotherapy response in IBD patients. A total of 38 studies were included in the review. Following anti-TNF-α treatment, the bacterial community characteristics of IBD patients exhibited a tendency to resemble those observed in healthy controls, indicating an improved clinical response. The levels of endogenous metabolites butyrate and deoxycholic acid were significantly associated with clinical remission following anti-TNF-α therapy. IBD patients who responded well to vedolizumab treatment had higher levels of specific bacteria that produce butyrate, along with increased levels of metabolites such as butyrate, branched-chain amino acids and acetamide following vedolizumab treatment. Crohn's disease patients who responded positively to ustekinumab treatment showed higher levels of Faecalibacterium and lower levels of Escherichia/Shigella. In conclusion, fecal microbiota and mucosal microbiota as well as their endogenous metabolites could provide a predictive tool for assessing the response of IBD patients to various biological agents and serve as a valuable reference for precise drug selection in clinical IBD patients.
Collapse
Affiliation(s)
- Chen Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qiao Chu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
119
|
Guertler A, Hering P, Pacífico C, Gasche N, Sladek B, Irimi M, French LE, Clanner-Engelshofen BM, Reinholz M. Characteristics of Gut Microbiota in Rosacea Patients-A Cross-Sectional, Controlled Pilot Study. Life (Basel) 2024; 14:585. [PMID: 38792606 PMCID: PMC11122217 DOI: 10.3390/life14050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Recent studies have suggested a possible connection between rosacea and patients' gut microbiota. OBJECTIVE To investigate the differences in fecal microbial profiles between patients with rosacea and healthy controls. METHODS Gut microbiota of 54 rosacea patients (RP) were analyzed using MiSeq 16S rRNA sequencing. Enterotypes, the Firmicutes/Bacteroides (F/B) ratio, the significance of alpha and beta diversity, and differential abundance analysis (DAA) were calculated and compared with age- and gender-matched controls (CP, n = 50). RESULTS Significant changes in the enterotypes and F/B ratio were observed between the RP and CP (p = 0.017 and p = 0.002, respectively). The RP showed a decreased microbial richness and diversity compared to the CP (Shannon p = 0.012, inverse Simpson p = 0.034). Beta diversity also differed between both groups (PERMANOVA, p = 0.006). Fourteen significantly different taxa were detected according to DAA. Faecalibacterium prausnitzii (coef. -0.0800, p = 0.008), Lachnoospiraceae ND 3007 group sp. (coef. -0.073, p < 0.001), and Ruminococcaceae (coef. -0.072, p = 0.015) were significantly decreased; Oscillobacter sp. (coef. 0.023, p = 0.031), Flavonifractor plautii (coef. 0.011, p = 0.037), and Ruminococccaceae UBA 1819 (coef. 0.010, p = 0.031) were significantly increased in the RP compared to the CP. CONCLUSION Significant alterations in gut microbiota were present in the RP. Taxonomic shifts and reduced richness and diversity were observed when compared to the CP. Larger prospective studies are needed to investigate correlations with clinical features and to translate these findings into future therapeutic approaches.
Collapse
Affiliation(s)
- Anne Guertler
- Department of Dermatology and Allergy, LMU University Hospital Munich, 80337 Munich, Germany (L.E.F.)
| | - Pascal Hering
- Department of Dermatology and Allergy, LMU University Hospital Munich, 80337 Munich, Germany (L.E.F.)
| | | | | | | | - Miriam Irimi
- Department of Dermatology and Allergy, LMU University Hospital Munich, 80337 Munich, Germany (L.E.F.)
| | - Lars E. French
- Department of Dermatology and Allergy, LMU University Hospital Munich, 80337 Munich, Germany (L.E.F.)
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | - Markus Reinholz
- Department of Dermatology and Allergy, LMU University Hospital Munich, 80337 Munich, Germany (L.E.F.)
| |
Collapse
|
120
|
Murali SK, Mansell TJ. Next generation probiotics: Engineering live biotherapeutics. Biotechnol Adv 2024; 72:108336. [PMID: 38432422 DOI: 10.1016/j.biotechadv.2024.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The population dynamics of the human microbiome have been associated with inflammatory bowel disease, cancer, obesity, autoimmune diseases, and many other human disease states. An emerging paradigm in treatment is the administration of live engineered organisms, also called next-generation probiotics. However, the efficacy of these microbial therapies can be limited by the organism's overall performance in the harsh and nutrient-limited environment of the gut. In this review, we summarize the current state of the art use of bacterial and yeast strains as probiotics, highlight the recent development of genetic tools for engineering new therapeutic functions in these organisms, and report on the latest therapeutic applications of engineered probiotics, including recent clinical trials. We also discuss the supplementation of prebiotics as a method of manipulating the microbiome and improving the overall performance of engineered live biotherapeutics.
Collapse
Affiliation(s)
- Sanjeeva Kumar Murali
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Thomas J Mansell
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
121
|
Li Y, Li Y, Wang C, Mao Z, Huo W, Xing W, Li J, Yang TY, Li L. Association of low-carbohydrate diet scores and type 2 diabetes in Chinese rural adults: The Henan Rural Cohort Study. Endocrine 2024; 84:459-469. [PMID: 38324107 DOI: 10.1007/s12020-023-03602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/07/2023] [Indexed: 02/08/2024]
Abstract
PURPOSE To investigate the association between low-carbohydrate diet scores (LCDs) and the risk of type 2 diabetes in rural China. METHODS A total of 38,100 adults were included in the Henan Rural Cohort Study. Macronutrient intake was assessed via a validated food-frequency questionnaire to create low-carbohydrate diet (LCD) scores. Multivariate logistic regression models and subgroup analysis were performed to estimate the odds ratio (OR) and 95% confidence interval (95% CI). RESULTS After multivariable adjustment, participants with a high total low-carbohydrate diet score have a high risk of T2D (extreme-quartile OR = 1.23, 95% CI: 1.04-1.41; P = 0.007), whereas plant-based LCD score is not related to T2D risk. Among individuals with a BMI < 24 (extreme-quartile OR = 1.22, 95% CI: 1.01-1.47; P < 0.001) or high levels of physical activity (extreme-quartile OR = 1.42, 95% CI: 1.17-1.72; P < 0.001), the animal-based LCD score is positively correlated with the risk of T2D. CONCLUSION Among Chinese rural populations, high-fat-low carbohydrate diet is associated with an increased risk of type 2 diabetes. High intake of animal protein and fat also increases T2D risk in those who are overweight or have high physical activity.
Collapse
Affiliation(s)
- Yan Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqian Li
- Department of Clinical Pharmacology, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Chongjian Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenxing Mao
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenqian Huo
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenguo Xing
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jia Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Tian Yu Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linlin Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
122
|
Zhang Y, Zhong W, Liu W, Wang X, Lin G, Lin J, Fang J, Mou X, Jiang S, Huang J, Zhao W, Zheng Z. Uncovering specific taxonomic and functional alteration of gut microbiota in chronic kidney disease through 16S rRNA data. Front Cell Infect Microbiol 2024; 14:1363276. [PMID: 38707511 PMCID: PMC11066246 DOI: 10.3389/fcimb.2024.1363276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Chronic kidney disease (CKD) is worldwide healthcare burden with growing incidence and death rate. Emerging evidence demonstrated the compositional and functional differences of gut microbiota in patients with CKD. As such, gut microbial features can be developed as diagnostic biomarkers and potential therapeutic target for CKD. Methods To eliminate the outcome bias arising from factors such as geographical distribution, sequencing platform, and data analysis techniques, we conducted a comprehensive analysis of the microbial differences between patients with CKD and healthy individuals based on multiple samples worldwide. A total of 980 samples from six references across three nations were incorporated from the PubMed, Web of Science, and GMrepo databases. The obtained 16S rRNA microbiome data were subjected to DADA2 processing, QIIME2 and PICRUSt2 analyses. Results The gut microbiota of patients with CKD differs significantly from that of healthy controls (HC), with a substantial decrease in the microbial diversity among the CKD group. Moreover, a significantly reduced abundance of bacteria Faecalibacterium prausnitzii (F. prausnitzii) was detected in the CKD group through linear discriminant analysis effect size (LEfSe) analysis, which may be associated with the alleviating effects against CKD. Notably, we identified CKD-depleted F. prausnitzii demonstrated a significant negative correlation with three pathways based on predictive functional analysis, suggesting its potential role in regulating systemic acidbase disturbance and pro-oxidant metabolism. Discussion Our findings demonstrated notable alterations of gut microbiota in CKD patients. Specific gut-beneficial microbiota, especially F. prausnitzii, may be developed as a preventive and therapeutic tool for CKD clinical management.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Weicong Zhong
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Wenting Liu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Xiaohua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Gan Lin
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Jiawen Lin
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Junxuan Fang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiangyu Mou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Shan Jiang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jiayuan Huang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Wenjing Zhao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
123
|
Al-Fakhrany OM, Elekhnawy E. Next-generation probiotics: the upcoming biotherapeutics. Mol Biol Rep 2024; 51:505. [PMID: 38619680 PMCID: PMC11018693 DOI: 10.1007/s11033-024-09398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/28/2024] [Indexed: 04/16/2024]
Abstract
Recent and continuing advances in gut microbiome research have pointed out the role of the gut microbiota as an unexplored source of potentially beneficial probiotic microbes. Along the lines of these advances, both public awareness and acceptance of probiotics are increasing. That's why; academic and industrial research is dedicated to identifying and investigating new microbial strains for the development of next-generation probiotics (NGPs). At this time, there is a growing interest in NGPs as biotherapeutics that alter the gut microbiome and affect various diseases development. In this work, we have focused on some emergent and promising NGPs, specifically Eubacterium hallii, Faecalibacterium prausnitzii, Roseburia spp., Akkermansia muciniphila, and Bacteroides fragilis, as their presence in the gut can have an impact on the development of various diseases. Emerging studies point out the beneficial roles of these NGPs and open up novel promising therapeutic options. Interestingly, these NGPs were found to enhance gastrointestinal immunity, enhance immunotherapy efficacy in cancer patients, retain the intestinal barrier integrity, generate valuable metabolites, especially short-chain fatty acids, and decrease complications of chemotherapy and radiotherapy. Although many of these NGPs are considered promising for the prevention and treatment of several chronic diseases, research on humans is still lacking. Therefore, approval of these microbes from regulatory agencies is rare. Besides, some issues limit their wide use in the market, such as suitable methods for the culture and storage of these oxygen-sensitive microbes. The present review goes over the main points related to NGPs and gives a viewpoint on the key issues that still hinder their wide application. Furthermore, we have focused on the advancement in NGPs and human healthiness investigations by clarifying the limitations of traditional probiotic microorganisms, discussing the characteristics of emerging NGPs and defining their role in the management of certain ailments. Future research should emphasize the isolation, mechanisms of action of these probiotics, safety, and clinical efficacy in humans.
Collapse
Affiliation(s)
- Omnia Momtaz Al-Fakhrany
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
124
|
Zhang J, Wang H, Liu Y, Shi M, Zhang M, Zhang H, Chen J. Advances in fecal microbiota transplantation for the treatment of diabetes mellitus. Front Cell Infect Microbiol 2024; 14:1370999. [PMID: 38660489 PMCID: PMC11039806 DOI: 10.3389/fcimb.2024.1370999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Diabetes mellitus (DM) refers to a group of chronic diseases with global prevalence, characterized by persistent hyperglycemia resulting from various etiologies. DM can harm various organ systems and lead to acute or chronic complications, which severely endanger human well-being. Traditional treatment mainly involves controlling blood sugar levels through replacement therapy with drugs and insulin; however, some patients still find a satisfactory curative effect difficult to achieve. Extensive research has demonstrated a close correlation between enteric dysbacteriosis and the pathogenesis of various types of DM, paving the way for novel therapeutic approaches targeting the gut microbiota to manage DM. Fecal microbiota transplantation (FMT), a method for re-establishing the intestinal microbiome balance, offers new possibilities for treating diabetes. This article provides a comprehensive review of the correlation between DM and the gut microbiota, as well as the current advancements in FMT treatment for DM, using FMT as an illustrative example. This study aims to offer novel perspectives and establish a theoretical foundation for the clinical diagnosis and management of DM.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Honggang Wang
- Department of Gastroenterology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Ying Liu
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Min Shi
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Minna Zhang
- Department of Gastroenterology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Hong Zhang
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Juan Chen
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| |
Collapse
|
125
|
Wang X, Li Y, Wang X, Wang R, Hao Y, Ren F, Wang P, Fang B. Faecalibacterium prausnitzii Supplementation Prevents Intestinal Barrier Injury and Gut Microflora Dysbiosis Induced by Sleep Deprivation. Nutrients 2024; 16:1100. [PMID: 38674791 PMCID: PMC11054126 DOI: 10.3390/nu16081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Sleep deprivation (SD) leads to impaired intestinal barrier function and intestinal flora disorder, especially a reduction in the abundance of the next generation of probiotic Faecalibacterium prausnitzii (F. prausnitzii). However, it remains largely unclear whether F. prausnitzii can ameliorate SD-induced intestinal barrier damage. A 72 h SD mouse model was used in this research, with or without the addition of F. prausnitzii. The findings indicated that pre-colonization with F. prausnitzii could protect against tissue damage from SD, enhance goblet cell count and MUC2 levels in the colon, boost tight-junction protein expression, decrease macrophage infiltration, suppress pro-inflammatory cytokine expression, and reduce apoptosis. We found that the presence of F. prausnitzii helped to balance the gut microbiota in SD mice by reducing harmful bacteria like Klebsiella and Staphylococcus, while increasing beneficial bacteria such as Akkermansia. Ion chromatography analysis revealed that F. prausnitzii pretreatment increased the fecal butyrate level in SD mice. Overall, these results suggested that incorporating F. prausnitzii could help reduce gut damage caused by SD, potentially by enhancing the intestinal barrier and balancing gut microflora. This provides a foundation for utilizing probiotics to protect against intestinal illnesses.
Collapse
Affiliation(s)
- Xintong Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA;
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.W.); (Y.L.); (R.W.); (Y.H.); (F.R.)
| |
Collapse
|
126
|
Narrowe AB, Lemons JMS, Mahalak KK, Firrman J, den Abbeele PV, Baudot A, Deyaert S, Li Y, Yu L(L, Liu L. Targeted remodeling of the human gut microbiome using Juemingzi ( Senna seed extracts). Front Cell Infect Microbiol 2024; 14:1296619. [PMID: 38638830 PMCID: PMC11024242 DOI: 10.3389/fcimb.2024.1296619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
The genus Senna contains globally distributed plant species of which the leaves, roots, and seeds have multiple traditional medicinal and nutritional uses. Notable chemical compounds derived from Senna spp. include sennosides and emodin which have been tested for antimicrobial effects in addition to their known laxative functions. However, studies of the effects of the combined chemical components on intact human gut microbiome communities are lacking. This study evaluated the effects of Juemingzi (Senna sp.) extract on the human gut microbiome using SIFR® (Systemic Intestinal Fermentation Research) technology. After a 48-hour human fecal incubation, we measured total bacterial cell density and fermentation products including pH, gas production and concentrations of short chain fatty acids (SCFAs). The initial and post-incubation microbial community structure and functional potential were characterized using shotgun metagenomic sequencing. Juemingzi (Senna seed) extracts displayed strong, taxon-specific anti-microbial effects as indicated by significant reductions in cell density (40%) and intra-sample community diversity. Members of the Bacteroidota were nearly eliminated over the 48-hour incubation. While generally part of a healthy gut microbiome, specific species of Bacteroides can be pathogenic. The active persistence of the members of the Enterobacteriaceae and selected Actinomycetota despite the reduction in overall cell numbers was demonstrated by increased fermentative outputs including high concentrations of gas and acetate with correspondingly reduced pH. These large-scale shifts in microbial community structure indicate the need for further evaluation of dosages and potential administration with prebiotic or synbiotic supplements. Overall, the very specific effects of these extracts may offer the potential for targeted antimicrobial uses or as a tool in the targeted remodeling of the gut microbiome.
Collapse
Affiliation(s)
- Adrienne B. Narrowe
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Johanna M. S. Lemons
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Karley K. Mahalak
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | | | | | | | - Yanfang Li
- Department of Nutrition and Food Science, The University of Maryland, College, Park, MD, United States
| | - Liangli (Lucy) Yu
- Department of Nutrition and Food Science, The University of Maryland, College, Park, MD, United States
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| |
Collapse
|
127
|
Sechovcová H, Mahayri TM, Mrázek J, Jarošíková R, Husáková J, Wosková V, Fejfarová V. Gut microbiota in relationship to diabetes mellitus and its late complications with a focus on diabetic foot syndrome: A review. Folia Microbiol (Praha) 2024; 69:259-282. [PMID: 38095802 DOI: 10.1007/s12223-023-01119-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/05/2023] [Indexed: 04/11/2024]
Abstract
Diabetes mellitus is a chronic disease affecting glucose metabolism. The pathophysiological reactions underpinning the disease can lead to the development of late diabetes complications. The gut microbiota plays important roles in weight regulation and the maintenance of a healthy digestive system. Obesity, diabetes mellitus, diabetic retinopathy, diabetic nephropathy and diabetic neuropathy are all associated with a microbial imbalance in the gut. Modern technical equipment and advanced diagnostic procedures, including xmolecular methods, are commonly used to detect both quantitative and qualitative changes in the gut microbiota. This review summarises collective knowledge on the role of the gut microbiota in both types of diabetes mellitus and their late complications, with a particular focus on diabetic foot syndrome.
Collapse
Affiliation(s)
- Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic
- Faculty of Agrobiology, Food and Natural Resources, Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic.
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy.
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic
| | - Radka Jarošíková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Husáková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Veronika Wosková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimíra Fejfarová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
128
|
Kranyak A, Haran K, Smith P, Johnson C, Liao W, Bhutani T. The Mediterranean Diet as a Potential Solution to the Gut Microbiome Dysbiosis in Psoriasis Patients. JOURNAL OF PSORIASIS AND PSORIATIC ARTHRITIS 2024; 9:69-81. [PMID: 39156223 PMCID: PMC11329232 DOI: 10.1177/24755303241226626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Background Adherence to a Mediterranean Diet (MeD) has been associated with lower disease severity in patients with psoriasis. However, the mechanism behind how this diet may lead to disease modification remain understudied. Recent studies have revealed dysbiosis of the gut microbiome in patients with psoriasis suggestive of inflammation and altered immune regulation. Diet affects the gut microbiome and this review aims to evaluate whether correcting this dysbiosis may be one theoretical mechanism by which the MeD may be associated with lower psoriasis severity. Methods A literature search of the PubMed database was conducted for the terms 1) 'psoriasis' and 'microbiome' or 'microbiota,' and 2) 'Mediterranean diet' and 'microbiome' or 'microbiota' with manual screening for relevant articles. In total, we identified 9 relevant primary research studies investigating the gut microbiome in patients with psoriasis and 16 relevant primary research studies investigating changes in the microbiota for those consuming a MeD. Results Though varying in exact levels of certain bacteria, studies analyzing the microbiome in psoriasis revealed dysbiosis. Those analyzing the effect of the Mediterranean diet on the microbiome revealed beneficial changes, including alleviating some of the same alterations seen in the microbiome of those with psoriasis. Conclusion Microbiota change is a possible mechanism why the MeD has previously been associated with lower psoriasis severity.
Collapse
Affiliation(s)
- Allison Kranyak
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Kathryn Haran
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Payton Smith
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Chandler Johnson
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Tina Bhutani
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
129
|
Yang Y, Yan J, Li S, Liu M, Han R, Wang Y, Wang Z, Wang D. Efficacy of fecal microbiota transplantation in type 2 diabetes mellitus: a systematic review and meta-analysis. Endocrine 2024; 84:48-62. [PMID: 38001323 DOI: 10.1007/s12020-023-03606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases worldwide, and studies have found significant differences in the composition and ratio of intestinal flora between patients with T2DM and normal glucose tolerance, and fecal microbiota transplantation (FMT) may modulate the composition of the intestinal microbiota thereby alleviating the hyperglycemic state. We conducted a meta-analysis and systematic review of existing randomized controlled trials (RCTs) to assess the efficacy of FMT in T2DM. METHODS We conducted a computer search of PubMed, Embase, The Cochrane Library, and Web of Science to screen randomized controlled trials studies on FMT treatment for T2DM and extracted data from studies that met inclusion criteria. RevMan 5.4 software and Stata 11 software was used for meta-analysis. The indexes of Hemoglobin A1c (HbA1c), fasting plasma glucose (FPG), postprandial blood glucose (PBG), homeostasis model assessment of insulin resistance (HOMA-IR), triglycerides (TG), cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), body mass index (BMI), Aspartate Aminotransferase (AST), Alanine Transaminase (ALT), Systolic blood pressure (SBP) and Diastolic blood pressure (DBP) were mainly evaluated after FMT treatment of T2DM patients, and the changes of intestinal flora were evaluated. RESULTS Four RCTs met the inclusion criteria and were included in the meta-analysis. Results of the meta-analysis showed that compared with the non-FMT group, FMT combined treatment could significantly reduce the PBG level in patients with type 2 diabetes (MD = -0.51, 95% CI: -1.42-0.40, P = 0.27). Compared with single FMT treatment, FMT combined treatment could reduce TG levels in patients with type 2 diabetes (MD = -0.60, 95% CI: -1.12~-0.07, P = 0.03). The levels of TG (MD = -0.26, 95% CI: -0.51~-0.02, P = 0.03), HOMA-IR (MD = -2.73, 95% CI: -4.71~0.75, P = 0.007) and HDL (MD = -0.06,95% CI: -0.10~-0.02, P = 0.003) were significantly decreased after treatment in the single FMT group. The level of TC (MD = -0.65, 95% CI: -1.00~-0.31, P = 0.0002) was significantly decreased after FMT combined treatment. Compared with before treatment, ALT (MD = -2.52, 95% CI: -3.86~-1.17, P = 0.0002) and DBP (MD = -2, 95% CI: -3.32~0.68, P = 0.003) levels decreased after treatment in the single FMT group and the FMT combined group. FPG (MD = -0.94, 95% CI: -1.86~-0.02, P = 0.04), TG (MD = -0.73, 95% CI: -1.42~-0.04, P = 0.04) and TC (MD = -0.94, 95% CI: -1.45~-0.43, P = 0.0003) were significantly decreased after combined drug and diet therapy. Secondly, FMT can promote the colonization and growth of donor-related flora in patients with type 2 diabetes. CONCLUSION In patients with type 2 diabetes mellitus, FMT treatment can reduce the levels of PBG, TG, HOMA-IR, TC, ALT, and DBP, especially in the combined treatment regimen. In addition, FMT can reshape the intestinal flora and establish the balance of dominant flora.
Collapse
Affiliation(s)
- Yan Yang
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China
| | - Jingjing Yan
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China
| | - Shuo Li
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China
| | - Mengru Liu
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China
| | - Ruimin Han
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China
| | - Yinping Wang
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China
| | - Zhen Wang
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China.
| | - Defeng Wang
- Endocrinology Department of Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, 056000, China.
| |
Collapse
|
130
|
Chen S, Jiao Y, Han Y, Zhang J, Deng Y, Yu Z, Wang J, He S, Cai W, Xu J. Edible traditional Chinese medicines improve type 2 diabetes by modulating gut microbiotal metabolites. Acta Diabetol 2024; 61:393-411. [PMID: 38227209 DOI: 10.1007/s00592-023-02217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder with intricate pathogenic mechanisms. Despite the availability of various oral medications for controlling the condition, reports of poor glycemic control in type 2 diabetes persist, possibly involving unknown pathogenic mechanisms. In recent years, the gut microbiota have emerged as a highly promising target for T2DM treatment, with the metabolites produced by gut microbiota serving as crucial intermediaries connecting gut microbiota and strongly related to T2DM. Increasingly, traditional Chinese medicine is being considered to target the gut microbiota for T2DM treatment, and many of them are edible. In studies conducted on animal models, edible traditional Chinese medicine have been shown to primarily alter three significant gut microbiotal metabolites: short-chain fatty acids, bile acids, and branched-chain amino acids. These metabolites play crucial roles in alleviating T2DM by improving glucose metabolism and reducing inflammation. This review primarily summarizes twelve edible traditional Chinese medicines that improve T2DM by modulating the aforementioned three gut microbiotal metabolites, along with potential underlying molecular mechanisms, and also incorporation of edible traditional Chinese medicines into the diets of T2DM patients and combined use with probiotics for treating T2DM are discussed.
Collapse
Affiliation(s)
- Shen Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiqiao Jiao
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiyang Han
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yuanyuan Deng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zilu Yu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shasha He
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Wei Cai
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
131
|
Knudsen LA, Zachariassen LS, Strube ML, Havelund JF, Pilecki B, Nexoe AB, Møller FT, Sørensen SB, Marcussen N, Faergeman NJ, Franke A, Bang C, Holmskov U, Hansen AK, Andersen V. Assessment of the Inflammatory Effects of Gut Microbiota from Human Twins Discordant for Ulcerative Colitis on Germ-free Mice. Comp Med 2024; 74:55-69. [PMID: 38508697 PMCID: PMC11078274 DOI: 10.30802/aalas-cm-23-000065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
Disturbances in gut microbiota are prevalent in inflammatory bowel disease (IBD), which includes ulcerative colitis (UC). However, whether these disturbances contribute to development of the disease or are a result of the disease is unclear. In pairs of human twins discordant for IBD, the healthy twin has a higher risk of developing IBD and a gut microbiota that is more similar to that of IBD patients as compared with healthy individuals. Furthermore, appropriate medical treatment may mitigate these disturbances. To study the correlation between microbiota and IBD, we transferred stool samples from a discordant human twin pair: one twin being healthy and the other receiving treatment for UC. The stool samples were transferred from the disease-discordant twins to germ-free pregnant dams. Colitis was induced in the offspring using dextran sodium sulfate. As compared with offspring born to mice dams inoculated with stool from the healthy cotwin, offspring born to dams inoculated with stool from the UC-afflicted twin had a lower disease activity index, less gut inflammation, and a microbiota characterized by higher α diversity and a more antiinflammatory profile that included the presence and higher abundance of antiinflammatory species such as Akkermansia spp., Bacteroides spp., and Parabacteroides spp. These findings suggest that the microbiota from the healthy twin may have had greater inflammatory properties than did that of the twin undergoing UC treatment.
Collapse
Affiliation(s)
- Lina A Knudsen
- Medical Department, Molecular Diagnostic and Clinical Research, University Hospital of Southern Denmark, Aabenraa, Denmark; IRS-Center Sonderjylland, University of South- ern Denmark, Odense, Denmark
| | - Line Sf Zachariassen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Mikael L Strube
- DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Jesper F Havelund
- VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Bartosz Pilecki
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anders B Nexoe
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Frederik T Møller
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Signe B Sørensen
- Medical Department, Molecular Diagnostic and Clinical Research, University Hospital of Southern Denmark, Aabenraa, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Niels Marcussen
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Nils J Faergeman
- VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Uffe Holmskov
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Axel K Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark;,
| | - Vibeke Andersen
- Medical Department, Molecular Diagnostic and Clinical Research, University Hospital of Southern Denmark, Aabenraa, Denmark; IRS-Center Sonderjylland, University of Southern Denmark, Odense, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
132
|
Acar C, Celik SK, Ozdemirel HO, Tuncdemir BE, Alan S, Mergen H. Composition of the colon microbiota in the individuals with inflammatory bowel disease and colon cancer. Folia Microbiol (Praha) 2024; 69:333-345. [PMID: 37344611 DOI: 10.1007/s12223-023-01072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
The human intestine is a habitat for microorganisms and, recently, the composition of the intestinal microbiota has been correlated with the etiology of diseases such as inflammations, sores, and tumors. Although many studies have been conducted to understand the composition of that microbiota, expanding these studies to more samples and different backgrounds will improve our knowledge. In this work, we showed the colon microbiota composition and diversity of healthy subjects, patients with inflammatory bowel disease (IBD), and colon cancer by metagenomic sequencing. Our results indicated that the relative abundance of prokaryotic and eukaryotic microbes differs between the healthy vs. tumor biopsies, tumor vs. IBD biopsies, and fresh vs. paraffin-embedded tumor biopsies. Fusobacterium, Escherichia-Shigella, and Streptococcus genera were relatively abundant in fresh tumor biopsies, while Pseudomonas was significantly elevated in IBD biopsies. Additionally, another opportunist pathogen Malasseziales was revealed as the most abundant fungal clade in IBD biopsies, especially in ulcerative colitis. We also found that, while the Basidiomycota:Ascomycota ratio was slightly lower in tumor biopsies compared to biopsies from healthy subjects, there was a significant increase in IBD biopsies. Our work will contribute to the known diversity of prokaryotic and eukaryotic microbes in the colon biopsies in patients with IBD and colon cancer.
Collapse
Affiliation(s)
- Ceren Acar
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Inonu University, Malatya, 44280, Turkey.
| | | | - H Ozgur Ozdemirel
- Faculty of Science, Department of Biology, Hacettepe University, Ankara, 06800, Turkey
| | - Beril Erdem Tuncdemir
- Faculty of Science, Department of Biology, Hacettepe University, Ankara, 06800, Turkey
| | - Saadet Alan
- Faculty of Medicine, Department of Medical Pathology, Inonu University, Malatya, 44000, Turkey
| | - Hatice Mergen
- Faculty of Science, Department of Biology, Hacettepe University, Ankara, 06800, Turkey
| |
Collapse
|
133
|
Faghfuri E, Gholizadeh P. The role of Akkermansia muciniphila in colorectal cancer: A double-edged sword of treatment or disease progression? Biomed Pharmacother 2024; 173:116416. [PMID: 38471272 DOI: 10.1016/j.biopha.2024.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
Colorectal cancer (CRC) is the second most cancer-related death worldwide. In recent years, probiotics have been used to reduce the potential risks of CRC and tumors with various mechanisms. Different bacteria have been suggested to play different roles in the progression, prevention, or treatment of CRC. Akkermansia muciniphila is considered a next-generation probiotic for preventing and treating some diseases. Therefore, in this review article, we aimed to describe and discuss different mechanisms of A. muciniphila as an intestinal microbiota or probiotic in CRC. Some studies suggested that the abundance of A. muciniphila was higher or increased in CRC patients compared to healthy individuals. However, the decreased abundance of A. muciniphila was associated with severe symptoms of CRC, indicating that A. muciniphila did not play a role in the development of CRC. In addition, A. muciniphila administration elevates gene expression of proliferation-associated molecules such as S100A9, Dbf4, and Snrpd1, or markers for cell proliferation. Some other studies suggested that inflammation and tumorigenesis in the intestine might promoted by A. muciniphila. Overall, the role of A. muciniphila in CRC development or inhibition is still unclear and controversial. Various methods of bacterial supplementation, such as viability, bacterial number, and abundance, could all influence the colonization effect of A. muciniphila administration and CRC progression. Overall, A. mucinipila has been revealed to modulate the therapeutic potential of immune checkpoint inhibitors. Preliminary human data propose that oral consumption of A. muciniphila is safe, but its efficacy needs to be confirmed in more human clinical studies.
Collapse
Affiliation(s)
- Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pourya Gholizadeh
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
134
|
Salem MB, El-Lakkany NM, Seif el-Din SH, Hammam OA, Samir S. Diosmin alleviates ulcerative colitis in mice by increasing Akkermansia muciniphila abundance, improving intestinal barrier function, and modulating the NF-κB and Nrf2 pathways. Heliyon 2024; 10:e27527. [PMID: 38500992 PMCID: PMC10945203 DOI: 10.1016/j.heliyon.2024.e27527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Ulcerative colitis is a common type of inflammatory bowel disease that affects millions of individuals around the world. Traditional UC treatment has focused on suppressing immune responses rather than treating the underlying causes of UC, which include oxidative stress, inflammation, and microbiota dysbiosis. Diosmin (DIO), a naturally occurring flavonoid, possesses antioxidant and anti-inflammatory properties. This study aimed to assess the efficacy of DIO in treating dextran-sulfate sodium (DSS)-induced colitis, and to investigate some of its underlying mechanisms, with an emphasis on Akkermansia muciniphila abundance, inflammatory markers, and intestinal barrier function. C57BL/6 mice were given 4% (w/v) DSS to induce colitis. DSS-induced mice were administered DIO (100 and 200 mg/kg) or sulfasalazine orally for 7 days. Every day, the disease activity index (DAI) was determined by recording body weight, diarrhea, and bloody stool. Changes in fecal A. muciniphila abundance, colonic MUC1 and MUC2 expression, as well as oxidative stress and inflammatory markers were all assessed. Histopathological changes, colonic PIK3PR3 and ZO-1 levels, and immunohistochemical examinations of occludin and claudin-1, were investigated. DIO administration resulted in a dose-dependent decrease in DAI, as well as increase in A. muciniphila abundance and MUC2 expression while decreasing MUC1 expression. DIO also dramatically reduced colonic oxidative stress and inflammation by regulating the NF-κB and Nrf2 cascades, restored intestinal barrier integrity by inhibiting PIK3R3 and inducing ZO-1, and improved occludin/claudin-1 gene expression and immunostaining. This study provides the first evidence that DIO preserves intestinal barrier integrity and increases A. muciniphila abundance in DSS-induced colitis. However, more research is required to explore the impact of DIO on the overall composition and diversity of the gut microbiota. Likewise, it will be important to fully understand the molecular mechanisms by which A. muciniphila maintains intestinal barrier function and its potential use as an adjuvant in the treatment of UC.
Collapse
Affiliation(s)
- Maha Badr Salem
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Naglaa Mohamed El-Lakkany
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Sayed Hassan Seif el-Din
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Olfat Ali Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| |
Collapse
|
135
|
Zhang X, Wu J, Luo Y, Wang Y, Wu Y, Xu X, Zhang Y, Kong R, Chi Y, Sun Y, Chen S, He Q, Zhu F, Zhou Z. CovEpiAb: a comprehensive database and analysis resource for immune epitopes and antibodies of human coronaviruses. Brief Bioinform 2024; 25:bbae183. [PMID: 38653491 PMCID: PMC11036340 DOI: 10.1093/bib/bbae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/24/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Coronaviruses have threatened humans repeatedly, especially COVID-19 caused by SARS-CoV-2, which has posed a substantial threat to global public health. SARS-CoV-2 continuously evolves through random mutation, resulting in a significant decrease in the efficacy of existing vaccines and neutralizing antibody drugs. It is critical to assess immune escape caused by viral mutations and develop broad-spectrum vaccines and neutralizing antibodies targeting conserved epitopes. Thus, we constructed CovEpiAb, a comprehensive database and analysis resource of human coronavirus (HCoVs) immune epitopes and antibodies. CovEpiAb contains information on over 60 000 experimentally validated epitopes and over 12 000 antibodies for HCoVs and SARS-CoV-2 variants. The database is unique in (1) classifying and annotating cross-reactive epitopes from different viruses and variants; (2) providing molecular and experimental interaction profiles of antibodies, including structure-based binding sites and around 70 000 data on binding affinity and neutralizing activity; (3) providing virological characteristics of current and past circulating SARS-CoV-2 variants and in vitro activity of various therapeutics; and (4) offering site-level annotations of key functional features, including antibody binding, immunological epitopes, SARS-CoV-2 mutations and conservation across HCoVs. In addition, we developed an integrated pipeline for epitope prediction named COVEP, which is available from the webpage of CovEpiAb. CovEpiAb is freely accessible at https://pgx.zju.edu.cn/covepiab/.
Collapse
Affiliation(s)
- Xue Zhang
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - JingCheng Wu
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Luo
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yilin Wang
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Wu
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaobin Xu
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yufang Zhang
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruiying Kong
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Chi
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 310058, China
- ZJU-UoE Institute, Zhejiang University, Haining 314400, China
| | - Yisheng Sun
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310015, China
| | - Shuqing Chen
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China
| | - Feng Zhu
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 310058, China
| | - Zhan Zhou
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 310058, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| |
Collapse
|
136
|
Kopczyńska J, Kowalczyk M. The potential of short-chain fatty acid epigenetic regulation in chronic low-grade inflammation and obesity. Front Immunol 2024; 15:1380476. [PMID: 38605957 PMCID: PMC11008232 DOI: 10.3389/fimmu.2024.1380476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity and chronic low-grade inflammation, often occurring together, significantly contribute to severe metabolic and inflammatory conditions like type 2 diabetes (T2D), cardiovascular disease (CVD), and cancer. A key player is elevated levels of gut dysbiosis-associated lipopolysaccharide (LPS), which disrupts metabolic and immune signaling leading to metabolic endotoxemia, while short-chain fatty acids (SCFAs) beneficially regulate these processes during homeostasis. SCFAs not only safeguard the gut barrier but also exert metabolic and immunomodulatory effects via G protein-coupled receptor binding and epigenetic regulation. SCFAs are emerging as potential agents to counteract dysbiosis-induced epigenetic changes, specifically targeting metabolic and inflammatory genes through DNA methylation, histone acetylation, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). To assess whether SCFAs can effectively interrupt the detrimental cascade of obesity and inflammation, this review aims to provide a comprehensive overview of the current evidence for their clinical application. The review emphasizes factors influencing SCFA production, the intricate connections between metabolism, the immune system, and the gut microbiome, and the epigenetic mechanisms regulated by SCFAs that impact metabolism and the immune system.
Collapse
Affiliation(s)
- Julia Kopczyńska
- Laboratory of Lactic Acid Bacteria Biotechnology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
137
|
Zhang L, Wang P, Huang J, Xing Y, Wong FS, Suo J, Wen L. Gut microbiota and therapy for obesity and type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1333778. [PMID: 38596222 PMCID: PMC11002083 DOI: 10.3389/fendo.2024.1333778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/06/2024] [Indexed: 04/11/2024] Open
Abstract
There has been a major increase in Type 2 diabetes and obesity in many countries, and this will lead to a global public health crisis, which not only impacts on the quality of life of individuals well but also places a substantial burden on healthcare systems and economies. Obesity is linked to not only to type 2 diabetes but also cardiovascular diseases, musculoskeletal disorders, and certain cancers, also resulting in increased medical costs and diminished quality of life. A number of studies have linked changes in gut in obesity development. Dysbiosis, a deleterious change in gut microbiota composition, leads to altered intestinal permeability, associated with obesity and Type 2 diabetes. Many factors affect the homeostasis of gut microbiota, including diet, genetics, circadian rhythms, medication, probiotics, and antibiotics. In addition, bariatric surgery induces changes in gut microbiota that contributes to the metabolic benefits observed post-surgery. Current obesity management strategies encompass dietary interventions, exercise, pharmacotherapy, and bariatric surgery, with emerging treatments including microbiota-altering approaches showing promising efficacy. While pharmacotherapy has demonstrated significant advancements in recent years, bariatric surgery remains one of the most effective treatments for sustainable weight loss. However, access to this is generally limited to those living with severe obesity. This underscores the need for non-surgical interventions, particularly for adolescents and mildly obese patients. In this comprehensive review, we assess longitudinal alterations in gut microbiota composition and functionality resulting from the two currently most effective anti-obesity treatments: pharmacotherapy and bariatric surgery. Additionally, we highlight the functions of gut microbiota, focusing on specific bacteria, their metabolites, and strategies for modulating gut microbiota to prevent and treat obesity. This review aims to provide insights into the evolving landscape of obesity management and the potential of microbiota-based approaches in addressing this pressing global health challenge.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Pai Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Juan Huang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha, Hunan, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanpeng Xing
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - F. Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jian Suo
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
138
|
Zhang J, Zhou J, He Z, Li H. Bacteroides and NAFLD: pathophysiology and therapy. Front Microbiol 2024; 15:1288856. [PMID: 38572244 PMCID: PMC10988783 DOI: 10.3389/fmicb.2024.1288856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition observed globally, with the potential to progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. Currently, the US Food and Drug Administration (FDA) has not approved any drugs for the treatment of NAFLD. NAFLD is characterized by histopathological abnormalities in the liver, such as lipid accumulation, steatosis, hepatic balloon degeneration, and inflammation. Dysbiosis of the gut microbiota and its metabolites significantly contribute to the initiation and advancement of NAFLD. Bacteroides, a potential probiotic, has shown strong potential in preventing the onset and progression of NAFLD. However, the precise mechanism by which Bacteroides treats NAFLD remains uncertain. In this review, we explore the current understanding of the role of Bacteroides and its metabolites in the treatment of NAFLD, focusing on their ability to reduce liver inflammation, mitigate hepatic steatosis, and enhance intestinal barrier function. Additionally, we summarize how Bacteroides alleviates pathological changes by restoring the metabolism, improving insulin resistance, regulating cytokines, and promoting tight-junctions. A deeper comprehension of the mechanisms through which Bacteroides is involved in the pathogenesis of NAFLD should aid the development of innovative drugs targeting NAFLD.
Collapse
Affiliation(s)
- Jun Zhang
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Jing Zhou
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Zheyun He
- Liver Diseases Institute, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Hongshan Li
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| |
Collapse
|
139
|
Chen R, Ye Y, Ding Y, Wan Z, Ye X, Liu J. Potential biomarkers of acute myocardial infarction based on the composition of the blood microbiome. Clin Chim Acta 2024; 556:117843. [PMID: 38387830 DOI: 10.1016/j.cca.2024.117843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND It is difficult to distinguish between acute myocardial infarction (AMI) and unstable angina (UA) due to their similar clinical features. In recent years, studies have shown that microbiomes have great potential in distinguishing diseases. The purpose of this study is to describe the composition of serum microbiome in the AMI and UA by 16S rDNA sequencing. METHODS Based on the high-throughput detection platform and 16S rDNA amplification sequencing technology, this study detected the blood microbial composition of 55 patients with AMI and 62 patients with UA. Alpha diversity and Beta diversity analysis were used to compare the differences in microbial composition and bacterial colony structure between AMI and UA groups. We perform PCoA (Principal Co-ordinates Analysis) based on Unweighted Unifrac distance. In addition, various statistical methods were employed to examine the significance of differences in microbial composition and genus between the two groups. PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was employed to predict KEGG (Kyoto Encyclopedia of Genes and Genomes) function from 16S sequencing data. Random forest was applied to identify biomarkers and construct the diagnostic model. Subsequently, the stability of the model was verified by 10-fold cross and the diagnostic effectiveness was evaluated through ROC (Receiver Operating Characteristic). RESULTS In this study, we found that alpha diversity index of serum microbiome in AMI group was significantly higher than in UA group. T-test analysis demonstrated that the UA group presented a higher abundance of Ralstonia, Faecalibaculum and Gammaproteobacteria, while Bacteroides, Sphingomonas, Faecalibaculum, Haemophilus, Serratia, Bifidobacterium and Chloroplast were more abundant in the AMI group. The LefSe (LDA Effect Size) analysis showed that the Gammaproteobacteria, Proteobacteria, Ralstonia pickettli, Ralstonia, Burkholderiaceae and Burkholderiales were enriched in UA group, and Bacteroidales, Bacteroidia, Bacteroidota, Clostridia and Firmicutes were more abundant in the AMI group. Ten bacterial diagnostic models were constructed in the random forest. The area under the curve (AUC) in the training set was 88.01%, and the AUC value in the test set was 95.04%. CONCLUSION In this study, the composition of blood microorganisms in the groups of patients with AMI and UA has been analyzed, providing novel insights for understanding the pathogenesis of AMI; Blood microbiome may serve as novel diagnostic biomarkers of AMI.
Collapse
Affiliation(s)
- Rishou Chen
- Department of Laboratory Medicine, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523127, China
| | - Yonglong Ye
- Department of Laboratory Medicine, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523127, China
| | - Yali Ding
- Department of Laboratory Medicine, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523127, China
| | - Zhidong Wan
- Department of Laboratory Medicine, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523127, China
| | - Xinyu Ye
- Department of Laboratory Medicine, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523127, China
| | - Jun Liu
- Department of Laboratory Medicine, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523127, China.
| |
Collapse
|
140
|
Hoque MN, Faisal GM, Jerin S, Moyna Z, Islam MA, Talukder AK, Alam MS, Das ZC, Isalm T, Hossain MA, Rahman ANMA. Unveiling distinct genetic features in multidrug-resistant Escherichia coli isolated from mammary tissue and gut of mastitis induced mice. Heliyon 2024; 10:e26723. [PMID: 38434354 PMCID: PMC10904246 DOI: 10.1016/j.heliyon.2024.e26723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Escherichia coli is one of the major pathogens causing mastitis in lactating mammals. We hypothesized that E. coli from the gut and mammary glands may have similar genomic characteristics in the causation of mastitis. To test this hypothesis, we used whole genome sequencing to analyze two multidrug resistant E. coli strains isolated from mammary tissue (G2M6U) and fecal sample (G6M1F) of experimentally induced mastitis mice. Both strains showed resistance to multiple (>7) antibiotics such as oxacillin, aztreonam, nalidixic acid, streptomycin, gentamicin, cefoxitin, ampicillin, tetracycline, azithromycin and nitrofurantoin. The genome of E. coli G2M6U had 59 antimicrobial resistance genes (ARGs) and 159 virulence factor genes (VFGs), while the E. coli G6M1F genome possessed 77 ARGs and 178 VFGs. Both strains were found to be genetically related to many E. coli strains causing mastitis and enteric diseases originating from different hosts and regions. The G6M1F had several unique ARGs (e.g., QnrS1, sul2, tetA, tetR, emrK, blaTEM-1/105, and aph(6)-Id, aph(3″)-Ib) conferring resistance to certain antibiotics, whereas G2M6U had a unique heat-stable enterotoxin gene (astA) and 7192 single nucleotide polymorphisms. Furthermore, there were 43 and 111 unique genes identified in G2M6U and G6M1F genomes, respectively. These results indicate distinct differences in the genomic characteristics of E. coli strain G2M6U and G6M1F that might have important implications in the pathophysiology of mammalian mastitis, and treatment strategies for mastitis in dairy animals.
Collapse
Affiliation(s)
- M. Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Golam Mahbub Faisal
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Shobnom Jerin
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Zannatara Moyna
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Md Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, 2310, Bangladesh
| | - Anup Kumar Talukder
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | | | - Ziban Chandra Das
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Tofazzal Isalm
- Institute of Biotechnology and Genetic Engineering (IBGE), BSMRAU, Gazipur, 1706, Bangladesh
| | - M. Anwar Hossain
- Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Abu Nasar Md Aminoor Rahman
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| |
Collapse
|
141
|
Chen Q, Wu C, Xu J, Ye C, Chen X, Tian H, Zong N, Zhang S, Li L, Gao Y, Zhao D, Lv X, Yang Q, Wang L, Cui J, Lin Z, Lu J, Yang R, Yin F, Qin N, Li N, Xu Q, Qin H. Donor-recipient intermicrobial interactions impact transfer of subspecies and fecal microbiota transplantation outcome. Cell Host Microbe 2024; 32:349-365.e4. [PMID: 38367621 DOI: 10.1016/j.chom.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Studies on fecal microbiota transplantation (FMT) have reported inconsistent connections between clinical outcomes and donor strain engraftment. Analyses of subspecies-level crosstalk and its influences on lineage transfer in metagenomic FMT datasets have proved challenging, as single-nucleotide polymorphisms (SNPs) are generally not linked and are often absent. Here, we utilized species genome bin (SGB), which employs co-abundance binning, to investigate subspecies-level microbiome dynamics in patients with autism spectrum disorder (ASD) who had gastrointestinal comorbidities and underwent encapsulated FMT (Chinese Clinical Trial: 2100043906). We found that interactions between donor and recipient microbes, which were overwhelmingly phylogenetically divergent, were important for subspecies transfer and positive clinical outcomes. Additionally, a donor-recipient SGB match was indicative of a high likelihood of strain transfer. Importantly, these ecodynamics were shared across FMT datasets encompassing multiple diseases. Collectively, these findings provide detailed insight into specific microbial interactions and dynamics that determine FMT success.
Collapse
Affiliation(s)
- Qiyi Chen
- Department of Colorectal Disease, Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Gut Microbiota Research and Engineering Development, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chunyan Wu
- Institute of Gut Microbiota Research and Engineering Development, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Realbio Genomics Institute, Shanghai 200050, China
| | - Jinfeng Xu
- Institute of Gut Microbiota Research and Engineering Development, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chen Ye
- Department of Colorectal Disease, Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiang Chen
- Realbio Genomics Institute, Shanghai 200050, China
| | - Hongliang Tian
- Department of Colorectal Disease, Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Naixin Zong
- Institute of Gut Microbiota Research and Engineering Development, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shaoyi Zhang
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Long Li
- Department of Colorectal Disease, Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuan Gao
- Institute of Gut Microbiota Research and Engineering Development, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Di Zhao
- Department of Colorectal Disease, Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaoqiong Lv
- Department of Colorectal Disease, Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qilin Yang
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Le Wang
- Department of Colorectal Disease, Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiaqu Cui
- Department of Colorectal Disease, Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhiliang Lin
- Department of Colorectal Disease, Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jubao Lu
- Department of Colorectal Disease, Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Rong Yang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fang Yin
- Institute of Gut Microbiota Research and Engineering Development, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Nan Qin
- Institute of Gut Microbiota Research and Engineering Development, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Realbio Genomics Institute, Shanghai 200050, China
| | - Ning Li
- Department of Colorectal Disease, Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Qian Xu
- Institute of Gut Microbiota Research and Engineering Development, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Huanlong Qin
- Department of Colorectal Disease, Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Gut Microbiota Research and Engineering Development, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
142
|
Xiao Y, Feng Y, Zhao J, Chen W, Lu W. Achieving healthy aging through gut microbiota-directed dietary intervention: Focusing on microbial biomarkers and host mechanisms. J Adv Res 2024:S2090-1232(24)00092-4. [PMID: 38462039 DOI: 10.1016/j.jare.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Population aging has become a primary global public health issue, and the prevention of age-associated diseases and prolonging healthy life expectancies are of particular importance. Gut microbiota has emerged as a novel target in various host physiological disorders including aging. Comprehensive understanding on changes of gut microbiota during aging, in particular gut microbiota characteristics of centenarians, can provide us possibility to achieving healthy aging or intervene pathological aging through gut microbiota-directed strategies. AIM OF REVIEW This review aims to summarize the characteristics of the gut microbiota associated with aging, explore potential biomarkers of aging and address microbiota-associated mechanisms of host aging focusing on intestinal barrier and immune status. By summarizing the existing effective dietary strategies in aging interventions, the probability of developing a diet targeting the gut microbiota in future is provided. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key notions: Firstly, gut microbiota has become a new target for regulating health status and lifespan, and its changes are closely related to age. Thus, we summarized aging-associated gut microbiota features at the levels of key genus/species and important metabolites through comparing the microbiota differences among centenarians, elderly people and younger people. Secondly, exploring microbiota biomarkers related to aging and discussing future possibility using dietary regime/components targeted to aging-related microbiota biomarkers promote human healthy lifespan. Thirdly, dietary intervention can effectively improve the imbalance of gut microbiota related to aging, such as probiotics, prebiotics, and postbiotics, but their effects vary among.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| | - Yingxuan Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
143
|
Chen Q, Liu L, Guo S, Li L, Yu Y, Liu Z, Tan C, Chen H, Wang X. Characterization of the monoclonal antibody and the immunodominant B-cell epitope of African swine fever virus pA104R by using mouse model. Microbiol Spectr 2024; 12:e0140123. [PMID: 38305163 PMCID: PMC10913377 DOI: 10.1128/spectrum.01401-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024] Open
Abstract
The African swine fever virus (ASFV) structural protein pA104R is the only histone-like protein encoded by eukaryotic viruses. pA104R is an essential DNA-binding protein required for DNA replication and genome packaging of ASFV, which are vital for pathogen survival and proliferation. pA104R is an important target molecule for diagnosing, treating, and immune prevention of ASFV. This study characterized monoclonal antibodies (mAbs) against pA104R and found them to recognize natural pA104R in ASFV strains with different genotypes, showing high conservation. Confirmation analyses of pA104R epitopes using mAbs indicated the presence of immunodominant B-cell epitopes, and further characterization showed the high antigenic index and surface accessibility coefficients of the identified epitope. Furthermore, the pA104R protein functions through the polar interactions between the binding amino acid sites; however, these interactions may be blocked by the recognition of generated mAbs. Characterizing the immunodominant B-cell epitope of the ASFV critical proteins, such as pA104R, may contribute to developing sensitive diagnostic tools and vaccine candidate targets.IMPORTANCEAfrican swine fever (ASF) is a highly pathogenic, lethal, and contagious viral disease affecting domestic pigs and wild boars. As no effective vaccine or other treatments have been developed, the control of African swine fever virus (ASFV) relies heavily on virus detection and diagnosis. A potential serological target is the structural protein pA104R. However, the molecular basis of pA104R antigenicity remains unclear, and a specific monoclonal antibody (mAb) against this protein is still unavailable. In this study, mAbs against pA104R were characterized and found to recognize natural pA104R in ASFV strains with different genotypes. In addition, confirmation analyses of pA104R epitopes using mAbs indicated the presence of immunodominant B-cell epitopes, and further characterization showed the high antigenic index and surface accessibility coefficients of the identified epitope. Characteristics of the immunodominant B-cell epitope of ASFV proteins, such as pA104R, may contribute to developing sensitive diagnostic tools and identifying vaccine candidate targets.
Collapse
Affiliation(s)
- Qichao Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lixinjie Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shibang Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yifeng Yu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhankui Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| |
Collapse
|
144
|
Salehi S, Hosseinzadeh-Attar MJ, Alipoor E, Dahmardehei M, Yaseri M, Emami MR, Siadat SD. Effects of hydrolyzed collagen alone or in combination with fish oil on the gut microbiome in patients with major burns. Burns 2024; 50:444-453. [PMID: 38114377 DOI: 10.1016/j.burns.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/08/2023] [Accepted: 08/20/2023] [Indexed: 12/21/2023]
Abstract
Burns are associated with gut dysbiosis. Collagen peptides and omega-3 fatty acids (FAs) are suggested to improve wound healing and the inflammatory response. These are also correlated with microbiome colonization. Therefore, the present study aimed to investigate the effect of hydrolyzed collagen alone or in combination with fish oil on specific species of the gut microbiome in patients with major burns. In this randomized double-blind clinical trial, 57 adults (aged 18-60 years) with 20-45% total body surface area burns were randomised into three groups to receive either 40 gr hydrolyzed collagen +10 ml sunflower oil, 40 g hydrolyzed collagen +10 ml fish oil or placebo, divided into two daily drinks, for two weeks. Gut bacteria were measured using the real-time quantitative polymerase chain reaction (qPCR) method. The mean concentration of Bifidobacterium was significantly reduced in the control (P = 0.002) and collagen (P = 0.005) groups compared with the baseline values, whereas no significant change was observed in the collagen omega-3 group. The Firmicutes to Bacteroidetes ratio decreased significantly in the collagen group (p = 0.002) after supplementation compared to baseline . No significant changes in concentration of Lactobacillus, Enterobacteriaceae, and F.prausnitzii were observed between or within the study groups. Two weeks of supplementation with collagen and omega-3 FAs in patients with major burns did not result in a significant difference in the concentration of bacteria measured between the study groups. However, the addition of omega-3 FAs prevented a significant reduction in gut Bifidobacterium. Future studies are suggested to investigate the potential efficacy of these nutrients in improving the gut microbiota and clinical outcomes in major burns. REGISTRATION NUMBER: IRCT20131125015536N9.
Collapse
Affiliation(s)
- Shiva Salehi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hosseinzadeh-Attar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elham Alipoor
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Dahmardehei
- Department of Plastic Surgery, Burn Research Center, Motahari Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Emami
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
145
|
Chowdhury MR, Hone KGMS, Prévost K, Balthazar P, Avino M, Arguin M, Beaudoin J, Malick M, Desgagné M, Robert G, Scott M, Dubé J, Laforest-Lapointe I, Massé E. Optimizing Fecal Occult Blood Test (FOBT) Colorectal Cancer Screening Using Gut Bacteriome as a Biomarker. Clin Colorectal Cancer 2024; 23:22-34.e2. [PMID: 37980216 DOI: 10.1016/j.clcc.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a major cause of cancer mortality in the world. One of the most widely used screening tests for CRC is the immunochemical fecal occult blood test (iFOBT), which detects human hemoglobin from patient's stool sample. Although it is highly efficient in detecting blood from patients with gastro-intestinal lesions, such as polyps and cancers, the iFOBT has a high rate of false positive discovery. Recent studies suggested gut bacteria as a promising noninvasive biomarker for improving the diagnosis of CRC. In this study, we examined the composition of gut bacteria using iFOBT leftover from patients undergoing screening test along with a colonoscopy. METHODS After collecting data from more than 800 patients, we considered 4 groups for this study. The first and second groups were respectively "healthy" in which the patients had either no blood in their stool or had blood but no lesions. The third and fourth groups of patients had both blood in their stools with precancerous and cancerous lesions and considered either as low-grade and high-grade lesion groups, respectively. An amplification of 16S rRNA (V4 region) gene was performed, followed by sequencing along with various statistical and bioinformatic analysis. RESULTS We analyzed the composition of the gut bacteriome at phylum, class, genus, and species levels. Although members of the Firmicute phylum increased in the 3 groups compared to healthy patients, the phylum Actinobacteriota was found to decrease. Moreover, Blautia obeum and Anaerostipes hadrus from the phylum Firmicutes were increased and Collinsella aerofaciens from phylum Actinobacteriota was found decreased when healthy group is compared to the patients with high-grade lesions. Finally, among the 5 machine learning algorithms used to perform our analysis, both elastic net (AUC > 0.7) and random forest (AUC > 0.8) performs well in differentiating healthy patients from 3 other patient groups having blood in their stool. CONCLUSION Our study integrates the iFOBT screening tool with gut bacterial composition to improve the prediction of CRC lesions.
Collapse
Affiliation(s)
- Moumita Roy Chowdhury
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Karina Gisèle Mac Si Hone
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada; Department of Biology, University of Sherbrooke, Sherbrooke, Canada
| | - Karine Prévost
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Philippe Balthazar
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Mariano Avino
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Mélina Arguin
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Jude Beaudoin
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Mandy Malick
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Michael Desgagné
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Gabriel Robert
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Michelle Scott
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Jean Dubé
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | | | - Eric Massé
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada.
| |
Collapse
|
146
|
Gao Z, Zhang W, He L, Wang H, Li Y, Jiang X, D I S, Wang X, Zhang X, Han L, Liu Y, Gu C, Wu M, He X, Cheng L, Wang J, Tong X, Zhao L. Double-blinded, randomized clinical trial of Gegen Qinlian decoction pinpoints Faecalibacterium as key gut bacteria in alleviating hyperglycemia. PRECISION CLINICAL MEDICINE 2024; 7:pbae003. [PMID: 38495337 PMCID: PMC10941319 DOI: 10.1093/pcmedi/pbae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Background Accumulating evidence suggests that metabolic disorders, including type 2 diabetes mellitus (T2DM), can be treated with traditional Chinese medicine formulas, such as the Gegen Qinlian decoction (GQD). This study elucidates the mechanisms by which gut microbes mediate the anti-diabetic effects of GQD. Methods We conducted a double-blind randomized clinical trial involving 120 untreated participants with T2DM. During the 12-week intervention, anthropometric measurements and diabetic traits were recorded every 4 weeks. Fecal microbiota and serum metabolites were measured before and after the intervention using 16S rDNA sequencing, liquid chromatography-mass spectrometry, and Bio-Plex panels. Results Anti-diabetic effects were observed in the GQD group in the human trial. Specifically, glycated hemoglobin, fasting plasma glucose, and two-hour postprandial blood glucose levels were significantly lower in the GQD group than in the placebo group. Additionally, Faecalibacterium was significantly enriched in the GQD group, and the short-chain fatty acid levels were higher and the serum inflammation-associated marker levels were lower in the GQD group compared to the placebo group. Moreover, Faecalibacterium abundance negatively correlated with the levels of serum hemoglobin, fasting plasma glucose, and pro-inflammatory cytokines. Finally, the diabetes-alleviating effect of Faecalibacterium was confirmed by oral administration of Faecalibacterium prausnitzii (DSMZ 17677) in T2DM mouse model. Conclusions GQD improved type 2 diabetes primarily by modulating the abundance of Faecalibacterium in the gut microbiota, alleviating metabolic disorders and the inflammatory state. Trial registration Registry No. ChiCTR-IOR-15006626.
Collapse
Affiliation(s)
- Zezheng Gao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Wenhui Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lisha He
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yufei Li
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaotian Jiang
- Department of Endocrinology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Sha D I
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xinmiao Wang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xuan Zhang
- Biologicals Science and Technology Institute, Baotou Teacher's College, Baotou 014030, China
| | - Lin Han
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yanwen Liu
- Department of Endocrinology, Zhengzhou T.C.M. Hospital, Zhengzhou 450007, China
| | - Chengjuan Gu
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China
| | - Mengyi Wu
- Department of Cardiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Xinhui He
- Department of Cardiology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming 650000, China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
147
|
Santiago MSA, Avellar MCW, Perobelli JE. Could the gut microbiota be capable of making individuals more or less susceptible to environmental toxicants? Toxicology 2024; 503:153751. [PMID: 38354972 DOI: 10.1016/j.tox.2024.153751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Environmental toxicants are chemical substances capable to impair environmental quality and exert adverse effects on humans and other animals. The main routes of exposure to these pollutants are through the respiratory tract, skin, and oral ingestion. When ingested orally, they will encounter trillions of microorganisms that live in a community - the gut microbiota (GM). While pollutants can disrupt the GM balance, GM plays an essential role in the metabolism and bioavailability of these chemical compounds. Under physiological conditions, strategies used by the GM for metabolism and/or excretion of xenobiotics include reductive and hydrolytic transformations, lyase and functional group transfer reactions, and enzyme-mediated functional transformations. Simultaneously, the host performs metabolic processes based mainly on conjugation, oxidation, and hydrolysis reactions. Thus, due to the broad variety of bacterial enzymes present in GM, the repertoire of microbial transformations of chemicals is considered a key component of the machinery involved in the metabolism of pollutants in humans and other mammals. Among pollutants, metals deserve special attention once contamination by metals is a worldwide problem, and their adverse effects can be observed even at very low concentrations due to their toxic properties. In this review, bidirectional interaction between lead, arsenic, cadmium, and mercury and the host organism and its GM will be discussed given the most recent literature, presenting an analysis of the ability of GM to alter the host organism's susceptibility to the toxic effects of heavy metals, as well as evaluating the extent to which interventions targeting the microbiota could be potential initiatives to mitigate the adverse effects resulting from poisoning by heavy metals. This study is the first to highlight the overlap between some of the bacteria found to be altered by metal exposure and the bacteria that also aid the host organism in the metabolism of these metals. This could be a key factor to determine the beneficial species able to minimize the toxicity of metals in future therapeutic approaches.
Collapse
Affiliation(s)
- Marcella S A Santiago
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil
| | - Maria Christina W Avellar
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, Três de Maio, 100, São Paulo, SP 04044-020, Brazil
| | - Juliana E Perobelli
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil.
| |
Collapse
|
148
|
Manthei A, Elez-Martínez P, Soliva-Fortuny R, Murciano-Martínez P. Prebiotic potential of pectin and cello-oligosaccharides from apple bagasse and orange peel produced by high-pressure homogenization and enzymatic hydrolysis. Food Chem 2024; 435:137583. [PMID: 37804723 DOI: 10.1016/j.foodchem.2023.137583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
Apple bagasse and orange peel were subjected to high-pressure homogenization (HPH), enzymatic hydrolysis (EH) and their combination (HPHE) to study their effect on oligosaccharide production and in vitro fermentability. The application of a cellulase-pectinase mixture on the by-products generated significant quantities of cellobiose (COS-2) and pectin derived oligosaccharides (POS) which were identified as mainly methylated and acetylated oligogalacturonides with DP 2-5 (POS 2-5). When pre-treating the substrates with HPH, the release in orange peel was enhanced significantly leading to a POS content of 44.51 g/100 g peel, whereas oligosaccharide solubilization in apple bagasse was not affected. In vitro fermentation of the hydrolysates containing COS-2 and POS showed faster fermentation rates, between 6 and 10 h, and enhanced gas production, compared to those samples not subjected to enzymatic hydrolysis. Short chain fatty acid (SCFA) production was not impacted by the presence of POS and COS-2 in the induced quantities.
Collapse
Affiliation(s)
- Alina Manthei
- Department of Food Technology, Engineering and Science, University of Lleida - Agrotecnio CERCA Centre, Av. Alcalde Rovira Roure, 191, 25198, Spain.
| | - Pedro Elez-Martínez
- Department of Food Technology, Engineering and Science, University of Lleida - Agrotecnio CERCA Centre, Av. Alcalde Rovira Roure, 191, 25198, Spain.
| | - Robert Soliva-Fortuny
- Department of Food Technology, Engineering and Science, University of Lleida - Agrotecnio CERCA Centre, Av. Alcalde Rovira Roure, 191, 25198, Spain.
| | | |
Collapse
|
149
|
Fantini MC, Onali S, Gasbarrini A, Lopetuso LR. Immune system and gut microbiota senescence in elderly IBD patients. Minerva Gastroenterol (Torino) 2024; 70:59-67. [PMID: 34278753 DOI: 10.23736/s2724-5985.21.02934-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In inflammatory bowel disease (IBD), the loss of immune tolerance against gut microbiota causes chronic inflammation and the progressive accumulation of organ damage in genetically susceptible individuals. In the elderly, IBD is often characterized by a different disease behavior when compared with pediatric and young adult disease. Besides disease behavior, another aspect of the multifaceted impact of age on elderly IBD course is increased susceptibility to infections. In this context, age-of-onset-dependent IBD behavior and clinical course are two major contributors to immune system senescence and change of gut microbiota in older subjects. Here, we review the available literature linking immunosenescence and age-dependent changes in the gut microbiota composition to IBD pathogenesis speculating on their possible implications in disease expression in this age class.
Collapse
Affiliation(s)
- Massimo C Fantini
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy -
| | - Sara Onali
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, CEMAD Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Loris R Lopetuso
- Department of Medical and Surgical Sciences, CEMAD Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
- Department of Medicine and Ageing Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
150
|
Ciccia F, Dussias NK, Gandolfo S, Rizzello F, Gionchetti P. The effect of anti-TNF drugs on the intestinal microbiota in patients with spondyloarthritis, rheumatoid arthritis, and inflammatory bowel diseases. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2024; 5:27-33. [PMID: 38571933 PMCID: PMC10985709 DOI: 10.1515/rir-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/30/2023] [Indexed: 04/05/2024]
Abstract
Spondyloarthritis (SpA), rheumatoid arthritis (RA), and inflammatory bowel diseases (IBD) are chronic inflammatory autoimmune diseases that are associated with alterations in the composition of the intestinal microbiota (i.e., dysbiosis). For SpA and RA, a gut-joint-enthesis axis is hypothesized and recent data suggests that dysbiosis may contribute directly to initiating and perpetuating joint and spine inflammation. Biologic drugs targeting tumor necrosis factor (TNF) are effective in treating these diseases and have been shown to partially restore the disrupted microbiome. Hence, drugs that affect both the intestinal and joint components of these diseases, such as anti-TNF drugs, may act on the intestinal microbiome. However, despite the remarkable efficacy of anti-TNF-α treatments, non-responders are frequent, and predictors of patient outcomes have not been identified. In this narrative review, we summarize recent research on the downstream effects of anti-TNF drugs on the intestinal microbiota in SpA, RA, and IBD. We also discuss whether these changes could have a role as predictive biomarkers of anti-TNF response.
Collapse
Affiliation(s)
- Francesco Ciccia
- Rheumatology Unit, Department of Precision Medicine, Università degli Studi della Campania “L. Vanvitelli”, Naples, Italy
| | - Nikolas Konstantine Dussias
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, SSD Malattie Infiammatorie Croniche Intestinali, University of Bologna, BolognaItaly
| | - Saviana Gandolfo
- Rheumatology Unit, Azienda Ospedaliera San Giovanni Bosco, Naples, Italy
| | - Fernando Rizzello
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, SSD Malattie Infiammatorie Croniche Intestinali, University of Bologna, BolognaItaly
| | - Paolo Gionchetti
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, SSD Malattie Infiammatorie Croniche Intestinali, University of Bologna, BolognaItaly
| |
Collapse
|