1451
|
Chen PP, Zhang ZS, Wu JC, Zheng JF, Lin F. LncRNA SNHG12 promotes proliferation and epithelial mesenchymal transition in hepatocellular carcinoma through targeting HEG1 via miR-516a-5p. Cell Signal 2021; 84:109992. [PMID: 33774129 DOI: 10.1016/j.cellsig.2021.109992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/20/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common cancer and its prognosis is poor due to metastasis and recurrence. EMT is associated with metastasis. A deep understanding of regulatory mechanism of EMT is critical. LncRNA is involved in regulation of various biological processes including EMT. This study aimed to investigate the regulatory signal axis among lncRNA SNHG12, miR-516a-5p and the target gene HEG1 during EMT. Cell cycle and apoptosis were analyzed by flow cytometry. Tumorigenesis was analyzed by clone formation assay. Wound healing assay and transwell assay was performed to detect migration and invasion, respectively. Interaction among SNHG12, miR-516a-5p and HEG1 were analyzed by dual luciferase assay and RIP assay. We also detected expression of RNA and protein by QPCR and western blotting. Finally, tumor growth was analyzed by tumorigenesis assay in vivo. Ki-67 and HEG1 level in tumor tissues was analyzed by IHC. SNHG12 and HEG1 were upregulated, miR-516a-5p was downregulated in HCC cell lines. SNHG12 could interact with and inhibit miR-516a-5p. MiR-516a-5p could interact with HEG1 and inhibit HEG1 expression. Knock down SNHG12 inhibited proliferation, migration, invasion, EMT and promoted apoptosis of HCC cells. Such effects were antagonized by inhibiting miR-516a-5p. SNHG12 overexpression lead to opposite results. Similar results were observed in mice. SNHG12 could promote EMT in HCC through targeting and inhibiting miR-516a-5p, which eventually upregulated HEG1 expression, in both cell and mice.
Collapse
Affiliation(s)
- Ping-Ping Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, PR China; Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, Haikou 570311, Hainan Province, PR China
| | - Zhen-Sheng Zhang
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, Haikou 570311, Hainan Province, PR China
| | - Jin-Cai Wu
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, Haikou 570311, Hainan Province, PR China
| | - Jin-Fang Zheng
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, Haikou 570311, Hainan Province, PR China
| | - Fan Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, PR China; Department of Hepatobiliary Surgery, The First Clinical Medical College of Jinan University, Guangzhou 510630, Guangdong Province, PR China.
| |
Collapse
|
1452
|
Huang X, Xiang L, Wang B, Hu J, Liu C, Ren A, Du K, Ye G, Liang Y, Tang Y, Yang D, Yuan Y. CMTM6 promotes migration, invasion, and EMT by interacting with and stabilizing vimentin in hepatocellular carcinoma cells. J Transl Med 2021; 19:120. [PMID: 33757532 PMCID: PMC7989033 DOI: 10.1186/s12967-021-02787-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/15/2021] [Indexed: 01/15/2023] Open
Abstract
Background CKLF like MARVEL transmembrane domain containing 6 (CMTM6) has been associated with the development in many kinds of cancers. However, the roles of CMTM6 in hepatocellular carcinoma (HCC) are largely unknown. Thus, the present study aimed to investigate the function of CMTM6 in HCC. Methods We analysed CMTM6 levels and functions using human HCC cell lines, paired HCC and adjacent non-tumorous tissues, and a tissue microarray. CMTM6 expression was silenced using short hairpin RNAs and its was overexpressed from a lentivirus vector. CMTM6 mRNA and protein levels were determined using quantitative real-time reverse transcription PCR and western blotting, respectively. Proliferation, colony formation, migration, and invasion were assessed using a Cell counting kit-8, colony formation, wound-healing, and Matrigel invasion assays, respectively. Immunohistochemistry was used to score the expression of CMTM6 in tissue samples. The localization and binding partners of CMTM6 were investigated using immunofluorescence and coimmunoprecipitation experiments, respectively. A mouse xenograft model was used for in vivo studies. Results Compared with that in adjacent, non-cancerous tissue, Here, CMTM6 levels were increased in HCC tissue samples. Silencing of CMTM6 suppressed the proliferation, migration, and invasion of HCC cells. Conversely, CMTM6 overexpression enhanced HCC cell invasion, migration, and proliferation. Mechanistically, CMTM6 physically interacts with and stabilizes vimentin, thus inducing epithelial–mesenchymal transition (EMT), which promotes proliferation, migration and invasion. Importantly, in HCC tissues, CMTM6 expression correlated positively with vimentin levels. Poor prognosis of HCC was associated significantly with higher CMTM6 expression. Conclusions CMTM6 has an important function in HCC proliferation, migration, and invasion, via its interaction with and stabilization of vimentin. CMTM6 might represent a potential biomarker and therapeutic target to treat HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02787-5.
Collapse
Affiliation(s)
- Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No. 78 Hengzhigang Road, Guangzhou, 510095, Guangdong, People's Republic of China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Leyang Xiang
- Department of Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No. 78 Hengzhigang Road, Guangzhou, 510095, Guangdong, People's Republic of China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No. 78 Hengzhigang Road, Guangzhou, 510095, Guangdong, People's Republic of China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jijie Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunshan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No. 78 Hengzhigang Road, Guangzhou, 510095, Guangdong, People's Republic of China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Anbang Ren
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No. 78 Hengzhigang Road, Guangzhou, 510095, Guangdong, People's Republic of China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Kunpeng Du
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No. 78 Hengzhigang Road, Guangzhou, 510095, Guangdong, People's Republic of China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Gengtai Ye
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, China
| | - Yingying Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No. 78 Hengzhigang Road, Guangzhou, 510095, Guangdong, People's Republic of China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yunqiang Tang
- Department of Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No. 78 Hengzhigang Road, Guangzhou, 510095, Guangdong, People's Republic of China.
| | - Dinghua Yang
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, China.
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No. 78 Hengzhigang Road, Guangzhou, 510095, Guangdong, People's Republic of China. .,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
1453
|
Standardization of esophageal adenocarcinoma in vitro model and its applicability for model drug testing. Sci Rep 2021; 11:6664. [PMID: 33758229 PMCID: PMC7988140 DOI: 10.1038/s41598-021-85530-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 01/11/2023] Open
Abstract
FLO-1 cell line represents an important tool in esophageal adenocarcinoma (EAC) research as a verified and authentic cell line to study the disease pathophysiology and antitumor drug screenings. Since in vitro characteristics of cells depend on the microenvironment and culturing conditions, we performed a thorough characterization of the FLO-1 cell line under different culturing conditions with the aim of (1) examining the effect of serum-free growth medium and air–liquid interface (A–L) culturing, which better reflect physiological conditions in vivo and (2) investigating the differentiation potential of FLO-1 cells to mimic the properties of the in vivo esophageal epithelium. Our study shows that the composition of the media influenced the morphological, ultrastructural and molecular characteristics of FLO-1 cells, such as the expression of junctional proteins. Importantly, FLO-1 cells formed spheres at the A–L interface, recapitulating key elements of tumors in the esophageal tube, i.e., direct contact with the gas phase and three-dimensional architecture. On the other hand, FLO-1 models exhibited high permeability to model drugs and zero permeability markers, and low transepithelial resistance, and therefore poorly mimicked normal esophageal epithelium. In conclusion, the identified effect of culture conditions on the characteristics of FLO-1 cells should be considered for standardization, data reproducibility and validity of the in vitro EAC model. Moreover, the sphere-forming ability of FLO-1 cells at the A–L interface should be considered in EAC tumor biology and anticancer drug studies as a reliable and straightforward model with the potential to increase the predictive efficiency of the current in vitro approaches.
Collapse
|
1454
|
Wang H, Chirshev E, Hojo N, Suzuki T, Bertucci A, Pierce M, Perry C, Wang R, Zink J, Glackin CA, Ioffe YJ, Unternaehrer JJ. The Epithelial-Mesenchymal Transcription Factor SNAI1 Represses Transcription of the Tumor Suppressor miRNA let-7 in Cancer. Cancers (Basel) 2021; 13:cancers13061469. [PMID: 33806868 PMCID: PMC8004805 DOI: 10.3390/cancers13061469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary When cells undergo epithelial–mesenchymal transition (EMT) they gain characteristics of stem cells. We investigated the mechanism by which the EMT transcription factor SNAI1 induces stem cell features. In these studies, we observed that SNAI1 represses a microRNA that maintains differentiation, let-7. This microRNA is lost in cancer, and its loss correlates with poor prognosis. In breast, pancreatic, and ovarian cancer cell lines the cell stemness in increased by SNAI1 overexpression and reduced by SNAI1 knockdown. We extended the ovarian cancer results to patient-derived cells, and to a mouse xenograft model. In mice, we used nanoparticles to deliver small RNAs (RNAi) targeting SNAI1, resulting in restoration of let-7 levels, inhibition of stemness, and reduced tumor burden. Our studies validate nanoparticle-delivered RNAi targeting SNAI1 as a clinically relevant approach. Abstract We aimed to determine the mechanism of epithelial–mesenchymal transition (EMT)-induced stemness in cancer cells. Cancer relapse and metastasis are caused by rare stem-like cells within tumors. Studies of stem cell reprogramming have linked let-7 repression and acquisition of stemness with the EMT factor, SNAI1. The mechanisms for the loss of let-7 in cancer cells are incompletely understood. In four carcinoma cell lines from breast cancer, pancreatic cancer, and ovarian cancer and in ovarian cancer patient-derived cells, we analyzed stem cell phenotype and tumor growth via mRNA, miRNA, and protein expression, spheroid formation, and growth in patient-derived xenografts. We show that treatment with EMT-promoting growth factors or SNAI1 overexpression increased stemness and reduced let-7 expression, while SNAI1 knockdown reduced stemness and restored let-7 expression. Rescue experiments demonstrate that the pro-stemness effects of SNAI1 are mediated via let-7. In vivo, nanoparticle-delivered siRNA successfully knocked down SNAI1 in orthotopic patient-derived xenografts, accompanied by reduced stemness and increased let-7 expression, and reduced tumor burden. Chromatin immunoprecipitation demonstrated that SNAI1 binds the promoters of various let-7 family members, and luciferase assays revealed that SNAI1 represses let-7 transcription. In conclusion, the SNAI1/let-7 axis is an important component of stemness pathways in cancer cells, and this study provides a rationale for future work examining this axis as a potential target for cancer stem cell-specific therapies.
Collapse
Affiliation(s)
- Hanmin Wang
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA; (H.W.); (E.C.); (N.H.); (T.S.); (A.B.); (C.P.)
| | - Evgeny Chirshev
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA; (H.W.); (E.C.); (N.H.); (T.S.); (A.B.); (C.P.)
| | - Nozomi Hojo
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA; (H.W.); (E.C.); (N.H.); (T.S.); (A.B.); (C.P.)
| | - Tise Suzuki
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA; (H.W.); (E.C.); (N.H.); (T.S.); (A.B.); (C.P.)
| | - Antonella Bertucci
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA; (H.W.); (E.C.); (N.H.); (T.S.); (A.B.); (C.P.)
| | - Michael Pierce
- Department of Biology, California State University San Bernardino, San Bernardino, CA 92407, USA;
| | - Christopher Perry
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA; (H.W.); (E.C.); (N.H.); (T.S.); (A.B.); (C.P.)
| | - Ruining Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; (R.W.); (J.Z.)
| | - Jeffrey Zink
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; (R.W.); (J.Z.)
| | | | - Yevgeniya J. Ioffe
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA;
| | - Juli J. Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA; (H.W.); (E.C.); (N.H.); (T.S.); (A.B.); (C.P.)
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Correspondence: ; Tel.: +1-909-558-7691; Fax: +1-909-558-4887
| |
Collapse
|
1455
|
Chang N, Cui Y, Liang X, Han D, Zheng X, Wu A, Qian L. Long Noncoding RNA LINC00857 Promotes Proliferation, Migration, and Invasion of Colorectal Cancer Cell through miR-1306/Vimentin Axis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5525763. [PMID: 33833823 PMCID: PMC8012143 DOI: 10.1155/2021/5525763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022]
Abstract
Colorectal cancer is a commonly diagnosed cancer and the leading cause of cancer-related death which still increasing in many countries. The lack of biomarkers for early detection and clinic treatment results in high morbidity and mortality. The novel role of long noncoding RNA LINC00857 on cell proliferation migration and invasion was explored in this article. The expression level of LINC00857 in colorectal cancer tissue samples and cells was determined notably higher than normal tissue samples and cells. Silence LINC00857 can significantly inhibit colorectal cancer cell viability and metastasis in vitro. Moreover, LINC00857 depletion caused cell accumulation in the G0/G1 phase. In addition, we recognized the novel LINC00857-miR-1306-vimentin axis and demonstrated it by dual-luciferase reporter assay. And this signaling axis could be considered as the target for colorectal cancer treatment. In conclusion, LINC00857 can promote colorectal cancer progress by sponging miR-1306 and upregulate vimentin to accelerate the epithelial-mesenchymal transition process.
Collapse
Affiliation(s)
- Na Chang
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (West District, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui 230031, China
| | - Yayun Cui
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (West District, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui 230031, China
| | - Xue Liang
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (West District, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui 230031, China
| | - Dan Han
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (West District, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui 230031, China
| | - Xiaomin Zheng
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (West District, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui 230031, China
| | - Ailin Wu
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (West District, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui 230031, China
| | - Liting Qian
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (West District, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui 230031, China
| |
Collapse
|
1456
|
Liu Y, Shi K, Chen Y, Wu X, Chen Z, Cao K, Tao Y, Chen X, Liao J, Zhou J. Exosomes and Their Role in Cancer Progression. Front Oncol 2021; 11:639159. [PMID: 33828985 PMCID: PMC8020998 DOI: 10.3389/fonc.2021.639159] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes from extracellular vesicles can activate or inhibit various signaling pathways by transporting proteins, lipids, nucleic acids and other substances to recipient cells. In addition, exosomes are considered to be involved in the development and progression of tumors from different tissue sources in numerous ways, including remodeling of the tumor microenvironment, promoting angiogenesis, metastasis, and invasion, and regulating the immune escape of tumor cells. However, the precise molecular mechanisms by which exosomes participate in these different processes remains unclear. In this review, we describe the research progress of tumor cell-derived exosomes in cancer progression. We also discuss the prospects of the application of exosomes combined with nanoengineered chemotherapeutic drugs in the treatment of cancer.
Collapse
Affiliation(s)
- Yang Liu
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Shi
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Chen
- Department of Dermatology, The First Hospital of Changsha, Changsha, China
| | - Xianrui Wu
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Chen
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology of Xiangya Hospital, Central South University, Changsha, China
| | - Junlin Liao
- Departments of Medical Cosmetology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Jianda Zhou
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
1457
|
Patchett AL, Tovar C, Blackburn NB, Woods GM, Lyons AB. Mesenchymal plasticity of devil facial tumour cells during in vivo vaccine and immunotherapy trials. Immunol Cell Biol 2021; 99:711-723. [PMID: 33667023 DOI: 10.1111/imcb.12451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/12/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Immune evasion is critical to the growth and survival of cancer cells. This is especially pertinent to transmissible cancers, which evade immune detection across genetically diverse hosts. The Tasmanian devil (Sarcophilus harrisii) is threatened by the emergence of Devil Facial Tumour Disease (DFTD), comprising two transmissible cancers (DFT1 and DFT2). The development of effective prophylactic vaccines and therapies against DFTD has been restricted by an incomplete understanding of how allogeneic DFT1 and DFT2 cells maintain immune evasion upon activation of tumour-specific immune responses. In this study, we used RNA sequencing to examine tumours from three experimental DFT1 cases. Two devils received a vaccine prior to inoculation with live DFT1 cells, providing an opportunity to explore changes to DFT1 cancers under immune pressure. Analysis of DFT1 in the non-immunised devil revealed a 'myelinating Schwann cell' phenotype, reflecting both natural DFT1 cancers and the DFT1 cell line used for the experimental challenge. Comparatively, immunised devils exhibited a 'dedifferentiated mesenchymal' DFT1 phenotype. A third 'immune-enriched' phenotype, characterised by increased PDL1 and CTLA-4 expression, was detected in a DFT1 tumour that arose after immunotherapy. In response to immune pressure, mesenchymal plasticity and upregulation of immune checkpoint molecules are used by human cancers to evade immune responses. Similar mechanisms are associated with immune evasion by DFTD cancers, providing novel insights that will inform modification of DFTD vaccines. As DFT1 and DFT2 are clonal cancers transmitted across genetically distinct hosts, the Tasmanian devil provides a 'natural' disease model for more broadly exploring these immune evasion mechanisms in cancer.
Collapse
Affiliation(s)
- Amanda L Patchett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Cesar Tovar
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.,School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Nicholas B Blackburn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
1458
|
20(S)-ginsenoside Rh2 as agent for the treatment of LMN-CRC via regulating epithelial-mesenchymal transition. Biosci Rep 2021; 40:222306. [PMID: 32141497 PMCID: PMC7098129 DOI: 10.1042/bsr20191507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/31/2022] Open
Abstract
The lymph node metastasis of colorectal cancer (LMN-CRC) seriously threatens the prognosis of patients. Chemotherapy, as the most common treatment, results in severe bone marrow suppression. 20(S)-ginsenoside Rh2 (SGRh2), a major effective constituent of ginseng, has demonstrated therapeutic effects on a variety of diseases, including some tumours. SGRh2 treatment had no effect on other organs. Therefore, ginsenosides are considered a safe and effective antineoplastic drug. However, the effects of SGRh2 on LMN-CRC remain unknown. The present study investigated the potential effect of SGRh2 on LMN-CRC in vitro and in vivo. SW480 and CoLo205 cell lines were treated with SGRh2. SGRh2 dose-dependently decreased CRC cell proliferation by CCK-8, colony formation and Edu assays. The Transwell and scratch assays revealed that SGRh2 inhibits the migratory and invasive abilities of CRC cells in a dose-dependent manner. Furthermore, the results of Western blotting revealed that SGRh2 decreased the expression of matrix metalloproteinase (MMP)-2 and MMP9. In terms of the underlying mechanisms, SGRh2 regulates CRC metastasis by affecting epithelial-mesenchymal transition (EMT), which significantly up-regulated epithelial biomarkers (E-cadherin) and down-regulated mesenchymal biomarkers (N-cadherin and vimentin) and EMT transcriptional factors (Smad-3, Snail-1, and Twist-1). In vivo, SGRh2 significantly inhibited LMN-CRC without affecting other normal organs. Immunohistochemical results showed that SGRh2 treats LMN-CRC by regulating EMT. These results demonstrate that SGRh2 has therapeutic potential for LMN-CRC.
Collapse
|
1459
|
Gao Y, Fan WH, Song Z, Lou H, Kang X. Comparison of circulating tumor cell (CTC) detection rates with epithelial cell adhesion molecule (EpCAM) and cell surface vimentin (CSV) antibodies in different solid tumors: a retrospective study. PeerJ 2021; 9:e10777. [PMID: 33717672 PMCID: PMC7934682 DOI: 10.7717/peerj.10777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Status of epithelial-mesenchymal transition (EMT) varies from tumors to tumors. Epithelial cell adhesion molecule (EpCAM) and cell surface vimentin (CSV) are the most common used targets for isolating epithelial and mesenchymal CTCs, respectively. This study aimed to identify a suitable CTC capturing antibody for CTC enrichment in each solid tumor by comparing CTC detection rates with EpCAM and CSV antibodies in different solid tumors. Methods Treatment-naive patients with confirmed cancer diagnosis and healthy people who have performed CTC detection between April 2017 and May 2018 were included in this study. CTC detection was performed with CytoSorter® CTC system using either EpCAM or CSV antibody. In total, 853 CTC results from 690 cancer patients and 72 healthy people were collected for analysis. The performance of CTC capturing antibody was determined by the CTC detection rate. Results EpCAM has the highest CTC detection rate of 84.09% in CRC, followed by BCa (78.32%). CTC detection rates with EpCAM antibody are less than 40% in HCC (25%), PDAC (32.5%) and OC (33.33%). CSV has the highest CTC detection rate of 90% in sarcoma, followed by BC (85.71%), UC (84.62%), OC (83.33%) and BCa (81.82%). CTC detection rates with CSV antibody are over 60% in all 14 solid tumors. Except for CRC, CSV has better performances than EpCAM in most solid tumors regarding the CTC detection rates. Conclusion EpCAM can be used as a target to isolate CTCs in CRC, LC, GC, BCa, EC, HNSCC, CC and PCa, especially in CRC, while CSV can be used in most solid tumors for isolating CTCs.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Polytechnic University, Beijing, China
| | | | - Zhengbo Song
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Haizhou Lou
- Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xixong Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Polytechnic University, Beijing, China
| |
Collapse
|
1460
|
Song Y, An W, Wang H, Gao Y, Han J, Hao C, Chen L, Liu S, Xing Y. LRH1 Acts as an Oncogenic Driver in Human Osteosarcoma and Pan-Cancer. Front Cell Dev Biol 2021; 9:643522. [PMID: 33791301 PMCID: PMC8005613 DOI: 10.3389/fcell.2021.643522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 01/06/2023] Open
Abstract
Osteosarcoma (OS) that mainly occurs during childhood and adolescence is a devastating disease with poor prognosis presented by extreme metastases. Recent studies have revealed that liver receptor homolog 1 (LRH-1) plays a vital role in the metastasis of several human cancers, but its role is unknown in the metastasis of OS. In this study, Gene Ontology (GO) enrichment analyses based on high-throughput RNA-seq data revealed that LRH-1 acted a pivotal part in the positive regulation of cell migration, motility, and angiogenesis. Consistently, LRH-1 knockdown inhibited the migration of human OS cells, which was concurrent with the downregulation of mesenchymal markers and the upregulation of epithelial markers. In addition, short hairpin RNAs (shRNAs) targeting LRH-1 inactivated transforming growth factor beta (TGF-β) signaling pathway. LRH-1 knockdown inhibited human umbilical vein endothelial cell (HUVEC) proliferation, migration, and tube formation. Vascular endothelial growth factor A (VEGFA) expression was also downregulated after LRH-1 knockdown. Immunohistochemistry (IHC) revealed that the expression of LRH-1 protein was significantly higher in tumor tissues than in normal bone tissues. We found that high LRH-1 expression was associated with poor differentiation and advanced TNM stage in OS patients using IHC. Based on The Cancer Genome Atlas (TCGA) database, high LRH-1 expression predicts poor survival in lung squamous cell carcinoma (LUSC), kidney renal papillary cell carcinoma (KIRP), and pancreatic adenocarcinoma (PAAD). The downregulation of LRH-1 significantly hindered the migration and motility of LUSC cells. Using multi-omic bioinformatics, the positive correlation between LRH-1- and EMT-related genes was found across these three cancer types. GO analysis indicated that LRH-1 played a vital role in “blood vessel morphogenesis” or “vasculogenesis” in KIRP. Our results indicated that LRH-1 plays a tumor-promoting role in human OS, could predict the early metastatic potential, and may serve as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yang Song
- The First Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiwei An
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Hongmei Wang
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanren Gao
- Department of Intervention, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jihua Han
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chenguang Hao
- The First Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Chen
- The First Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shilong Liu
- Department of Thoracic Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
1461
|
Liu Y, Wang G, Li Y, Zhao Q, Fan L, Tan B, Li B, Yu B, Xi J. miR-424-5p reduces 5-fluorouracil resistance possibly by inhibiting Src/focal adhesion kinase signalling-mediated epithelial-mesenchymal transition in colon cancer cells. J Pharm Pharmacol 2021; 73:1062-1070. [PMID: 33793771 DOI: 10.1093/jpp/rgab031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES miR-424-5p negatively regulates various malignant biological behaviours in tumour cells. We explored the relationship between miR-424-5p and 5-fluorouracil resistance in colon cancer cells. METHODS We developed 5-fluorouracil-resistant HT-29 cells and detected miR-424-5p expression using real-time fluorescence quantitative PCR. Cell viability was assessed using Cell Counting Kit-8 (CCK-8) assay. Immunofluorescence and western blotting were performed to determine protein levels. Apoptosis was detected by Annexin V-FITC/PI staining. KEY FINDINGS miR-424-5p was downregulated in 5-fluorouracil-resistant HT-29 cells. A miR-424-5p mimic enhanced the sensitivity of the resistant cells to 5-fluorouracil, whereas a miR-424-5p inhibitor promoted 5-fluorouracil resistance in HT-29 cells. Furthermore, the miR-424-5p mimic downregulated vimentin and upregulated E-cadherin in 5-fluorouracil-resistant HT-29 cells, whereas the miR-424-5p inhibitor exhibited opposite effects. The miR-424-5p inhibitor significantly inhibited 5-fluorouracil-induced HT-29 cell apoptosis and Src and focal adhesion kinase phosphorylation, whereas the miR-424-5p mimic showed opposite effects. Pretreatment with Src inhibitor 1 or focal adhesion kinase inhibitor 2 blocked the increase in Src and focal adhesion kinase phosphorylation and vimentin expression level and the decrease in E-cadherin expression level in miR-424-5p inhibitor-exposed HT-29 cells. CONCLUSIONS miR-424-5p suppressed epithelial-mesenchymal transition by inhibiting the Src/focal adhesion kinase signalling pathway to reduce 5-fluorouracil resistance in colon cancer cells.
Collapse
Affiliation(s)
- Youqiang Liu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Li
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qun Zhao
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liqiao Fan
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bibo Tan
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baokun Li
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Yu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinchuan Xi
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
1462
|
Jiang M, Fang S, Zhao X, Zhou C, Gong Z. Epithelial-mesenchymal transition-related circular RNAs in lung carcinoma. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0238. [PMID: 33710806 PMCID: PMC8185863 DOI: 10.20892/j.issn.2095-3941.2020.0238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a highly complex phenotypic conversion during embryogenesis, and is important for metastasis, which contributes to tumor deterioration and poor prognoses of cancer patients. Lung carcinoma has a high tendency to develop the EMT. Circular RNAs (circRNAs) are involved in EMT-related cell invasion and metastasis in various types of cancers. Moreover, circRNAs have been found to be a link to EMT-related transcription factors and EMT-associated signaling pathways. This review mainly focuses on the influence of EMT-related circRNAs on lung carcinomas. More specifically, the roles of EMT-inducing and EMT-suppressive circRNAs in lung carcinomas are discussed. With circRNAs potentially becoming promising biomarkers and therapeutic targets for cancer managements, they will hopefully stimulate the interest of medical workers in the early diagnosis, personalized treatment, and positive prognoses in the era of precision oncology.
Collapse
Affiliation(s)
- Meina Jiang
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Shuai Fang
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Xiaodong Zhao
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
| | - Chengwei Zhou
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
| | - Zhaohui Gong
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| |
Collapse
|
1463
|
Progression of Metastasis through Lymphatic System. Cells 2021; 10:cells10030627. [PMID: 33808959 PMCID: PMC7999434 DOI: 10.3390/cells10030627] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Lymph nodes are the most common sites of metastasis in cancer patients. Nodal disease status provides great prognostic power, but how lymph node metastases should be treated is under debate. Thus, it is important to understand the mechanisms by which lymph node metastases progress and how they can be targeted to provide therapeutic benefits. In this review, we focus on delineating the process of cancer cell migration to and through lymphatic vessels, survival in draining lymph nodes and further spread to other distant organs. In addition, emerging molecular targets and potential strategies to inhibit lymph node metastasis are discussed.
Collapse
|
1464
|
EHF suppresses cancer progression by inhibiting ETS1-mediated ZEB expression. Oncogenesis 2021; 10:26. [PMID: 33712555 PMCID: PMC7955083 DOI: 10.1038/s41389-021-00313-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/26/2021] [Accepted: 02/11/2021] [Indexed: 11/08/2022] Open
Abstract
ETS homologous factor (EHF) belongs to the epithelium-specific subfamily of the E26 transformation-specific (ETS) transcription factor family. Currently, little is known about EHF’s function in cancer. We previously reported that ETS1 induces expression of the ZEB family proteins ZEB1/δEF1 and ZEB2/SIP1, which are key regulators of the epithelial–mesenchymal transition (EMT), by activating the ZEB1 promoters. We have found that EHF gene produces two transcript variants, namely a long form variant that includes exon 1 (EHF-LF) and a short form variant that excludes exon 1 (EHF-SF). Only EHF-SF abrogates ETS1-mediated activation of the ZEB1 promoter by promoting degradation of ETS1 proteins, thereby inhibiting the EMT phenotypes of cancer cells. Most importantly, we identified a novel point mutation within the conserved ETS domain of EHF, and found that EHF mutations abolish its original function while causing the EHF protein to act as a potential dominant negative, thereby enhancing metastasis in vivo. Therefore, we suggest that EHF acts as an anti-EMT factor by inhibiting the expression of ZEBs, and that EHF mutations exacerbate cancer progression.
Collapse
|
1465
|
Young KA, Biggins L, Sharpe HJ. Protein tyrosine phosphatases in cell adhesion. Biochem J 2021; 478:1061-1083. [PMID: 33710332 PMCID: PMC7959691 DOI: 10.1042/bcj20200511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Adhesive structures between cells and with the surrounding matrix are essential for the development of multicellular organisms. In addition to providing mechanical integrity, they are key signalling centres providing feedback on the extracellular environment to the cell interior, and vice versa. During development, mitosis and repair, cell adhesions must undergo extensive remodelling. Post-translational modifications of proteins within these complexes serve as switches for activity. Tyrosine phosphorylation is an important modification in cell adhesion that is dynamically regulated by the protein tyrosine phosphatases (PTPs) and protein tyrosine kinases. Several PTPs are implicated in the assembly and maintenance of cell adhesions, however, their signalling functions remain poorly defined. The PTPs can act by directly dephosphorylating adhesive complex components or function as scaffolds. In this review, we will focus on human PTPs and discuss their individual roles in major adhesion complexes, as well as Hippo signalling. We have collated PTP interactome and cell adhesome datasets, which reveal extensive connections between PTPs and cell adhesions that are relatively unexplored. Finally, we reflect on the dysregulation of PTPs and cell adhesions in disease.
Collapse
Affiliation(s)
- Katherine A. Young
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Laura Biggins
- Bioinformatics, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Hayley J. Sharpe
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
1466
|
Zhang X, Wei C, Liang H, Han L. Polo-Like Kinase 4's Critical Role in Cancer Development and Strategies for Plk4-Targeted Therapy. Front Oncol 2021; 11:587554. [PMID: 33777739 PMCID: PMC7994899 DOI: 10.3389/fonc.2021.587554] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (Plks) are critical regulatory molecules during the cell cycle process. This family has five members: Plk1, 2, 3, 4, and 5. Plk4 has been identified as a master regulator of centriole replication, and its aberrant expression is closely associated with cancer development. In this review, we depict the DNA, mRNA, and protein structure of Plk4, and the regulation of Plk4 at a molecular level. Then we list the downstream targets of Plk4 and the hallmarks of cancer associated with these targets. The role of Plk4 in different cancers is also summarized. Finally, we review the inhibitors that target Plk4 in the hope of discovering effective anticancer drugs. From authors' perspective, Plk4 might represent a valuable tumor biomarker and critical target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
1467
|
Zhou WJ, Zhang J, Xie F, Wu JN, Ye JF, Wang J, Wu K, Li MQ. CD45RO -CD8 + T cell-derived exosomes restrict estrogen-driven endometrial cancer development via the ERβ/miR-765/PLP2/Notch axis. Theranostics 2021; 11:5330-5345. [PMID: 33859750 PMCID: PMC8039953 DOI: 10.7150/thno.58337] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Rationale: Estrogen-dependent cancers (e.g., breast, endometrial, and ovarian cancers) are among the leading causes of morbidity and mortality in women worldwide. Recently, exosomes released by tumor-infiltrating CD8+ T cells have been under the spotlight in the field of cancer immunotherapy. Our study aims at elucidating the underlying mechanisms of the crosstalk between estrogen signaling and CD8+ T cells, and possible intervention values in uterine corpus endometrial cancer (UCEC). Methods: Micro RNA-seq was conducted to screen differentially expressed micro RNA in UCEC. Bioinformatic analysis was processed to predict the target of miR-765. RNA silencing or overexpressing and pharmacologic inhibitors were used to assess the functions of ERβ/miR-765/PLP2/Notch axis in UCEC cell proliferation and invasion in vivo and in vitro. In vivo imaging was performed to evaluate the metastasis of tumor in mice. Combined fluorescent in situ hybridization for miR-765 and immunofluorescent labeling for CD8 was carried out to prove the co-localization between miR-765 and CD8+ T cells. Exosomes derived from CD45RO-CD8+ T cells were isolated to detect the regulatory effects on UCEC. Results: miR-765 is characterized as the most downregulated miRNA in UCEC, and there is a negative correlation between miR-765 and Proteolipid protein 2 (PLP2) in UCEC lesion. Estrogen significantly down-regulates miR-765 level, and facilitates the development of UCEC by estrogen receptor (ER) β. Mechanistically, this process is mediated through the miRNAs (e.g., miR-3584-5p, miR-7-5p, miR-150-5p, and miR-124-3p) cluster-controlled regulation of the PLP2, which further regulates Ki-67 and multiple epithelial-mesenchymal transition (EMT)-related molecules (e.g, E-cadherin and Vimentin) in a Notch signaling pathway-dependent manner. Interestingly, the selective ER degrader Fulvestrant alleviates estrogen-mediated miR-765/PLP2 expression regulation and UCEC development in ERβ-dependent and -independent manners. Additionally, CD45RO-CD8+ T cell-derived exosomes release more miR-765 than that from CD45RO+CD8+ T cells. In therapeutic studies, these exosomes limit estrogen-driven disease development via regulation of the miR-765/PLP2 axis. Conclusions: This observation reveals novel molecular mechanisms underlying estrogen signaling and CD8+ T cell-released exosomes in UCEC development, and provides a potential therapeutic strategy for UCEC patients with aberrant ERβ/miR-765/PLP2/Notch signaling axis.
Collapse
|
1468
|
Antitumor Effects of Baicalein and Its Mechanism via TGF β Pathway in Cervical Cancer HeLa Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5527190. [PMID: 33777154 PMCID: PMC7979304 DOI: 10.1155/2021/5527190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 03/06/2021] [Indexed: 01/10/2023]
Abstract
Background Due to dual-regulating carcinogenesis, the TGFβ pathway is an ideal and alternative tumor target. Natural flavonoids possess the similar structures to estrogen and could exert an important benefit to cervical cancer. The present study aimed to screen the inhibitor of TGFβ pathway from natural flavonoids and evaluate the function and mechanism of the TGFβ pathway inhibitor on cervical cancer. Materials and Methods The cervical cancer HeLa cells were firstly treated with different flavonoids and probed by western blot for screening the inhibitor of TGFβ pathway. And then, the effect of the identified inhibitor on cell proliferation was studied by CCK-8 and clone formation assay. Then, RT-PCR and western blot assay were performed to evaluate the effect of identified inhibitor on mTOR/p70S6K pathway, and the cell migration and EMT pathway were also examined using scratching analysis and western blot assay. Finally, the role of TGFβ was assessed via the classic inhibitor of TGFβ/SMAD pathway. Results Screening data by western blot assay showed that baicalein displayed the best inhibitor effect on TGFβ expression. CCK-8 and clone formation assay showed that baicalein inhibited the cell proliferation and clone cell number. RT-PCR and western bolt for probing mTOR, p70S6K, and 4EBP1 revealed that baicalein could suppress their expression and phosphorylation. The scratching analysis and western blot assay displayed that baicalein inhibited the cell migration and EMT progression in HeLa. The use of SB431542, a TGFβ inhibitor, revealed that TGFβ was crucial to baicalein-regulating cell proliferation and migration in HeLa cells. Conclusion Baicalein, a medicine agent screened from natural flavonoids targeting TGFβ pathway, could suppress mTOR/p70S6K pathway-mediated cell proliferation and EMT pathway-related migration via TGFβ pathway in cervical cancer HeLa cells.
Collapse
|
1469
|
Hwang S, Lee PCW, Shin DM, Hong JH. Modulated Start-Up Mode of Cancer Cell Migration Through Spinophilin-Tubular Networks. Front Cell Dev Biol 2021; 9:652791. [PMID: 33768098 PMCID: PMC7985070 DOI: 10.3389/fcell.2021.652791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/09/2021] [Indexed: 11/26/2022] Open
Abstract
Spinophilin (SPL) is a multifunctional actin-binding scaffolding protein. Although increased research on SPL in cancer biology has revealed a tumor suppressive role, its modulation in cancer biology, and oncological relevance remains elusive. Thus, we determined the role of SPL in the modulation of the junctional network and cellular migration in A549 lung cancer cell line. Knockdown of SPL promoted cancer cell invasion in agarose spot and scratch wound assays. Attenuation of SPL expression also enhanced invadopodia, as revealed by enhanced vinculin spots, and enhanced sodium bicarbonate cotransporter NBC activity without enhancing membranous expression of NBCn1. Disruption of the tubular structure with nocodazole treatment revealed enhanced SPL expression and reduced NBC activity and A549 migration. SPL-mediated junctional modulation and tubular stability affected bicarbonate transporter activity in A549 cells. The junctional modulatory function of SPL in start-up migration, such as remodeling of tight junctions, enhanced invadopodia, and increased NBC activity, revealed here would support fundamental research and the development of an initial target against lung cancer cell migration.
Collapse
Affiliation(s)
- Soyoung Hwang
- Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea.,Department of Health Sciences and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon, South Korea
| |
Collapse
|
1470
|
Sharma A, Kaur H, De R, Srinivasan R, Pal A, Bhattacharyya S. Knockdown of E-cadherin induces cancer stem-cell-like phenotype and drug resistance in cervical cancer cells. Biochem Cell Biol 2021; 99:587-595. [PMID: 33677985 DOI: 10.1139/bcb-2020-0592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cervical cancer is one of the leading causes of mortality amongst women in developing countries, and resistance to therapy is the main reason for treatment failure. Recent advances suggest that cancer stem cells (CSCs) are critically involved in regulating the chemo-resistant behavior of cervical cancer cells. In our study, cells with the CSC phenotype were isolated, and we examined the expression levels of stem cell markers and genes associated with epithelial-mesenchymal transition (EMT) using different assays. However, the cells with the CSC phenotype could not be cultured for further cytotoxicity studies, so we established a model of CSC in cervical cancer cells. We performed siRNA-mediated knockdown of E-cadherin in these cells, and studied them for EMT-associated stem-cell-like properties. We also performed dose-dependent cell viability assays using clinically relevant drugs such as cisplatin, cyclopamine, and GANT58 to analyze the drug resistant behavior of these cancer cells. We found that knockdown of E-cadherin induces EMT in cervical cancer cells, imparting stem-cell like characteristics along with enhanced tumorsphere formation, cell migration, invasiveness, and drug resistance. This is the first study to establish a CSC model in cervical cancer cells by knockdown of E-cadherin, which can be used to develop anti-cancer therapies.
Collapse
Affiliation(s)
- Anuka Sharma
- Department of Biophysics, PGIMER, Chandigarh, India
| | | | - Renaissa De
- Department of Biophysics, PGIMER, Chandigarh, India
| | - Radhika Srinivasan
- Department of Cytology and Gynecologic Pathology, PGIMER, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, PGIMER, Chandigarh, India
| | | |
Collapse
|
1471
|
Li R, Ruan Q, Zheng J, Zhang B, Yang H. LINC01116 Promotes Doxorubicin Resistance in Osteosarcoma by Epigenetically Silencing miR-424-5p and Inducing Epithelial-Mesenchymal Transition. Front Pharmacol 2021; 12:632206. [PMID: 33762953 PMCID: PMC7982720 DOI: 10.3389/fphar.2021.632206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Development of resistance to doxorubicin-based chemotherapy limits its curative effect in osteosarcoma. In the current study, we focused on investigating the mechanisms underlying the development of doxorubicin resistance in osteosarcoma. Methods: The human osteosarcoma cell line MG-63 and doxorubicin-resistant MG-63/Dox cells were used in this study. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of the long non-coding RNA LINC01116 in the two cell lines. Then, the specific shRNA for LINC01116 was employed to suppress LINC01116 expression in MG-63/Dox cells. Cell viability was assessed by the CCK-8 and colony formation assays. Cell migration and invasion were evaluated by the transwell assay. Moreover, the epithelial-mesenchymal transition (EMT)-related proteins, E-cadherin, vimentin, and N-cadherin were evaluated by Western blotting. The regulation of LINC01116 on miR-424-5p expression was examined using methylation-specific PCR, RNA immunoprecipitation, and Western blotting assay. The potential targeting of HMGA2 by miR-424-5p was predicted using the bioinformatics databases TargetScan and miRanda and verified by a dual-luciferase reporter assay. Results: LINC01116 was more highly expressed in MG-63/Dox cells than in MG-63 cells. Inhibition of LINC01116 suppressed cell viability, migration, and invasion, along with upregulating the expression of E-cadherin, downregulating vimentin, and attenuating doxorubicin resistance in MG-63/Dox cells. Further mechanism-related investigations indicated that LINC01116 regulated HMGA2 expression via the EZH2-associated silencing of miR-424-5p. Conclusion: LINC01116 exerts regulatory effects on doxorubicin resistance through the miR-424-5p axis, providing a potential approach to overcoming chemoresistance in osteosarcoma.
Collapse
Affiliation(s)
- Ran Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qing Ruan
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jia Zheng
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Butian Zhang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongliang Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
1472
|
Pancreatic Cancers with High Grade Tumor Budding Exhibit Hallmarks of Diminished Anti-Tumor Immunity. Cancers (Basel) 2021; 13:cancers13051090. [PMID: 33806316 PMCID: PMC7961597 DOI: 10.3390/cancers13051090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Pancreatic cancer, in its most common manifestation pancreatic ductal adenocarcinoma (PDAC), is a uniquely lethal disease with very limited treatment options and few prognostic biomarkers. Tumor budding is a proven independent, adverse prognostic factor in many tumor types including PDAC. Tumor buds can be detected histologically as single cancer cells or clusters of up to four cancer cells at the tumor invasive front. Tumor budding is biologically correlated to the induction of epithelial-mesenchymal transitions (EMT) and disease progression. In this study, we sought to investigate the immunological composition of tumors with high levels of tumor budding. We show that PDAC cases with a high grade of tumor budding display notably diminished anti-tumor immunity. These findings were further validated by gene expression analysis of PDAC cases from The Cancer Genome Atlas (TCGA). Our results provide insight on the immune escape mechanisms of tumor cells undergoing EMT. This offers the potential of designing novel treatments combining immunotherapies with EMT-targeted drugs. Abstract Tumor budding is associated with epithelial-mesenchymal transition and diminished survival in a number of cancer types including pancreatic ductal adenocarcinoma (PDAC). In this study, we dissect the immune landscapes of patients with high grade versus low grade tumor budding to determine the features associated with immune escape and disease progression in pancreatic cancer. We performed immunohistochemistry-based quantification of tumor-infiltrating leukocytes and tumor bud assessment in a cohort of n = 111 PDAC patients in a tissue microarray (TMA) format. Patients were divided based on the ITBCC categories of tumor budding as Low Grade (LG: categories 1 and 2) and High Grade (HG: category 3). Tumor budding numbers and tumor budding grade demonstrated a significant association with diminished overall survival (OS). HG cases exhibit notably reduced densities of stromal (S) and intratumoral (IT) T cells. HG cases also display lower M1 macrophages (S) and increased M2 macrophages (IT). These findings were validated using gene expression data from TCGA. A published tumor budding gene signature demonstrated a significant association with diminished survival in PDAC patients in TCGA. Immune-related gene expression revealed an immunosuppressive TME in PDAC cases with high expression of the budding signature. Our findings highlight a number of immune features that permit an improved understanding of disease progression and EMT in pancreatic cancer.
Collapse
|
1473
|
Gollavilli PN, Parma B, Siddiqui A, Yang H, Ramesh V, Napoli F, Schwab A, Natesan R, Mielenz D, Asangani IA, Brabletz T, Pilarsky C, Ceppi P. The role of miR-200b/c in balancing EMT and proliferation revealed by an activity reporter. Oncogene 2021; 40:2309-2322. [PMID: 33654197 PMCID: PMC7994202 DOI: 10.1038/s41388-021-01708-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Since their discovery, microRNAs (miRNAs) have been widely studied in almost every aspect of biology and medicine, leading to the identification of important gene regulation circuits and cellular mechanisms. However, investigations are generally focused on the analysis of their downstream targets and biological functions in overexpression and knockdown approaches, while miRNAs endogenous levels and activity remain poorly understood. Here, we used the cellular plasticity-regulating process of epithelial-to-mesenchymal transition (EMT) as a model to show the efficacy of a fluorescent sensor to separate cells with distinct EMT signatures, based on miR-200b/c activity. The system was further combined with a CRISPR-Cas9 screening platform to unbiasedly identify miR-200b/c upstream regulating genes. The sensor allows to infer miRNAs fundamental biological properties, as profiling of sorted cells indicated miR-200b/c as a molecular switch between EMT differentiation and proliferation, and suggested a role for metabolic enzymes in miR-200/EMT regulation. Analysis of miRNAs endogenous levels and activity for in vitro and in vivo applications could lead to a better understanding of their biological role in physiology and disease.
Collapse
Affiliation(s)
- Paradesi Naidu Gollavilli
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Beatrice Parma
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Aarif Siddiqui
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hai Yang
- Department of Surgery, Friedrich-Alexander University of Erlangen- Nuremberg (FAU) and University Hospital of Erlangen, Erlangen, Germany
| | - Vignesh Ramesh
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Francesca Napoli
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany.,Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Annemarie Schwab
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Ramakrishnan Natesan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Dirk Mielenz
- Department of Molecular Immunology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Irfan Ahmed Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Thomas Brabletz
- Department of Experimental Medicine-I, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, Friedrich-Alexander University of Erlangen- Nuremberg (FAU) and University Hospital of Erlangen, Erlangen, Germany
| | - Paolo Ceppi
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany. .,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
1474
|
Hao Y, Xiao Y, Liao X, Tang S, Xie X, Liu R, Chen Q. FGF8 induces epithelial-mesenchymal transition and promotes metastasis in oral squamous cell carcinoma. Int J Oral Sci 2021; 13:6. [PMID: 33649301 PMCID: PMC7921665 DOI: 10.1038/s41368-021-00111-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide, and with 354 864 new cases each year. Cancer metastasis, recurrence, and drug resistance are the main causes to cripples and deaths of OSCC patients. As potent growth factors, fibroblast growth factors (FGFs) are frequently susceptible to being hijacked by cancer cells. In this study, we show that FGF8 is upregulated in OSCC tissues and high FGF8 expression is related with a set of clinicopathologic parameters, including age, drinking, and survival time. FGF8 treatment enhances the invasive capability of OSCC cells. Lentivirus-based FGF8 expression promotes OSCC metastasis in a mouse lung metastasis model. Further, mechanistic study demonstrates that FGF8 induces epithelial-mesenchymal transition (EMT) in OSCC cells. These results highlight a pro-metastatic function of FGF8, and underscore the role of FGF8 in OSCC development.
Collapse
Affiliation(s)
- Yilong Hao
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China.,State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanxuan Xiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyu Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuya Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
1475
|
Fu Z, Xu YS, Cai CQ. Ginsenoside Rg3 inhibits pulmonary fibrosis by preventing HIF-1α nuclear localisation. BMC Pulm Med 2021; 21:70. [PMID: 33639908 PMCID: PMC7912494 DOI: 10.1186/s12890-021-01426-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/07/2021] [Indexed: 12/20/2022] Open
Abstract
Background Excessive fibroblast proliferation during pulmonary fibrosis leads to structural abnormalities in lung tissue and causes hypoxia and cell injury. However, the mechanisms and effective treatment are still limited. Methods In vivo, we used bleomycin to induce pulmonary fibrosis in mice. IHC and Masson staining were used to evaluate the inhibitory effect of ginsenoside Rg3 in pulmonary fibrosis. In vitro, scanning electron microscopy, transwell and wound healing were used to evaluate the cell phenotype of LL 29 cells. In addition, biacore was used to detect the binding between ginsenoside Rg3 and HIF-1α. Results Here, we found that bleomycin induces the activation of the HIF-1α/TGFβ1 signalling pathway and further enhances the migration and proliferation of fibroblasts through the epithelial mesenchymal transition (EMT). In addition, molecular docking and biacore results indicated that ginsenoside Rg3 can bind HIF-1α. Therefore, Ginsenoside Rg3 can slow down the progression of pulmonary fibrosis by inhibiting the nuclear localisation of HIF-1α. Conclusions This finding suggests that early targeted treatment of hypoxia may have potential value in the treatment of pulmonary fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01426-5.
Collapse
Affiliation(s)
- Zhuo Fu
- Tianjin Medical University, Tianjin, China.,Department of Respiratory, Tianjin Children's Hospital, Tianjin, China
| | - Yong-Sheng Xu
- Department of Respiratory, Tianjin Children's Hospital, Tianjin, China
| | - Chun-Quan Cai
- Department of Neurosurgery, Tianjin Institute of Pediatrics, The Children's Hospital of Tianjin, No.238 Longyan Road, Beichen District, Tianjin, 300400, China.
| |
Collapse
|
1476
|
Piezo 1 activation facilitates cholangiocarcinoma metastasis via Hippo/YAP signaling axis. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:241-252. [PMID: 33767919 PMCID: PMC7973248 DOI: 10.1016/j.omtn.2021.02.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Tumor metastasis is one of the major factors for the high mortality in cholangiocarcinoma (CCA), but its underlying mechanisms are not fully understood. Here, we report that Piezo-type mechanosensitive ion channel component 1 (Piezo 1) is detected to be significantly upregulated in CCA tissues, which is linked to a poor prognosis in patients, suggesting that Piezo 1 may act in a pro-metastatic role in CCA development. Piezo 1 is activated through 20% simulated physiological stretch, and deleting Piezo 1 impedes epithelial-to-mesenchymal transition (EMT) of CCA cells, as well as impairing their metastatic capacity in vitro and in vivo. Mechanistically, the activation of Piezo 1 results in large amounts of Yes-associated protein 1 (YAP) translocated into the nucleus from the cytoplasm, and thus the motility of CCA cells is significantly increased. These findings indicate that mechanical stimulation induces Piezo 1 activation, which might be involved in CCA metastasis via the Hippo/YAP signaling axis. Therefore, Piezo 1 and its downstream effectors may be a novel therapeutic target for CCA treatment.
Collapse
|
1477
|
Chen C, Shen M, Liao H, Guo Q, Fu H, Yu J, Duan Y. A paclitaxel and microRNA-124 coloaded stepped cleavable nanosystem against triple negative breast cancer. J Nanobiotechnology 2021; 19:55. [PMID: 33632232 PMCID: PMC7905927 DOI: 10.1186/s12951-021-00800-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) is one of the most biologically aggressive breast cancers and lacks effective treatment options, resulting in a poor prognosis. Therefore, studies aiming to explore new therapeutic strategies for advanced TNBC are urgently needed. According to recent studies, microRNA-124 (miR124) not only inhibits tumour growth but also increases the sensitivity of TNBC to paclitaxel (PTX), suggesting that a platform combining PTX and miR124 may be an advanced solution for TNBC. Results Herein, we constructed a stepped cleavable calcium phosphate composite lipid nanosystem (CaP/LNS) to codeliver PTX and miR124 (PTX/miR124-NP). PTX/miR124-NP exhibited superior tumor microenvironment responsive ability, in which the surface PEG layer was shed in the mildly acidic environment of tumor tissues and exposed oligomeric hyaluronic acid (o-HA) facilitated the cellular uptake of CaP/LNS by targeting the CD44 receptor on the surface of tumor cells. Inside tumour cells, o-HA detached from CaP/LNS due to the reduction of disulfide bonds by glutathione (GSH) and inhibited tumour metastasis. Then, PTX and miR124 were sequentially released from CaP/LNS and exerted synergistic antitumour effects by reversing the Epithelial-Mesenchymal Transition (EMT) process in MDA-MB-231 cells. Moreover, PTX/miR124-NP showed significant antitumour efficiency and excellent safety in mice bearing MDA-MB-231 tumours. Conclusion Based on these results, the codelivery of PTX and miR124 by the CaP/LNS nanosystem might be a promising therapeutic strategy for TNBC.![]()
Collapse
Affiliation(s)
- Chuanrong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Ming Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China. .,NHC Key Laboratory of Reproduction Regulation, (Shanghai Institute of Planned Parenthood Research), Fudan University, and Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai, 200032, China.
| | - Hongze Liao
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Qianqian Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
1478
|
ERO1L Promotes Hepatic Metastasis through Activating Epithelial-Mesenchymal Transition (EMT) in Pancreatic Cancer. J Immunol Res 2021; 2021:5553425. [PMID: 33681386 PMCID: PMC7925037 DOI: 10.1155/2021/5553425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 01/05/2023] Open
Abstract
Background Endoplasmic reticulum oxidoreductase 1 alpha (ERO1L) serves as an effector for tumor growth in human malignancies. However, the mechanism of ERO1L on promoting metastasis of pancreatic ductal adenocarcinoma (PDAC) remains to be further explored. Methods Bioinformatics analysis of public databases and large-scale metastatic PDAC sequencing was performed to determine the expression profile and prognostic value of ERO1L in PDAC. The effect of ERO1L on metastasis of PDAC was analyzed in vitro and in vivo, via cell biological, molecular, and biochemical approaches. Results ERO1L in PDAC hepatic metastatic tissues were highly expressed and related to disease-free survival (DFS). Genetic silencing and pharmacological inhibition of ERO1L with EN460 suppressed cell migration and invasion of PDAC. Furthermore, EN460 also suppressed hepatic metastasis of PDAC in vivo. Using shRNAs and EN460 to inhibit the ERO1L expression in Capan-2 and MiaPaca-2 led to the remarkable change of EMT-related protein Vimentin and E-cadherin, which indicated that EMT acted as a key pathway for ERO1L to promote invasion, dissemination, colonization, and growth of hepatic metastasis in PDAC. Conclusion Our findings uncover ERO1L contributes to hepatic metastasis in PDAC via epithelial-mesenchymal transition (EMT) process and indicate a promising therapeutic strategy for PDAC hepatic metastasis.
Collapse
|
1479
|
Synthesis and evaluation of the epithelial-to- mesenchymal inhibitory activity of indazole-derived imidazoles as dual ALK5/p38α MAP inhibitors. Eur J Med Chem 2021; 216:113311. [PMID: 33677350 DOI: 10.1016/j.ejmech.2021.113311] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 01/02/2023]
Abstract
Drugs of targeting both activin receptor-like kinase 5 (ALK5) and p38α have therapeutic advantages, making them attractive treatment options for tumors. Two series of 4-(1H-indazol-5-yl)-5-(6-methylpyridin-2-yl)-1H-imidazoles 13a-g and 4-(1-methyl-1H-indazol-5-yl)-5-(6-methylpyridin-2-yl)-1H-imidazoles 20a-g were synthesized and evaluated for ALK5 and p38α mitogen-activated protein kinase inhibitory activity. The most potent compound, 13c (J-1090), inhibited ALK5- and p38α-mediated phosphorylation with half-maximal inhibitor concentrations of 0.004 μM and 0.004 μM, respectively, in the enzymatic assay. In this study, the effectiveness of 13c in transforming growth factor (TGF-β)-exposed U87MG cells was investigated using western blotting, immunofluorescence assays, cell migration assay, invasion assay, and RT-PCR analysis. 13c inhibited the protein expression of Slug and the protein and RNA expression of the mesenchymal-related proteins N-cadherin and vimentin. Furthermore, 13c markedly suppressed TGF-β-induced epithelial-to-mesenchymal transition (EMT), migration, and invasion in U87MG cells. These results suggest that 13c is a novel inhibitor of ALK5 with potential utility in the treatment of human glioma.
Collapse
|
1480
|
Yang L, Zhou W, Lin H. Posttranslational Modifications of Smurfs: Emerging Regulation in Cancer. Front Oncol 2021; 10:610663. [PMID: 33718111 PMCID: PMC7950759 DOI: 10.3389/fonc.2020.610663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Smad ubiquitination regulatory factors (Smurfs) belong to the Nedd4 subfamily of HECT-type E3 ubiquitin ligases. Under normal situations, Smurfs are exactly managed by upstream regulators, and thereby strictly control tumor biological processes, including cell growth, differentiation, apoptosis, polarization, epithelial mesenchymal transition (EMT), and invasion. Disruption of Smurf activity has been implicated in cancer progression, and Smurf activity is controlled by a series of posttranslational modifications (PTMs), including phosphorylation, ubiquitination, neddylation, sumoylation, and methylation. The effect and function of Smurfs depend on PTMs and regulate biological processes. Specifically, these modifications regulate the functional expression of Smurfs by affecting protein degradation and protein interactions. In this review, we summarize the complexity and diversity of Smurf PTMs from biochemical and biological perspectives and highlight the understanding of their roles in cancer.
Collapse
Affiliation(s)
- Longtao Yang
- Second Clinical Medical School, Nanchang University, Nanchang, China
| | - Wenwen Zhou
- Second Clinical Medical School, Nanchang University, Nanchang, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
1481
|
Zheng K, Han X, Su Y, Wang Q, Ma Q, Zheng K. Effects of targeted Notch1 silencing on the biological processes of the T24 and 5637 cells in vitro. Oncol Lett 2021; 21:305. [PMID: 33732381 PMCID: PMC7905604 DOI: 10.3892/ol.2021.12566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 11/26/2020] [Indexed: 11/30/2022] Open
Abstract
The present study aimed to investigate the roles of Notch1 in the biological processes of bladder cancer cells (BCCs) in vitro. Short hairpin (sh)RNA targeting Notch1 was designed and constructed, and the T24 and 5637 BCCs were selected for transfection. The cells were classified into two groups: shRNA negative control (NC) and Notch1 shRNA. MTT and Transwell assays, and flow cytometry were performed to examine the changes in cell proliferation, invasiveness, and apoptosis, respectively. In addition, reverse transcription-quantitative PCR and western blot analysis was used to detect the mRNA and protein expression levels of apoptosis-related proteins (Bax, Bid and Bcl2) and epithelial-mesenchymal transition factors (vimentin and E- and N-cadherin). Compared with that in the shRNA NC group, the Notch1 shRNA group showed significantly decreased cell proliferation rate and invasiveness; increased apoptotic rate; elevated mRNA expression levels of Bad, Bid and E-cadherin; and reduced mRNA expression levels of Bcl2, N-cadherin and vimentin. The trends for protein expression levels were the same as those for mRNA levels. Notch1 silencing inhibited invasion and promoted apoptosis of BCCs.
Collapse
Affiliation(s)
- Kewen Zheng
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, The First Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaomin Han
- Blood Conservation Institute, School of Basic and Forensic Medicine, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region 014040, P.R. China
| | - Yan Su
- Blood Conservation Institute, School of Basic and Forensic Medicine, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region 014040, P.R. China
| | - Qinghai Wang
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Qiang Ma
- Blood Conservation Institute, School of Basic and Forensic Medicine, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region 014040, P.R. China
| | - Kesi Zheng
- Department of Thyroid and Breast Surgery, Wenzhou People's Hospital, The Third Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
1482
|
Wang Y, Sun Y, Shang C, Chen L, Chen H, Wang D, Zeng X. Distinct Ring1b complexes defined by DEAD-box helicases and EMT transcription factors synergistically enhance E-cadherin silencing in breast cancer. Cell Death Dis 2021; 12:202. [PMID: 33608512 PMCID: PMC7895950 DOI: 10.1038/s41419-021-03491-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Ring1b is a core subunit of polycomb repressive complex 1 (PRC1) and is essential in several high-risk cancers. However, the epigenetic mechanism of Ring1b underlying breast cancer malignancy is poorly understood. In this study, we showed increased expression of Ring1b promoted metastasis by weakening cell-cell adhesions of breast cancer cells. We confirmed that Ring1b could downregulate E-cadherin and contributed to an epigenetic rewiring via PRC1-dependent function by forming distinct complexes with DEAD-box RNA helicases (DDXs) or epithelial-mesenchymal transition transcription factors (EMT TFs) on site-specific loci of E-cadherin promoter. DDXs-Ring1b complexes moderately inhibited E-cadherin, which resulted in an early hybrid EMT state of epithelial cells, and EMT TFs-Ring1b complexes cooperated with DDXs-Ring1b complexes to further repress E-cadherin in mesenchymal-like cancer cells. Clinically, high expression of Ring1b with DDXs or EMT TFs predicted low levels of E-cadherin, metastatic behavior, and poor prognosis. These findings provide an epigenetic regulation mechanism of Ring1b complexes in E-cadherin expression. Ring1b complexes may be potential therapeutic targets and biomarkers for diagnosis and prognosis in invasion breast cancer.
Collapse
Affiliation(s)
- Yawei Wang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Yingying Sun
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Chao Shang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Lili Chen
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Hongyu Chen
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Dake Wang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China.
| |
Collapse
|
1483
|
Zha Z, Li D, Zhang P, Wang P, Fang X, Liu X, Weng C, Li B, Wu Y, Mao H, Wang L, Xu L, Dong J, Guan M, Lu L, Liu G. Neuron specific enolase promotes tumor metastasis by activating the Wnt/β-catenin pathway in small cell lung cancer. Transl Oncol 2021; 14:101039. [PMID: 33618068 PMCID: PMC7905480 DOI: 10.1016/j.tranon.2021.101039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 01/07/2023] Open
Abstract
Neuron-specific enolase (NSE) has been used as a specific biomarker for small cell lung cancer (SCLC) patients. Nevertheless, the biological function and mechanism of NSE in SCLC are still unclear. In this study, we clarified the role of NSE in the progression of SCLC and found that NSE expression was positively correlated with distant metastasis. Functional analysis showed that overexpression of NSE promoted migration and invasion of SCLC cells. Mechanism analysis showed that NSE overexpression induced epithelial-mesenchymal transition (EMT) of SCLC cells. Moreover, overexpression of NSE increased the protein expression of β-catenin and its downstream target genes, and silencing β-catenin eliminated NSE-mediated cell migration, invasion and EMT process. Furthermore, NSE interacted with β-catenin and inhibited the degradation of β-catenin. Besides, the animal experiments also indicated that NSE could promote the EMT process and distant metastasis of SCLC cells in vivo. In summary, our results revealed that NSE could promote the EMT process of SCLC cells by activating the Wnt/β-catenin signaling pathway, thereby promoting cell migration, invasion and distant metastasis, which might serve as a potential target for the therapy of SCLC patients.
Collapse
Affiliation(s)
- Zhiqiang Zha
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Dailing Li
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Peiling Zhang
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Peipei Wang
- Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Xisheng Fang
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Xia Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Chengyin Weng
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Baoxiu Li
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Yong Wu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Haibo Mao
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Lina Wang
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Lin Xu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Jiaming Dong
- Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Mingmei Guan
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Lin Lu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China.
| | - Guolong Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China.
| |
Collapse
|
1484
|
Gardini E, Giorgi FM, Decherchi S, Cavalli A. Spathial: an R package for the evolutionary analysis of biological data. Bioinformatics 2021; 36:4664-4667. [PMID: 32437522 DOI: 10.1093/bioinformatics/btaa273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/15/2020] [Accepted: 05/18/2020] [Indexed: 12/25/2022] Open
Abstract
SUMMARY A primary problem in high-throughput genomics experiments is finding the most important genes involved in biological processes (e.g. tumor progression). In this applications note, we introduce spathial, an R package for navigating high-dimensional data spaces. spathial implements the Principal Path algorithm, which is a topological method for locally navigating on the data manifold. The package, together with the core algorithm, provides several high-level functions for interpreting the results. One of the analyses we propose is the extraction of the genes that are mainly involved in the progress from one state to another. We show a possible application in the context of tumor progression using RNA-Seq and single-cell datasets, and we compare our results with two commonly used algorithms, edgeR and monocle3, respectively. AVAILABILITY AND IMPLEMENTATION The R package spathial is available on the Comprehensive R Archive Network (https://cran.r-project.org/web/packages/spathial/index.html) and on GitHub (https://github.com/erikagardini/spathial). It is distributed under the GNU General Public License (version 3). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Erika Gardini
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Sergio Decherchi
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Andrea Cavalli
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
1485
|
Abstract
In this issue of Developmental Cell, Li et al. develop a novel lineage tracing system to record EMT activity during lung metastasis of mammary tumors. Using EMT-tracer mouse models, they reveal that N-cadherin is transiently expressed by most metastasis-initiating cells and demonstrate its functional importance during the metastatic cascade.
Collapse
Affiliation(s)
- Pauline Vieugué
- Laboratory of Stem Cells and Cancer, WELBIO, Université Libre de Bruxelles (ULB), 808 route de Lennik, Bat GE, G2 4.205, 1070 Bruxelles, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, WELBIO, Université Libre de Bruxelles (ULB), 808 route de Lennik, Bat GE, G2 4.205, 1070 Bruxelles, Belgium.
| |
Collapse
|
1486
|
Colón-Marrero S, Jusino S, Rivera-Rivera Y, Saavedra HI. Mitotic kinases as drivers of the epithelial-to-mesenchymal transition and as therapeutic targets against breast cancers. Exp Biol Med (Maywood) 2021; 246:1036-1044. [PMID: 33601912 DOI: 10.1177/1535370221991094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biological therapies against breast cancer patients with tumors positive for the estrogen and progesterone hormone receptors and Her2 amplification have greatly improved their survival. However, to date, there are no effective biological therapies against breast cancers that lack these three receptors or triple-negative breast cancers (TNBC). TNBC correlates with poor survival, in part because they relapse following chemo- and radio-therapies. TNBC is intrinsically aggressive since they have high mitotic indexes and tend to metastasize to the central nervous system. TNBCs are more likely to display centrosome amplification, an abnormal phenotype that results in defective mitotic spindles and abnormal cytokinesis, which culminate in aneuploidy and chromosome instability (known causes of tumor initiation and chemo-resistance). Besides their known role in cell cycle control, mitotic kinases have been also studied in different types of cancer including breast, especially in the context of epithelial-to-mesenchymal transition (EMT). EMT is a cellular process characterized by the loss of cell polarity, reorganization of the cytoskeleton, and signaling reprogramming (upregulation of mesenchymal genes and downregulation of epithelial genes). Previously, we and others have shown the effects of mitotic kinases like Nek2 and Mps1 (TTK) on EMT. In this review, we focus on Aurora A, Aurora B, Bub1, and highly expressed in cancer (Hec1) as novel targets for therapeutic interventions in breast cancer and their effects on EMT. We highlight the established relationships and interactions of these and other mitotic kinases, clinical trial studies involving mitotic kinases, and the importance that represents to develop drugs against these proteins as potential targets in the primary care therapy for TNBC.
Collapse
Affiliation(s)
- Stephanie Colón-Marrero
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| | - Shirley Jusino
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| | - Yainyrette Rivera-Rivera
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| | - Harold I Saavedra
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| |
Collapse
|
1487
|
Dong L, Huang CY, Johnson EJ, Yang L, Zieren RC, Horie K, Kim CJ, Warren S, Amend SR, Xue W, Pienta KJ. High-Throughput Simultaneous mRNA Profiling Using nCounter Technology Demonstrates That Extracellular Vesicles Contain Different mRNA Transcripts Than Their Parental Prostate Cancer Cells. Anal Chem 2021; 93:3717-3725. [PMID: 33596381 PMCID: PMC7944479 DOI: 10.1021/acs.analchem.0c03185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Extracellular
vesicles (EVs) are nano-sized lipid bilayer encapsulated
particles with a molecular cargo that appears to play important roles
within the human body, such as in cell-to-cell communication. Unraveling
the composition of EV cargos remains one of the most fundamental steps
toward understanding the role of EVs in intercellular communication
and the discovery of new biomarkers. One of the unmet needs in this
field is the lack of a robust, sensitive, and multiplexed method for
EV mRNA profiling. We established a new protocol using the NanoString
low RNA input nCounter assay by which the targeted mRNA transcripts
in EVs can be efficiently and specifically amplified and then assayed
for 770 mRNAs in one reaction. Prostate cancer cells with epithelial
(PC3-Epi) or mesenchymal (PC3-EMT) phenotypes and their progeny EVs
were analyzed by the same panel. Among these mRNAs, 157 were detected
in PC3-Epi EVs and 564 were detected in PC3-EMT EVs. NOTCH1 was the
most significantly abundant mRNA transcripts in PC3-EMT EVs compared
to PC3-Epi EVs. Our results demonstrated that when cells undergo epithelial-to-mesenchymal
transition (EMT), a more active loading of cancer progression-related
mRNA transcripts may occur. The mRNA cargos of EVs derived from mesenchymal
prostate cancer cells may contribute to the pro-EMT function. We found
that mRNA transcripts are different in progeny EVs compared to parental
cells. EV cargos are not completely reflective of their cell origin,
and the underlying mechanism of cargo sorting is complicated and needs
to be further elucidated.
Collapse
Affiliation(s)
- Liang Dong
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States.,Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200072, China
| | - Chung-Ying Huang
- NanoString Technologies, Inc., Seattle, Washington 98109, United States
| | - Eric J Johnson
- NanoString Technologies, Inc., Seattle, Washington 98109, United States
| | - Lei Yang
- NanoString Technologies, Inc., Seattle, Washington 98109, United States
| | - Richard C Zieren
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States.,Department of Urology, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Kengo Horie
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States.,Department of Urology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Chi-Ju Kim
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States.,Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sarah Warren
- NanoString Technologies, Inc., Seattle, Washington 98109, United States
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200072, China
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
| |
Collapse
|
1488
|
Liu R, Deng P, Zhang Y, Wang Y, Peng C. Circ_0082182 promotes oncogenesis and metastasis of colorectal cancer in vitro and in vivo by sponging miR-411 and miR-1205 to activate the Wnt/β-catenin pathway. World J Surg Oncol 2021; 19:51. [PMID: 33596920 PMCID: PMC7891146 DOI: 10.1186/s12957-021-02164-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a class of endogenous single-strand RNA transcripts with crucial regulation in human cancers. The objective of this study is to investigate the role of circ_0082182 in CRC and its specific functional mechanism. METHODS The quantitative real-time polymerase chain reaction (qRT-PCR) was performed to measure the levels of circ_0082182, microRNA-411 (miR-411) and microRNA-1205 (miR-1205). Cell proliferation was detected by Cell counting Kit-8 (CCK-8) and colony formation assays. Flow cytometry was used for determining cell cycle and cell apoptosis. Cell apoptosis was also assessed by caspase3 and caspase9 activities. Cell migration and invasion were examined using scratch assay and transwell assay. The interaction between circ_0082182 and miRNA was validated by the dual-luciferase reporter and biotinylated RNA pull-down assays. Wnt/β-catenin pathway and epithelial-mesenchymal transition (EMT)-associated proteins were quantified by Western blot. Xenograft model was established for the research of circ_0082182 in vivo. RESULTS Circ_0082182 was upregulated in CRC and could predict the poor prognosis of CRC patients. Functionally, circ_0082182 promoted CRC cell proliferation, cell cycle progression, and metastasis while inhibited apoptosis. Subsequently, circ_0082182 was shown to act as the sponges of miR-411 and miR-1205. MiR-411 and miR-1205 were identified as tumor inhibitors in CRC. Furthermore, circ_0082182 promoted the CRC progression via sponging miR-411 and miR-1205. Moreover, circ_0082182 facilitated the Wnt/β-catenin pathway and EMT process by targeting miR-411 and miR-1205. In vivo, circ_0082182 accelerated the CRC tumorigenesis and EMT process by activating the Wnt/β-catenin pathway by downregulating the expression of miR-411 or miR-1205. CONCLUSION This study showed that circ_0082182 functioned as an oncogene in the developing process of CRC by sponging miR-411 or miR-1205 to activate the Wnt/β-catenin pathway. Circ_0082182 might be a molecular target in the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of General Surgery, Jingmen No.1 People's Hospital, Jingmen, 448000, Hubei, China
| | - Ping Deng
- Department of Anorectal Surgery, Jingmen No.1 People's Hospital, No.167, Xiangshan Avenue, Dadao District, Jingmen, 448000, Hubei, China
| | - Yonglian Zhang
- Department of Anorectal Surgery, Jingmen No.1 People's Hospital, No.167, Xiangshan Avenue, Dadao District, Jingmen, 448000, Hubei, China
| | - Yonglan Wang
- Department of Digestive Endoscopy Center, Jingmen No.1 People's Hospital, Jingmen, 448000, Hubei, China
| | - Cuiping Peng
- Department of Anorectal Surgery, Jingmen No.1 People's Hospital, No.167, Xiangshan Avenue, Dadao District, Jingmen, 448000, Hubei, China.
| |
Collapse
|
1489
|
Song D, Wang L, Su K, Wu H, Li J. WISP1 aggravates cell metastatic potential by abrogating TGF- β-Smad2/3-dependent epithelial-to-mesenchymal transition in laryngeal squamous cell carcinoma. Exp Biol Med (Maywood) 2021; 246:1244-1252. [PMID: 33593111 DOI: 10.1177/1535370221992703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Laryngeal squamous cell cancer (LSCC) is a common carcinoma with high morbidity and mortality. Metastasis constitutes the major cause of death and poor prognosis among patients with LSCC. Recent evidence confirms critical function of Wnt1-inducible signaling protein 1 (WISP1) in several cancers. However, its contribution in LSCC metastasis remains unclear. Specimens of tumor tissues and adjacent normal mucosa were collected from patients with LSCC. The mRNA and protein levels were determined using quantitative real-time PCR and Western blot, respectively. RNA interference was applied to silence the expression of WISP1 and TGF-β, and recombinant adenovirus was used to overexpress WISP1 in human LSCC cell line TU212 cells. Cell invasion and migration were determined by transwell assay. High expression of WISP1 was observed in LSCC tissues, especially in those from metastatic groups. Ectopic expression of WISP1 enhanced invasion and migration of TU212 cells. On the contrary, WISP1 knockdown reduced numbers of invasive and migrated cells. Additionally, elevation of WISP1 depressed the expression of epithelial marker E-cadherin and increased levels of mesenchymal marker vimentin in TU212 cells, whereas WISP suppression yielded the opposite effects. Further analysis corroborated that WISP1 overexpression enhanced activation of TGF-β-Smad signaling by increasing expression of TGF-β1, p-Smad2, and p-Smad3, which was abrogated following WISP1 down-regulation. Moreover, TGF-β1 exposure facilitated LSCC cell invasion and migration. Notably, blockage of the TGF-β-Smad pathway by si-TGF-β overturned WISP-1-evoked epithelial-to-mesenchymal transition (EMT), and subsequent cell invasion and migration. These findings highlight the pro-metastatic function of WISP1 in LSCC by regulating cell invasion and migration via TGF-β-Smad-mediated EMT, supporting a promising invention target for LSCC therapy.
Collapse
Affiliation(s)
- Dandan Song
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Liang Wang
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Ke Su
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Huanhuan Wu
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Junli Li
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| |
Collapse
|
1490
|
Phenotypic Plasticity of Cancer Cells Based on Remodeling of the Actin Cytoskeleton and Adhesive Structures. Int J Mol Sci 2021; 22:ijms22041821. [PMID: 33673054 PMCID: PMC7918886 DOI: 10.3390/ijms22041821] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023] Open
Abstract
There is ample evidence that, instead of a binary switch, epithelial-mesenchymal transition (EMT) in cancer results in a flexible array of phenotypes, each one uniquely suited to a stage in the invasion-metastasis cascade. The phenotypic plasticity of epithelium-derived cancer cells gives them an edge in surviving and thriving in alien environments. This review describes in detail the actin cytoskeleton and E-cadherin-based adherens junction rearrangements that cancer cells need to implement in order to achieve the advantageous epithelial/mesenchymal phenotype and plasticity of migratory phenotypes that can arise from partial EMT.
Collapse
|
1491
|
Subbalakshmi AR, Sahoo S, Biswas K, Jolly MK. A Computational Systems Biology Approach Identifies SLUG as a Mediator of Partial Epithelial-Mesenchymal Transition (EMT). Cells Tissues Organs 2021; 211:689-702. [PMID: 33567424 DOI: 10.1159/000512520] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/19/2020] [Indexed: 01/25/2023] Open
Abstract
Epithelial-mesenchymal plasticity comprises reversible transitions among epithelial, hybrid epithelial/mesenchymal (E/M) and mesenchymal phenotypes, and underlies various aspects of aggressive tumor progression such as metastasis, therapy resistance, and immune evasion. The process of cells attaining one or more hybrid E/M phenotypes is termed as partial epithelial mesenchymal transition (EMT). Cells in hybrid E/M phenotype(s) can be more aggressive than those in either fully epithelial or mesenchymal state. Thus, identifying regulators of hybrid E/M phenotypes is essential to decipher the rheostats of phenotypic plasticity and consequent accelerators of metastasis. Here, using a computational systems biology approach, we demonstrate that SLUG (SNAIL2) - an EMT-inducing transcription factor - can inhibit cells from undergoing a complete EMT and thus stabilize them in hybrid E/M phenotype(s). It expands the parametric range enabling the existence of a hybrid E/M phenotype, thereby behaving as a phenotypic stability factor. Our simulations suggest that this specific property of SLUG emerges from the topology of the regulatory network it forms with other key regulators of epithelial-mesenchymal plasticity. Clinical data suggest that SLUG associates with worse patient prognosis across multiple carcinomas. Together, our results indicate that SLUG can stabilize hybrid E/M phenotype(s).
Collapse
Affiliation(s)
- Ayalur R Subbalakshmi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Kuheli Biswas
- Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India,
| |
Collapse
|
1492
|
Gao P, Liu H, Yang Z, Hui Y, Shi Z, Yang Z, Song M, Yao M, Fan W, Yang J, Hao Y, Fan T. Development of a Novel Highly Spontaneous Metastatic Model of Esophageal Squamous Cell Carcinoma Using Renal Capsule Technology. Onco Targets Ther 2021; 14:785-793. [PMID: 33574674 PMCID: PMC7872218 DOI: 10.2147/ott.s290564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/13/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Increasing evidence has demonstrated that animal models are imperative to investigate the potential molecular mechanism of metastasis and discover anti-metastasis drugs; however, efficient animal models to unveil the underlying mechanisms of metastasis in esophageal squamous cell carcinoma (ESCC) are limited. METHODS ESCC cell EC9706 with high invasiveness was screened by repeated Transwell assays. Its biological characteristics were identified by flow cytometry as well as by the wound healing and CCK-8 assays. Besides, the levels of epithelial-mesenchymal transition-related markers were examined using Western blotting. Parental (EC9706-I0) and subpopulation (EC9706-I3) cells were employed to establish the renal capsule model. Next, the tumor growth was detected by a live animal imaging system, and hematoxylin and eosin staining was applied to evaluate the metastatic status in ESCC. RESULTS EC9706-I3 cells showed rapid proliferation ability, S phase abundance, and high invasive ability; obvious upregulation in N-cadherin, Snail, Vimentin, and Bit1; and downregulation in E-cadherin. EC9706-I3 cells were less sensitive to the chemotherapy drug 5-fluorouracil than EC9706-I0 cells; however, both cell lines reached a tumorigenesis rate of 100% in the renal capsule model. The live animal imaging system revealed that the tumors derived from EC9706-I0 cells grew more slowly than those from EC9706-I3 cells at weeks 3-14. The EC9706-I3 xenograft model displayed a spontaneous metastatic site, including kidney, heart, liver, lung, pancreas, and spleen, with a distant metastatic rate of 80%. CONCLUSION Our data suggested that the metastatic model was successfully established, providing a novel platform for further exploring the molecular mechanisms of metastasis in ESCC patients.
Collapse
Affiliation(s)
- Pan Gao
- People’s Hospital of Zhengzhou, Zhengzhou, Henan, 450001, People’s Republic of China
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, People’s Republic of China
| | - Hongtao Liu
- Laboratory for Cell Biology, College of Life Sciences of Zhengzhou University, Zhengzhou, Henan, 450001, People’s Republic of China
| | - Zhenzhen Yang
- People’s Hospital of Zhengzhou, Zhengzhou, Henan, 450001, People’s Republic of China
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, People’s Republic of China
| | - Yiran Hui
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, People’s Republic of China
- University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, Guangdong, 518106, People’s Republic of China
| | - Zhuangzhuang Shi
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, People’s Republic of China
| | - Zhen Yang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, People’s Republic of China
| | - Min Song
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, People’s Republic of China
| | - Menghui Yao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, People’s Republic of China
| | - Wenfei Fan
- People’s Hospital of Zhengzhou, Zhengzhou, Henan, 450001, People’s Republic of China
| | - Jinhua Yang
- People’s Hospital of Zhengzhou, Zhengzhou, Henan, 450001, People’s Republic of China
| | - Yibin Hao
- People’s Hospital of Zhengzhou, Zhengzhou, Henan, 450001, People’s Republic of China
| | - Tianli Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, People’s Republic of China
| |
Collapse
|
1493
|
Xu A, Wang X, Luo J, Zhou M, Yi R, Huang T, Lin J, Wu Z, Xie C, Ding S, Zeng Y, Song Y. Overexpressed P75CUX1 promotes EMT in glioma infiltration by activating β-catenin. Cell Death Dis 2021; 12:157. [PMID: 33542188 PMCID: PMC7862635 DOI: 10.1038/s41419-021-03424-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 01/19/2023]
Abstract
The homeobox protein cut-like 1 (CUX1) comprises three isoforms and has been shown to be involved in the development of various types of malignancies. However, the expression and role of the CUX1 isoforms in glioma remain unclear. Herein, we first identified that P75CUX1 isoform exhibited consistent expression among three isoforms in glioma with specifically designed antibodies to identify all CUX1 isoforms. Moreover, a significantly higher expression of P75CUX1 was found in glioma compared with non-tumor brain (NB) tissues, analyzed with western blot and immunohistochemistry, and the expression level of P75CUX1 was positively associated with tumor grade. In addition, Kaplan-Meier survival analysis indicated that P75CUX1 could serve as an independent prognostic indicator to identify glioma patients with poor overall survival. Furthermore, CUX1 knockdown suppressed migration and invasion of glioma cells both in vitro and in vivo. Mechanistically, this study found that P75CUX1 regulated epithelial-mesenchymal transition (EMT) process mediated via β-catenin, and CUX1/β-catenin/EMT is a novel signaling cascade mediating the infiltration of glioma. Besides, CUX1 was verified to promote the progression of glioma via multiple other signaling pathways, such as Hippo and PI3K/AKT. In conclusion, we suggested that P75CUX1 could serve as a potential prognostic indicator as well as a novel treatment target in malignant glioma.
Collapse
Affiliation(s)
- Anqi Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Xizhao Wang
- Department of Neurosurgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, PR China
| | - Jie Luo
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Mingfeng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Renhui Yi
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Tengyue Huang
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Jie Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Zhiyong Wu
- Department of Neurosurgery, The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, 518116, PR China
| | - Cheng Xie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Shengfeng Ding
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Yu Zeng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, PR China.
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China.
| |
Collapse
|
1494
|
The role of EMT-related lncRNA in the process of triple-negative breast cancer metastasis. Biosci Rep 2021; 41:227597. [PMID: 33443534 PMCID: PMC7859322 DOI: 10.1042/bsr20203121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant and fatal subtype of breast cancer, which has characterized by negativity expression of ER, PR, and HER2. Metastasis is the main factor affecting the prognosis of TNBC, and the process of metastasis is related to abnormal activation of epithelial–mesenchymal transition (EMT). Recent studies have shown that long non-coding RNA (LncRNA) plays an important role in regulating the metastasis and invasion of TNBC. Therefore, based on the metastasis-related EMT signaling pathway, great efforts have confirmed that LncRNA is involved in the molecular mechanism of TNBC metastasis, which will provide new strategies to improve the treatment and prognosis of TNBC. In this review, we summarized many signal pathways related to EMT involved in the transfer process. The advances from the most recent studies of lncRNAs in the EMT-related signal pathways of TNBC metastasis. We also discussed the clinical research, application, and challenges of LncRNA in TNBC.
Collapse
|
1495
|
Lian MJ, Huang CL, Lee TM. Novel system in vitro of classifying oral carcinogenesis based on feature extraction for gray-level co-occurrence matrix using scanned laser pico projector. Lasers Med Sci 2021; 37:215-224. [PMID: 33528670 DOI: 10.1007/s10103-020-03215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
Oral cancer is among the top 10 causes of death due to cancer worldwide. The prognosis for oral cancer patients is not good, with a 5-year survival rate of only 50%. Earlier and more precise classification will help clinicians make a diagnosis and patients survive. With the advancement of technology, computer-aided detection methods are used to help clinicians form therapy strategies. Gray-level co-occurrence matrix (GLCM) feature extraction of images describing the spatial distribution of gray levels is widely used in medical imaging analysis. Scanned laser pico projector (SLPP) has advantages such as high intensity, directivity, coherence, and mono-color with low bandwidth. In this study, GLCM feature extraction and SLPP reflex images were combined to make a small, non-staining, noninvasive classification system. According to the various image characteristics in oral carcinogenesis, SLPP reflex images better define the borders and three-dimensional structures and provide effective GLCM features such as contrast, energy, and homogeneity to classify carcinogenesis in dysplastic oral keratinocyte (DOK) and normal oral keratinocyte (NOK) cells. Moreover, it also reliably classifies highly metastatic (HSC-3) and tongue cancer (CAL-27) cells. A promising computer-aided classification system for oral cancer was developed to build a reliable intraoral examination system for in situ computer-aided diagnosis in normal clinics.
Collapse
Affiliation(s)
- Meng-Jia Lian
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chih-Ling Huang
- Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Tzer-Min Lee
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. .,Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
1496
|
Lu N, Zhang M, Lu L, Liu YZ, Zhang HH, Liu XD. miRNA‑490‑3p promotes the metastatic progression of invasive ductal carcinoma. Oncol Rep 2021; 45:706-716. [PMID: 33416185 PMCID: PMC7757091 DOI: 10.3892/or.2020.7880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/10/2020] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA/mir)‑490‑3p has been defined as a tumor suppressor in different types of cancer, including breast cancer. However, miR‑490‑3p has been shown to function as a tumor suppressor and promoter in a context‑dependent manner in hepatocellular and lung cancer. Contrary to previous studies, the present study revealed that miR‑490‑3p expression was significantly higher in invasive ductal carcinoma (IDC) tissue specimens, the most common form of breast cancer, compared to tumor‑adjacent normal tissue specimens (n=20). Its expression was also higher in the more metastatic breast cancer cell line, MDA‑MB‑231, compared to the non‑metastatic breast cancer cell line, MCF7, and the moderately metastatic breast cancer cell line, MDA‑MB‑468. The expression of miR‑490‑3p was induced following transforming growth factor (TGF)‑β‑induced epithelial‑to‑mesenchymal transition (EMT) in MCF10A cells. Gain‑and loss‑of‑function assays revealed that the expression of miR‑490‑3p regulated the proliferation, colony formation, EMT, migration and invasion in vitro, but not the apoptosis of MDA‑MB‑468 and MDA‑MB‑231 cells. The knockdown of miR‑490‑3p expression in MDA‑MB‑231 cells inhibited experimental metastasis in a tumor xenograft assay. As in lung cancer, miR‑490‑3p was found to target and downregulate the expression of the tumor suppressor RNA binding protein poly r(C) binding protein 1 (PCBP1). PCBP1 protein and miR‑490‑3p expression inversely correlated in patients with ductal carcinoma in situ (DCIS; n=10; no nodal involvement) and IDC (n=10; different stages of metastatic progression) with a significantly higher miR‑490‑3p expression in patients with IDC compared to those with DCIS. The expression of miR‑490‑3p was negatively associated with both overall and disease‑free survival in the patients with breast cancer included in the present study. On the whole, the results confirm a pro‑metastatic role of miR‑490‑3p in IDC, establishing it as a biomarker for disease progression in these patients.
Collapse
MESH Headings
- Animals
- Breast/pathology
- Breast/surgery
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Ductal, Breast/surgery
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- Disease Progression
- Disease-Free Survival
- Epithelial-Mesenchymal Transition/genetics
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Mastectomy
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- RNA-Binding Proteins/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ning Lu
- Department of Breast Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| | - Mei Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lu Lu
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yan-Zhao Liu
- Department of Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hai-Hong Zhang
- Department of Human Resources, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Xiao-Dong Liu
- Department of Breast Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| |
Collapse
|
1497
|
Zhang N, Zhang S, Wu W, Lu W, Jiang M, Zheng N, Huang J, Wang L, Liu H, Zheng M, Wang J. Regorafenib inhibits migration, invasion, and vasculogenic mimicry of hepatocellular carcinoma via targeting ID1-mediated EMT. Mol Carcinog 2021; 60:151-163. [PMID: 33428809 DOI: 10.1002/mc.23279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022]
Abstract
Regorafenib is approved for patients with unresectable hepatocellular carcinoma (HCC) following sorafenib. However, the effect of regorafenib on HCC metastasis and its mechanism are poorly understood. Here, our data showed that regorafenib significantly restrained the migration, invasion and vasculogenic mimicry (VM) of HCC cells, and downregulated the expression of epithelial-to-mesenchymal transition (EMT)/VM-related molecules. Using RNA-seq and cellular thermal shift assays, we found that inhibitor of differentiation 1 (ID1) was a key target of regorafenib. In HCC tissues, the protein expression of ID1 was positively correlated with EMT and VM formation (CD34- /PAS+ ). Functionally, ID1 knockdown inhibited HCC cell migration, invasion, metastasis, and VM formation in vitro and in vivo, with upregulation of E-cadherin and downregulation of Snail and VE-cadherin. Moreover, Snail overexpression promoted the migration, invasion, and VM formation of ID1 knockdown cells. Snail knockdown reduced the migration, invasion, and VM formation of ID1 overexpression cells. Finally, regorafenib suppressed VM formation and decreased the expression of ID1, VE-cadherin and Snail in HCC PDX model. In conclusion, we manifested that regorafenib distinctly inhibited EMT in HCC cells via targeting ID1, leading to the suppression of cell migration, invasion and VM formation. These findings suggest that regorafenib may be developed as a suitable therapeutic agent for HCC metastasis.
Collapse
Affiliation(s)
- Nan Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Shaoqin Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Wenda Wu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Wenxian Lu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Mingting Jiang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Ning Zheng
- Department of Pharmacology, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, The School of Pharmacy, Fujian Medical University, Fujian, China
| | - Jing Huang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Hekun Liu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Min Zheng
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Jichuang Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| |
Collapse
|
1498
|
Huang J, Pan H, Wang J, Wang T, Huo X, Ma Y, Lu Z, Sun B, Jiang H. Unfolded protein response in colorectal cancer. Cell Biosci 2021; 11:26. [PMID: 33514437 PMCID: PMC7844992 DOI: 10.1186/s13578-021-00538-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a gastrointestinal malignancy originating from either the colon or the rectum. A growing number of researches prove that the unfolded protein response (UPR) is closely related to the occurrence and progression of colorectal cancer. The UPR has three canonical endoplasmic reticulum (ER) transmembrane protein sensors: inositol requiring kinase 1 (IRE1), pancreatic ER eIF2α kinase (PERK), and activating transcription factor 6 (ATF6). Each of the three pathways is closely associated with CRC development. The three pathways are relatively independent as well as interrelated. Under ER stress, the activated UPR boosts the protein folding capacity to maximize cell adaptation and survival, whereas sustained or excessive ER triggers cell apoptosis conversely. The UPR involves different stages of CRC pathogenesis, promotes or hinders the progression of CRC, and will pave the way for novel therapeutic and diagnostic approaches. Meanwhile, the correlation between different signal branches in UPR and the switch between the adaptation and apoptosis pathways still need to be further investigated in the future.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Huayang Pan
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Jinge Wang
- The Second Affiliated Hospital & College of Nursing, Harbin Medical University, Harbin, People's Republic of China
| | - Tong Wang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Xiaoyan Huo
- Pediatrics Department of The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Yong Ma
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Zhaoyang Lu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Bei Sun
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Hongchi Jiang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China.
| |
Collapse
|
1499
|
Panda M, Tripathi SK, Biswal BK. SOX9: An emerging driving factor from cancer progression to drug resistance. Biochim Biophys Acta Rev Cancer 2021; 1875:188517. [PMID: 33524528 DOI: 10.1016/j.bbcan.2021.188517] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
Dysregulation of transcription factors is one of the common problems in the pathogenesis of human cancer. Among them, SOX9 is one of the critical transcription factors involved in various diseases, including cancer. The expression of SOX9 is regulated by microRNAs (miRNAs), methylation, phosphorylation, and acetylation. Interestingly, SOX9 acts as a proto-oncogene or tumor suppressor gene, relying upon kinds of cancer. Recent studies have reported the critical role of SOX9 in the regulation of the tumor microenvironment (TME). Additionally, activation of SOX9 signaling or SOX9 regulated signaling pathways play a crucial role in cancer development and progression. Accumulating evidence also suggests that SOX9 acquires stem cell features to induce epithelial-mesenchymal transition (EMT). Moreover, SOX9 has been broadly studied in the field of cancer stem cell (CSC) and EMT in the last decades. However, the link between SOX9 and cancer drug resistance has only recently been discovered. Furthermore, its differential expression could be a potential biomarker for tumor prognosis and progression. This review outlined the various biological implications of SOX9 in cancer progression and cancer drug resistance and elucidated its signaling network, which could be a potential target for designing novel anticancer drugs.
Collapse
Affiliation(s)
- Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
1500
|
Yu X, Pan X, Zhang S, Zhang YH, Chen L, Wan S, Huang T, Cai YD. Identification of Gene Signatures and Expression Patterns During Epithelial-to-Mesenchymal Transition From Single-Cell Expression Atlas. Front Genet 2021; 11:605012. [PMID: 33584803 PMCID: PMC7876317 DOI: 10.3389/fgene.2020.605012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Cancer, which refers to abnormal cell proliferative diseases with systematic pathogenic potential, is one of the leading threats to human health. The final causes for patients’ deaths are usually cancer recurrence, metastasis, and drug resistance against continuing therapy. Epithelial-to-mesenchymal transition (EMT), which is the transformation of tumor cells (TCs), is a prerequisite for pathogenic cancer recurrence, metastasis, and drug resistance. Conventional biomarkers can only define and recognize large tissues with obvious EMT markers but cannot accurately monitor detailed EMT processes. In this study, a systematic workflow was established integrating effective feature selection, multiple machine learning models [Random forest (RF), Support vector machine (SVM)], rule learning, and functional enrichment analyses to find new biomarkers and their functional implications for distinguishing single-cell isolated TCs with unique epithelial or mesenchymal markers using public single-cell expression profiling. Our discovered signatures may provide an effective and precise transcriptomic reference to monitor EMT progression at the single-cell level and contribute to the exploration of detailed tumorigenesis mechanisms during EMT.
Collapse
Affiliation(s)
- Xiangtian Yu
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - XiaoYong Pan
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
| | - ShiQi Zhang
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Yu-Hang Zhang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China.,Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, China
| | - Sibao Wan
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Tao Huang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|