1501
|
Schmeisser H, Mejido J, Balinsky CA, Morrow AN, Clark CR, Zhao T, Zoon KC. Identification of alpha interferon-induced genes associated with antiviral activity in Daudi cells and characterization of IFIT3 as a novel antiviral gene. J Virol 2010; 84:10671-80. [PMID: 20686046 PMCID: PMC2950578 DOI: 10.1128/jvi.00818-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/22/2010] [Indexed: 01/01/2023] Open
Abstract
A novel assay was developed for Daudi cells in which the antiviral (AV) and antiproliferative (AP) activities of interferon (IFN) can be measured simultaneously. Using this novel assay, conditions allowing IFN AV protection but no growth inhibition were identified and selected. Daudi cells were treated under these conditions, and gene expression microarray analyses were performed. The results of the analysis identified 25 genes associated with IFN-α AV activity. Upregulation of 23 IFN-induced genes was confirmed by using reverse transcription-PCR. Of 25 gene products, 17 were detected by Western blotting at 24 h. Of the 25 genes, 10 have not been previously linked to AV activity of IFN-α. The most upregulated gene was IFIT3 (for IFN-induced protein with tetratricopeptide repeats 3). The results from antibody neutralizing experiments suggested an association of the identified genes with IFN-α AV activity. This association was strengthened by results from IFIT3-small interfering RNA transfection experiments showing decreased expression of IFIT3 and a reduction in the AV activity induced by IFN-α. Overexpression of IFIT3 resulted in a decrease of virus titer. Transcription of AV genes after the treatment of cells with higher concentrations of IFN having an AP effect on Daudi cells suggested pleiotropic functions of identified gene products.
Collapse
Affiliation(s)
- H. Schmeisser
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| | - J. Mejido
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| | - C. A. Balinsky
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| | - A. N. Morrow
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| | - C. R. Clark
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| | - T. Zhao
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| | - K. C. Zoon
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
1502
|
Structural and functional studies on the extracellular domain of BST2/tetherin in reduced and oxidized conformations. Proc Natl Acad Sci U S A 2010; 107:17951-6. [PMID: 20880831 DOI: 10.1073/pnas.1008206107] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
HIV-1 and other enveloped viruses can be restricted by a host cellular protein called BST2/tetherin that prevents release of budded viruses from the cell surface. Mature BST2 contains a small cytosolic region, a predicted transmembrane helix, and an extracellular domain with a C-terminal GPI anchor. To advance understanding of BST2 function, we have determined a 2.6 Å crystal structure of the extracellular domain of the bacterially expressed recombinant human protein, residues 47-152, under reducing conditions. The structure forms a single long helix that associates as a parallel dimeric coiled coil over its C-terminal two-thirds, while the N-terminal third forms an antiparallel four-helix bundle with another dimer, creating a global tetramer. We also report the 3.45 Å resolution structure of BST2(51-151) prepared by expression as a secreted protein in HEK293T cells. This oxidized construct forms a dimer in the crystal that is superimposable with the reduced protein over the C-terminal two-thirds of the molecule, and its N terminus suggests pronounced flexibility. Hydrodynamic data demonstrated that BST2 formed a stable tetramer under reducing conditions and a dimer when oxidized to form disulfide bonds. A mutation that selectively disrupted the tetramer (L70D) increased protein expression modestly but only reduced antiviral activity by approximately threefold. Our data raise the possibility that BST2 may function as a tetramer at some stage, such as during trafficking, and strongly support a model in which the primary functional state of BST2 is a parallel disulfide-bound coiled coil that displays flexibility toward its N terminus.
Collapse
|
1503
|
Gantier MP. New perspectives in MicroRNA regulation of innate immunity. J Interferon Cytokine Res 2010; 30:283-9. [PMID: 20477549 DOI: 10.1089/jir.2010.0037] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The fine-tuning of the innate immune response by microRNAs (miRNAs) is a concept now supported by a rapidly growing body of evidence. Target prediction analyses indicate that up to a half of innate immune genes could be under the direct regulation of miRNAs. However, the extent to which miRNAs regulate innate immunity remains poorly defined and is currently limited to a handful of target genes. This review highlights several important parameters of miRNA regulation, mostly neglected in the field, which underpin the relevance of miRNAs in the regulation of innate immunity.
Collapse
Affiliation(s)
- Michael P Gantier
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University , Clayton, Victoria, Australia.
| |
Collapse
|
1504
|
Hare TRIM5α restricts divergent retroviruses and exhibits significant sequence variation from closely related lagomorpha TRIM5 genes. J Virol 2010; 84:12463-8. [PMID: 20861252 DOI: 10.1128/jvi.01514-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TRIM5α proteins recruit and restrict incoming cytoplasmic retroviruses. Primate TRIM5α sequence diversity underlies species-specific restriction and is likely caused by selective pressure from ancient pathogenic infections. Here we show that TRIM5α from the European brown hare restricts diverse retroviruses. Furthermore, it differs significantly in sequence from TRIM5α from the closely related rabbit, suggesting evolutionary changes in the last 12 million years since these species diverged. We propose that, like primates, lagomorphs have been subject to selective pressure from TRIM5-sensitive viruses, possibly related to the endogenous lentivirus RELIK found in both rabbits and hares.
Collapse
|
1505
|
Meineke B, Schwer B, Schaffrath R, Shuman S. Determinants of eukaryal cell killing by the bacterial ribotoxin PrrC. Nucleic Acids Res 2010; 39:687-700. [PMID: 20855293 PMCID: PMC3025547 DOI: 10.1093/nar/gkq831] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
tRNA damage inflicted by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies an antiviral response to phage T4 infection. PrrC homologs are present in many bacterial proteomes, though their biological activities are uncharted. PrrCs consist of two domains: an N-terminal NTPase module related to the ABC family and a distinctive C-terminal ribonuclease module. In this article, we report that the expression of EcoPrrC in budding yeast is fungicidal, signifying that PrrC is toxic in a eukaryon in the absence of other bacterial or viral proteins. Whereas Streptococcus PrrC is also toxic in yeast, Neisseria and Xanthomonas PrrCs are not. Via analysis of the effects of 118 mutations on EcoPrrC toxicity in yeast, we identified 22 essential residues in the NTPase domain and 11 in the nuclease domain. Overexpressing PrrCs with mutations in the NTPase active site ameliorated the toxicity of wild-type EcoPrrC. Our findings support a model in which EcoPrrC toxicity is contingent on head-to-tail dimerization of the NTPase domains to form two composite NTP phosphohydrolase sites. Comparisons of EcoPrrC activity in a variety of yeast genetic backgrounds, and the rescuing effects of tRNA overexpression, implicate tRNALys(UUU) as a target of EcoPrrC toxicity in yeast.
Collapse
Affiliation(s)
- Birthe Meineke
- Molecular Biology Program, Sloan-Kettering Institute, Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065 USA and Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Beate Schwer
- Molecular Biology Program, Sloan-Kettering Institute, Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065 USA and Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Raffael Schaffrath
- Molecular Biology Program, Sloan-Kettering Institute, Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065 USA and Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065 USA and Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
- *To whom correspondence should be addressed. Tel: +1 212 639 7145; Fax: +1 212 717 3623;
| |
Collapse
|
1506
|
Sanders CJ, Doherty PC, Thomas PG. Respiratory epithelial cells in innate immunity to influenza virus infection. Cell Tissue Res 2010; 343:13-21. [PMID: 20848130 DOI: 10.1007/s00441-010-1043-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 08/14/2010] [Indexed: 11/24/2022]
Abstract
Infection by influenza virus leads to respiratory failure characterized by acute lung injury associated with alveolar edema, necrotizing bronchiolitis, and excessive bleeding. Severe reactions to infection that lead to hospitalizations and/or death are frequently attributed to an exuberant host response, with excessive inflammation and damage to the epithelial cells that mediate respiratory gas exchange. The respiratory mucosa serves as a physical and chemical barrier to infection, producing mucus and surfactants, anti-viral mediators, and inflammatory cytokines. The airway epithelial cell layer also serves as the first and overwhelmingly primary target for virus infection and growth. This review details immune events during influenza infection from the viewpoint of the epithelial cells, secretory host defense mechanisms, cell death, and recovery.
Collapse
Affiliation(s)
- Catherine J Sanders
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | |
Collapse
|
1507
|
de Sousa BC, Cunha C. Development of mathematical models for the analysis of hepatitis delta virus viral dynamics. PLoS One 2010; 5:e12512. [PMID: 20862328 PMCID: PMC2940762 DOI: 10.1371/journal.pone.0012512] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 08/09/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mathematical models have shown to be extremely helpful in understanding the dynamics of different virus diseases, including hepatitis B. Hepatitis D virus (HDV) is a satellite virus of the hepatitis B virus (HBV). In the liver, production of new HDV virions depends on the presence of HBV. There are two ways in which HDV can occur in an individual: co-infection and super-infection. Co-infection occurs when an individual is simultaneously infected by HBV and HDV, while super-infection occurs in persons with an existing chronic HBV infection. METHODOLOGY/PRINCIPAL FINDINGS In this work a mathematical model based on differential equations is proposed for the viral dynamics of the hepatitis D virus (HDV) across different scenarios. This model takes into consideration the knowledge of the biology of the virus and its interaction with the host. In this work we will present the results of a simulation study where two scenarios were considered, co-infection and super-infection, together with different antiviral therapies. Although, in general the predicted course of HDV infection is similar to that observed for HBV, we observe a faster increase in the number of HBV infected cells and viral load. In most tested scenarios, the number of HDV infected cells and viral load values remain below corresponding predicted values for HBV. CONCLUSIONS/SIGNIFICANCE The simulation study shows that, under the most commonly used and generally accepted therapy approaches for HDV infection, such as lamivudine (LMV) or ribavirine, peggylated alpha-interferon (IFN) or a combination of both, LMV monotherapy and combination therapy of LMV and IFN were predicted to more effectively reduce the HBV and HDV viral loads in the case of super-infection scenarios when compared with the co-infection. In contrast, IFN monotherapy was found to reduce the HDV viral load more efficiently in the case of super-infection while the effect on the HBV viral load was more pronounced during co-infection. The results suggest that there is a need for development of high efficacy therapeutic approaches towards the specific inhibition of HDV replication. These approaches may additionally be directed to the reduction of the half-life of infected cells and life-span of newly produced circulating virions.
Collapse
Affiliation(s)
- Bruno C de Sousa
- Centre for Malaria and Tropical Diseases, Associated Laboratory, Unit of Epidemiology and Biostatistics, Instituto de Higiene e Medicina Tropical-Universidade Nova de Lisboa, Lisbon, Portugal.
| | | |
Collapse
|
1508
|
Abstract
Mucosal surfaces are exploited as a portal of entry into hosts by a wide variety of microorganisms. Over the past decade, an advanced understanding of the immune system of the gastrointestinal and the respiratory mucosae has been gained. However, despite the fact that many viruses are transmitted sexually through the genital tract, the immune system of the male and female genital mucosae has received much less attention. Here, I describe and highlight differences in the innate and adaptive immune systems of the genital and intestinal mucosae, and discuss some of the challenges we face in the development of successful vaccines against sexually transmitted viral pathogens.
Collapse
|
1509
|
SUMOylation promotes PML degradation during encephalomyocarditis virus infection. J Virol 2010. [PMID: 20826694 DOI: 10.1128/jvi.01321-10.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The promyelocytic leukemia (PML) protein is expressed in the diffuse nuclear fraction of the nucleoplasm and in matrix-associated structures, known as nuclear bodies (NBs). PML NB formation requires the covalent modification of PML to SUMO. The noncovalent interactions of SUMO with PML based on the identification of a SUMO-interacting motif within PML seem to be required for further recruitment within PML NBs of SUMOylated proteins. RNA viruses whose replication takes place in the cytoplasm and is inhibited by PML have developed various strategies to counteract the antiviral defense mediated by PML NBs. We show here that primary fibroblasts derived from PML knockout mice are more sensitive to infection with encephalomyocarditis virus (EMCV), suggesting that the absence of PML results in an increase in EMCV replication. Also, we found that EMCV induces a decrease in PML protein levels both in interferon-treated cells and in PMLIII-expressing cells. Reduction of PML was carried out by the EMCV 3C protease. Indeed, at early times postinfection, EMCV induced PML transfer from the nucleoplasm to the nuclear matrix and PML conjugation to SUMO-1, SUMO-2, and SUMO-3, leading to an increase in PML body size where the viral protease 3C and the proteasome component were found colocalizing with PML within the NBs. This process was followed by PML degradation occurring in a proteasome- and SUMO-dependent manner and did not involve the SUMO-interacting motif of PML. Together, these findings reveal a new mechanism evolved by EMCV to antagonize the PML pathway in the interferon-induced antiviral defense.
Collapse
|
1510
|
SUMOylation promotes PML degradation during encephalomyocarditis virus infection. J Virol 2010; 84:11634-45. [PMID: 20826694 DOI: 10.1128/jvi.01321-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The promyelocytic leukemia (PML) protein is expressed in the diffuse nuclear fraction of the nucleoplasm and in matrix-associated structures, known as nuclear bodies (NBs). PML NB formation requires the covalent modification of PML to SUMO. The noncovalent interactions of SUMO with PML based on the identification of a SUMO-interacting motif within PML seem to be required for further recruitment within PML NBs of SUMOylated proteins. RNA viruses whose replication takes place in the cytoplasm and is inhibited by PML have developed various strategies to counteract the antiviral defense mediated by PML NBs. We show here that primary fibroblasts derived from PML knockout mice are more sensitive to infection with encephalomyocarditis virus (EMCV), suggesting that the absence of PML results in an increase in EMCV replication. Also, we found that EMCV induces a decrease in PML protein levels both in interferon-treated cells and in PMLIII-expressing cells. Reduction of PML was carried out by the EMCV 3C protease. Indeed, at early times postinfection, EMCV induced PML transfer from the nucleoplasm to the nuclear matrix and PML conjugation to SUMO-1, SUMO-2, and SUMO-3, leading to an increase in PML body size where the viral protease 3C and the proteasome component were found colocalizing with PML within the NBs. This process was followed by PML degradation occurring in a proteasome- and SUMO-dependent manner and did not involve the SUMO-interacting motif of PML. Together, these findings reveal a new mechanism evolved by EMCV to antagonize the PML pathway in the interferon-induced antiviral defense.
Collapse
|
1511
|
Structural and Functional Studies of The Innate Immune Effector Mx Proteins: a Review. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
1512
|
Workenhe ST, Rise ML, Kibenge MJT, Kibenge FSB. The fight between the teleost fish immune response and aquatic viruses. Mol Immunol 2010; 47:2525-36. [PMID: 20797792 DOI: 10.1016/j.molimm.2010.06.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 06/16/2010] [Accepted: 06/22/2010] [Indexed: 12/14/2022]
Abstract
Teleost fish represent a transition point on the phylogenetic spectrum between invertebrates that depend only on innate immunity and mammals that heavily depend on adaptive immunity. The major mechanisms of the teleost fish innate immune response are suggested to be similar to mammals, although fine details of the process require further studies. Within the innate immune response the type I interferon (IFN) system is an essential innate antiviral component that protects fish from some virus infections. The current progress of cloning and functional characterization of fish antiviral genes is promising in further elucidation of the fish antiviral response. The adaptive immune system of fish utilizes cellular components more or less similar to mammals. Teleost fish produce IgM as a primary antibody response and lack isotype switching to mount virus-specific antibodies during the infection process. Despite this, the development of successful fish rhabdoviral vaccines suggest that vaccination may prove to be an effective way of promoting fish adaptive immune responses to viruses. This paper reviews the bony fish antiviral response with specific discussion on the evolutionary mechanisms that allow aquatic viruses to co-exist with their host. Detailed aspects of the teleost type I IFN system are also addressed.
Collapse
Affiliation(s)
- Samuel T Workenhe
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, P.E.I. C1A 4P3, Canada
| | | | | | | |
Collapse
|
1513
|
Li XL, Ezelle HJ, Hsi TY, Hassel BA. A central role for RNA in the induction and biological activities of type 1 interferons. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:58-78. [PMID: 21956969 DOI: 10.1002/wrna.32] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In mammals the type 1 interferon (IFN) system functions as the primary innate antiviral defense and more broadly as a stress response and regulator of diverse homeostatic mechanisms. RNA plays a central role in the induction of IFN and in its biologic activities. Cellular toll-like receptors (TLR), RIG-I-like receptors (RLR), and nucleotide organization domain-like receptors (NLR) sense pathogen- and danger-associated RNAs as nonself based on structural features and subcellular location that distinguish them from ubiquitous host RNAs. Detection of nonself RNAs activates signaling pathways to induce IFN transcription and secretion. In turn, IFN binds cell surface receptors to initiate signaling that results in the induction of IFN-stimulated genes (ISGs) that mediate its biologic activities. RNA also plays a critical role in this effector phase of the IFN system, serving as an activator of enzyme activity for protein kinase RNA-dependent (PKR) and oligoadenylate synthetase (OAS), and as a substrate for 2('), 5(') -linked oligoadenylate dependant-endoribonuclease (RNase-L). In contrast to the transcriptional response induced by RNA receptors, these key ISGs mediate their activities primarily through post transcriptional mechanisms to regulate the translation and stability of host and microbial RNAs. Together RNA-sensing and RNA-effector molecules comprise a network of coordinately regulated proteins with integrated feedback and feed-forward loops that tightly regulate the cellular response to RNA. This stringent regulation is essential to prevent deleterious effects of uncontrolled IFN expression and effector activation. In light of this extensive crosstalk, targeting key mediators of the cellular response to RNA represents a viable strategy for therapeutic modulation of immune function and treatment of diseases in which this response is dysregulated (e.g., cancer).
Collapse
Affiliation(s)
- Xiao-Ling Li
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
1514
|
Schoenherr C, Weiskirchen R, Haan S. Interleukin-27 acts on hepatic stellate cells and induces signal transducer and activator of transcription 1-dependent responses. Cell Commun Signal 2010; 8:19. [PMID: 20719000 PMCID: PMC2931529 DOI: 10.1186/1478-811x-8-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/19/2010] [Indexed: 02/06/2023] Open
Abstract
Background Interleukin (IL)-27 is a cytokine belonging to the IL-6/IL-12 cytokine family that is secreted by activated macrophages and dendritic cells and which strongly acts on T-cells and cells of the innate immune system. Not much is known about possible effects of IL-27 on other cell types. It signals via the common IL-6-type-cytokine receptor chain gp130 and the IL-27-specific chain WSX-1. We previously described that IL-27 also stimulates hepatoma cells and primary hepatocytes. The aim of this study was to investigate whether IL-27 would also act on hepatic stellate cells (HSC), the second most abundant hepatic cell type, which would demonstrate a more general role of this cytokine in the liver. Results Using a human HSC line and primary rat HSC we investigated the signalling characteristics of IL-27 in these cells. We show that IL-27 activates signal transducer and activator of transcription (STAT) 1 and to a minor extent STAT3 in a human HSC cell line and that it leads to the induction of STAT1 target genes such as interferon response factor-1, myxovirus resistance A and STAT1 itself. Similarly we find that IL-27 also elicits STAT1-dependent responses in primary rat HSC. Conclusions We provide the first evidence for a function of IL-27 in HSC and show that its responses resemble Interferon-γ-like functions in these cells. Our data suggests that IL-27 may play an important role in the context of liver inflammation by acting on the different liver cell types.
Collapse
Affiliation(s)
- Caroline Schoenherr
- Department of Biochemistry, University Hospital RWTH-Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | | | | |
Collapse
|
1515
|
Domingo-Gil E, González JM, Esteban M. Identification of cellular genes induced in human cells after activation of the OAS/RNaseL pathway by vaccinia virus recombinants expressing these antiviral enzymes. J Interferon Cytokine Res 2010; 30:171-88. [PMID: 20038200 DOI: 10.1089/jir.2009.0037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferon (IFN) type I induces the expression of antiviral proteins such as 2',5'-oligoadenylate synthetases (OAS). The enzyme OAS is activated by dsRNA to produce 5'-phosphorylated, 2-5-linked oligoadenylates (2-5A) that activate RNaseL which, in turn, triggers RNA breakdown, leading to multiple biological functions. Although RNaseL is required for IFN antiviral function, there are many aspects of the molecular mechanisms that remain obscure. Here, we have used microarray analyses from human HeLa cells infected with vaccinia virus (VACV) recombinants expressing OAS-RNaseL enzymes (referred as 2-5A system) with the aim to identify host genes that are up- or down-regulated in the course of infection by the activation of this antiviral pathway. We found that activation of the 2-5A system from VACV recombinants produces a remarkable stimulation of transcription for genes that regulate many cellular processes, like those that promote cell growth arrest, GADD45B and KCTD11, apoptosis as CUL2, PDCD6, and TNFAIP8L2, IFN-stimulated genes as IFI6, and related to tumor suppression as PLA2G2A. The 2-5A system activation produces down-regulation of transcription of some genes that promote cell growth as RUNX2 and ESR2 and of genes in charge to maintain mitochondria homeostasis as MIPEP and COX5A. These results reveal new genes induced in response to the activation of the 2-5A system with roles in apoptosis, translational control, cell growth arrest, and tumor suppression.
Collapse
Affiliation(s)
- Elena Domingo-Gil
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
1516
|
Li L, Sevinsky JR, Rowland MD, Bundy JL, Stephenson JL, Sherry B. Proteomic analysis reveals virus-specific Hsp25 modulation in cardiac myocytes. J Proteome Res 2010; 9:2460-71. [PMID: 20196617 DOI: 10.1021/pr901151k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Viruses frequently infect the heart but clinical myocarditis is rare, suggesting that the cardiac antiviral response is uniquely effective. Indeed, the Type I interferon (IFN) response is cardiac cell-type specific and provides one integrated network of protection for the heart. Here, a proteomic approach was used to identify additional proteins that may be involved in the cardiac antiviral response. Reovirus-induced murine myocarditis reflects direct viral damage to cardiac cells and offers an excellent system for study. Primary cultures of murine cardiac myocytes were infected with myocarditic or nonmyocarditic reovirus strains, and whole cell lysates were compared by two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF/TOF) tandem mass spectrometry. Results were quantitative and reproducible and demonstrated that whole proteome changes clustered according to viral pathogenic phenotype. Moreover, the data suggest that the heat shock protein Hsp25 is modulated differentially by myocarditic and nonmyocarditic reoviruses and may play a role in the cardiac antiviral response. Members of seven virus families modulate Hsp25 or Hsp27 expression in a variety of cell types, suggesting that Hsp25 participation in the antiviral response may be widespread. However, results here provide the first evidence for a virus-induced decrease in Hsp25/27 and suggest that viruses may have evolved a mechanism to subvert this protective response, as they have for IFN.
Collapse
Affiliation(s)
- Lianna Li
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina 27606, USA
| | | | | | | | | | | |
Collapse
|
1517
|
Shi X, Wang L, Zhi Y, Xing G, Zhao D, Deng R, Zhang G. Porcine reproductive and respiratory syndrome virus (PRRSV) could be sensed by professional beta interferon-producing system and had mechanisms to inhibit this action in MARC-145 cells. Virus Res 2010; 153:151-6. [PMID: 20692306 PMCID: PMC7114505 DOI: 10.1016/j.virusres.2010.07.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/24/2010] [Accepted: 07/28/2010] [Indexed: 01/21/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes an economically important disease in swine-producing area, and interferon beta (IFN-β) is the first responder against the animal virus infection. However, whether PRRSV could induce the production of IFN-β is controversial. In this paper, we first time found that PRRSV could phosphorylate IFN-regulatory factor 3 (IRF-3) and weakly activate the IFN-β promoter in MARC-145 cells in early infection, but the activations of IRF-3 and IFN-β promoter were rapidly inhibited in the following infection. Furthermore, which components or products of the invading PRRSV cause PRRSV to inhibit IFN-β promoter activity attracted our attentions. The obtained results showed that PRRSV nsp1 could inhibit Poly(I:C)-induced IFN-β promoter activity in MARC-145 cells by down-regulating the protein level of IRF-3 and inhibiting the phosphorylation of IRF-3. In conclusion, our results suggested that PRRSV could be sensed by professional IFN-β-producing system and had mechanisms to inhibit this action in MARC-145 cells.
Collapse
Affiliation(s)
- Xibao Shi
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | | | | | | | | | | | | |
Collapse
|
1518
|
Sun B, Wang Y, Meng Q, Liu D, Dong P, Ding H, Wu H. Dynamics of memory T cells during treatment with interferon-alpha in patients with chronic hepatitis B. Hepatol Res 2010; 40:806-12. [PMID: 20649820 DOI: 10.1111/j.1872-034x.2010.00686.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM To investigate the association of memory T cell subsets with viral response during treatment with interferon-alpha (IFN-alpha). METHODS To address this issue, the dynamics of memory T cell subsets was monitored in 57 patients with chronic hepatitis B (CHB) during treatment with pegylated IFN-alpha through testing the phenotypes of memory T cells with flowcytometry. RESULTS There were clear differences in the phenotypes of these cells during therapy. Memory T cells converted from the major subsets to the minor in the process of treatment with IFN-alpha. Patients who presented a response showed significantly higher percentages of CD8+ T(EM) at 0 and 24 weeks (both P < 0.05), and lower frequency of CD8+ T(CM) than non-responders at 0 and 24 weeks (both P < 0.05). Moreover, the average dosage of IFN-alpha applied to patients with viral response to treatment was 1.43 +/- 0.18 microg/kg, significantly higher than 1.31 +/- 0.25 microg/kg in nonresponders (P < 0.01). CONCLUSIONS The quantity and quality of memory T cell subsets fluctuates during treatment with IFN-alpha. High frequency of T(EM) subsets may be associated with response to treatment with IFN-alpha. A better knowledge of mechanisms underlying the response to therapy may be important for development of new immunotherapeutic strategies to increase CD8 T-cell effectiveness in CHB infection.
Collapse
Affiliation(s)
- Bin Sun
- Intervention therapy Center of Liver Diseases, Beijing You An Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
1519
|
Abstract
The host innate immune response, including the production of type-I IFN, represents the primary line of defense against invading viral pathogens. Of the hundreds of IFN-stimulated genes (ISGs) discovered to date, ISG15 was one of the first identified and shown to encode a ubiquitin-like protein that functions, in part, as a modifier of protein function. Evidence implicating ISG15 as an innate immune protein with broad-spectrum antiviral activity continues to accumulate rapidly. This review will summarize recent findings on the innate antiviral activity of ISG15, with a focus on the interplay between ubiquitination and ISGylation pathways resulting in modulation of RNA virus assembly/budding. Indeed, ubiquitination is known to be proviral for some RNA viruses, whereas the parallel ISGylation pathway is known to be antiviral. A better understanding of the antiviral activities of ISG15 will enhance our fundamental knowledge of host innate responses to viral pathogens and may provide insight useful for the development of novel therapeutic approaches designed to enhance the immune response against such pathogens.
Collapse
Affiliation(s)
- Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
1520
|
Yoo D, Song C, Sun Y, Du Y, Kim O, Liu HC. Modulation of host cell responses and evasion strategies for porcine reproductive and respiratory syndrome virus. Virus Res 2010; 154:48-60. [PMID: 20655963 PMCID: PMC7114477 DOI: 10.1016/j.virusres.2010.07.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/24/2010] [Accepted: 07/18/2010] [Indexed: 12/13/2022]
Abstract
The immune surveillance system protects host cells from viral infection, and viruses have evolved to escape this system for efficient proliferation in the host. Host cells produce cytokines and chemokines in response to viral infection, and among such effector molecules, type I interferons are the principal antiviral cytokines and therefore effective targets for viruses to disarm host surveillance. Porcine reproductive and respiratory syndrome virus (PRRSV) expresses proteins that circumvent the IFN response and other cellular processes, and to compensate the small coding capacity of PRRSV, these proteins are multifunctional. To date, at least four viral proteins have been identified and studied as viral antagonists of host defenses: N as a structural protein and three non-structural proteins, Nsp1 (Nsp1α and Nsp1β), Nsp2, and Nsp11. Among these, N and Nsp1 are nuclear-cytoplasmic proteins distributed in both the nucleus and cytoplasm of cells. Nsp1 and Nsp2 are viral proteases while Nsp11 is an endoribonuclease. This review describes the current understanding of the role of these proteins in modulating the host innate immune responses. Blocking against virus-mediated inhibition of the innate response may lead to the future development of effective vaccines. The understanding of viral mechanisms modulating the normal cellular processes will be a key to the design of an effective control strategy for PRRS.
Collapse
Affiliation(s)
- Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
| | | | | | | | | | | |
Collapse
|
1521
|
López-Lastra M, Ramdohr P, Letelier A, Vallejos M, Vera-Otarola J, Valiente-Echeverría F. Translation initiation of viral mRNAs. Rev Med Virol 2010; 20:177-95. [PMID: 20440748 PMCID: PMC7169124 DOI: 10.1002/rmv.649] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Viruses depend on cells for their replication but have evolved mechanisms to achieve this in an efficient and, in some instances, a cell‐type‐specific manner. The expression of viral proteins is frequently subject to translational control. The dominant target of such control is the initiation step of protein synthesis. Indeed, during the early stages of infection, viral mRNAs must compete with their host counterparts for the protein synthetic machinery, especially for the limited pool of eukaryotic translation initiation factors (eIFs) that mediate the recruitment of ribosomes to both viral and cellular mRNAs. To circumvent this competition viruses use diverse strategies so that ribosomes can be recruited selectively to viral mRNAs. In this review we focus on the initiation of protein synthesis and outline some of the strategies used by viruses to ensure efficient translation initiation of their mRNAs. Copyright © 2010 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
1522
|
Sato N, Morimoto H, Baba R, Nakamata J, Doi Y, Yamaguchi K. Functional expression of double-stranded RNA-dependent protein kinase in rat intestinal epithelial cells. J Cell Biochem 2010; 110:104-11. [PMID: 20213745 DOI: 10.1002/jcb.22513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intestinal epithelial cells (IECs) are exposed to external environment, microbial and viral products, and serve as essential barriers to antigens. Recent studies have shown that IECs express Toll-like receptors (TLRs) and respond to microbial components. The antimicrobial and antiviral barriers consist of many molecules including TLRs. To investigate the further component of this barrier in intestine, we examined the expression of double-stranded RNA-dependent protein kinase (PKR). PKR is a player in the cellular antiviral response and phosphorylates alpha-subunit of the eukaryotic translation initiation factor 2 (eIF-2alpha) to block protein synthesis and induces apoptosis. In this study, we showed that the expression of PKR was restricted to the cytoplasm of absorptive epithelial cells in the intestine of adult rat. We also demonstrated that PKR was expressed in the cultured rat intestinal epithelial cells (IEC-6). The level of PKR protein expression and the activity of alkaline phosphatase (ALP) increased in the cultured IEC-6 cells in a time-dependent manner. Inhibition of PKR by the 2-aminopurine treatment decreased ALP activity in the IEC-6 cells. Treatment of IEC-6 cells with synthetic double-stranded RNA (dsRNA) induced cell death in a dose-dependent manner. The addition of hydrocortisone also provoked suppression of PKR expression and ALP activity. This modulation might be mediated by signal transducers and activators of transcription-1 (STAT-1) protein. We concluded that PKR is expressed in IECs as potent barriers to antigens and is a possible modulator of the differentiation of rat IECs.
Collapse
Affiliation(s)
- Nagahiro Sato
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu 807-8555, Japan
| | | | | | | | | | | |
Collapse
|
1523
|
Dillon D, Runstadler J. Mx gene diversity and influenza association among five wild dabbling duck species (Anas spp.) in Alaska. INFECTION GENETICS AND EVOLUTION 2010; 10:1085-93. [PMID: 20621205 DOI: 10.1016/j.meegid.2010.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/01/2010] [Accepted: 07/02/2010] [Indexed: 12/29/2022]
Abstract
Mx (myxovirus-resistant) proteins are induced by interferon and inhibit viral replication as part of the innate immune response to viral infection in many vertebrates. Influenza A virus appears to be especially susceptible to Mx antiviral effects. We characterized exon 13 and the 3' UTR of the Mx gene in wild ducks, the natural reservoir of influenza virus and explored its potential relevance to influenza infection. We observed a wide range of intra- and interspecies variations. Total nucleotide diversity per site was 0.0014, 0.0027, 0.0044, 0.0051, and 0.0061 in mallards, northern shovelers, northern pintails, American wigeon, and American green-winged teals, respectively. There were 61 haplotypes present across all five species and four were shared among species. Additionally, we observed a significant association between Mx haplotype and influenza infection status in northern shovelers. However, we found no evidence of balancing or diversifying selection in this region of the Mx gene. Characterization of the duck Mx gene is an important step in understanding how the gene may affect disease resistance or susceptibility in wild populations. Furthermore, given that waterfowl act as a natural reservoir for influenza virus, the Mx gene could be an important determinant in the ecology of the virus.
Collapse
Affiliation(s)
- Danielle Dillon
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.
| | | |
Collapse
|
1524
|
Vandevenne P, Sadzot-Delvaux C, Piette J. Innate immune response and viral interference strategies developed by human herpesviruses. Biochem Pharmacol 2010; 80:1955-72. [PMID: 20620129 DOI: 10.1016/j.bcp.2010.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/01/2010] [Accepted: 07/01/2010] [Indexed: 12/24/2022]
Abstract
Viruses are by far the most abundant parasites on earth and they have been found to infect animals, plants and bacteria. However, different types of viruses can only infect a limited range of hosts and many are species-specific. Herpesviruses constitute a large family of DNA viruses that cause diseases in animals, including humans and that are known to undergo lytic or latent infections. Consequently, they developed numerous strategies to counteract host antiviral responses to escape immune surveillance. Innate immune response constitutes the first line of host defence that limits the viral spread and also plays an important role in the activation of adaptive immune response. Viral components are recognized by specific host Pathogen Recognition Receptors (PRRs) which trigger the activation of IRF3, NF-κB and AP-1, three regulators of IFN-β expression. IFN-β is responsible for the induction of Interferon-Stimulated Genes (ISGs) that encode antiviral effectors important to limit the viral spread and to establish an antiviral state as well in the infected cells as in the neighbouring non-infected cells. In this review, we will summarize how host cells recognize viral components and activate downstream signalling pathways leading to the production of IFN-β and ISGs. We will also review the most recent findings in Herpesviruses-encoded proteins involved in host immune evasion.
Collapse
Affiliation(s)
- Patricia Vandevenne
- Laboratory of Virology and Immunology, GIGA-Research B34, University of Liège, B-4000 Liège, Belgium
| | | | | |
Collapse
|
1525
|
Cho O, Hong SH, Kim JS, Yoon JK, Kim K, Chwae YJ, Shin HJ, Park S. IFN-λ endocytosis and IFN-λ responsive promoter activation are dependent on cholesterol. Cytokine 2010; 51:93-100. [DOI: 10.1016/j.cyto.2010.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/26/2010] [Accepted: 03/16/2010] [Indexed: 11/24/2022]
|
1526
|
Abstract
The lack of an efficacious HIV-1 vaccine and the continued emergence of drug-resistant HIV-1 strains have pushed the research community to explore novel avenues for AIDS therapy. Over the last decade, one new avenue that has been realized involves cellular HIV-1 restriction factors, defined as host cellular proteins or factors that restrict or inhibit HIV-1 replication. Many of these factors are interferon-induced and inhibit specific stages of the HIV-1 lifecycle that are not targeted by current AIDS therapies. Our understanding of the molecular mechanisms underlying HIV-1 restriction is far from complete, but our current knowledge of these factors offers hope for the future development of novel therapeutic ideas.
Collapse
Affiliation(s)
- Stephen D Barr
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
1527
|
Xiao S, Jia J, Mo D, Wang Q, Qin L, He Z, Zhao X, Huang Y, Li A, Yu J, Niu Y, Liu X, Chen Y. Understanding PRRSV infection in porcine lung based on genome-wide transcriptome response identified by deep sequencing. PLoS One 2010; 5:e11377. [PMID: 20614006 PMCID: PMC2894071 DOI: 10.1371/journal.pone.0011377] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 05/20/2010] [Indexed: 01/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has been one of the most economically important diseases affecting swine industry worldwide and causes great economic losses each year. PRRS virus (PRRSV) replicates mainly in porcine alveolar macrophages (PAMs) and dendritic cells (DCs) and develops persistent infections, antibody-dependent enhancement (ADE), interstitial pneumonia and immunosuppression. But the molecular mechanisms of PRRSV infection still are poorly understood. Here we report on the first genome-wide host transcriptional responses to classical North American type PRRSV (N-PRRSV) strain CH 1a infection using Solexa/Illumina's digital gene expression (DGE) system, a tag-based high-throughput transcriptome sequencing method, and analyse systematically the relationship between pulmonary gene expression profiles after N-PRRSV infection and infection pathology. Our results suggest that N-PRRSV appeared to utilize multiple strategies for its replication and spread in infected pigs, including subverting host innate immune response, inducing an anti-apoptotic and anti-inflammatory state as well as developing ADE. Upregulation expression of virus-induced pro-inflammatory cytokines, chemokines, adhesion molecules and inflammatory enzymes and inflammatory cells, antibodies, complement activation were likely to result in the development of inflammatory responses during N-PRRSV infection processes. N-PRRSV-induced immunosuppression might be mediated by apoptosis of infected cells, which caused depletion of immune cells and induced an anti-inflammatory cytokine response in which they were unable to eradicate the primary infection. Our systems analysis will benefit for better understanding the molecular pathogenesis of N-PRRSV infection, developing novel antiviral therapies and identifying genetic components for swine resistance/susceptibility to PRRS.
Collapse
Affiliation(s)
- Shuqi Xiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianyu Jia
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiwei Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Limei Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuankai Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anning Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingwei Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuna Niu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
1528
|
Nakayama Y, Plisch EH, Sullivan J, Thomas C, Czuprynski CJ, Williams BRG, Suresh M. Role of PKR and Type I IFNs in viral control during primary and secondary infection. PLoS Pathog 2010; 6:e1000966. [PMID: 20585572 PMCID: PMC2891951 DOI: 10.1371/journal.ppat.1000966] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 05/25/2010] [Indexed: 12/12/2022] Open
Abstract
Type I interferons (IFNs) are known to mediate viral control, and also promote survival and expansion of virus-specific CD8+ T cells. However, it is unclear whether signaling cascades involved in eliciting these diverse cellular effects are also distinct. One of the best-characterized anti-viral signaling mechanisms of Type I IFNs is mediated by the IFN-inducible dsRNA activated protein kinase, PKR. Here, we have investigated the role of PKR and Type I IFNs in regulating viral clearance and CD8+ T cell response during primary and secondary viral infections. Our studies demonstrate differential requirement for PKR, in viral control versus elicitation of CD8+ T cell responses during primary infection of mice with lymphocytic choriomeningitis virus (LCMV). PKR-deficient mice mounted potent CD8+ T cell responses, but failed to effectively control LCMV. The compromised LCMV control in the absence of PKR was multifactorial, and linked to less effective CD8+ T cell-mediated viral suppression, enhanced viral replication in cells, and lower steady state expression levels of IFN-responsive genes. Moreover, we show that despite normal expansion of memory CD8+ T cells and differentiation into effectors during a secondary response, effective clearance of LCMV but not vaccinia virus required PKR activity in infected cells. In the absence of Type I IFN signaling, secondary effector CD8+ T cells were ineffective in controlling both LCMV and vaccinia virus replication in vivo. These findings provide insight into cellular pathways of Type I IFN actions, and highlight the under-appreciated importance of innate immune mechanisms of viral control during secondary infections, despite the accelerated responses of memory CD8+ T cells. Additionally, the results presented here have furthered our understanding of the immune correlates of anti-viral protective immunity, which have implications in the rational design of vaccines.
Collapse
Affiliation(s)
- Yumi Nakayama
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erin H. Plisch
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeremy Sullivan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chester Thomas
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Charles J. Czuprynski
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bryan R. G. Williams
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - M. Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
1529
|
Bożek K, Lengauer T. Positive selection of HIV host factors and the evolution of lentivirus genes. BMC Evol Biol 2010; 10:186. [PMID: 20565842 PMCID: PMC2906474 DOI: 10.1186/1471-2148-10-186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/18/2010] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Positive selection of host proteins that interact with pathogens can indicate factors relevant for infection and potentially be a measure of pathogen driven evolution. RESULTS Our analysis of 1439 primate genes and 175 lentivirus genomes points to specific host factors of high genetic variability that could account for differences in susceptibility to disease and indicate specific mechanisms of host defense and pathogen adaptation. We find that the largest amount of genetic change occurs in genes coding for cellular membrane proteins of the host as well as in the viral envelope genes suggesting cell entry and immune evasion as the primary evolutionary interface between host and pathogen. We additionally detect the innate immune response as a gene functional group harboring large differences among primates that could potentially account for the different levels of immune activation in the HIV/SIV primate infection. We find a significant correlation between the evolutionary rates of interacting host and viral proteins pointing to processes of the host-pathogen biology that are relatively conserved among species and to those undergoing accelerated genetic evolution. CONCLUSIONS These results indicate specific host factors and their functional groups experiencing pathogen driven evolutionary selection pressures. Individual host factors pointed to by our analysis might merit further study as potential targets of antiretroviral therapies.
Collapse
Affiliation(s)
- Katarzyna Bożek
- Max Planck Institute for Informatics Computational Biology and Applied Algorithmics Campus E1 4 66123 Saarbrücken, Germany
| | - Thomas Lengauer
- Max Planck Institute for Informatics Computational Biology and Applied Algorithmics Campus E1 4 66123 Saarbrücken, Germany
| |
Collapse
|
1530
|
Viral hijacking of the host ubiquitin system to evade interferon responses. Curr Opin Microbiol 2010; 13:517-23. [PMID: 20699190 PMCID: PMC2939720 DOI: 10.1016/j.mib.2010.05.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/22/2010] [Accepted: 05/26/2010] [Indexed: 01/28/2023]
Abstract
The post-translational attachment of ubiquitin or ubiquitin-like modifiers (ULMs) to proteins regulates many cellular processes including the generation of innate and adaptive immune responses to pathogens. Vice versa, pathogens counteract immune defense by inhibiting or redirecting the ubiquitination machinery of the host. A common immune evasion strategy is for viruses to target host immunoproteins for proteasomal or lysosomal degradation by employing viral or host ubiquitin ligases. By degrading key host adaptor and signaling molecules, viruses thus disable multiple immune response pathways including the production of and response to interferons as well as other innate host defense mechanisms. Recent work further revealed that viruses inhibit the ligation of ubiquitin or ULMs or remove ubiquitin from host cell proteins. Thus, viruses succeed in either stabilizing negative regulators of innate immune signaling or thwart host cell proteins that are activated by ubiquitin or ULM-modification.
Collapse
|
1531
|
Tick-borne encephalitis virus delays interferon induction and hides its double-stranded RNA in intracellular membrane vesicles. J Virol 2010; 84:8470-83. [PMID: 20554782 DOI: 10.1128/jvi.00176-10] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) (family Flaviviridae, genus Flavivirus) accounts for approximately 10,000 annual cases of severe encephalitis in Europe and Asia. Here, we investigated the induction of the antiviral type I interferons (IFNs) (alpha/beta IFN [IFN-alpha/beta]) by TBEV. Using strains Neudörfl, Hypr, and Absettarov, we demonstrate that levels of IFN-beta transcripts and viral RNA are strictly correlated. Moreover, IFN induction by TBEV was dependent on the transcription factor IFN regulatory factor 3 (IRF-3). However, even strain Hypr, which displayed the strongest IFN-inducing activity and the highest RNA levels, substantially delayed the activation of IRF-3. As a consequence, TBEV can keep the level of IFN transcripts below the threshold value that would permit the release of IFN by the cell. Only after 24 h of infection have cells accumulated sufficient IFN transcripts to produce detectable amounts of secreted IFNs. The delay in IFN induction appears not to be caused by a specific viral protein, since the individual expressions of TBEV C, E, NS2A, NS2B, NS3, NS4A, NS4B, NS5, and NS2B-NS3, as well as TBEV infection itself, had no apparent influence on specific IFN-beta induction. We noted, however, that viral double-stranded RNA (dsRNA), an important trigger of the IFN response, is immunodetectable only inside intracellular membrane compartments. Nonetheless, the dependency of IFN induction on IFN promoter stimulator 1 (IPS-1) as well as the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) suggest the cytoplasmic exposure of some viral dsRNA late in infection. Using ultrathin-section electron microscopy, we demonstrate that, similar to other flaviviruses, TBEV rearranges intracellular membranes. Virus particles and membrane-connected vesicles (which most likely represent sites of virus RNA synthesis) were observed inside the endoplasmic reticulum. Thus, apparently, TBEV rearranges internal cell membranes to provide a compartment for its dsRNA, which is largely inaccessible for detection by cytoplasmic pathogen receptors. This delays the onset of IFN induction sufficiently to give progeny particle production a head start of approximately 24 h.
Collapse
|
1532
|
Versteeg GA, García-Sastre A. Viral tricks to grid-lock the type I interferon system. Curr Opin Microbiol 2010; 13:508-16. [PMID: 20538505 PMCID: PMC2920345 DOI: 10.1016/j.mib.2010.05.009] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 05/18/2010] [Indexed: 12/24/2022]
Abstract
Type I interferons (IFNs) play a crucial role in the innate immune avant-garde against viral infections. Virtually all viruses have developed means to counteract the induction, signaling, or antiviral actions of the IFN circuit. Over 170 different virus-encoded IFN antagonists from 93 distinct viruses have been described up to now, indicating that most viruses interfere with multiple stages of the IFN response. Although every viral IFN antagonist is unique in its own right, four main mechanisms are employed to circumvent innate immune responses: (i) general inhibition of cellular gene expression, (ii) sequestration of molecules in the IFN circuit, (iii) proteolytic cleavage, and (iv) proteasomal degradation of key components of the IFN system. The increasing understanding of how different viral IFN antagonists function has been translated to the generation of viruses with mutant IFN antagonists as potential live vaccine candidates. Moreover, IFN antagonists are attractive targets for inhibition by small-molecule compounds.
Collapse
Affiliation(s)
- Gijs A Versteeg
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
1533
|
Identification of five interferon-induced cellular proteins that inhibit west nile virus and dengue virus infections. J Virol 2010; 84:8332-41. [PMID: 20534863 DOI: 10.1128/jvi.02199-09] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) are key mediators of the host innate antiviral immune response. To identify IFN-stimulated genes (ISGs) that instigate an antiviral state against two medically important flaviviruses, West Nile virus (WNV) and dengue virus (DENV), we tested 36 ISGs that are commonly induced by IFN-alpha for antiviral activity against the two viruses. We discovered that five ISGs efficiently suppressed WNV and/or DENV infection when they were individually expressed in HEK293 cells. Mechanistic analyses revealed that two structurally related cell plasma membrane proteins, IFITM2 and IFITM3, disrupted early steps (entry and/or uncoating) of the viral infection. In contrast, three IFN-induced cellular enzymes, viperin, ISG20, and double-stranded-RNA-activated protein kinase, inhibited steps in viral proteins and/or RNA biosynthesis. Our results thus imply that the antiviral activity of IFN-alpha is collectively mediated by a panel of ISGs that disrupt multiple steps of the DENV and WNV life cycles.
Collapse
|
1534
|
Accessory protein 5a is a major antagonist of the antiviral action of interferon against murine coronavirus. J Virol 2010; 84:8262-74. [PMID: 20519394 DOI: 10.1128/jvi.00385-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The type I interferon (IFN) response plays an essential role in the control of in vivo infection by the coronavirus mouse hepatitis virus (MHV). However, in vitro, most strains of MHV are largely resistant to the action of this cytokine, suggesting that MHV encodes one or more functions that antagonize or evade the IFN system. A particular strain of MHV, MHV-S, exhibited orders-of-magnitude higher sensitivity to IFN than prototype strain MHV-A59. Through construction of interstrain chimeric recombinants, the basis for the enhanced IFN sensitivity of MHV-S was found to map entirely to the region downstream of the spike gene, at the 3' end of the genome. Sequence analysis revealed that the major difference between the two strains in this region is the absence of gene 5a from MHV-S. Creation of a gene 5a knockout mutant of MHV-A59 demonstrated that a major component of IFN resistance maps to gene 5a. Conversely, insertion of gene 5a, or its homologs from related group 2 coronaviruses, at an upstream genomic position in an MHV-A59/S chimera restored IFN resistance. This is the first demonstration of a coronavirus gene product that can protect that same virus from the antiviral state induced by IFN. Neither protein kinase R, which phosphorylates eukaryotic initiation factor 2, nor oligoadenylate synthetase, which activates RNase L, was differentially activated in IFN-treated cells infected with MHV-A59 or MHV-S. Thus, the major IFN-induced antiviral activities that are specifically inhibited by MHV, and possibly by other coronaviruses, remain to be identified.
Collapse
|
1535
|
Sun D, Rösler C, Kidd-Ljunggren K, Nassal M. Quantitative assessment of the antiviral potencies of 21 shRNA vectors targeting conserved, including structured, hepatitis B virus sites. J Hepatol 2010; 52:817-26. [PMID: 20400195 DOI: 10.1016/j.jhep.2009.10.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS RNA interference (RNAi) may offer new treatment options for chronic hepatitis B. Replicating via an RNA intermediate, hepatitis B virus (HBV) is known to be principally vulnerable to RNAi. However, beyond delivery, the relevant issues of potential off-target effects, target site conservation in circulating HBV strains, and efficacy of RNAi itself have not systematically been addressed, nor can the different existing data be quantitatively compared. The aim of this study was to provide such information. METHODS To focus on the intracellular RNAi process itself and minimise other variables affecting overall RNAi efficacy, we used a robust co-transfection system to quantitatively assess the relative potencies of 21 small-hairpin (sh) RNA vectors, targeting conserved sites throughout the HBV genome, against viral RNAs, proteins, nucleocapsids, and secreted virions under standardised conditions. RESULTS The approach enabled a distinct efficacy ranking, with the six most potent shRNAs achieving 95% reductions in virion formation, sequence-specifically and without detectable interferon induction, yet by differentially affecting different steps. Efficacy correlated poorly with predictions and was not principally abolished by target structure. Sequence comparisons suggest that truly conserved, RNAi-targetable sequences comprise less than 500 nucleotides of the circulating HBV genomes. CONCLUSIONS The HBV genome can harbour only a finite number of optimal target sites, but current predictions are poorly suited to constrain the number of possible candidates. However, the small size of the highly conserved sequence space suggests experimental identification as a viable option.
Collapse
Affiliation(s)
- Dianxing Sun
- Bethune International Peace Hospital, Departmrnt of Liver Disease, 398 West Zhongshan Road, 050082 Shijiazhuang, PR China
| | | | | | | |
Collapse
|
1536
|
Diallo JS, Le Boeuf F, Lai F, Cox J, Vaha-Koskela M, Abdelbary H, MacTavish H, Waite K, Falls T, Wang J, Brown R, Blanchard JE, Brown ED, Kirn DH, Hiscott J, Atkins H, Lichty BD, Bell JC. A high-throughput pharmacoviral approach identifies novel oncolytic virus sensitizers. Mol Ther 2010; 18:1123-9. [PMID: 20389287 PMCID: PMC2889739 DOI: 10.1038/mt.2010.67] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/16/2010] [Indexed: 12/18/2022] Open
Abstract
Oncolytic viruses (OVs) are promising anticancer agents but like other cancer monotherapies, the genetic heterogeneity of human malignancies can lead to treatment resistance. We used a virus/cell-based assay to screen diverse chemical libraries to identify small molecules that could act in synergy with OVs to destroy tumor cells that resist viral infection. Several molecules were identified that aid in viral oncolysis, enhancing virus replication and spread as much as 1,000-fold in tumor cells. One of these molecules we named virus-sensitizers 1 (VSe1), was found to target tumor innate immune response and could enhance OV efficacy in animal tumor models and within primary human tumor explants while remaining benign to normal tissues. We believe this is the first example of a virus/cell-based "pharmacoviral" screen aimed to identify small molecules that modulate cellular response to virus infection and enhance oncolytic virotherapy.
Collapse
Affiliation(s)
- Jean-Simon Diallo
- Ottawa Hospital Research Institute, Center for Cancer Therapeutics, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1537
|
Zou X, Xiang X, Chen Y, Peng T, Luo X, Pan Z. Understanding inhibition of viral proteins on type I IFN signaling pathways with modeling and optimization. J Theor Biol 2010; 265:691-703. [PMID: 20553733 DOI: 10.1016/j.jtbi.2010.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 05/04/2010] [Accepted: 05/04/2010] [Indexed: 12/25/2022]
Abstract
The interferon system provides a powerful and universal intracellular defense mechanism against viruses. As one part of their survival strategies, many viruses have evolved mechanisms to counteract the host type I interferon (IFN-alpha/beta) responses. In this study, we attempt to investigate virus- and double-strand RNA (dsRNA)-triggered type I IFN signaling pathways and understand the inhibition of IFN-alpha/beta induction by viral proteins using mathematical modeling and quantitative analysis. Based on available literature and our experimental data, we develop a mathematical model of virus- and dsRNA-triggered signaling pathways leading to type I IFN gene expression during the primary response, and use the genetic algorithm to optimize all rate constants in the model. The consistency between numerical simulation results and biological experimental data demonstrates that our model is reasonable. Further, we use the model to predict the following phenomena: (1) the dose-dependent inhibition by classical swine fever virus (CSFV) N(pro) or E(rns) protein is observed at a low dose and can reach a saturation above a certain dose, not an increase; (2) E(rns) and N(pro) have no synergic inhibitory effects on IFN-beta induction; (3) the different characters in an important transcription factor, phosphorylated IRF3 (IRF3p), are exhibited because N(pro) or E(rns) counteracted dsRNA- and virus-triggered IFN-beta induction by targeting the different molecules in the signaling pathways and (4) N(pro) inhibits the IFN-beta expression not only by interacting with IFR3 but also by affecting its complex with MITA. Our approaches help to gain insight into system properties and rational therapy design, as well as to generate hypotheses for further research.
Collapse
Affiliation(s)
- Xiufen Zou
- School of Mathematics and Statistics, Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
1538
|
Jones DM, Domingues P, Targett-Adams P, McLauchlan J. Comparison of U2OS and Huh-7 cells for identifying host factors that affect hepatitis C virus RNA replication. J Gen Virol 2010; 91:2238-48. [PMID: 20505011 DOI: 10.1099/vir.0.022210-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Host cell factors are critical to all stages of the hepatitis C virus (HCV) life cycle. While many cellular proteins that regulate HCV genome synthesis have been identified, the mechanisms engaged in this process are incompletely understood. To identify novel cellular proteins involved in HCV RNA replication, we screened a library of small interfering RNAs (siRNAs) targeting 299 cellular factors, which principally function in RNA interactions. For the screen, a robust system was established using two cell lines (derived from Huh-7 and U2OS cells) that replicated tricistronic subgenomic replicons (SGRs). We found that the U2OS cell line gave lower levels of intracellular HCV RNA replication compared with Huh-7 cells and was more readily transfected by siRNAs. Consequently, increased gene silencing and greater effects on HCV replication were observed in the U2OS cell line. Thus, U2OS cells provided a suitable and more sensitive alternative to Huh-7 cells for siRNA studies on HCV RNA replication. From the screen, several cellular proteins that enhanced and suppressed HCV RNA replication were identified. One of the genes found to downregulate viral RNA synthesis, ISG15, is expressed in response to alpha interferon and may therefore partly contribute to the clearance of virus from infected individuals. A second gene that inhibited HCV RNA levels was the 5'-3' exoRNase XRN1, which suggested a role for cellular RNA degradation pathways in modulating the abundance of viral genomes. Therefore, this study provides an important framework for future detailed analyses of these and other cellular proteins.
Collapse
|
1539
|
Post-translational modifications in host cells during bacterial infection. FEBS Lett 2010; 584:2748-58. [PMID: 20493189 DOI: 10.1016/j.febslet.2010.05.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 05/10/2010] [Indexed: 12/24/2022]
Abstract
Post-translational modification of proteins is a widespread mechanism used by both prokaryotic and eukaryotic cells to modify the activity of key factors that plays fundamental roles in cellular physiology. This review focuses on how bacterial pathogens can interfere with host post-translational modifications to promote their own survival and replication.
Collapse
|
1540
|
Zhu FX, Sathish N, Yuan Y. Antagonism of host antiviral responses by Kaposi's sarcoma-associated herpesvirus tegument protein ORF45. PLoS One 2010; 5:e10573. [PMID: 20485504 PMCID: PMC2868026 DOI: 10.1371/journal.pone.0010573] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/15/2010] [Indexed: 12/19/2022] Open
Abstract
Virus infection of a cell generally evokes an immune response by the host to defeat the intruder in its effort. Many viruses have developed an array of strategies to evade or antagonize host antiviral responses. Kaposi's sarcoma-associated herpesvirus (KSHV) is demonstrated in this report to be able to prevent activation of host antiviral defense mechanisms upon infection. Cells infected with wild-type KSHV were permissive for superinfection with vesicular stomatitis virus (VSV), suggesting that KSHV virions fail to induce host antiviral responses. We previously showed that ORF45, a KSHV immediate-early protein as well as a tegument protein of virions, interacts with IRF-7 and inhibits virus-mediated type I interferon induction by blocking IRF-7 phosphorylation and nuclear translocation (Zhu et al., Proc. Natl. Acad. Sci. USA. 99:5573-5578, 2002). Here, using an ORF45-null recombinant virus, we demonstrate a profound role of ORF45 in inhibiting host antiviral responses. Infection of cells with an ORF45-null mutant recombinant KSHV (BAC-stop45) triggered an immune response that resisted VSV super-infection, concomitantly associated with appreciable increases in transcription of type I IFN and downstream anti-viral effector genes. Gain-of-function analysis showed that ectopic expression of ORF45 in human fibroblast cells by a lentivirus vector decreased the antiviral responses of the cells. shRNA-mediated silencing of IRF-7, that predominantly regulates both the early and late phase induction of type I IFNs, clearly indicated its critical contribution to the innate antiviral responses generated against incoming KSHV particles. Thus ORF45 through its targeting of the crucial IRF-7 regulated type I IFN antiviral responses significantly contributes to the KSHV survival immediately following a primary infection allowing for progression onto subsequent stages in its life-cycle.
Collapse
Affiliation(s)
- Fan Xiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Narayanan Sathish
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yan Yuan
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
1541
|
Sgorbissa A, Potu H, Brancolini C. Isopeptidases in anticancer therapy: looking for inhibitors. Am J Transl Res 2010; 2:235-247. [PMID: 20589164 PMCID: PMC2892408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/06/2010] [Indexed: 05/29/2023]
Abstract
Addition of polypeptides belonging to the ubiquitin family to selected lysines residues is a widespread post-translation modification (PTM) that controls many fundamental aspects of cell's life. Specific alterations in the normal turnover of this PTM are frequently observed in tumors. The conjugation/deconjugation cycle of ubiquitin (Ub) or ubiquitin-like (Ubl) proteins influences the activities of oncogenes and tumor suppressor genes. Two families of enzymes work in antagonizing manner to add or remove Ub and Ubl-proteins on target proteins: the E3 ligases and the isopeptidases. These enzymes are the subjects of fervent research with the ambition to comprehend their regulation, their mechanisms of action, their involvement in human diseases, and to develop specific inhibitors for therapeutic intervention. Here we will discuss of isopeptidases, the deconjugating enzymes, with particular emphasis on the proapoptotic activities of the relative inhibitors identified so far.
Collapse
Affiliation(s)
- Andrea Sgorbissa
- Department of Biomedical Sciences and Technologies (DSTB), University of Udine P.le Kolbe 4 3100 Udine, Italy
| | | | | |
Collapse
|
1542
|
Qiao L, Phipps-Yonas H, Hartmann B, Moran TM, Sealfon SC, Hayot F. Immune response modeling of interferon beta-pretreated influenza virus-infected human dendritic cells. Biophys J 2010; 98:505-14. [PMID: 20159146 DOI: 10.1016/j.bpj.2009.10.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 09/18/2009] [Accepted: 10/30/2009] [Indexed: 12/20/2022] Open
Abstract
The pretreatment of human dendritic cells with interferon-beta enhances their immune response to influenza virus infection. We measured the expression levels of several key players in that response over a period of 13 h both during pretreatment and after viral infection. Their activation profiles reflect the presence of both negative and positive feedback loops in interferon induction and interferon signaling pathway. Based on these measurements, we have developed a comprehensive computational model of cellular immune response that elucidates its mechanism and its dynamics in interferon-pretreated dendritic cells, and provides insights into the effects of duration and strength of pretreatment.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
1543
|
Andrade F. Non-cytotoxic antiviral activities of granzymes in the context of the immune antiviral state. Immunol Rev 2010; 235:128-46. [DOI: 10.1111/j.0105-2896.2010.00909.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
1544
|
O'Gorman GM, Al Naib A, Naib AA, Ellis SA, Mamo S, O'Doherty AM, Lonergan P, Fair T. Regulation of a bovine nonclassical major histocompatibility complex class I gene promoter. Biol Reprod 2010; 83:296-306. [PMID: 20427761 DOI: 10.1095/biolreprod.109.082560] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Studies have shown in humans and other species that the major histocompatibility complex class I (MHC-I) region is involved at a number of levels in the establishment and maintenance of pregnancy. The aim of this study was to characterize how a bovine nonclassical MHC-I gene (NC1) is regulated. Initial serial deletion experiments of a 2-kb fragment of the NC1 promoter identified regions with positive regulatory elements in the proximal promoter and evidence for a silencer module(s) further upstream that cooperatively contributed to constitutive NC1 expression. The cytokines interferon tau (IFNT), interferon gamma (IFNG), and interleukin 4 (IL4) significantly increased luciferase expression in NC1 promoter reporter constructs and endogenous NC1 mRNA levels in a bovine endometrial cell line. In addition, IFNG, IL3, IL4, and progesterone significantly increased Day 7 bovine blastocyst NC1 mRNA expression when supplemented during in vitro embryo culture. Site-directed mutagenesis analysis identified a STAT6 binding site that conferred IL4 responsiveness in the NC1 proximal promoter. Furthermore, methylation treatment of the proximal promoter, which contains a CpG island, completely abrogated constitutive NC1 expression. Overall, the findings presented here suggest that constitutive NC1 expression is regulated positively by elements in the proximal promoter, which are further controlled by upstream silencer modules. The promoter is responsive to IFNT, IFNG, and IL4, suggesting possible roles for these cytokines in bovine preimplantation embryo survival and/or maternal-fetal tolerance. Our studies also suggest that methylation of the proximal promoter, in particular, could play a significant role in regulating NC1 expression.
Collapse
Affiliation(s)
- Grace M O'Gorman
- School of Agriculture, Food Science & Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
1545
|
Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MDA5. J Virol 2010; 84:6472-82. [PMID: 20427526 DOI: 10.1128/jvi.00016-10] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The murine coronavirus mouse hepatitis virus (MHV) induced the expression of type I interferon (alpha/beta interferon [IFN-alpha/beta]) in mouse oligodendrocytic N20.1 cells. This induction is completely dependent on virus replication, since infection with UV light-inactivated virus could no longer induce IFN-alpha/beta. We show that MHV infection activated both transcription factors, the IFN regulatory factor 3 (IRF-3) and nuclear factor kappaB (NF-kappaB), as evidenced by phosphorylation and nuclear translocation of IRF-3 and an increased promoter binding activity for IRF-3 and NF-kappaB. Furthermore, the cytoplasmic pattern recognition receptor retinoic acid-inducible gene I (RIG-I) was induced by MHV infection. Knockdown of RIG-I by small interfering RNAs blocked the activation of IRF-3 and subsequent IFN-alpha/beta production induced by MHV infection. Knockdown of another cytoplasmic receptor, the melanoma-differentiation-associated gene 5 (MDA5), by small interfering RNAs also blocked IFN-beta induction. These results demonstrate that MHV is recognized by both RIG-I and MDA5 and induces IFN-alpha/beta through the activation of the IRF-3 signaling pathway. However, knockdown of RIG-I only partially blocked NF-kappaB activity induced by MHV infection and inhibition of NF-kappaB activity by a decoy peptide inhibitor had little effect on IFN-alpha/beta production. These data suggest that activation of the NF-kappaB pathway might not play a critical role in IFN-alpha/beta induction by MHV infection in oligodendrocytes.
Collapse
|
1546
|
Modulation of type I interferon induction by porcine reproductive and respiratory syndrome virus and degradation of CREB-binding protein by non-structural protein 1 in MARC-145 and HeLa cells. Virology 2010; 402:315-26. [PMID: 20416917 PMCID: PMC7157927 DOI: 10.1016/j.virol.2010.03.039] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/18/2010] [Accepted: 03/23/2010] [Indexed: 12/25/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an emerged disease of swine characterized by negligible response of type I IFNs and viral persistence. We show that the PRRSV non-structural protein 1 (Nsp1) is the viral component responsible for modulation of IFN response. Nsp1 blocked dsRNA-induced IRF3 and IFN promoter activities. Nsp1 did not block phosphorylation and nuclear translocation of IRF3 but inhibited IRF3 association with CREB-binding protein (CBP) in the nucleus. While IRF3 was stable, CBP was degraded, and CBP degradation was proteasome-dependent, suggesting that CBP degradation is not due to the protease activity of Nsp1 but an intermediary is involved. Our data suggest that the Nsp1-mediated CBP degradation inhibits the recruitment of CBP for enhanceosome assembly, leading to the block of IFN response. CBP degradation is a novel strategy for viral evasion from the host response, and Nsp1 may form a new class of viral antagonists for IFN modulation.
Collapse
|
1547
|
Bouloy M, Weber F. Molecular biology of rift valley Fever virus. Open Virol J 2010; 4:8-14. [PMID: 20517489 PMCID: PMC2878978 DOI: 10.2174/1874357901004020008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 11/25/2009] [Accepted: 11/25/2009] [Indexed: 12/25/2022] Open
Abstract
Rift Valley fever virus (RVFV) causes large outbreaks of acute febrile and often fatal illness among humans and domesticated animals in sub-saharan Africa and the Arabian peninsula. RVFV is a member of the family Bunyaviridae, genus Phlebovirus. Like all members of this large virus family, it contains a three-segmented genome of negative/ambisense strand RNA, packaged into viral nucleocapsid protein, and enveloped by a lipid bilayer containing two viral glycoproteins. During the past years, there was an increased interest in RVFV epidemiology, molecular biology, and virulence mechanisms. Here, we will try to provide an overview over the basic features of this significant pathogen, and review the latest developments in this highly active research field.
Collapse
Affiliation(s)
- Michele Bouloy
- Unite de Genetique Moleculaire des Bunyavirus, Institut Pasteur, Paris, France
| | - Friedemann Weber
- Department of Virology, University of Freiburg, D-79008 Freiburg, Germany
| |
Collapse
|
1548
|
Inhibition of hepatitis B virus replication by MyD88 involves accelerated degradation of pregenomic RNA and nuclear retention of pre-S/S RNAs. J Virol 2010; 84:6387-99. [PMID: 20410269 DOI: 10.1128/jvi.00236-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myeloid differentiation primary response protein 88 (MyD88), which can be induced by alpha interferon (IFN-alpha), has an antiviral activity against the hepatitis B virus (HBV). The mechanism of this antiviral activity remains poorly understood. Here, we report that MyD88 inhibited HBV replication in HepG2.2.15 cells and in a mouse model. The knockdown of MyD88 expression weakened the IFN-alpha-induced inhibition of HBV replication. Furthermore, MyD88 posttranscriptionally reduced the levels of viral RNA. Remarkably, MyD88 accelerated the decay of viral pregenomic RNA in the cytoplasm. Mapping analysis showed that the RNA sequence located in the 5'-proximal region of the pregenomic RNA was critical for the decay. In addition, MyD88 inhibited the nuclear export of pre-S/S RNAs via the posttranscriptional regulatory element (PRE). The retained pre-S/S RNAs were shown to degrade in the nucleus. Finally, we found that MyD88 inhibited the expression of polypyrimidine tract-binding protein (PTB), a key nuclear export factor for PRE-containing RNA. Taken together, our results define a novel antiviral mechanism against HBV mediated by MyD88.
Collapse
|
1549
|
Hinson ER, Joshi NS, Chen JH, Rahner C, Jung YW, Wang X, Kaech SM, Cresswell P. Viperin is highly induced in neutrophils and macrophages during acute and chronic lymphocytic choriomeningitis virus infection. THE JOURNAL OF IMMUNOLOGY 2010; 184:5723-31. [PMID: 20410488 DOI: 10.4049/jimmunol.0903752] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although most cells are thought to respond to IFNs, there is limited information regarding specific cells that respond in vivo. Viperin is an IFN-induced antiviral protein and, therefore, is an excellent marker for IFN-responsive cells. In this study, we analyzed viperin expression in vivo during acute lymphocytic choriomeningitis virus Armstrong infection, which induces high levels of type I IFNs, and in persistently infected lymphocytic choriomeningitis virus carrier mice, which contain low levels of type I IFNs. Viperin was induced in lymphoid cells and dendritic cells (DCs) during acute infection and highly induced in neutrophils and macrophages. The expression kinetics in neutrophils, macrophages, and T and B cells paralleled IFN-alpha levels, but DCs expressed viperin with delayed kinetics. In carrier mice, viperin was expressed in neutrophils and macrophages but not in T and B cells or DCs. For acutely infected and carrier mice, viperin expression was IFN dependent, because treating type I IFNR knockout mice with IFN-gamma-neutralizing Abs inhibited viperin expression. Viperin localized to the endoplasmic reticulum and lipid droplet-like vesicles in neutrophils. These findings delineate the kinetics and cells responding to IFNs in vivo and suggest that the profile of IFN-responsive cells changes in chronic infections. Furthermore, these data suggest that viperin may contribute to the antimicrobial activity of neutrophils.
Collapse
Affiliation(s)
- Ella R Hinson
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
1550
|
Ali L, Mansoor A, Ahmad N, Siddiqi S, Mazhar K, Muazzam AG, Qamar R, Khan KM. Patient HLA-DRB1* and -DQB1* allele and haplotype association with hepatitis C virus persistence and clearance. J Gen Virol 2010; 91:1931-1938. [PMID: 20392899 DOI: 10.1099/vir.0.018119-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hepatitis C virus (HCV) infection is prevalent throughout the world and interferon (IFN)-based treatments are currently the only therapeutic option. However, depending upon variations in their human leukocyte antigen (HLA), some patients do not respond well to IFN therapy. The current study evaluated the HLA allele and haplotype distribution of 204 HCV-seropositive individuals from Islamabad, Pakistan, who were receiving standard IFN therapy. In this cohort, 150 patients (74%) showed a sustained virological response to IFN therapy, whereas 54 (26%) did not. In addition to the HCV patients, 102 unrelated healthy volunteers were used as controls. DNA was isolated from the blood of the patients and controls for HLA-DRB1 and HLA-DQB1 allele typing, whilst plasma was used for HCV detection and genotyping. HLA-DRB1*04 was found to impart a significant protective advantage [Bonferroni-corrected P value (pc)=0.047] against HCV infection. In patients on IFN therapy, HLA-DRB1*11 and -DQB1*0301 (pc=0.044) were found to be associated with viral clearance. In contrast, HLA-DRB1*07 (pc=0.008) individually or in combination with HLA-DQB1*02 was found to be associated with viral persistence. These associations of HLA with HCV persistence or clearance will be beneficial in deciding the therapeutic regimen for Pakistani patients infected with HCV genotype 3a.
Collapse
Affiliation(s)
- Lubna Ali
- Institute of Biomedical and Genetic Engineering (IBGE), PO Box No. 2891, Islamabad 44000, Pakistan
| | - Atika Mansoor
- Institute of Biomedical and Genetic Engineering (IBGE), PO Box No. 2891, Islamabad 44000, Pakistan
| | - Nafees Ahmad
- Institute of Developmental Genetics, HelmHoltz Zentrum München, Neuherberg, Germany.,Institute of Biomedical and Genetic Engineering (IBGE), PO Box No. 2891, Islamabad 44000, Pakistan
| | - Saima Siddiqi
- Institute of Biomedical and Genetic Engineering (IBGE), PO Box No. 2891, Islamabad 44000, Pakistan
| | - Kehkashan Mazhar
- Institute of Biomedical and Genetic Engineering (IBGE), PO Box No. 2891, Islamabad 44000, Pakistan
| | - Ambreen G Muazzam
- Institute of Biomedical and Genetic Engineering (IBGE), PO Box No. 2891, Islamabad 44000, Pakistan
| | - Raheel Qamar
- Shifa College of Medicine, Pitras Bokhari Road H-8/4, Islamabad 44000, Pakistan.,COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Khalid M Khan
- Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46000, Pakistan
| |
Collapse
|