1751
|
Yi qi qing re gao attenuates podocyte injury and inhibits vascular endothelial growth factor overexpression in puromycin aminonucleoside rat model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:375986. [PMID: 24963322 PMCID: PMC4055581 DOI: 10.1155/2014/375986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 11/18/2022]
Abstract
Proteinuria is the hallmark of chronic kidney disease. Podocyte damage underlies the formation of proteinuria, and vascular endothelial growth factor (VEGF) functions as an autocrine/paracrine regulator. Yi Qi Qing Re Gao (YQQRG) has been used to treat proteinuria for more than two decades. The objective of this study was to investigate the protective effect and possible mechanisms of YQQRG on puromycin aminonucleoside (PAN) rat model. Eighty male Sprague-Dawley rats were randomized into sham group, PAN group, PAN + YQQRG group, and PAN + fosinopril group. Treatments were started 7 days before induction of nephrosis (a single intravenous injection of 40 mg/kg PAN) until day 15. 24 h urinary samples were collected on days 5, 9, and 14. The animals were sacrificed on days 3, 10, and 15, respectively. Blood samples and renal tissues were obtained for detection of biochemical and molecular biological parameters. YQQRG significantly reduced proteinuria, elevated serum albumin, and alleviated renal pathological lesions. YQQRG inhibited VEGF-A, nephrin, podocin, and CD2AP mRNA expression and elevated nephrin, podocin, and CD2AP protein levels starting on day 3. In conclusion, YQQRG attenuates podocyte injury in the rat PAN model through downregulation of VEGF-A and restoration of nephrin, podocin, and CD2AP protein expression.
Collapse
|
1752
|
Effects of acupuncture at GV20 and ST36 on the expression of matrix metalloproteinase 2, aquaporin 4, and aquaporin 9 in rats subjected to cerebral ischemia/reperfusion injury. PLoS One 2014; 9:e97488. [PMID: 24828425 PMCID: PMC4020847 DOI: 10.1371/journal.pone.0097488] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/17/2014] [Indexed: 12/04/2022] Open
Abstract
Background/Purpose Ischemic stroke is characterized by high morbidity and mortality worldwide. Matrix metalloproteinase 2 (MMP2), aquaporin (AQP) 4, and AQP9 are linked to permeabilization of the blood-brain barrier (BBB) in cerebral ischemia/reperfusion injury (CIRI). BBB disruption, tissue inflammation, and MMP/AQP upregulation jointly provoke brain edema/swelling after CIRI, while acupuncture and electroacupuncture can alleviate CIRI symptoms. This study evaluated the hypothesis that acupuncture and electroacupuncture can similarly exert neuroprotective actions in a rat model of middle cerebral artery occlusion (MCAO) by modulating MMP2/AQP4/APQ9 expression and inflammatory cell infiltration. Methods Eighty 8-week-old Sprague-Dawley rats were randomly divided into sham group S, MCAO model group M, acupuncture group A, electroacupuncture group EA, and edaravone group ED. The MCAO model was established by placement of a suture to block the middle carotid artery, and reperfusion was triggered by suture removal in all groups except group S. Acupuncture and electroacupuncture were administered at acupoints GV20 (governing vessel-20) and ST36 (stomach-36). Rats in groups A, EA, and ED received acupuncture, electroacupuncture, or edaravone, respectively, immediately after MCAO. Neurological function (assessed using the Modified Neurological Severity Score), infarct volume, MMP2/AQP4/AQP9 mRNA and protein expression, and inflammatory cell infiltration were all evaluated at 24 h post-reperfusion. Results Acupuncture and electroacupuncture significantly decreased infarct size and improved neurological function. Furthermore, target mRNA and protein levels and inflammatory cell infiltration were significantly reduced in groups A, EA, and ED vs. group M. However, MMP2/AQP levels and inflammatory cell infiltration were generally higher in groups A and EA than in group ED except MMP2 mRNA levels. Conclusions Acupuncture and electroacupuncture at GV20 and ST36 both exercised neuroprotective actions in a rat model of MCAO, with no clear differences between groups A and EA. Therefore, acupuncture and electroacupuncture might find utility as adjunctive and complementary treatments to supplement conventional therapy for ischemic stroke.
Collapse
|
1753
|
Liang J, Luan Y, Lu B, Zhang H, Luo YN, Ge P. Protection of ischemic postconditioning against neuronal apoptosis induced by transient focal ischemia is associated with attenuation of NF-κB/p65 activation. PLoS One 2014; 9:e96734. [PMID: 24800741 PMCID: PMC4011781 DOI: 10.1371/journal.pone.0096734] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/10/2014] [Indexed: 11/19/2022] Open
Abstract
Background and Purpose Accumulating evidences have demonstrated that nuclear factor κB/p65 plays a protective role in the protection of ischemic preconditioning and detrimental role in lethal ischemia-induced programmed cell death including apoptosis and autophagic death. However, its role in the protection of ischemic postconditioning is still unclear. Methods Rat MCAO model was used to produce transient focal ischemia. The procedure of ischemic postconditioning consisted of three cycles of 30 seconds reperfusion/reocclusion of MCA. The volume of cerebral infarction was measured by TTC staining and neuronal apoptosis was detected by TUNEL staining. Western blotting was used to analyze the changes in protein levels of Caspase-3, NF-κB/p65, phosphor- NF-κB/p65, IκBα, phosphor- IκBα, Noxa, Bim and Bax between rats treated with and without ischemic postconditioning. Laser scanning confocal microscopy was used to examine the distribution of NF-κB/p65 and Noxa. Results Ischemic postconditioning made transient focal ischemia-induced infarct volume decrease obviously from 38.6%±5.8% to 23.5%±4.3%, and apoptosis rate reduce significantly from 46.5%±6.2 to 29.6%±5.3% at reperfusion 24 h following 2 h focal cerebral ischemia. Western blotting analysis showed that ischemic postconditioning suppressed markedly the reduction of NF-κB/p65 in cytoplasm, but elevated its content in nucleus either at reperfusion 6 h or 24 h. Moreover, the decrease of IκBα and the increase of phosphorylated IκBα and phosphorylated NF-κB/p65 at indicated reperfusion time were reversed by ischemic postconditioning. Correspondingly, proapoptotic proteins Caspase-3, cleaved Caspase-3, Noxa, Bim and Bax were all mitigated significantly by ischemic postconditioning. Confocal microscopy revealed that ischemic postconditioning not only attenuated ischemia-induced translocation of NF-κB/p65 from neuronal cytoplasm to nucleus, but also inhibited the abnormal expression of proapoptotic protein Noxa within neurons. Conclusions We demonstrated in this study that the protection of ischemic postconditioning on neuronal apoptosis caused by transient focal ischemia is associated with attenuation of the activation of NF-κB/p65 in neurons.
Collapse
Affiliation(s)
- Jianmin Liang
- Department of Pediatrics, First hospital of Jilin University, Changchun, China
- Neuroscience Research Center, First hospital of Jilin University, Changchun, China
| | - Yongxin Luan
- Department of Neurosurgery, First hospital of Jilin University, Changchun, China
| | - Bin Lu
- Department of Neurosurgery, First hospital of Jilin University, Changchun, China
| | - Hongbo Zhang
- Department of Pediatrics, First hospital of Jilin University, Changchun, China
| | - Yi-nan Luo
- Department of Neurosurgery, First hospital of Jilin University, Changchun, China
- Neuroscience Research Center, First hospital of Jilin University, Changchun, China
| | - Pengfei Ge
- Department of Neurosurgery, First hospital of Jilin University, Changchun, China
- Neuroscience Research Center, First hospital of Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
1754
|
Lin J, Chen Y, Cai Q, Wei L, Zhan Y, Shen A, Sferra TJ, Peng J. Scutellaria Barbata D Don Inhibits Colorectal Cancer Growth via Suppression of Multiple Signaling Pathways. Integr Cancer Ther 2014; 13:240-248. [PMID: 24231788 DOI: 10.1177/1534735413508811] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The pathogenic mechanisms underlying cancer development are complex and heterogeneous, involving multiple cellular signaling transduction pathways that usually function redundantly. In addition, crosstalk between these pathways generates a complicated and robust signaling network that is regulated by compensatory mechanisms. Given the complexity of cancer pathogenesis and progression, many of the currently used antitumor agents, which typically target a single intracellular pathway, might not always be effective on complex tumor systems. Moreover, long-term use of these agents often generates drug resistance and toxicity against normal cells. Therefore, the development of novel anticancer chemotherapies is urgently needed.Scutellaria barbataD Don (SB) is a medicinal herb that has long been used in China to treat various types of cancer. We previously reported that the ethanol extract of SB (EESB) is able to induce colon cancer cell apoptosis, inhibit cell proliferation and tumor angiogenesis via modulation of several pathways, including Hedgehog, Akt, and p53. To further elucidate the precise mechanisms of SB's antitumor activity, using a colorectal cancer (CRC) mouse xenograft model in the present study, we evaluated the therapeutic efficacy and molecular mechanisms of EESB against tumor growth. We found that EESB reduced tumor volume and tumor weight but had no effect on body weight gain in CRC mice, demonstrating that EESB could inhibit colon cancer growth in vivo without apparent adverse effect. In addition, EESB treatment could significantly suppress the activation of several CRC-related pathways, including STAT3, Erk, and p38 signalings in tumor tissues, and alter the expression of multiple critical target genes such as Bcl-2, Bax, Cyclin D1, CDK4, and p21. These molecular effects lead to the induction of cancer cell apoptosis and inhibition of cell proliferation. Our findings demonstrate that SB possesses a broad range of antitumor activities because of its ability to affect multiple intracellular targets.
Collapse
Affiliation(s)
- Jiumao Lin
- Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Youqin Chen
- Case Western Reserve University School of Medicine, Rainbow Babies & Children's Hospital, Cleveland, OH, USA
| | - Qiaoyan Cai
- Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Lihui Wei
- Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Youzhi Zhan
- Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Aling Shen
- Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Thomas J Sferra
- Case Western Reserve University School of Medicine, Rainbow Babies & Children's Hospital, Cleveland, OH, USA
| | - Jun Peng
- Fujian University of Traditional Chinese Medicine, Fujian, China
| |
Collapse
|
1755
|
CHEN HONGWEI, SHEN ALING, ZHANG YUCHEN, CHEN YOUQIN, LIN JIUMAO, LIN WEI, SFERRA THOMAS, PENG JUN. Pien Tze Huang inhibits hypoxia-induced epithelial-mesenchymal transition in human colon carcinoma cells through suppression of the HIF-1 pathway. Exp Ther Med 2014; 7:1237-1242. [PMID: 24940418 PMCID: PMC3991510 DOI: 10.3892/etm.2014.1549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/05/2014] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-induced activation of the hypoxia-inducible factor 1 (HIF-1) signaling pathway is frequently observed in solid tumors and is strongly associated with numerous pathophysiological processes, including the induction of epithelial-mesenchymal transition (EMT), which result in cancer progression and metastasis. Thus, inhibiting EMT through the suppression of the HIF-1 pathway may be a promising strategy for anticancer chemotherapy. Pien Tze Huang (PZH), a well-established traditional Chinese medicine has been prescribed for >450 years and has been used for centuries to clinically treat various types of human cancer. We previously reported that PZH suppresses multiple intracellular signaling pathways and thereby promotes the apoptosis of cancer cells and the inhibition of cell proliferation and tumor angiogenesis. In the present study, to further explore the mechanisms underlying the antitumor action of PZH, HCT-8 human colon carcinoma cells were cultured under hypoxic conditions and the effect of PZH on hypoxia-induced EMT was assessed. Hypoxia was found to induce EMT-associated morphological changes in HCT-8 cells, including loss of cell adhesion and the development of spindle-shaped fibroblastoid-like morphology. In addition, hypoxia was observed to reduce the expression of the epithelial marker E-cadherin, but increase that of the mesenchymal marker N-cadherin. In addition, hypoxia significantly enhanced HCT-8 cell migration and invasion and induced the activation of the HIF-1 pathway. However, treatment of the HCT-8 cells with PZH significantly inhibited the hypoxia-mediated EMT and HIF-1 signaling. These findings suggest that PZH inhibits hypoxia-induced cancer EMT through the suppression of the HIF-1 pathway, which may be one of the molecular mechanisms by which PZH exerts its antitumor activity.
Collapse
Affiliation(s)
- HONGWEI CHEN
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - ALING SHEN
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - YUCHEN ZHANG
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - YOUQIN CHEN
- Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - JIUMAO LIN
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - WEI LIN
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - THOMAS SFERRA
- Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - JUN PENG
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Postdoctoral Workstation, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian 363000, P.R. China
| |
Collapse
|
1756
|
Abstract
The nuclear receptors REV-ERB (consisting of REV-ERBα and REV-ERBβ) and retinoic acid receptor-related orphan receptors (RORs; consisting of RORα, RORβ and RORγ) are involved in many physiological processes, including regulation of metabolism, development and immunity as well as the circadian rhythm. The recent characterization of endogenous ligands for these former orphan nuclear receptors has stimulated the development of synthetic ligands and opened up the possibility of targeting these receptors to treat several diseases, including diabetes, atherosclerosis, autoimmunity and cancer. This Review focuses on the latest developments in ROR and REV-ERB pharmacology indicating that these nuclear receptors are druggable targets and that ligands targeting these receptors may be useful in the treatment of several disorders.
Collapse
|
1757
|
Ruan C, Xiao XH, Li GK. Microwave-assisted extraction coupled with countercurrent chromatography for the rapid preparation of flavonoids from Scutellaria barbata D. Don. J Sep Sci 2014; 37:1364-9. [DOI: 10.1002/jssc.201400168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Chong Ruan
- School of Chemistry and Chemical Engineering; Sun Yat-sen University; Guangzhou China
- School of Public Health; Guangxi Medical University; Nanning China
| | - Xiao-hua Xiao
- School of Chemistry and Chemical Engineering; Sun Yat-sen University; Guangzhou China
| | - Gong-ke Li
- School of Chemistry and Chemical Engineering; Sun Yat-sen University; Guangzhou China
| |
Collapse
|
1758
|
Transcutaneous electrical nerve stimulation regulates organ blood flow and apoptosis during controlled hypotension in dogs. PLoS One 2014; 9:e94368. [PMID: 24732970 PMCID: PMC3986089 DOI: 10.1371/journal.pone.0094368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 03/14/2014] [Indexed: 12/26/2022] Open
Abstract
Transcutaneous electrical nerve stimulation (TENS) is commonly used in clinical practice for alleviating pains and physiological disorders. It has been reported that TENS could counteract the ischemic injury happened in some vital organs. To determine the protective effect of TENS on internal organs during CH in dogs, target hypotension was maintained for 60 min at 50% of the baseline mean arterial pressure (MAP). The perfusion to the brain, liver, stomach, and kidney was recorded and apoptosis within these organs was observed. Results showed that when arriving at the target MAP, and during the maintaining stage for 10 min, perfusion to the stomach and liver in the CH+TENS group was much higher than in the CH group (P<0.05). Perfusion to the cerebral cortex greatly declined in both the controlled pressure groups when compared with the general anesthesia (GA) group (P<0.05). After withdrawing CH, the hepatic blood flow in both the CH and CH+TENS groups, and the gastric and cerebral cortical blood flow in the CH+TENS group, were rapidly increased. By the end of MAP restoration, gastric blood flow in the CH group was still low. At 72 h after applying CH, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells in stomach and kidney tissue from the CH group were significantly increased compared with those in the GA group (P<0.05). There was no significant difference in TUNEL-positive cells in the liver and hippocampus among the three groups. Our results demonstrated that CH with a 50% MAP level could cause lower perfusion to the liver, stomach, cerebral cortex, and kidney, with apoptosis subsequently occurring in the stomach and kidney. TENS combined GA is able to improve the blood flow to the liver, stomach, and reduce the apoptosis in the stomach and kidney.
Collapse
|
1759
|
Yang BC, Jin LL, Yang YF, Li K, Peng DM. Inhibitory effect of rape pollen supercritical CO 2 fluid extract against testosterone-induced benign prostatic hyperplasia in rats. Exp Ther Med 2014; 8:31-37. [PMID: 24944593 PMCID: PMC4061240 DOI: 10.3892/etm.2014.1680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/25/2014] [Indexed: 12/21/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) can lead to lower urinary tract symptoms. Rape pollen is an apicultural product that is composed of nutritionally valuable and biologically active substances. The aim of the present study was to investigate the protective effect of rape pollen supercritical CO2 fluid extract (SFE-CO2) in BPH development using a testosterone-induced BPH rat model. BPH was induced in the experimental groups by daily subcutaneous injections of testosterone for a period of 30 days. Rape pollen SFE-CO2 was administered daily by oral gavage concurrently with the testosterone injections. Animals were sacrificed at the scheduled termination and the prostates were weighed and subjected to histopathological examination. Testosterone, dihydrotestosterone (DHT), 5α-reductase and cyclooxygenase-2 (COX-2) levels were also measured. BPH-induced animals exhibited an increase in prostate weight with increased testosterone, DHT, 5α-reductase and COX-2 expression levels. However, rape pollen SFE-CO2 treatment resulted in significant reductions in the prostate index and testosterone, DHT, 5α-reductase and COX-2 levels compared with those in BPH-induced animals. Histopathological examination also demonstrated that rape pollen SFE-CO2 treatment suppressed testosterone-induced BPH. These observations indicate that rape pollen SFE-CO2 inhibits the development of BPH in rats and these effects are closely associated with reductions in DHT, 5α-reductase and COX-2 levels. Therefore, the results of the present study clearly indicate that rape pollen SFE-CO2 extract may be a useful agent in BPH treatment.
Collapse
Affiliation(s)
- Bi-Cheng Yang
- Department of Traditional Chinese Medicine, Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, P.R. China ; Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Li Jin
- Department of Traditional Chinese Medicine, Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, P.R. China
| | - Yi-Fang Yang
- Department of Traditional Chinese Medicine, Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, P.R. China
| | - Kun Li
- Department of Traditional Chinese Medicine, Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, P.R. China
| | - Dan-Ming Peng
- Jiangxi Institute of Traditional Chinese Medicine, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
1760
|
Tu XK, Yang WZ, Chen JP, Chen Y, Ouyang LQ, Xu YC, Shi SS. Curcumin Inhibits TLR2/4-NF-κB Signaling Pathway and Attenuates Brain Damage in Permanent Focal Cerebral Ischemia in Rats. Inflammation 2014; 37:1544-51. [DOI: 10.1007/s10753-014-9881-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
1761
|
Chen XZ, Li JN, Zhang YQ, Cao ZY, Liu ZZ, Wang SQ, Liao LM, Du J. Fuzheng Qingjie recipe induces apoptosis in HepG2 cells via P38 MAPK activation and the mitochondria-dependent apoptotic pathway. Mol Med Rep 2014; 9:2381-7. [PMID: 24737008 DOI: 10.3892/mmr.2014.2138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 03/13/2014] [Indexed: 11/06/2022] Open
Abstract
Fuzheng Qingjie (FZQJ) recipe is a polyherbal Chinese medicine capable of suppressing tumor growth and is used as an adjuvant therapy for various types of cancer. However, its anticancer mechanisms are yet to be fully elucidated. In the present study, we explored whether p38 mitogen-activated protein kinase (MAPK) was involved in FZQJ-mediated mitochondria-dependent apoptosis in human hepatocellular carcinoma cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were used to measure the viability of HepG2 cells. 4,6-Diamidino-2-phenylindole (DAPI) and Annexin-V fluorescein isothiocyanate (FITC) were used to analyze the apoptosis of HepG2 cells. The mitochondrial membrane potential (∆ψ) and phosphorylated P38 MAPK protein were examined by a flow cytometer following 5,5',6,6'-tetrachloro‑1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1) and Alexa Fluor® 647 mouse anti-phosphorylated P38 MAPK antibody staining, respectively. The activation of caspase-9 and caspase-3 were measured using colorimetric assays. Additionally, Bcl-2 and Bax expression were examined using reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis. The results demonstrated that water extract of FZQJ was able to induce apoptosis of HepG2 cells in vitro. FZQJ-induced apoptosis was accompanied by the loss of ∆ψ, downregulation of Bcl-2 and upregulation of Bax expression, and the activation of caspase-3, -9 and P38 MAPK. These results indicated that FZQJ induced apoptosis in HepG2 cells at least via P38 MAPK activation and the mitochondria-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Xu-Zheng Chen
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jin-Nong Li
- Department of Pharmacognosy, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - You-Quan Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350003, P.R. China
| | - Zhi-Yun Cao
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zhi-Zhen Liu
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Su-Qing Wang
- Department of Pharmacy, Fuzhou University, Fuzhou, Fujian 350122, P.R. China
| | - Lian-Ming Liao
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jian Du
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
1762
|
Electroacupuncture improves recovery after hemorrhagic brain injury by inducing the expression of angiopoietin-1 and -2 in rats. Altern Ther Health Med 2014; 14:127. [PMID: 24708627 PMCID: PMC4012070 DOI: 10.1186/1472-6882-14-127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 03/31/2014] [Indexed: 01/12/2023]
Abstract
Background Angiopoietin (Ang) is one of the major effectors of angiogenesis, playing a critical role in neurovascular remodeling after stroke. Acupuncture has been widely used for treating stroke in China for a long time. Recently, we have demonstrated that electroacupuncture (EA) can accelerate intracerebral hemorrhage (ICH)-induced angiogenesis in rats. In the present study, we investigated the effect of EA on the expression of Ang-1 and Ang-2 in the brain after ICH. Methods ICH was induced by stereotactic injection of collagenase type VII into the right globus pallidus. Adult male Sprague–Dawley rats were randomized into the following four groups: sham-operation (SHAM), stroke-no electroacupuncture (SNE), stroke-EA at the Zusanli acupoint (SEZ), and stroke-EA at a nonacupoint (SEN). EA was applied to the bilateral Zusanli (ST36) acupoint in the SEZ group and a nonacupoint in the SEN group. The expression of Ang-1 and Ang-2 was evaluated by immunohistochemistry and quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR). Results Some Ang-1 and Ang-2 immunoreactive microvessels with a dilated outline were detected in the perihematomal tissues after ICH, and the vessels extended into the clot from the surrounding area since day 7. The expression of Ang-1 increased notably as long as 2 weeks after ICH, while Ang-2 immunoreactivity declined at about 7 days following a striking upregulation at 3 days. EA at the Zusanli (ST36) acupoint upregulated the expression of Ang-1 and Ang-2 at both the protein and mRNA levels. However, EA at a nonacupoint had little effect on the expression of Ang-1 and Ang-2. Conclusions Our data suggest that EA at the Zusanli (ST36) acupoint exerts neuroprotective effects on hemorrhagic stroke by upregulation of Ang-1 and Ang-2.
Collapse
|
1763
|
Higgins GC, Coughlan MT. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol 2014; 171:1917-42. [PMID: 24720258 PMCID: PMC3976613 DOI: 10.1111/bph.12503] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/15/2013] [Accepted: 10/24/2013] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN) is a progressive microvascular complication arising from diabetes. Within the kidney, the glomeruli, tubules, vessels and interstitium are disrupted, ultimately impairing renal function and leading to end-stage renal disease (ESRD). Current pharmacological therapies used in individuals with DN do not prevent the inevitable progression to ESRD; therefore, new targets of therapy are urgently required. Studies from animal models indicate that disturbances in mitochondrial homeostasis are central to the pathogenesis of DN. Since renal proximal tubule cells rely on oxidative phosphorylation to provide adequate ATP for tubular reabsorption, an impairment of mitochondrial bioenergetics can result in renal functional decline. Defects at the level of the electron transport chain have long been established in DN, promoting electron leakage and formation of superoxide radicals, mediating microinflammation and contributing to the renal lesion. More recent studies suggest that mitochondrial-associated proteins may be directly involved in the pathogenesis of tubulointerstitial fibrosis and glomerulosclerosis. An accumulation of fragmented mitochondria are found in the renal cortex in both humans and animals with DN, suggesting that in tandem with a shift in dynamics, mitochondrial clearance mechanisms may be impaired. The process of mitophagy is the selective targeting of damaged or dysfunctional mitochondria to autophagosomes for degradation through the autophagy pathway. The current review explores the concept that an impairment in the mitophagy system leads to the accelerated progression of renal pathology. A better understanding of the cellular and molecular events that govern mitophagy and dynamics in DN may lead to improved therapeutic strategies.
Collapse
Affiliation(s)
- G C Higgins
- Glycation, Nutrition & Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
1764
|
Yu YL, Yiang GT, Chou PL, Tseng HH, Wu TK, Hung YT, Lin PS, Lin SY, Liu HC, Chang WJ, Wei CW. Dual role of acetaminophen in promoting hepatoma cell apoptosis and kidney fibroblast proliferation. Mol Med Rep 2014; 9:2077-84. [PMID: 24682227 PMCID: PMC4055434 DOI: 10.3892/mmr.2014.2085] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/28/2014] [Indexed: 12/19/2022] Open
Abstract
Acetaminophen (APAP), is a safe analgesic and antipyretic drug at therapeutic dose, and is widely used in the clinic. However, high doses of APAP can induce hepatotoxicity and nephrotoxicity. Most studies have focused on high‑dose APAP‑induced acute liver and kidney injury. So far, few studies have investigated the effects of the therapeutic dose (1/10 of the high dose) or of the low dose (1/100 of the high dose) of APAP on the cells. The aim of this study was to investigate the cellular effects of therapeutic- or low‑dose APAP treatment on hepatoma cells and kidney fibroblasts. As expected, high‑dose APAP treatment inhibited while therapeutic and low‑dose treatment did not inhibit cell survival of kidney tubular epithelial cells. In addition, therapeutic-dose treatment induced an increase in the H2O2 level, activated the caspase‑9/‑3 cascade, and induced cell apoptosis of hepatoma cells. Notably, APAP promoted fibroblast proliferation, even at low doses. This study demonstrates that different cellular effects are exerted upon treatment with different APAP concentrations. Our results indicate that treatment with the therapeutic dose of APAP may exert an antitumor activity on hepatoma, while low‑dose treatment may be harmful for patients with fibrosis, since it may cause proliferation of fibroblasts.
Collapse
Affiliation(s)
- Yung-Luen Yu
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Pei-Lun Chou
- Division of Allergy‑Immunology‑Rheumatology, Department of Internal Medicine, Saint Mary's Hospital Luodong, Yilan 265, Taiwan, R.O.C
| | - Hsu-Hung Tseng
- Division of General Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung 403, Taiwan, R.O.C
| | - Tsai-Kun Wu
- 2The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Yu-Ting Hung
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Pei-Shiuan Lin
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Shu-Yu Lin
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Hsiao-Chun Liu
- Department of Nursing, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Wei-Jung Chang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chyou-Wei Wei
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| |
Collapse
|
1765
|
He F, Wu HN, Cai MY, Li CP, Zhang X, Wan Q, Tang SB, Cheng JD. Inhibition of ovarian cancer cell proliferation by Pien Tze Huang via the AKT-mTOR pathway. Oncol Lett 2014; 7:2047-2052. [PMID: 24932287 PMCID: PMC4049676 DOI: 10.3892/ol.2014.1989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 02/26/2014] [Indexed: 01/12/2023] Open
Abstract
Pien Tze Huang (PZH) is a well-known Chinese medicine that has been used as a therapeutic drug in the treatment of a number of diseases, such as hepatocellular carcinoma and colon cancer. However, few studies have analyzed the effects of PZH on ovarian cancer cell proliferation. In the present study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell assays, cell cycle and apoptosis rate analyses and western blotting were conducted to investigate the effects of PZH on the proliferation rate of ovarian cancer cells and its potential molecular pathway. The results showed that PZH inhibits the proliferation of the human ovarian cancer OVCAR-3 cell line by blocking the progression of the cell cycle from the G1 to S phase, however, PZH did not induce OVCAR-3 cell apoptosis. Increased PZH concentration may downregulate the expression of AKT, phosphorylated (p)-AKT, mammalian target of rapamycin (mTOR) and p-mTOR proteins in the OVCAR-3 cell line. In addition, it was observed that PZH may suppress the protein expression of cyclin-dependent kinase (CDK)4 and CDK6. Overall, the results of the present study indicated that PZH may inhibit ovarian cancer cell proliferation by modulating the activity of the AKT-mTOR pathway.
Collapse
Affiliation(s)
- Fan He
- Department of Forensic Medicine, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hui-Ni Wu
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Mu-Yan Cai
- Department of Cancer Research, State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chang-Peng Li
- Department of Cancer Research, State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xin Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Quan Wan
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shuang-Bo Tang
- Department of Forensic Medicine, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jian-Ding Cheng
- Department of Forensic Medicine, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
1766
|
Huang J, Ye X, You Y, Liu W, Gao Y, Yang S, Peng J, Hong Z, Tao J, Chen L. Electroacupuncture promotes neural cell proliferation in vivo through activation of the ERK1/2 signaling pathway. Int J Mol Med 2014; 33:1547-53. [PMID: 24638971 DOI: 10.3892/ijmm.2014.1702] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/10/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to investigate the effect of electroacupuncture (EA) on cell proliferation and its molecular mechanisms. Sixty rats were randomly divided into 5 groups: sham operation control (SC), ischemia control (IC), EA, EA and DMSO injection (ED), EA and U0126 injection (EU). All the groups, with the exception of SC, underwent middle cerebral artery occlusion (MCAO), and DMSO or U0126 was injected into the rat in the ED or EU group 30 min prior to MCAO. Cell proliferation was evaluated by proliferating cell nuclear antigen (PCNA) immunostaining. The changes of cell cycle proteins (cyclin D1, CDK4, cyclin E, CDK2, p21 and p27) and the ERK1/2 pathway activation were examined by RT-PCR and western blot analysis. The results showed that the positive cell numbers of PCNA immunostaining in the EA and ED groups were more than those in the IC group (P<0.05). The mRNA and protein levels of p21 or p27 were obviously increased, however, the mRNA and protein levels of cyclin D1, CDK4, cyclin E and CDK2 were reduced in the IC and EU groups. The findings suggested that EA activates the ERK1/2 signaling pathway to protect brain injury during cerebral ischemia. However, this positive effect of EA can be blocked by U0126.
Collapse
Affiliation(s)
- Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaoqian Ye
- MOE Key Laboratory of Traditional Chinese Medicine on Osteology and Traumatology and Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yongmei You
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yanling Gao
- MOE Key Laboratory of Traditional Chinese Medicine on Osteology and Traumatology and Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Shanli Yang
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zhenfeng Hong
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
1767
|
Hedyotis diffusa Combined with Scutellaria barbata Are the Core Treatment of Chinese Herbal Medicine Used for Breast Cancer Patients: A Population-Based Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:202378. [PMID: 24734104 PMCID: PMC3966415 DOI: 10.1155/2014/202378] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/25/2014] [Accepted: 01/28/2014] [Indexed: 01/02/2023]
Abstract
Traditional Chinese medicine (TCM), which is the most common type of complementary and alternative medicine (CAM) used in Taiwan, is increasingly used to treat patients with breast cancer. However, large-scale studies on the patterns of TCM prescriptions for breast cancer are still lacking. The aim of this study was to determine the core treatment of TCM prescriptions used for breast cancer recorded in the Taiwan National Health Insurance Research Database. TCM visits made for breast cancer in 2008 were identified using ICD-9 codes. The prescriptions obtained at these TCM visits were evaluated using association rule mining to evaluate the combinations of Chinese herbal medicine (CHM) used to treat breast cancer patients. A total of 37,176 prescriptions were made for 4,436 outpatients with breast cancer. Association rule mining and network analysis identified Hedyotis diffusa plus Scutellaria barbata as the most common duplex medicinal (10.9%) used for the core treatment of breast cancer. Jia-Wei-Xiao-Yao-San (19.6%) and Hedyotis diffusa (41.9%) were the most commonly prescribed herbal formula (HF) and single herb (SH), respectively. Only 35% of the commonly used CHM had been studied for efficacy. More clinical trials are needed to evaluate the efficacy and safety of these CHM used to treat breast cancer.
Collapse
|
1768
|
The neuroprotective role of acupuncture and activation of the BDNF signaling pathway. Int J Mol Sci 2014; 15:3234-52. [PMID: 24566146 PMCID: PMC3958908 DOI: 10.3390/ijms15023234] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 11/17/2022] Open
Abstract
Recent studies have been conducted to examine the neuroprotective effects of acupuncture in many neurological disorders. Although the neuroprotective effects of acupuncture has been linked to changes in signaling pathways, accumulating evidence suggest the participation of endogenous biological mediators, such as the neurotrophin (NT) family of proteins, specifically, the brain derived neurotrophic factor (BDNF). Accordingly, acupuncture can inhibit neurodegeneration via expression and activation of BDNF. Moreover, recent studies have reported that acupuncture can increase ATP levels at local stimulated points. We have also demonstrated that acupuncture could activate monocytes and increase the expression of BDNF via the stimulation of ATP. The purpose of this article is to review the recent findings and ongoing studies on the neuroprotective roles of acupuncture and therapeutic implications of acupuncture-induced activation of BDNF and its signaling pathway.
Collapse
|
1769
|
Mittal A, Tabasum S, Singh RP. Berberine in combination with doxorubicin suppresses growth of murine melanoma B16F10 cells in culture and xenograft. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:340-347. [PMID: 24176840 DOI: 10.1016/j.phymed.2013.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 08/06/2013] [Accepted: 09/19/2013] [Indexed: 06/02/2023]
Abstract
Melanoma is very aggressive and major cause of mortality due to skin cancer. Herein, we studied the anticancer effects of berberine, a plant alkaloid, in combination with doxorubicin on murine melanoma B16F10 cells in vitro and in vivo. This drug combination strongly inhibited cell growth and induced cell death, and caused G2/M arrest in cell cycle together with a decrease in Kip1/p27. Berberine showed stronger inhibitory effect on ERK1/2 phosphorylation as compared to Akt phosphorylation, whereas the combination of the drugs showed greater inhibitory effect on Akt phosphorylation. In murine B16F10 xenograft, cells were implanted into mice and treated with vehicle (methyl cellulose) or berberine (100mg/kg of body weight/day by oral gavage) or doxorubicin (4 mg/kg of body weight/week by intraperitoneal injection) or combination of berberine and doxorubicin. Berberine alone did not show any considerable effect on tumor growth as observed with doxorubicin, however, the combination of the two drugs resulted in a significant and strong decrease in tumor volume (85%, p<0.005) and tumor weight (78%, p<0.05) as compared to control. Immunohistochemical analysis of tumor samples showed that drug combination decreased PCNA-positive cells (82%, p<0.001) and increased cleaved caspase-3 positive cells (3-fold, p<0.05) indicating inhibition of proliferation and an increase in apoptosis, respectively. Overall, our findings suggest that berberine and doxorubicin could be a novel combination to inhibit melanoma tumor growth.
Collapse
Affiliation(s)
- Anil Mittal
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Saba Tabasum
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
1770
|
LI DONGLIANG, WANG CHUNLING, LI NING, ZHANG LI. Propofol selectively inhibits nuclear factor-κB activity by suppressing p38 mitogen-activated protein kinase signaling in human EA.hy926 endothelial cells during intermittent hypoxia/reoxygenation. Mol Med Rep 2014; 9:1460-6. [DOI: 10.3892/mmr.2014.1946] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 02/04/2014] [Indexed: 11/06/2022] Open
|
1771
|
Thao DT, Phuong DT, Hanh TTH, Thao NP, Cuong NX, Nam NH, Minh CV. Two new neoclerodane diterpenoids from Scutellaria barbata D. Don growing in Vietnam. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2014; 16:364-369. [PMID: 24498964 DOI: 10.1080/10286020.2014.882912] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
Various chromatographic separations of the aerial parts of Scutellaria barbata afforded two new neoclerodane diterpenoids, scutebatas S and T (1 and 2), along with scutebata D (3). Their structures were elucidated by spectroscopic methods including high-resolution electrospray ionization mass spectrometry, 1D and 2D NMR and comparison with the literature values. Compounds 1 and 3 exhibited moderate cytotoxic activities against HL-60 (promyeloblast) human cancer cells. Weak cytotoxic effects toward four tested human cancer cell lines including KB (epidermoid carcinoma), LU-1 (lung adenocarcinoma), MCF7 (breast cancer), and Hep-G2 (hepatoma cancer) were observed for 1 and 3; whereas 2 was inactive on all five tested cell lines.
Collapse
Affiliation(s)
- Do Thi Thao
- a Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST) , 18 Hoang Quoc Viet road, Caugiay , Hanoi , Viet Nam
| | | | | | | | | | | | | |
Collapse
|
1772
|
Zhang L, Cai Q, Lin J, Fang Y, Zhan Y, Shen A, Wei L, Wang L, Peng J. Chloroform fraction of Scutellaria barbata D. Don promotes apoptosis and suppresses proliferation in human colon cancer cells. Mol Med Rep 2014; 9:701-706. [PMID: 24337216 DOI: 10.3892/mmr.2013.1864] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 12/02/2013] [Indexed: 11/05/2022] Open
Abstract
Scutellaria barbata D. Don (SB) has long been used as a major component in numerous Chinese medical formulas to clinically treat various types of cancer. Previously, we reported that the extracts of SB were able to suppress colon cancer growth in vivo and in vitro, possibly by inducing cancer cell apoptosis and inhibiting cell proliferation and tumor angiogenesis. However, the anticancer mechanisms of its bioactive ingredients remain largely unclear. In the present study, using three human colon cancer cell lines SW620, HT-29 and HCT-8, the antitumor effect of different solvent fractions of SB were evaluated and the potential underlying molecular mechanisms were investigated. Using an 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, it was revealed that the chloroform fraction of SB (ECSB) exhibited the most potent inhibitory effect on the growth of all three colon cancer cell lines and SW620 cells exhibited the most sensitive response to ECSB treatment (IC50=65 µg/ml). In addition, by performing fluorescence-activated cell sorting, transmission electron microscopy and colony formation assays, it was observed that ECSB significantly induced apoptosis and inhibited proliferation in SW620 cells in a dose-dependent manner. Furthermore, ECSB treatment resulted in the upregulation of the pro-apoptotic Bax/Bcl-2 ratio and a decrease in the expression of the pro-proliferative cyclin D1 and cyclin-dependent kinase 4. The results from the present study may provide a scientific foundation for the development of novel anticancer agents from the bioactive ingredients in the ECSB.
Collapse
Affiliation(s)
- Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Qiaoyan Cai
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yi Fang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Youzhi Zhan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lili Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
1773
|
Lin M, Li X, Liang W, Liu J, Guo J, Zheng J, Liu X. Needle-knife therapy improves the clinical symptoms of knee osteoarthritis by inhibiting the expression of inflammatory cytokines. Exp Ther Med 2014; 7:835-842. [PMID: 24669238 PMCID: PMC3961116 DOI: 10.3892/etm.2014.1516] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 01/14/2014] [Indexed: 02/05/2023] Open
Abstract
Knee osteoarthritis (KOA) is a degenerative joint disease that occurs mainly in the elderly population. However, there are currently no effective treatments for treating this condition. In this study, the efficacy of needle-knife therapy, a technique of traditional Chinese medicine that has been widely used to treat KOA was investigated. Patients (n=170) with KOA were randomly divided for needle-knife therapy (treatment group) and acupuncture therapy (control group). Outcome evaluation included stiffness, pain, physiological function, overall changes, total symptom score, clinical curative effects and the concentrations of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in the synovial fluid. The trial was completed in 151 patients (233 knees) from a total of 170 patients (264 knees); the treatment group comprised 76 patients (117 knees) who completed the trial and 9 patients (14 knees) who were removed from the study, and the control group comprised 75 patients (116 knees) who completed the trial and 10 patients (17 knees) who were removed from the study. The symptom scores of KOA in stages I–IV were reduced significantly in the treatment group and those of stages I–III were decreased significantly in the control group. The effective rate of the KOA therapy in the patients of stages III and IV in the treatment group was significantly higher than that in the control group. After treatment, the decrements of IL-1β, IL-6 and TNF-α in the treatment group were greater than those in the control group. These results showed that the use of needle-knife therapy to treat KOA effectively improved the clinical symptoms by inhibiting the expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Munan Lin
- Department of Traditional Chinese Medicine, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, Fujian 350025, P.R. China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Wenna Liang
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jianhua Liu
- Department of Traditional Chinese Medicine, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, Fujian 350025, P.R. China
| | - Jianhong Guo
- Department of Traditional Chinese Medicine, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, Fujian 350025, P.R. China
| | - Jingxiong Zheng
- Department of Traditional Chinese Medicine, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, Fujian 350025, P.R. China
| | - Xianxiang Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
1774
|
Abstract
SIGNIFICANCE Autophagy is emerging as an important pathway in many biological processes and diseases. This review summarizes the current progress on the role of autophagy in renal physiology and pathology. RECENT ADVANCES Studies from renal cells in culture, human kidney tissues, and experimental animal models implicate that autophagy regulates many critical aspects of normal and disease conditions in the kidney, such as diabetic nephropathy and other glomerular diseases, tubular injuries, kidney development and aging, cancer, and genetic diseases associated with the kidney. CRITICAL ISSUES The importance of autophagy in the kidney has just started to be elucidated. How the process of autophagy is altered in the pathogenesis of kidney diseases and how this alteration is beneficial or detrimental to kidney functions still need to be fully understood. FUTURE DIRECTIONS Investigations that uncover the precise mechanism and regulation of autophagy in various kidney diseases may lead to new strategies for therapeutic modulation.
Collapse
Affiliation(s)
- Zhibo Wang
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | | |
Collapse
|
1775
|
Wang SW, Sun YM. The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer (Review). Int J Oncol 2014; 44:1032-40. [PMID: 24430672 DOI: 10.3892/ijo.2014.2259] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/07/2014] [Indexed: 11/06/2022] Open
Abstract
Among the cytokines linked to inflammation-associated cancer, interleukin (IL)-6 drives many of the cancer 'hallmarks' through downstream activation of the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway. Additionally, dysregulation of the interleukin (IL)-6-mediated JAK/STAT3 signaling pathway is closely related to the development of diverse human solid tumors including colorectal cancer (CRC). On this basis, modulation of the IL-6/JAK/STAT3 signaling pathway is currently being widely explored to develop novel therapies for CRC. The present review details the mechanisms and roles of the IL-6/JAK/STAT3 pathway in CRC, describes current therapeutic strategies, and the search for potential therapeutic approaches to treat CRC.
Collapse
Affiliation(s)
- Shu-Wei Wang
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Yue-Ming Sun
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|
1776
|
Gao SY, Li J, Wang L, Sun QJ, Gong YF, Gang J, Su YJ, Ji YB. Ethanol but not aqueous extracts of tubers of Sauromatum Giganteum(Engl.) Cusimano and Hett inhibit cancer cell proliferation. Asian Pac J Cancer Prev 2014; 15:10613-10619. [PMID: 25605148 DOI: 10.7314/apjcp.2014.15.24.10613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Both alcohol and aqueous extracts of Sauromatum giganteum(Engl.) Cusimano and Hett, the dried root tuber of which is named Baifuzi in Chinese, have been used for folklore treatment of cancer in Northeast of China. However, little is known about which is most suitable to the cancer therapy. MATERIALS AND METHODS Serum pharmacology and MTT assays were adopted to detect the effects of ethanol and aqueous extracts of Sauromatum giganteum(Engl.) Cusimano and Hett , prepared by heat reflux methods, on proliferation of different cancer cells. RESULTS Cancer cells treated with medium supplemented with 10%, 20%, 40% serum(v/v) containing ethanol extract had a decline in viability, with inhibition rates of 7.69%, 21.8%, 41.9% in MCF-7 cells, 42.8%, 48.1%, 51.8% in SGC-7901 cells, 44.1%, 49.2%, 53.7% in SMMC-7721 cells, 6.8%, 15.2%, 39.8% in HepG2 cells, 7.57%, 16.3%, 36.2% in HeLa cells, 6.24%, 12.5%, 27.4% in A549 cells, and 7.20%, 17.5%, 31.3% in MDA-MB-231 cells, respectively. Viability in the aqueous extract groups was no different with that of controls. CONCLUSIONS An ethanol extract of Sauromatum giganteum(Engl.) Cusimano and Hett inhibited the proliferation of SMMC-7721, SGC-7901 and MCF-7 cells, which supports the use of alcoholic but not aqueous extracts for control of sensive cancers, which might include hepatocarcinoma, gastric cancer and breast cancer.
Collapse
Affiliation(s)
- Shi-Yong Gao
- Institute of Materia Medica, Research Center of Life Science and Environmental Science, Harbin University of Commerce, and Key Laboratory of Cancer Prevention and Anticancer Drugs of Heilongjiang Province, Harbin, China E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
1777
|
Li Z, Hu H, Lin R, Mao J, Zhu X, Hong Z, Tao J, Zhang Y, Chen L. Neuroprotective effects of Gua Lou Gui Zhi decoction against glutamate-induced apoptosis in BV-2 cells. Int J Mol Med 2013; 33:597-604. [PMID: 24378639 DOI: 10.3892/ijmm.2013.1612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/19/2013] [Indexed: 11/06/2022] Open
Abstract
Gua Lou Gui Zhi decoction (GLGZD), a traditional Chinese medicine consisting of different herbal medicines, has been used for centuries in the treatment of muscular spasticity following stroke, epilepsy or spinal cord injury. However, the precise mechanisms involved remain poorly understood. In the present study, we investigated the neuroprotective effects of GLGZD on glutamate-induced apoptosis in cultured BV-2 cells, as well as the underlying mechanisms. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was applied to assess the viability of the cells. An Annexin V/propidium iodide (PI) assay was utilized to analyze cellular apoptosis. Mitochondrial membrane potential (MMP) was evaluated by flow cytometry and laser scanning confocal microscopy. The gene and protein expression of the apoptosis-related genes, Bcl-2 and Bax, was analyzed by RT-PCR and western blot analysis, respectively. Furthermore, the expression of cleaved caspase-3 protein was detected by immunofluorescence. Glutamate treatment induced the loss of BV-2 cell viability, which was associated with an increase in the apoptotic rate, as well as an increase in the Bax/Bcl-2 ratio and the extracellular levels of cleaved caspase-3. Treatment with GLGZD significantly reversed these phenotypes, with its maximum protective effects observed at the concentration of 1,000 µg/ml. These results indicate that GLGZD protects BV-2 cells from glutamate-induced cytotoxicity. These protective effects may be ascribed to its anti-apoptotic activities, in part, associated with the decrease in the Bax/Bcl-2 ratio and caspase-3 expression, as well as with the stability of high mitochondrial membrane potential.
Collapse
Affiliation(s)
- Zuanfang Li
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Haixia Hu
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Ruhui Lin
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Jingjie Mao
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Xiaoqin Zhu
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Zhenfeng Hong
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Yun Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
1778
|
Zhang Y, Wang Q, Niu S, Liu J, Zhang L. Pien Tze Huang induces apoptosis in multidrug‑resistant U2OS/ADM cells via downregulation of Bcl‑2, survivin and P-gp and upregulation of Bax. Oncol Rep 2013; 31:763-70. [PMID: 24337940 DOI: 10.3892/or.2013.2916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 11/26/2013] [Indexed: 11/05/2022] Open
Abstract
Pien Tze Huang (PZH) is a well-known traditional Chinese formula that was first prescribed by a royal physician in the Ming Dynasty. PZH has been used to treat various types of cancers including osteosarcoma. Previous studies have shown that PZH may effectively inhibit osteosarcoma cell growth in vivo and in vitro via induction of apoptosis and inhibition of migratory and invasive abilities. However, little is known regarding the effects of PZH on osteosarcomas that are resistant to chemotherapy, which has emerged as a major clinical problem. In the present study, the cellular effects of PZH on multidrug-resistant U2OS/ADM human osteosarcoma cells were investigated. Our results showed that PZH reduced cell viability in a dose- and time-dependent manner and arrested cells in the G2/M phase of the cell cycle, suggesting that PZH inhibits the proliferation of U2OS/ADM cells. Hoechst 33258 staining and Annexin V/propidium iodide double staining revealed typical nuclear features of apoptosis, and treatment with PZH increased the proportion of apoptotic Annexin V-positive cells in a dose-dependent manner. Further experiments demonstrated that apoptosis induction by PZH was accompanied by downregulation of Bcl-2 and survivin and upregulation of Bax. In addition, following treatment with PZH, intracellular Rhodamine 123 accumulation was increased and the expression of P-gp was significantly suppressed. Taken together, these results provide a possible molecular mechanism for the anticancer effect of PZH on U2OS/ADM cells and suggest that PZH may be a potent therapeutic agent for drug-resistant osteosarcoma.
Collapse
Affiliation(s)
- Yan Zhang
- College of Osteopedics and Traumatology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Qihong Wang
- First Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Susheng Niu
- College of Osteopedics and Traumatology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Junning Liu
- College of Osteopedics and Traumatology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Li Zhang
- College of Osteopedics and Traumatology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
1779
|
Stimulation of TLR4 by LMW-HA induces metastasis in human papillary thyroid carcinoma through CXCR7. Clin Dev Immunol 2013; 2013:712561. [PMID: 24363762 PMCID: PMC3865734 DOI: 10.1155/2013/712561] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/12/2013] [Indexed: 12/13/2022]
Abstract
In inflammatory sites, high molecular weight hyaluronan fragments are degraded into lower molecular weight hyaluronan fragments (LMW-HA) to regulate immune responses. However, the function of LMW-HA in PTC progression remains to be elucidated. In this study, we found that receptor of LMW-HA, TLR4, was aberrantly overexpressed in PTC tissues and cell line W3. Exposure of W3 cells to LMW-HA promoted cell proliferation and migration via TLR4. Knockdown of TLR4 has provided evidence that TLR4 is essential for LMW-HA-induced CXCR7 expression, which is responsible for LMW-HA-induced proliferation and migration of W3 cells. In tumor-bearing adult nude mice, stimulation of LMW-HA on W3 cells promotes CXCR7 expression in tumor masses (P = 0.002) and tumor growth (P < 0.001). To further confirm our findings, we investigated the clinicopathologic significance of TLR4 and CXCR7 expression using immumohistochemistry in 135 human PTC tissues and 56 normal thyroid tissue samples. Higher rates of TLR4 (53%) and CXCR7 (24%) expression were found in PTC tissues than in normal tissues. Expression of TLR4 or CXCR7 is associated with tumor size and lymph node metastasis. Therefore, LMW-HA may contribute to the development of PTC via TLR4/CXCR7 pathway, which may be a novel target for PTC immunomodulatory therapy.
Collapse
|
1780
|
Menon MC, Chuang PY, He JC. Shenqi Particle: A Novel Therapy for Idiopathic Membranous Nephropathy. Am J Kidney Dis 2013; 62:1027-9. [DOI: 10.1053/j.ajkd.2013.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 08/09/2013] [Indexed: 11/11/2022]
|
1781
|
Badr G, Al-Sadoon MK, Rabah DM. Therapeutic efficacy and molecular mechanisms of snake (Walterinnesia aegyptia) venom-loaded silica nanoparticles in the treatment of breast cancer- and prostate cancer-bearing experimental mouse models. Free Radic Biol Med 2013; 65:175-189. [PMID: 23811005 DOI: 10.1016/j.freeradbiomed.2013.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/12/2013] [Accepted: 06/07/2013] [Indexed: 01/28/2023]
Abstract
The treatment of drug-resistant cancer is a clinical challenge, and thus screening for novel anticancer drugs is critically important. We recently demonstrated a strong enhancement of the antitumor activity of snake (Walterinnesia aegyptia) venom (WEV) in vitro in breast carcinoma, prostate cancer, and multiple myeloma cell lines but not in normal cells when the venom was combined with silica nanoparticles (WEV+NP). In the present study, we investigated the in vivo therapeutic efficacy of WEV+NP in breast cancer- and prostate cancer-bearing experimental mouse models. Xenograft breast and prostate tumor mice models were randomized into 4 groups for each cancer model (10 mice per group) and were treated with vehicle (control), NP, WEV, or WEV+NP daily for 28 days post tumor inoculation. The tumor volumes were monitored throughout the experiment. On Day 28 post tumor inoculation, breast and prostate tumor cells were collected and either directly cultured for flow cytometry analysis or lysed for Western blot and ELISA analysis. Treatment with WEV+NP or WEV alone significantly reduced both breast and prostate tumor volumes compared to treatment with NP or vehicle alone. Compared to treatment with WEV alone, treatment of breast and prostate cancer cells with WEV+NP induced marked elevations in the levels of reactive oxygen species (ROS), hydroperoxides, and nitric oxide; robust reductions in the levels of the chemokines CXCL9, CXCL10, CXCL12, CXCL13, and CXCL16 and decreased surface expression of their cognate chemokine receptors CXCR3, CXCR4, CXCR5, and CXCR6; and subsequent reductions in the chemokine-dependent migration of both breast and prostate cancer cells. Furthermore, we found that WEV+NP strongly inhibited insulin-like growth factor 1 (IGF-1)- and epidermal growth factor (EGF)-mediated proliferation of breast and prostate cancer cells, respectively, and enhanced the induction of apoptosis by increasing the activity of caspase-3,-8, and -9 in both breast and prostate cancer cells. In addition, treatment of breast and prostate cancer cells with WEV+NP or WEV alone revealed that the combination of WEV with NP robustly decreased the phosphorylation of AKT, ERK, and IκBα; decreased the expression of cyclin D1, surviving, and the antiapoptotic Bcl-2 family members Bcl-2, Bcl-XL, and Mcl-1; markedly increased the expression of cyclin B1 and the proapoptotic Bcl-2 family members Bak, Bax, and Bim; altered the mitochondrial membrane potential; and subsequently sensitized tumor cells to growth arrest. Our data reveal the therapeutic potential of the nanoparticle-sustained delivery of snake venom against different cancer cell types.
Collapse
Affiliation(s)
- Gamal Badr
- Princess Al-Johara Al-Ibrahim Center for Cancer Research, Prostate Cancer Research Chair, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt.
| | - Mohamed K Al-Sadoon
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Danny M Rabah
- Princess Al-Johara Al-Ibrahim Center for Cancer Research, Prostate Cancer Research Chair, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Department of Urology/Surgery, College of Medicine, King Saud University, Saudi Arabia
| |
Collapse
|
1782
|
Wang Q, Zhang M, Ding Y, Wang Q, Zhang W, Song P, Zou MH. Activation of NAD(P)H oxidase by tryptophan-derived 3-hydroxykynurenine accelerates endothelial apoptosis and dysfunction in vivo. Circ Res 2013; 114:480-92. [PMID: 24281189 DOI: 10.1161/circresaha.114.302113] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE The kynurenine (Kyn) pathway is the major route for tryptophan (Trp) metabolism in mammals. The Trp-Kyn pathway is reported to regulate several fundamental biological processes, including cell death. OBJECTIVE The aim of this study was to elucidate the contributions and molecular mechanism of Trp-Kyn pathway to endothelial cell death. METHODS AND RESULTS Endogenous reactive oxygen species, endothelial cell apoptosis, and endothelium-dependent and endothelium-independent vasorelaxation were measured in aortas of wild-type mice or mice deficient for nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase subunits (p47(phox) or gp91(phox)) or indoleamine-pyrrole 2,3-dioxygenase 1 with or without angiotensin (Ang) II infusion. As expected, AngII increased plasma levels of Kyn- and 3-hydroxykynurenine-modified proteins in endothelial cells in vivo. Consistent with this, AngII markedly increased the expression of indoleamine-pyrrole 2,3-dioxygenase in parallel with increased expression of interferon-γ. Furthermore, in wild-type mice, AngII significantly increased oxidative stress, endothelial cell apoptosis, and endothelial dysfunction. These effects of AngII infusion were significantly suppressed in mice deficient for p47(phox), gp91(phox), or indoleamine-pyrrole 2,3-dioxygenase 1, suggesting that AngII-induced enhancement of Kynurenines via NAD(P)H oxidase-derived oxidants causes endothelial cell apoptosis and dysfunction in vivo. Furthermore, interferon-γ neutralization eliminates AngII-increased superoxide products and endothelial apoptosis by inhibiting AngII-induced Kynurenines generation, suggesting that AngII-activated Kyn pathway is interferon-γ-dependent. Mechanistically, we found that AngII-enhanced 3-hydroxykynurenine promoted the generation of NAD(P)H oxidase-mediated superoxide anions by increasing the translocation and membrane assembly of NAD(P)H oxidase subunits in endothelial cells, resulting in accelerated apoptosis and consequent endothelial dysfunction. CONCLUSIONS Kyn pathway activation accelerates apoptosis and dysfunction of the endothelium by upregulating NAD(P)H-derived superoxide.
Collapse
Affiliation(s)
- Qiongxin Wang
- From Division of Molecular Medicine, Department of Medicine, and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | | | | | | | | | | |
Collapse
|
1783
|
Interaction of acupuncture and electroacupuncture on the pharmacokinetics of aspirin and the effect of brain blood flow in rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:670858. [PMID: 24371465 PMCID: PMC3858995 DOI: 10.1155/2013/670858] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 10/12/2013] [Accepted: 10/21/2013] [Indexed: 01/25/2023]
Abstract
Acupuncture and electroacupuncture have been used to improve the brain and motor functions of poststroke patients, and aspirin is used for the prevention of stroke recurrence. Our hypothesis is that acupuncture and electroacupuncture treatments may interact with aspirin in terms of pharmacokinetics via affecting the brain blood flow. The aim of this study is to investigate the potential interactions of acupuncture and electroacupuncture on the pharmacokinetics of aspirin. The effects of acupuncture treatments on brain blood flow were measured by the laser Doppler blood flow imager. The parallel pharmacokinetic study design included three groups: control, acupuncture, and electroacupuncture groups. Two acupoints, namely, Quchi (LI 11) and Zusanli (ST 36), were needled and stimulated electronically in anaesthetized rats. The concentrations of aspirin and its metabolite, salicylic acid were determined by microdialysis and HPLC analysis after aspirin administration (30 mg/kg, i.v.). The brain blood flow responded to electroacupuncture treatments, but the pharmacokinetic parameters of aspirin and salicylic acid in blood and brain were not significantly changed by acupuncture and electroacupuncture treatments. This study may, in part, offer some evidence to support the contention that there is no significant interaction for the combination of aspirin with acupuncture or electroacupuncture.
Collapse
|
1784
|
Yoon SW, Jeong JS, Kim JH, Aggarwal BB. Cancer Prevention and Therapy: Integrating Traditional Korean Medicine Into Modern Cancer Care. Integr Cancer Ther 2013; 13:310-31. [PMID: 24282099 DOI: 10.1177/1534735413510023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In spite of billions of dollars spent on cancer research each year, overall cancer incidence and cancer survival has not changed significantly in the last half century. Instead, the recent projection from the World Health Organization suggests that global cancer incidence and death is expected to double within the next decade. This requires an "out of the box" thinking approach. While traditional medicine used for thousands of years is safe and affordable, its efficacy and mechanism of action are not fully reported. Demonstrating that traditional medicine is efficacious and how it works can provide a "bed to bench" and "bench to bed" back approach toward prevention and treatment of cancer. This current review is an attempt to describe the contributions of traditional Korean medicine (TKM) to modern medicine and, in particular, cancer treatment. TKM suggests that cancer is an outcome of an imbalance of body, mind, and spirit; thus, it requires a multimodal treatment approach that involves lifestyle modification, herbal prescription, acupuncture, moxibustion, traditional exercise, and meditation to restore the balance. Old wisdoms in combination with modern science can find a new way to deal with the "emperor of all maladies."
Collapse
Affiliation(s)
- Seong Woo Yoon
- Department of Korean Internal Medicine, Kyung Hee University Korean Medicine Hospital at Gangdong, Seoul, Republic of Korea
| | - Jong Soo Jeong
- Department of Korean Internal Medicine, Kyung Hee University Korean Medicine Hospital at Gangdong, Seoul, Republic of Korea
| | - Ji Hye Kim
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Bharat B Aggarwal
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
1785
|
Motawi TK, Teleb ZA, El-Boghdady NA, Ibrahim SA. Effect of simvastatin and naringenin coadministration on rat liver DNA fragmentation and cytochrome P450 activity: an in vivo and in vitro study. J Physiol Biochem 2013; 70:225-37. [PMID: 24264056 DOI: 10.1007/s13105-013-0296-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/15/2013] [Indexed: 01/05/2023]
Abstract
This study was designed to assess the effect of naringenin (NRG) on simvastatin (SV)-induced hepatic damage in rat and to investigate the effects of these drugs on cytochrome P450 (CYP) 2E1 and 3A1/2 isoforms in order to evaluate the possibility of their coadministration. Hepatic damage in rat was induced by SV (20 and 40 mg/kg/day, po for 30 days). The protective effect of NRG (50 mg/kg/day, po) was identified by estimating liver functions and oxidative stress markers such as lipid peroxidation, reduced glutathione, superoxide dismutase, glutathion s-transferase, and catalase as well as protein profile. DNA fragmentation and histopathological study were carried out to confirm the hepatic damage. An in vitro study was conducted to further evaluate the effect of SV and/or NRG administration on the activities of two microsomal CYP isoenzymes including CYP2E1 and CYP3A1/2. SV exerted an oxidative stress which may contribute to the hepatotoxicity. Administration of NRG in combination with SV significantly improved the liver functions, state of oxidative stress, protein profile, DNA fragmentation, and the histopathological changes. SV and/or NRG have a potential to inhibit CYP3A1/2 and CYP2E1. This study concluded that concurrent administration of NRG with SV provided a protection of liver tissue against the SV-induced hepatic damage. The inhibition of CYP2E1 and CYP3A1/2 by the SV and NRG should be taken into account in order to adjust doses to avoid interaction between SV and NRG and adverse effects of SV.
Collapse
Affiliation(s)
- T K Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | | |
Collapse
|
1786
|
Effect of simvastatin and naringenin coadministration on rat liver DNA fragmentation and cytochrome P450 activity: an in vivo and in vitro study. J Physiol Biochem 2013. [PMID: 24264056 DOI: 10.1007/s13105-103-0296-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
This study was designed to assess the effect of naringenin (NRG) on simvastatin (SV)-induced hepatic damage in rat and to investigate the effects of these drugs on cytochrome P450 (CYP) 2E1 and 3A1/2 isoforms in order to evaluate the possibility of their coadministration. Hepatic damage in rat was induced by SV (20 and 40 mg/kg/day, po for 30 days). The protective effect of NRG (50 mg/kg/day, po) was identified by estimating liver functions and oxidative stress markers such as lipid peroxidation, reduced glutathione, superoxide dismutase, glutathion s-transferase, and catalase as well as protein profile. DNA fragmentation and histopathological study were carried out to confirm the hepatic damage. An in vitro study was conducted to further evaluate the effect of SV and/or NRG administration on the activities of two microsomal CYP isoenzymes including CYP2E1 and CYP3A1/2. SV exerted an oxidative stress which may contribute to the hepatotoxicity. Administration of NRG in combination with SV significantly improved the liver functions, state of oxidative stress, protein profile, DNA fragmentation, and the histopathological changes. SV and/or NRG have a potential to inhibit CYP3A1/2 and CYP2E1. This study concluded that concurrent administration of NRG with SV provided a protection of liver tissue against the SV-induced hepatic damage. The inhibition of CYP2E1 and CYP3A1/2 by the SV and NRG should be taken into account in order to adjust doses to avoid interaction between SV and NRG and adverse effects of SV.
Collapse
|
1787
|
Abstract
Autophagy is a highly conserved homoeostatic mechanism for cell survival under conditions of stress, and is widely implicated as an important pathway in many biological processes and diseases. In progressive kidney diseases, fibrosis represents the common pathway to end-stage kidney failure. Transforming growth factor-β1 (TGF-β1) is a pleiotropic cytokine that has been established as a central mediator of kidney fibrosis. A recently emerging body of evidence from studies in renal cells in culture and experimental animal models suggests that TGF-β1 regulates autophagy and that autophagy regulates many critical aspects of normal and disease conditions associated with kidney fibrosis, such as tubulointerstitial fibrosis, glomerulosclerosis, and diabetic nephropathy. Here, we review the recent advances exploring the process of autophagy, its regulation by TGF-β1, and the implication in the pathogenesis of progressive kidney fibrosis and injury responses. Understanding the cellular and molecular bases of this process is crucial for identifying potential new diagnostic and therapeutic targets of kidney fibrosis.
Collapse
Affiliation(s)
- Yan Ding
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Nephrology and Hypertension, Weill Cornell Medical College, New York, NY
| | - Mary E Choi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Nephrology and Hypertension, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
1788
|
Eo SH, Cho H, Kim SJ. Resveratrol Inhibits Nitric Oxide-Induced Apoptosis via the NF-Kappa B Pathway in Rabbit Articular Chondrocytes. Biomol Ther (Seoul) 2013; 21:364-70. [PMID: 24244824 PMCID: PMC3825200 DOI: 10.4062/biomolther.2013.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 11/22/2022] Open
Abstract
Resveratrol (trans-3,4'-trihydroxystillbene), a naturally occurring polyphenolic antioxidant found in grapes and red wine, elicits diverse biochemical responses and demonstrates anti-aging, anti-inflammatory, and anti-proliferative effects in several cell types. Previously, resveratrol was shown to regulate differentiation and inflammation in rabbit articular chondrocytes, while the direct production of nitric oxide (NO) in these cells by treatment with the NO donor sodium nitroprusside (SNP) led to apoptosis. In this study, the effect of resveratrol on NO-induced apoptosis in rabbit articular chondrocytes was investigated. Resveratrol dramatically reduced NO-induced apoptosis in chondrocytes, as determined by phase-contrast microscopy, the MTT assay, FACS analysis, and DAPI staining. Treatment with resveratrol inhibited the SNP-induced expression of p53 and p21 and reduced the expression of procaspase-3 in chondrocytes, as detected by western blot analysis. SNP-induced degradation of I-kappa B alpha (IκB-α) was rescued by resveratrol treatment, and the SN50 peptide-mediated inhibition of NF-kappa B (NF-κB) activity potently blocked SNP-induced caspase-3 activation and apoptosis. Our results suggest that resveratrol inhibits NO-induced apoptosis through the NF-κB pathway in articular chondrocytes.
Collapse
Affiliation(s)
- Seong-Hui Eo
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju 314-701, Republic of Korea
| | | | | |
Collapse
|
1789
|
Huang M, Zhao H, Xu W, Chu K, Hong Z, Peng J, Chen L. Rapid simultaneous determination of twelve major components in Pien Tze Huang by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. J Sep Sci 2013; 36:3866-73. [DOI: 10.1002/jssc.201300655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/26/2013] [Accepted: 10/08/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Mingqing Huang
- College of Pharmacy; Fujian University of Traditional Chinese Medicine; Fuzhou Fujian Province China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica; China Academy of Chinese Medical Sciences; Beijing China
| | - Wei Xu
- College of Pharmacy; Fujian University of Traditional Chinese Medicine; Fuzhou Fujian Province China
| | - Kedan Chu
- College of Pharmacy; Fujian University of Traditional Chinese Medicine; Fuzhou Fujian Province China
| | - Zhenfeng Hong
- Academy of Integrative Medicine; Fujian University of Traditional Chinese Medicine; Fuzhou Fujian Province China
| | - Jun Peng
- Academy of Integrative Medicine; Fujian University of Traditional Chinese Medicine; Fuzhou Fujian Province China
| | - Lidian Chen
- College of Rehabilitation Medicine; Fujian University of Traditional Chinese Medicine; Fuzhou Fujian Province China
| |
Collapse
|
1790
|
Yan H, Su Y, Chen L, Zheng G, Lin X, Chen B, Zhou B, Zhang Q. Rehabilitation for the management of knee osteoarthritis using comprehensive traditional Chinese medicine in community health centers: study protocol for a randomized controlled trial. Trials 2013; 14:367. [PMID: 24188276 PMCID: PMC4228261 DOI: 10.1186/1745-6215-14-367] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 10/18/2013] [Indexed: 12/05/2022] Open
Abstract
Background It is becoming increasingly necessary for community health centers to make rehabilitation services available to patients with osteoarthritis of the knee. However, for a number of reasons, including a lack of expertise, the small size of community health centers and the availability of only simple medical equipment, conventional rehabilitation therapy has not been widely used in China. Consequently, most patients with knee osteoarthritis seek treatment in high-grade hospitals. However, many patients cannot manage the techniques that they were taught in the hospital. Methods such as acupuncture, tuina, Chinese medical herb fumigation-washing and t’ai chi are easy to do and have been reported to have curative effects in those with knee osteoarthritis. To date, there have been no randomized controlled trials validating comprehensive traditional Chinese medicine for the rehabilitation of knee osteoarthritis in a community health center. Furthermore, there is no standard rehabilitation protocol using traditional Chinese medicine for knee osteoarthritis. The aim of the current study is to develop a comprehensive rehabilitation protocol using traditional Chinese medicine for the management of knee osteoarthritis in a community health center. Method/design This will be a randomized controlled clinical trial with blinded assessment. There will be a 4-week intervention utilizing rehabilitation protocols from traditional Chinese medicine and conventional therapy. Follow-up will be conducted for a period of 12 weeks. A total of 722 participants with knee osteoarthritis will be recruited. Participants will be randomly divided into two groups: experimental and control. Primary outcomes will include range of motion, girth measurement, the visual analogue scale, and results from the manual muscle, six-minute walking and stair-climbing tests. Secondary outcomes will include average daily consumption of pain medication, ability to perform daily tasks and health-related quality-of-life assessments. Other outcomes will include rate of adverse events and economic effects. Relative cost-effectiveness will be determined from health service usage and outcome data. Discussion The primary aim of this trial is to develop a standard protocol for traditional Chinese medicine, which can be adopted by community health centers in China and worldwide, for the rehabilitation of patients with knee osteoarthritis. Trial registration Clinical Trials Registration: ChiCTR-TRC-12002538
Collapse
Affiliation(s)
| | - Youxin Su
- Fujian University of Traditional Chinese Medicine, 1 Huatuo St, Shangjie, Minhou, Fuzhou, Fujian, China.
| | | | | | | | | | | | | |
Collapse
|
1791
|
Lin J, Chen Y, Wei L, Hong Z, Sferra TJ, Peng J. Ursolic acid inhibits colorectal cancer angiogenesis through suppression of multiple signaling pathways. Int J Oncol 2013; 43:1666-1674. [PMID: 24042330 DOI: 10.3892/ijo.2013.2101] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/02/2013] [Indexed: 11/05/2022] Open
Abstract
Angiogenesis plays a critical role in the development of solid tumors by supplying nutrients and oxygen to support continuous growth of tumor as well as providing an avenue for hematogenous metastasis. Tumor angiogenesis is highly regulated by multiple intracellular signaling transduction cascades such as Hedgehog, STAT3, Akt and p70S6K pathways that are known to malfunction in many types of cancer including colorectal cancer (CRC). Therefore, suppression of tumor angiogenesis through targeting these signaling pathways has become a promising strategy for cancer chemotherapy. Ursolic acid (UA) is a major active compound present in many medicinal herbs that have long been used in China for the clinical treatment of various types of cancer. Although previous studies have demonstrated an antitumor effect for UA, the precise mechanisms of its anti-angiogenic activity are not well understood. To further elucidate the mechanism(s) of the tumorcidal activity of UA, using a CRC mouse xenograft model, chick embryo chorioallantoic membrane (CAM) model, the human colon carcinoma cell line HT-29 and human umbilical vein endothelial cells (HUVECs), in the present study we evaluated the efficacy of UA against tumor growth and angiogenesis in vivo and in vitro and investigated the underlying molecular mechanisms. We found that administration of UA significantly inhibited tumor volume but had no effect on body weight changes in CRC mice, suggesting that UA can suppress colon cancer growth in vivo without noticeable signs of toxicity. In addition, UA treatment reduced intratumoral microvessel density (MVD) in CRC mice, decreased the total number of blood vessels in the CAM model, and dose and time-dependently inhibited the proliferation, migration and tube formation of HUVECs, demonstrating UA's antitumor angiogenesis in vivo and in vitro. Moreover, UA treatment inhibited the expression of critical angiogenic factors, such as VEGF-A and bFGF. Furthermore, UA suppressed the activation of sonic hedgehog (SHH), STAT3, Akt and p70S6K pathways. Collectively, our findings suggest that inhibition of tumor angiogenesis via suppression of multiple signaling pathways might be one of the mechanisms whereby UA can be effective in cancer treatment.
Collapse
Affiliation(s)
- Jiumao Lin
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China
| | | | | | | | | | | |
Collapse
|
1792
|
Angiogenesis opens a way for Chinese medicine to treat stroke. Chin J Integr Med 2013; 19:815-9. [DOI: 10.1007/s11655-013-1342-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Indexed: 12/24/2022]
|
1793
|
Wei L, Chen P, Chen Y, Shen A, Chen H, Lin W, Hong Z, Sferra TJ, Peng J. Pien Tze Huang suppresses the stem-like side population in colorectal cancer cells. Mol Med Rep 2013; 9:261-6. [PMID: 24173665 DOI: 10.3892/mmr.2013.1760] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/18/2013] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence suggests that a small population of cells termed cancer stem cells (CSCs) are crucial in tumor development and drug resistance, leading to cancer relapse and metastasis and eventually the failure of clinical cancer treatment. Therefore, targeting CSCs is a promising approach for anticancer therapies. Due to the drug resistance and adverse effects of currently used chemotherapies, traditional Chinese medicines (TCM) have recently received attention due to the relatively few side-effects. Thus, they have been used as important alternative remedies for various diseases, including cancer. Pien Tze Huang (PZH), a well-known TCM formula that was first prescribed more than 450 years ago in the Ming Dynasty, has been used in China and Southeast Asia for centuries as a folk remedy for various types of cancer. Previously, it was reported that PZH inhibits colon cancer growth via the promotion of cancer cell apoptosis and inhibition of cell proliferation and tumor angiogenesis, which is probably mediated by its regulatory effect on multiple intracellular signaling pathways. To elucidate the mechanism of the tumoricidal activity of PZH, the aim of the present study was to investigate the effect of PZH on CSCs that were isolated as the side population (SP) from the HT-29 colorectal cancer cell line. The results demonstrated that PZH significantly and dose-dependently reduced the percentage of the colorectal cancer stem-like SP cells, decreased the viability and sphere-forming capacity of HT-29 SP cells, indicating that PZH is potent in suppressing the growth of colorectal cancer stem cells. Moreover, PZH treatment in HT-29 SP cells markedly inhibited the mRNA levels of ABCB1 and ABCG2, which are members of the ABC transporter superfamily, thereby contributing to the SP phenotype and multi-drug resistance. Findings of the present study suggest that inhibiting the growth of CSCs is a potential mechanism by which PZH can be used in cancer treatment.
Collapse
Affiliation(s)
- Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
1794
|
Xue X, You Y, Tao J, Ye X, Huang J, Yang S, Lin Z, Hong Z, Peng J, Chen L. Electro-acupuncture at points of Zusanli and Quchi exerts anti-apoptotic effect through the modulation of PI3K/Akt signaling pathway. Neurosci Lett 2013; 558:14-9. [PMID: 24157854 DOI: 10.1016/j.neulet.2013.10.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/09/2013] [Accepted: 10/13/2013] [Indexed: 10/26/2022]
Abstract
We evaluated the neuroprotective effect of electro-acupuncture (EA) on cerebral ischemia-reperfusion (IR) injury and deeply investigated the relationship between this neuroprotective effect and PI3K/Akt pathway. Rats underwent focal cerebral IR injured by suture method and received the in vivo therapeutic efficacy of EA at points of Zusanli(ST36) and Quchi(LI11) after the operation. We found that the EA treatment significantly (p<0.05) improved neurological deficit and cerebral infarction. Furthermore, EA profoundly activated PI3K/Akt signaling resulted in the inhibition of cerebral cell apoptosis in the ischemic penumbra. Simultaneously EA increased the expression of PI3K, p-Akt, p-Bad and Bcl-2 at the protein level and the expression of Bcl-2 at the mRNA level. On the contrary, EA inhibited the Bax and cleaved Caspase-3-positive expression. The selective PI3K inhibitor LY294002 compromised EA-induced neuroprotective effects and reduced the elevation of p-Akt, p-Bad and Bcl-2 levels. Our data suggested that the PI3K/Akt pathway played a critical role in mediating the neuroprotective effects of EA treatment at points of Zusanli and Quchi after the ischemic stroke.
Collapse
Affiliation(s)
- Xiehua Xue
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350108, PR China
| | - Yongmei You
- MOE Key Laboratory of Traditional Chinese Medicine on Osteology and Traumatology and Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350108, PR China
| | - Jing Tao
- MOE Key Laboratory of Traditional Chinese Medicine on Osteology and Traumatology and Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350108, PR China.
| | - Xiaoqian Ye
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350108, PR China
| | - Jia Huang
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350108, PR China
| | - Shanli Yang
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350108, PR China
| | - Zhicheng Lin
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350108, PR China
| | - Zhenfeng Hong
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350108, PR China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350108, PR China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
1795
|
Electroacupuncture Ameliorates Learning and Memory via Activation of the CREB Signaling Pathway in the Hippocampus to Attenuate Apoptosis after Cerebral Hypoperfusion. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:156489. [PMID: 24228057 PMCID: PMC3817932 DOI: 10.1155/2013/156489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/02/2013] [Accepted: 09/09/2013] [Indexed: 02/05/2023]
Abstract
Studies have shown that electroacupuncture (EA) ameliorates learning and memory after ischemic injury. However, there have been few studies elucidating the mechanisms of EA on learning and memory in cerebral hypoperfusion. In this study, we explored the cAMP response element-binding protein (CREB) signaling pathway-mediated antiapoptotic action involved in EA-induced improvement of learning and memory. EA at GV20 and GV14 acupoints was applied in cerebral hypoperfusion rats. A Morris water maze task was performed, and the immunoreactivities of pCREB, Bcl-2, and Bax in the hippocampal CA1 area were evaluated by the Western blotting technique. Our findings indicated that (1) EA ameliorated spatial learning and memory impairment in cerebral hypoperfusion rats; (2) EA increased the immunoreactivities of pCREB and Bcl-2 and decreased the immunoreactivity of Bax; (3) intracerebroventricular administration of H89 (the inhibitor of protein kinase A) blocked EA-induced, pCREB-mediated antiapoptotic action and improved learning and memory. These results suggest that EA can ameliorate learning and memory via activation of the CREB signaling pathway in the hippocampus to attenuate apoptosis after cerebral hypoperfusion.
Collapse
|
1796
|
Hu H, Li Z, Zhu X, Lin R, Peng J, Tao J, Chen L. GuaLou GuiZhi decoction inhibits LPS-induced microglial cell motility through the MAPK signaling pathway. Int J Mol Med 2013; 32:1281-6. [PMID: 24127065 DOI: 10.3892/ijmm.2013.1522] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/13/2013] [Indexed: 11/05/2022] Open
Abstract
Microglial activation plays an important role in neroinflammation following ischemic stroke. Activated microglial cells can then migrate to the site of injury to proliferate and release substances which induce secondary brain damage. It has been shown that microglial migration is associated with the activation of the mitogen-activated protein kinase (MAPK) signaling pathways. The Chinese formula, GuaLou GuiZhi decoction (GLGZD), has long been administered in clinical practice for the treatment of post-stroke disabilities, such as muscular spasticity. In a previous study, we demonstrated that the anti-inflammtory effects of GLGZD were mediated by the TLR4/NF-κB pathway in lipopolysaccharide (LPS)-stimulated microglial cells. Therefore, in this study, we evaluated the role of GLGZD in microglial migration by performing scratch wound assays and migration assays. We wished to elucidate the cellular and molecular mechanisms elicited by this TCM formula in microglial-induced inflammation by evaluating the release and expression of chemotactic cytokines [monocyte chemo-attractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α) and interleukin (IL)-8] by ELISA and quantitative PCR. Our results revealed that the migration of microglial cells was enhanced in the presence of LPS (100 ng/ml); however, GLGZD (100 µg/ml) significantly inhibited cell motility and the production of chemokines through the inhibition of the activation of the p38 and c-Jun N-terminal protein kinase (JNK) signaling pathway. We demonstrate the potential of GLGZD in the modulation of microglial motility by investigating the effects of GLGZD on microglial migration induced by LPS. Taken together, our data suggest that GLGZD per se cannot trigger microglial motility, whereas GLGZD impedes LPS-induced microglial migration through the activation of the MAPK signaling pathway. These results provide further evidence of the anti-inflammatory effects of GLGZD and its potential for use in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Haixia Hu
- Key Laboratory of TCM Rehabilitation of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P.R. China
| | | | | | | | | | | | | |
Collapse
|
1797
|
Lin J, Chen Y, Wei L, Shen A, Sferra TJ, Hong Z, Peng J. Ursolic acid promotes colorectal cancer cell apoptosis and inhibits cell proliferation via modulation of multiple signaling pathways. Int J Oncol 2013; 43:1235-1243. [PMID: 23900560 DOI: 10.3892/ijo.2013.2040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/17/2013] [Indexed: 11/06/2022] Open
Abstract
The development of colorectal cancer (CRC) is strongly correlated with the aberrant activation of multiple intracellular signaling transduction cascades including STAT3, ERK, JNK and p38 pathways which usually function redundantly. In addition, crosstalk between these pathways forms a complicated signaling network that is regulated by compensatory mechanisms. Therefore, most of the currently used and single-target-based antitumor agents might not always be therapeutically effective. Moreover, long-term use of these agents often generates drug resistance. These problems highlight the urgent need for the development of novel anticancer chemotherapies. Ursolic acid (UA) is a major active compound present in many medicinal herbs that have long been used for the clinical treatment of CRC. Although previous studies have demonstrated an antitumor effect for UA, the precise mechanisms of its tumoricidal activity are not well understood. In the present study, using CRC mouse xenograft model and the HT-29 human colon carcinoma cell line, we evaluated the efficacy of UA against tumor growth in vivo and in vitro and investigated the underlying molecular mechanisms. We found that UA inhibits cancer growth without apparent toxicity. Furthermore, UA significantly suppresses the activation of several CRC-related signaling pathways and alters the expression of critical target genes. These molecular effects lead to the induction of apoptosis and inhibition of cellular proliferation. These data demonstrate that UA possesses a broad range of anticancer activities due to its ability to affect multiple intracellular targets, suggesting that UA could be a novel multipotent therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | | | | | | | | | | | | |
Collapse
|
1798
|
Shen A, Lin J, Chen Y, Lin W, Liu L, Hong Z, Sferra TJ, Peng J. Pien Tze Huang inhibits tumor angiogenesis in a mouse model of colorectal cancer via suppression of multiple cellular pathways. Oncol Rep 2013; 30:1701-1706. [PMID: 23843018 DOI: 10.3892/or.2013.2609] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/24/2013] [Indexed: 11/05/2022] Open
Abstract
Angiogenesis plays an essential role in cancer progression, which therefore has become an attractive target for anticancer treatment. Tumor angiogenesis is tightly regulated by multiple signaling pathways that usually function redundantly; in addition, crosstalk between these pathways forms a complicated network that is regulated by compensatory mechanisms. Given the complexity of pathogenic mechanisms underlying tumor angiogenesis, most currently used angiogenesis inhibitors that only target single pathways may be insufficient and probably generate drug resistance, thus, increasing the necessity for development of novel anticancer agents. Traditional Chinese medicines (TCM) are receiving great interest since they have relatively fewer side-effects and have been used for thousands of years to clinically treat various types of diseases including cancer. Pien Tze Huang (PZH), a well-known traditional Chinese formulation that was first prescribed 450 years ago, has long been used as an alternative remedy for cancers. However, the precise mechanism of PZH's anticancer activity remains to be further elucidated. Using a colorectal cancer mouse xenograft model, in the present study, we evaluated the effect of PZH on tumor angiogenesis and investigated the underlying molecular mechanisms. We found that PZH inhibited tumor growth since PZH treatment resulted in decrease in both tumor volume and tumor weight in CRC mice. In addition, PZH suppressed the activation of several signaling pathways such as STAT3, Akt and MAPKs. Consequently, the inhibitory effect of PZH on these pathways resulted in the inhibition of tumor angiogenesis as demonstrated by the decrease of microvessel density in tumor tissues. Moreover, PZH treatment reduced the expression of angiogenic factors including iNOS, eNOS, VEGF-A, bFGF as well as their specific receptors VEGFR2 and bFGFR. Altogether, our findings suggest that inhibition of tumor angiogenesis via suppression of multiple signaling pathways might be one of the mechanisms whereby PZH affects cancers.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/pathology
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Fibroblast Growth Factors/biosynthesis
- Fibroblast Growth Factors/drug effects
- HT29 Cells
- Humans
- MAP Kinase Signaling System/drug effects
- Male
- Mice
- Mice, Nude
- Neoplasm Transplantation
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Nitric Oxide Synthase Type II/biosynthesis
- Nitric Oxide Synthase Type II/drug effects
- Nitric Oxide Synthase Type III/biosynthesis
- Nitric Oxide Synthase Type III/drug effects
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 1/drug effects
- STAT3 Transcription Factor/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/biosynthesis
- Vascular Endothelial Growth Factor A/drug effects
- Vascular Endothelial Growth Factor Receptor-2/biosynthesis
- Vascular Endothelial Growth Factor Receptor-2/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
1799
|
Cheng Q, Li N, Chen M, Zheng J, Qian Z, Wang X, Huang C, Xu S, Shi G. Cyclooxygenase-2 promotes hepatocellular apoptosis by interacting with TNF-α and IL-6 in the pathogenesis of nonalcoholic steatohepatitis in rats. Dig Dis Sci 2013; 58:2895-902. [PMID: 23975340 DOI: 10.1007/s10620-013-2823-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 07/23/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE The underlying mechanisms of nonalcoholic steatohepatitis (NASH) are poorly understood, and little is known about hepatocellular apoptosis in NASH. Cyclooxygenase (COX)-2, the key enzyme in eicosanoid metabolism, is highly expressed in NASH. COX-2 can also regulate the release of mediators of inflammation, such as tumor necrosis factor (TNF)-α and interleukin (IL)-6. The aim of our study was to evaluate the effects of COX-2 on hepatocellular apoptosis and the mechanism of the action in the pathogenesis of NASH in rats. METHODS Sprague-Dawley rats were fed a high-fat diet (HFD) or standard diet for 8 and 12 weeks. COX-2 and cytokines expression in hepatic tissue and TNF-α and IL-6 levels in serum were measured at 8 and 12 weeks. Moreover, celecoxib (10 mg/kg body weight once a day) was administered to rats for 4 weeks to inhibit the expression of COX-2. Liver pathology was assessed by hematoxylin and eosin (H&E) stain and electron microscopy. Hepatocyte apoptosis was evaluated by TUNEL staining. RESULTS COX-2 messenger RNA and protein were highly expressed in livers of HFD rats and were correlated with the severity of steatohepatitis (R = 0.82, p < 0.01). COX-2 upregulation was preceded by increases in TNF-α and IL-6. The level of hepatocellular apoptosis was significantly higher in HFD rats than in the control rats. The hepatocellular apoptosis was suppressed by the inhibition of COX-2. CONCLUSIONS COX-2 may promote hepatocellular apoptosis by interacting with TNF-α and IL-6 in NASH in rats.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Infectious Diseases, Huashan Hospital of Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | | | | | | | | | | | | | | | | |
Collapse
|
1800
|
Chuang CH, Hsu YC, Wang CC, Hu C, Kuo JR. Cerebral blood flow and apoptosis-associated factor with electroacupuncture in a traumatic brain injury rat model. Acupunct Med 2013; 31:395-403. [PMID: 24055977 DOI: 10.1136/acupmed-2013-010406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Electroacupuncture (EA) has been widely used for treatment of stroke, but there is little information on the effect of EA on the neuroprotective function in traumatic brain injury (TBI). The aim of the present study was to investigate the protective effects and mechanisms of EA treatment in a TBI rat model. METHODS Male Sprague-Dawley rats were randomly divided into four groups: sham operation, TBI control, TBI+EA treated for 30 min or TBI+EA treated for 60 min. The animals were treated with EA immediately after TBI. The EA was applied at acupuncture points GV20, GV26, LI4 and KI1 with a dense-dispersed wave, frequencies of 0.2 and 1 Hz, and amplitude of 1 mA for 30 or 60 min. Regional blood flow, cell infarction volume, extent of neuronal apoptosis, expression of cell apoptosis-associated factor transforming growth-interacting factor (TGIF) were studied, and functional outcome was assessed by running speed test. All tests except regional blood flow were performed 72 h after TBI onset. RESULTS Immediately after TBI, compared with the TBI control groups, the regional blood flow was significantly increased by EA treatment for 60 min. Compared with the TBI controls 72 h after TBI, the TBI-induced run speed impairment, infarction volume, neuronal apoptosis and apoptosis-associated TGIF expression were significantly improved by EA treatment. CONCLUSIONS The treatment of TBI in the acute stage with EA for 60 min could increase the regional blood flow and attenuate the levels of TGIF in the injured cortex, might lead to a decrease in neuronal apoptosis and cell infarction volume, and might represent one mechanism by which functional recovery may occur.
Collapse
Affiliation(s)
- Chih Hsiang Chuang
- Department of Chinese Medicine, Chi-Mei Medical Center, , Tainan, Taiwan
| | | | | | | | | |
Collapse
|