1801
|
Abiko K, Matsumura N, Hamanishi J, Horikawa N, Murakami R, Yamaguchi K, Yoshioka Y, Baba T, Konishi I, Mandai M. IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br J Cancer 2015; 112:1501-9. [PMID: 25867264 PMCID: PMC4453666 DOI: 10.1038/bjc.2015.101] [Citation(s) in RCA: 568] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND PD-L1 (programmed cell death 1 ligand 1) on tumour cells suppresses host immunity through binding to its receptor PD-1 on lymphocytes, and promotes peritoneal dissemination in mouse models of ovarian cancer. However, how PD-L1 expression is regulated in ovarian cancer microenvironment remains unclear. METHODS The number of CD8-positive lymphocytes and PD-L1 expression in tumour cells was assessed in ovarian cancer clinical samples. PD-L1 expression and tumour progression in mouse models under conditions of altering IFN-γ signals was assessed. RESULTS The number of CD8-positive cells in cancer stroma was very high in peritoneally disseminated tumours, and was strongly correlated to PD-L1 expression on the tumour cells (P<0.001). In mouse models, depleting IFNGR1 (interferon-γ receptor 1) resulted in lower level of PD-L1 expression in tumour cells, increased the number of tumour-infiltrating CD8-positive lymphocytes, inhibition of peritoneal disseminated tumour growth and longer survival (P=0.02). The injection of IFN-γ into subcutaneous tumours induced PD-L1 expression and promoted tumour growth, and PD-L1 depletion completely abrogated tumour growth caused by IFN-γ injection (P=0.01). CONCLUSIONS Interferon-γ secreted by CD8-positive lymphocytes upregulates PD-L1 on ovarian cancer cells and promotes tumour growth. The lymphocyte infiltration and the IFN-γ status may be the key to effective anti-PD-1 or anti-PD-L1 therapy in ovarian cancer.
Collapse
Affiliation(s)
- K Abiko
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - N Matsumura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - J Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - N Horikawa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - R Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - K Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Y Yoshioka
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - T Baba
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - I Konishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - M Mandai
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kinki University, 377-2 Onohigashi, Osakasayama, Osaka 589-0014, Japan
| |
Collapse
|
1802
|
Selection strategies for anticancer antibody discovery: searching off the beaten path. Trends Biotechnol 2015; 33:292-301. [PMID: 25819764 DOI: 10.1016/j.tibtech.2015.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 01/13/2023]
Abstract
Antibody-based drugs represent one of the most successful and promising therapeutic approaches in oncology. Large combinatorial phage antibody libraries are available for the identification of therapeutic antibodies and various technologies exist for their further conversion into multivalent and multispecific formats optimized for the desired pharmacokinetics and the pathological context. However, there is no technology for antigen profiling of intact tumors to identify tumor markers targetable with antibodies. Such constraints have led to a relative paucity of tumor-associated antigens for antibody targeting in oncology. Here we review novel approaches aimed at the identification of antibody-targetable, accessible antigens in intact tumors. We hope that such advanced selection approaches will be useful in the development of next-generation antibody therapies for cancer.
Collapse
|
1803
|
Tommelein J, Verset L, Boterberg T, Demetter P, Bracke M, De Wever O. Cancer-associated fibroblasts connect metastasis-promoting communication in colorectal cancer. Front Oncol 2015; 5:63. [PMID: 25853091 PMCID: PMC4369728 DOI: 10.3389/fonc.2015.00063] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/02/2015] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) progression and eventually metastasis is directed in many aspects by a circuitous ecosystem consisting of an extracellular matrix scaffold populated by cancer-associated fibroblasts (CAFs), endothelial cells, and diverse immune cells. CAFs are recruited from local tissue-resident fibroblasts or pericryptal fibroblasts and distant fibroblast precursors. CAFs are highly abundant in CRC. In this review, we apply the metastasis-promoting communication of colorectal CAFs to 10 cancer hallmarks described by Hanahan and Weinberg. CAFs influence innate and adaptive tumor immune responses. Using datasets from previously published work, we re-explore the potential messages implicated in this process. Fibroblasts present in metastasis (metastasis-associated fibroblasts) from CRC may have other characteristics and functional roles than CAFs in the primary tumor. Since CAFs connect metastasis-promoting communication, CAF markers are potential prognostic biomarkers. CAFs and their products are possible targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Joke Tommelein
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University , Ghent , Belgium
| | - Laurine Verset
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles , Brussels , Belgium
| | - Tom Boterberg
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University , Ghent , Belgium
| | - Pieter Demetter
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles , Brussels , Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University , Ghent , Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University , Ghent , Belgium
| |
Collapse
|
1804
|
Chen C, Qi XJ, Cao YW, Wang YH, Yang XC, Shao SX, Niu HT. Bladder Tumor Heterogeneity: The Impact on Clinical Treatment. Urol Int 2015; 95:1-8. [DOI: 10.1159/000370165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bladder cancer relapse and treatment failure in most patients have often been attributed to chemoresistance in tumor cells and metastasis. Emerging evidence indicates that tumor heterogeneity may play an equally important role and extends to virtually all measurable properties of cancer cells. Although the idea of tumor heterogeneity is not new, little attention has been paid to applying it to understand and control bladder cancer progression. With the development of biotechnology, such as Gene sequencing, recent advances in understanding its generation model, original basis, consequent problems, and derived therapies provide great potential for tumor heterogeneity to be considered a new insight in the treatment of bladder cancers.
Collapse
|
1805
|
Ma S, Johnson D, Ashby C, Xiong D, Cramer CL, Moore JH, Zhang S, Huang X. SPARCoC: a new framework for molecular pattern discovery and cancer gene identification. PLoS One 2015; 10:e0117135. [PMID: 25768286 PMCID: PMC4359112 DOI: 10.1371/journal.pone.0117135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/19/2014] [Indexed: 11/19/2022] Open
Abstract
It is challenging to cluster cancer patients of a certain histopathological type into molecular subtypes of clinical importance and identify gene signatures directly relevant to the subtypes. Current clustering approaches have inherent limitations, which prevent them from gauging the subtle heterogeneity of the molecular subtypes. In this paper we present a new framework: SPARCoC (Sparse-CoClust), which is based on a novel Common-background and Sparse-foreground Decomposition (CSD) model and the Maximum Block Improvement (MBI) co-clustering technique. SPARCoC has clear advantages compared with widely-used alternative approaches: hierarchical clustering (Hclust) and nonnegative matrix factorization (NMF). We apply SPARCoC to the study of lung adenocarcinoma (ADCA), an extremely heterogeneous histological type, and a significant challenge for molecular subtyping. For testing and verification, we use high quality gene expression profiling data of lung ADCA patients, and identify prognostic gene signatures which could cluster patients into subgroups that are significantly different in their overall survival (with p-values < 0.05). Our results are only based on gene expression profiling data analysis, without incorporating any other feature selection or clinical information; we are able to replicate our findings with completely independent datasets. SPARCoC is broadly applicable to large-scale genomic data to empower pattern discovery and cancer gene identification.
Collapse
Affiliation(s)
- Shiqian Ma
- Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong
| | - Daniel Johnson
- Molecular Biosciences Program, Arkansas State University, Jonesboro, Arkansas 72467, United States of America
| | - Cody Ashby
- Molecular Biosciences Program, Arkansas State University, Jonesboro, Arkansas 72467, United States of America
| | - Donghai Xiong
- Department of Pharmacology and Toxicology and the Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States of America
| | - Carole L. Cramer
- Arkansas Bioscience Institute and Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas 72467, United States of America
| | - Jason H. Moore
- The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, United States of America
| | - Shuzhong Zhang
- Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States of America
- * E-mail: (XH); (SZ)
| | - Xiuzhen Huang
- Department of Computer Science, Arkansas State University, Jonesboro, Arkansas 72467, United States of America
- * E-mail: (XH); (SZ)
| |
Collapse
|
1806
|
Rivera LB, Bergers G. Intertwined regulation of angiogenesis and immunity by myeloid cells. Trends Immunol 2015; 36:240-9. [PMID: 25770923 DOI: 10.1016/j.it.2015.02.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 12/11/2022]
Abstract
Angiogenesis is a hallmark of cancer because its induction is indispensable to fuel an expanding tumor. The tumor microenvironment contributes to tumor vessel growth, and distinct myeloid cells recruited by the tumor have been shown not only to support angiogenesis but also to foster an immune suppressive environment that supports tumor expansion and progression. Recent findings suggest that the intertwined regulation of angiogenesis and immune modulation can offer therapeutic opportunities for the treatment of cancer. We review the mechanisms by which distinct myeloid cell populations contribute to tumor angiogenesis, discuss current approaches in the clinic that are targeting both angiogenic and immune suppressive pathways, and highlight important areas of future research.
Collapse
Affiliation(s)
- Lee B Rivera
- Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA; University of California San Francisco (UCSF) Comprehensive Cancer Center, University of California, Helen Diller Family Cancer Research Center, San Francisco, CA 94158, USA.
| | - Gabriele Bergers
- Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA; University of California San Francisco (UCSF) Comprehensive Cancer Center, University of California, Helen Diller Family Cancer Research Center, San Francisco, CA 94158, USA; Brain Tumor Center, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
1807
|
Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G, Sun Y. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 2015; 13:45. [PMID: 25857315 PMCID: PMC4350882 DOI: 10.1186/s12916-015-0278-7] [Citation(s) in RCA: 523] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/16/2015] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) is being increasingly recognized as a key factor in multiple stages of disease progression, particularly local resistance, immune-escaping, and distant metastasis, thereby substantially impacting the future development of frontline interventions in clinical oncology. An appropriate understanding of the TME promotes evaluation and selection of candidate agents to control malignancies at both the primary sites as well as the metastatic settings. This review presents a timely outline of research advances in TME biology and highlights the prospect of targeting the TME as a critical strategy to overcome acquired resistance, prevent metastasis, and improve therapeutic efficacy. As benign cells in TME niches actively modulate response of cancer cells to a broad range of standard chemotherapies and targeted agents, cancer-oriented therapeutics should be combined with TME-targeting treatments to achieve optimal clinical outcomes. Overall, a body of updated information is delivered to summarize recently emerging and rapidly progressing aspects of TME studies, and to provide a significant guideline for prospective development of personalized medicine, with the long term aim of providing a cure for cancer patients.
Collapse
Affiliation(s)
- Fei Chen
- />Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai, 200031 China
| | - Xueqian Zhuang
- />Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai, 200031 China
| | - Liangyu Lin
- />Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai, 200031 China
| | - Pengfei Yu
- />Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai, 200031 China
| | - Ying Wang
- />Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai, 200031 China
| | - Yufang Shi
- />Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai, 200031 China
- />Soochow Institutes for Translational Medicine, Soochow University, Suzhou, 215123 China
| | - Guohong Hu
- />Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai, 200031 China
| | - Yu Sun
- />Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai, 200031 China
- />VA Seattle Medical Center, Seattle, WA 98108 USA
- />Department of Medicine, University of Washington, Seattle, WA 98195 USA
- />Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiaotong University School of Medicine (SJTUSM), 320 Yue Yang Road, Biological Research Building A, Shanghai, 200031 China
| |
Collapse
|
1808
|
Hamid Q, Wang C, Snyder J, Williams S, Liu Y, Sun W. Maskless fabrication of cell-laden microfluidic chips with localized surface functionalization for the co-culture of cancer cells. Biofabrication 2015; 7:015012. [DOI: 10.1088/1758-5090/7/1/015012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
1809
|
Grizzi F, Mirandola L, Qehajaj D, Cobos E, Figueroa JA, Chiriva-Internati M. Cancer-testis antigens and immunotherapy in the light of cancer complexity. Int Rev Immunol 2015; 34:143-153. [PMID: 25901859 DOI: 10.3109/08830185.2015.1018418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability of immunotherapy to evoke successful antitumor immune responses has been well documented over the past decade. Despite abundant preclinical data, it is only with the recent approval by the Food and Drug Administration (FDA) of the drugs such as sipuleucel-T and ipilimumab that immunotherapy is finally being recognized as a viable alternative to traditional therapies for treatment of various cancers. Despite the ability of immunotherapy to elicit successful antitumor immune responses, its efficacy is hindered by several factors. Among these are the paucity of tumor-associated antigens (TAA) that can be used as effective targets and the systemic toxicities that often lead to treatment interruption. Indeed, such adverse effects, which can be immunological and/or parenchymal, can be particularly severe and even fatal to some patients. A family of TAA called cancer-testis antigens (CTA) has been identified and their encoding genes have been extensively investigated. CTA expression has been demonstrated in a variety of human cancer tissues, and at least 19 CTA have been found to elicit humoral and/or cellular immune responses in cancer patients. Here we discuss how CTA and immunotherapy will most likely play a major role in the cure of cancer in the light of cancer complexity.
Collapse
Affiliation(s)
- F Grizzi
- Humanitas Clinical and Research Center , Rozzano, Milan , Italy
| | | | | | | | | | | |
Collapse
|
1810
|
Chang J, Jiang L, Wang Y, Yao B, Yang S, Zhang B, Zhang MZ. 12/15 Lipoxygenase regulation of colorectal tumorigenesis is determined by the relative tumor levels of its metabolite 12-HETE and 13-HODE in animal models. Oncotarget 2015; 6:2879-88. [PMID: 25576922 PMCID: PMC4413624 DOI: 10.18632/oncotarget.2994] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/12/2014] [Indexed: 11/25/2022] Open
Abstract
Colorectal cancer (CRC) continues to be a major cause of morbidity and mortality. The arachidonic acid (AA) pathway and linoleic acid (LA) pathway have been implicated as important contributors to CRC development and growth. Human 15-lipoxygenase 1 (15-LOX-1) converts LA to anti-tumor 13-S-hydroxyoctadecadienoic acid (13-HODE)and 15-LOX-2 converts AA to 15-hydroxyeicosatetraenoic acid (15-HETE). In addition, human 12-LOX metabolizes AA to pro-tumor 12-HETE. In rodents, the function of 12-LOX and 15-LOX-1 and 15-LOX-2 is carried out by a single enzyme, 12/15-LOX. As a result, conflicting conclusions concerning the role of 12-LOX and 15-LOX have been obtained in animal studies. In the present studies, we determined that PD146176, a selective 15-LOX-1 inhibitor, markedly suppressed 13-HODE generation in human colon cancer HCA-7 cells and HCA-7 tumors, in association with increased tumor growth. In contrast, PD146176 treatment led to decreases in 12-HETE generation in mouse colon cancer MC38 cells and MC38 tumors, in association with tumor inhibition. Surprisingly, deletion of host 12/15-LOX alone led to increased MC38 tumor growth, in association with decreased tumor 13-HODE levels, possibly due to inhibition of 12/15-LOX activity in stroma. Therefore, the effect of 12/15-LOX on colorectal tumorigenesis in mouse models could be affected by tumor cell type (human or mouse), relative 12/15 LOX activity in tumor cells and stroma as well as the relative tumor 13-HODE and 12-HETE levels.
Collapse
Affiliation(s)
- Jian Chang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Li Jiang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yinqiu Wang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bing Yao
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shilin Yang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ming-Zhi Zhang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, China
| |
Collapse
|
1811
|
Neri S, Ishii G, Hashimoto H, Kuwata T, Nagai K, Date H, Ochiai A. Podoplanin-expressing cancer-associated fibroblasts lead and enhance the local invasion of cancer cells in lung adenocarcinoma. Int J Cancer 2015; 137:784-96. [PMID: 25648219 DOI: 10.1002/ijc.29464] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/27/2015] [Indexed: 12/17/2022]
Abstract
Cancer-associated fibroblasts (CAFs) communicate with cancer cells and play important roles in cancer invasion. We previously reported that local invasion of cancer cells was frequently observed in lung adenocarcinoma patients with podoplanin (PDPN)-expressing CAFs. However, the underlying mechanisms of this phenomenon have remained unclear. In this study, we established a novel collagen invasion assay model in which cancer cells and CAFs were cocultured; we analyzed the mechanisms governing how cancer cell invasion was promoted by PDPN(+)CAFs. By observing the dynamic movement of both CAFs and cancer cells in the collagen matrix, we found that PDPN(+)CAFs invaded the matrix to a greater extent, with more cancer cells invading within the "tracks" created by the CAFs, compared with control CAFs. The knockdown of PDPN in CAFs decreased the invasion of both the CAFs and the cancer cells. PDPN(+)CAFs displayed a higher RhoA activity and treatment with a ROCK inhibitor cancelled the increased invasion ability of PDPN(+)CAFs and subsequently decreased the number of invaded cancer cells. After intravenous injection in the mouse tail vein, PDPN(+)CAFs invaded and promoted cancer cell invasion into the lung parenchyma, compared with control CAFs. Among the patients with lung adenocarcinoma, we observed some cases with PDPN(+)CAFs at the invasive front of the tumor. These cases predominantly exhibited pleural invasion of cancer cells, known as pathological invasiveness. Our results indicated that PDPN(+)CAFs were tumor-promoting CAFs that lead and enhance the local invasion of cancer cells, suggesting that the invasion activity of CAFs themselves could be rate-determining for cancer cell invasion.
Collapse
Affiliation(s)
- Shinya Neri
- Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.,Division of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Sakyo-Ku, Kyoto, Japan
| | - Genichiro Ishii
- Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Hiroko Hashimoto
- Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Takeshi Kuwata
- Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Kanji Nagai
- Division of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Sakyo-Ku, Kyoto, Japan
| | - Atsushi Ochiai
- Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| |
Collapse
|
1812
|
Subbiah V. Prospects and pitfalls of personalizing therapies for sarcomas: from children, adolescents, and young adults to the elderly. Curr Oncol Rep 2015; 16:401. [PMID: 25030655 DOI: 10.1007/s11912-014-0401-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sarcomas are a heterogeneous class of tumors that affect all ages, from children, adolescents, and young adults to the elderly. Within this panoply of tumor subtypes lies the opportunity to bring to bear a vision of personalized medicine in which the fast-paced evolution from the "one gene, one test, one drug" approach to a comprehensive "panomic," multiplex, multianalyte method coupled with advances in bioinformatics platforms can unravel the biology of this disease. The increasingly enlarging repertoire of novel agents provides innumerable prospects in precision medicine. Personalized therapy covers the entire spectrum of cancer care, from risk factor assessment through prevention, risk reduction, therapy, follow-up after therapy, and survivorship care. Challenges remain in implementing the science of precision medicine in the clinic, including providing comprehensive multidisciplinary care and overcoming regulatory and economic hurdles, which must be facilitated within the collaborative framework of academia, industry, federal regulators, and third-party payers.
Collapse
Affiliation(s)
- Vivek Subbiah
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine and Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA,
| |
Collapse
|
1813
|
Gajadhar AS, Johnson H, Slebos RJC, Shaddox K, Wiles K, Washington MK, Herline AJ, Levine DA, Liebler DC, White FM. Phosphotyrosine signaling analysis in human tumors is confounded by systemic ischemia-driven artifacts and intra-specimen heterogeneity. Cancer Res 2015; 75:1495-503. [PMID: 25670172 DOI: 10.1158/0008-5472.can-14-2309] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/05/2015] [Indexed: 01/25/2023]
Abstract
Tumor protein phosphorylation analysis may provide insight into intracellular signaling networks underlying tumor behavior, revealing diagnostic, prognostic or therapeutic information. Human tumors collected by The Cancer Genome Atlas program potentially offer the opportunity to characterize activated networks driving tumor progression, in parallel with the genetic and transcriptional landscape already documented for these tumors. However, a critical question is whether cellular signaling networks can be reliably analyzed in surgical specimens, where freezing delays and spatial sampling disparities may potentially obscure physiologic signaling. To quantify the extent of these effects, we analyzed the stability of phosphotyrosine (pTyr) sites in ovarian and colon tumors collected under conditions of controlled ischemia and in the context of defined intratumoral sampling. Cold-ischemia produced a rapid, unpredictable, and widespread impact on tumor pTyr networks within 5 minutes of resection, altering up to 50% of pTyr sites by more than 2-fold. Effects on adhesion and migration, inflammatory response, proliferation, and stress response pathways were recapitulated in both ovarian and colon tumors. In addition, sampling of spatially distinct colon tumor biopsies revealed pTyr differences as dramatic as those associated with ischemic times, despite uniform protein expression profiles. Moreover, intratumoral spatial heterogeneity and pTyr dynamic response to ischemia varied dramatically between tumors collected from different patients. Overall, these findings reveal unforeseen phosphorylation complexity, thereby increasing the difficulty of extracting physiologically relevant pTyr signaling networks from archived tissue specimens. In light of this data, prospective tumor pTyr analysis will require appropriate sampling and collection protocols to preserve in vivo signaling features.
Collapse
Affiliation(s)
- Aaron S Gajadhar
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Hannah Johnson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Robbert J C Slebos
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee. The Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Kent Shaddox
- The Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Kerry Wiles
- Cooperative Human Tissue Network Western Division, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mary Kay Washington
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alan J Herline
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Douglas A Levine
- Gynecology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Daniel C Liebler
- The Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee. Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | | |
Collapse
|
1814
|
Wang A, Chen L, Li C, Zhu Y. Heterogeneity in cancer stem cells. Cancer Lett 2015; 357:63-68. [DOI: 10.1016/j.canlet.2014.11.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 01/06/2023]
|
1815
|
Jeng KS, Chang CF, Jeng WJ, Sheen IS, Jeng CJ. Heterogeneity of hepatocellular carcinoma contributes to cancer progression. Crit Rev Oncol Hematol 2015; 94:337-47. [PMID: 25680939 DOI: 10.1016/j.critrevonc.2015.01.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/24/2014] [Accepted: 01/21/2015] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous disease displaying differences in angiogenesis, extracellular matrix proteins, the immune microenvironment and tumor cell populations. Additionally, genetic variations and epigenetic changes of HCC cells could lead to aberrant signaling pathways, induce cancer stem cells and enhance tumor progression. Thus, the heterogeneity in HCC contributes to disease progression and a better understanding of its heterogeneity will greatly aid in the development of strategies for the HCC treatment.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| | - Chiung-Fang Chang
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Wen-Juei Jeng
- Department of Hepato-Gastroenterology, Chang-Gung Memorial Hospital, LinKou Medical Center, Chang Gung University, Taiwan
| | - I-Shyan Sheen
- Department of Hepato-Gastroenterology, Chang-Gung Memorial Hospital, LinKou Medical Center, Chang Gung University, Taiwan
| | - Chi-Juei Jeng
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
1816
|
Kim Y, Powathil G, Kang H, Trucu D, Kim H, Lawler S, Chaplain M. Strategies of eradicating glioma cells: a multi-scale mathematical model with MiR-451-AMPK-mTOR control. PLoS One 2015; 10:e0114370. [PMID: 25629604 PMCID: PMC4309536 DOI: 10.1371/journal.pone.0114370] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/06/2014] [Indexed: 01/06/2023] Open
Abstract
The cellular dispersion and therapeutic control of glioblastoma, the most aggressive type of primary brain cancer, depends critically on the migration patterns after surgery and intracellular responses of the individual cancer cells in response to external biochemical and biomechanical cues in the microenvironment. Recent studies have shown that a particular microRNA, miR-451, regulates downstream molecules including AMPK and mTOR to determine the balance between rapid proliferation and invasion in response to metabolic stress in the harsh tumor microenvironment. Surgical removal of main tumor is inevitably followed by recurrence of the tumor due to inaccessibility of dispersed tumor cells in normal brain tissue. In order to address this multi-scale nature of glioblastoma proliferation and invasion and its response to conventional treatment, we propose a hybrid model of glioblastoma that analyses spatio-temporal dynamics at the cellular level, linking individual tumor cells with the macroscopic behaviour of cell organization and the microenvironment, and with the intracellular dynamics of miR-451-AMPK-mTOR signaling within a tumour cell. The model identifies a key mechanism underlying the molecular switches between proliferative phase and migratory phase in response to metabolic stress and biophysical interaction between cells in response to fluctuating glucose levels in the presence of blood vessels (BVs). The model predicts that cell migration, therefore efficacy of the treatment, not only depends on oxygen and glucose availability but also on the relative balance between random motility and strength of chemoattractants. Effective control of growing cells near BV sites in addition to relocalization of invisible migratory cells back to the resection site was suggested as a way of eradicating these migratory cells.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul, 143-701, Republic of Korea
- Department of Mathematics, Ohio State University, Columbus, OH 43210, USA
- * E-mail:
| | - Gibin Powathil
- Division of Mathematics, University of Dundee, Dundee, UK
- Department of Mathematics, Swansea University, Swansea, UK
| | - Hyunji Kang
- Department of Mathematics, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Dumitru Trucu
- Division of Mathematics, University of Dundee, Dundee, UK
| | - Hyeongi Kim
- Department of Physics, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Sean Lawler
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Mark Chaplain
- Division of Mathematics, University of Dundee, Dundee, UK
| |
Collapse
|
1817
|
Mas C, Boda B, CaulFuty M, Huang S, Wiszniewski L, Constant S. Antitumour efficacy of the selumetinib and trametinib MEK inhibitors in a combined human airway-tumour-stroma lung cancer model. J Biotechnol 2015; 205:111-9. [PMID: 25615947 DOI: 10.1016/j.jbiotec.2015.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/25/2014] [Accepted: 01/12/2015] [Indexed: 01/29/2023]
Abstract
With more than 1 million deaths worldwide every year, lung cancer remains an area of unmet need. Accessible human in vitro 3D tissue models are required to improve preclinical predictivity. OncoCilAir™ is a new in vitro model of Non Small Cell Lung Cancer which combines a reconstituted human airway epithelium, human lung fibroblasts and lung adenocarcinoma cell lines. Remarkably, we found that in this 3D microenvironment tumour cells expand by forming nodules, mimicking a human lung cancer feature. OncoCilAir™ mutated for KRAS and expressing the green fluorescent protein were used to test the antitumour potential of the investigational MEK inhibitors selumetinib and trametinib. As primary endpoint, changes in tumour size were assessed by fluorescence measurements. Tumours showed a reduced growth in response to the MEK inhibitors, but halting the selumetinib dosing resulted in tumour relapse. Importantly, toxicity study on the normal part of the cultures revealed that the airway epithelium integrity was also affected by anticancer drug treatments. These results highlight the possibility to assess simultaneously drug efficacy, drug side-effect and tumour recurrence within a single culture model. OncoCilAir™ heralds a new generation of integrated in vitro tumour models that should be valuable tools for drug development, while reducing animal testing.
Collapse
Affiliation(s)
- Christophe Mas
- OncoTheis Sàrl, 14 chemin des aulx, CH-1228 Plan-les-Ouates, Geneva, Switzerland.
| | - Bernadett Boda
- OncoTheis Sàrl, 14 chemin des aulx, CH-1228 Plan-les-Ouates, Geneva, Switzerland
| | | | - Song Huang
- Epithelix Sàrl, Plan-les-Ouates, Switzerland
| | | | - Samuel Constant
- OncoTheis Sàrl, 14 chemin des aulx, CH-1228 Plan-les-Ouates, Geneva, Switzerland; Epithelix Sàrl, Plan-les-Ouates, Switzerland
| |
Collapse
|
1818
|
Liu Y, Cao X. Intratumoral dendritic cells in the anti-tumor immune response. Cell Mol Immunol 2015; 12:387-90. [PMID: 25597333 DOI: 10.1038/cmi.2014.130] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yang Liu
- National Key Laboratory of Medical Molecular Biology & Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; Department of Immunology, Peking Union Medical College, Beijing, China
| | - Xuetao Cao
- 1] National Key Laboratory of Medical Molecular Biology & Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; Department of Immunology, Peking Union Medical College, Beijing, China [2] National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China
| |
Collapse
|
1819
|
O'Connor JPB, Rose CJ, Waterton JC, Carano RAD, Parker GJM, Jackson A. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 2015; 21:249-57. [PMID: 25421725 PMCID: PMC4688961 DOI: 10.1158/1078-0432.ccr-14-0990] [Citation(s) in RCA: 470] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumors exhibit genomic and phenotypic heterogeneity, which has prognostic significance and may influence response to therapy. Imaging can quantify the spatial variation in architecture and function of individual tumors through quantifying basic biophysical parameters such as CT density or MRI signal relaxation rate; through measurements of blood flow, hypoxia, metabolism, cell death, and other phenotypic features; and through mapping the spatial distribution of biochemical pathways and cell signaling networks using PET, MRI, and other emerging molecular imaging techniques. These methods can establish whether one tumor is more or less heterogeneous than another and can identify subregions with differing biology. In this article, we review the image analysis methods currently used to quantify spatial heterogeneity within tumors. We discuss how analysis of intratumor heterogeneity can provide benefit over more simple biomarkers such as tumor size and average function. We consider how imaging methods can be integrated with genomic and pathology data, instead of being developed in isolation. Finally, we identify the challenges that must be overcome before measurements of intratumoral heterogeneity can be used routinely to guide patient care.
Collapse
Affiliation(s)
- James P B O'Connor
- CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester, University of Manchester, Manchester, United Kingdom. Department of Radiology, Christie Hospital, Manchester, United Kingdom. james.o'
| | - Chris J Rose
- CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester, University of Manchester, Manchester, United Kingdom
| | - John C Waterton
- CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester, University of Manchester, Manchester, United Kingdom. R&D Personalised Healthcare and Biomarkers, AstraZeneca, Macclesfield, United Kingdom
| | - Richard A D Carano
- Biomedical Imaging Department, Genentech, Inc., South San Francisco, California
| | - Geoff J M Parker
- CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester, University of Manchester, Manchester, United Kingdom
| | - Alan Jackson
- CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
1820
|
Carvalho J, Oliveira C. Extracellular Vesicles - Powerful Markers of Cancer EVolution. Front Immunol 2015; 5:685. [PMID: 25628624 PMCID: PMC4290688 DOI: 10.3389/fimmu.2014.00685] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/19/2014] [Indexed: 01/08/2023] Open
Affiliation(s)
- Joana Carvalho
- Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP) , Porto , Portugal
| | - Carla Oliveira
- Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP) , Porto , Portugal ; Department of Pathology and Oncology, Faculty of Medicine of University of Porto , Porto , Portugal
| |
Collapse
|
1821
|
Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2015; 15:786-801. [PMID: 25415508 DOI: 10.1038/nrm3904] [Citation(s) in RCA: 2980] [Impact Index Per Article: 298.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is a highly dynamic structure that is present in all tissues and continuously undergoes controlled remodelling. This process involves quantitative and qualitative changes in the ECM, mediated by specific enzymes that are responsible for ECM degradation, such as metalloproteinases. The ECM interacts with cells to regulate diverse functions, including proliferation, migration and differentiation. ECM remodelling is crucial for regulating the morphogenesis of the intestine and lungs, as well as of the mammary and submandibular glands. Dysregulation of ECM composition, structure, stiffness and abundance contributes to several pathological conditions, such as fibrosis and invasive cancer. A better understanding of how the ECM regulates organ structure and function and of how ECM remodelling affects disease progression will contribute to the development of new therapeutics.
Collapse
Affiliation(s)
- Caroline Bonnans
- 1] Department of Anatomy, University of California, 513 Parnassus Avenue, San Francisco, California 94143-0452, USA. [2] Oncology Department, INSERM U661, Functional Genomic Institute, 141 rue de la Cardonille, 34094 Montpellier, France
| | - Jonathan Chou
- 1] Department of Anatomy, University of California, 513 Parnassus Avenue, San Francisco, California 94143-0452, USA. [2] Department of Medicine, University of California, 513 Parnassus Avenue, San Francisco, California 94143-0452, USA
| | - Zena Werb
- Department of Anatomy, University of California, 513 Parnassus Avenue, San Francisco, California 94143-0452, USA
| |
Collapse
|
1822
|
Eterno V, Zambelli A, Pavesi L, Villani L, Zanini V, Petrolo G, Manera S, Tuscano A, Amato A. Adipose-derived Mesenchymal Stem Cells (ASCs) may favour breast cancer recurrence via HGF/c-Met signaling. Oncotarget 2015; 5:613-33. [PMID: 24327602 PMCID: PMC3996669 DOI: 10.18632/oncotarget.1359] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Adipose tissue is a reservoir of Mesenchymal Stem Cells (Adipose-derived Mesenchymal Stem Cells, ASCs), endowed with regenerative properties. Fat graft was proposed for breast reconstruction in post-surgery cancer patients achieving good aesthetic results and tissues regeneration. However, recent findings highlight a potential tumorigenic role that ASCs may have in cancer recurrence, raising some concerns about their safety in clinical application. To address this issue, we established a model where autologous ASCs were combined with primary normal or cancer cells from breast of human donors, in order to evaluate potential effects of their interactions, in vitro and in vivo. Surprisingly, we found that ASCs are not tumorigenic per sè, as they are not able to induce a neoplastic transformation of normal mammary cells, however they could exhacerbate tumorigenic behaviour of c-Met-expressing breast cancer cells, creating an inflammatory microenvironment which sustained tumor growth and angiogenesis. Pharmacological c-Met inhibition showed that a HGF/c-Met crosstalk between ASCs and breast cancer cells enhanced tumor cells migration, acquiring a metastatic signature, and sustained tumor self-renewal. The master role of HGF/c-Met pathway in cancer recurrence was further confirmed by c-Met immunostaining in primary breast cancer from human donors, revealing a strong positivity in patients displaying a recurrent pathology after fat grafts and a weak/moderate staining in patients without signs of recurrence. Altogether our findings, for the first time, suggest c-Met expression, as predictive to evaluate risk of cancer recurrence after autologous fat graft in post-surgery breast cancer patients, increasing the safety of fat graft in clinical application.
Collapse
|
1823
|
Turtoi A, Blomme A, Castronovo V. Intratumoral heterogeneity and consequences for targeted therapies. Bull Cancer 2015; 102:17-23. [PMID: 25609489 DOI: 10.1016/j.bulcan.2014.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/01/2014] [Indexed: 01/08/2023]
Abstract
According to the clonal model and Darwinian evolution, cancer cell evolves through new mutations helping it to proliferate, migrate, invade and metastasize. Recent genetic studies have clearly shown that tumors, when diagnosed, consist of a large number of mutations distributed in different cells. This heterogeneity translates in substantial genetic plasticity enabling cancer cells to adapt to any hostile environment. As targeted therapy focuses only on one pathway or protein, there will always be a cell with the "right" genetic background to survive the treatment and cause tumor relapse. Because today's targeted therapies never took tumor heterogeneity into account, nearly all novel drugs fail to provide patients with a considerable improvement of the survival. However, emerging proteomic studies guided by the idea that Darwinian selection is governed by the phenotype and not genotype, show that heterogeneity at the protein level is much less complex, then it could be expected from genetic studies. This information together with the recent trend to switch from functional to cytotoxic targeting may offer an entirely new strategy to efficiently combat cancer.
Collapse
Affiliation(s)
- Andrei Turtoi
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, Liège, Belgium.
| | - Arnaud Blomme
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, Liège, Belgium
| |
Collapse
|
1824
|
Beerenwinkel N, Schwarz RF, Gerstung M, Markowetz F. Cancer evolution: mathematical models and computational inference. Syst Biol 2015; 64:e1-25. [PMID: 25293804 PMCID: PMC4265145 DOI: 10.1093/sysbio/syu081] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 09/26/2014] [Indexed: 12/12/2022] Open
Abstract
Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy.
Collapse
Affiliation(s)
- Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB20RE, United Kingdom Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB20RE, United Kingdom
| | - Roland F Schwarz
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB20RE, United Kingdom
| | - Moritz Gerstung
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB20RE, United Kingdom
| | - Florian Markowetz
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB20RE, United Kingdom
| |
Collapse
|
1825
|
Saito T, Yamaguchi H. Optical imaging of hemoglobin oxygen saturation using a small number of spectral images for endoscopic application. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:126011. [PMID: 26720878 DOI: 10.1117/1.jbo.20.12.126011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/30/2015] [Indexed: 05/06/2023]
Abstract
Tissue hypoxia is associated with tumor and inflammatory diseases, and detection of hypoxia is potentially useful for their detailed diagnosis. An endoscope system that can optically observe hemoglobin oxygen saturation (StO2) would enable minimally invasive, real-time detection of lesion hypoxia in vivo. Currently, point measurement of tissue StO2 via endoscopy is possible using the commercial fiber-optic oximeter T-Stat, which is based on visible light spectroscopy at many wavelengths. For clinical use, however, imaging of StO2 is desirable to assess the distribution of tissue oxygenation around a lesion. Here, we describe our StO2 imaging technique based on a small number of wavelength ranges in the visible range. By assuming a homogeneous tissue, we demonstrated that tissue StO2 can be obtained independently from the scattering property and blood concentration of tissue using four spectral bands. We developed a prototype endoscope system and used it to observe tissue-simulating phantoms. The StO2 (%) values obtained using our technique agreed with those from the T-Stat within 10%. We also showed that tissue StO2 can be derived using three spectral band if the scattering property is fixed at preliminarily measured values.
Collapse
|
1826
|
Mognato M, Celotti L. MicroRNAs Used in Combination with Anti-Cancer Treatments Can Enhance Therapy Efficacy. Mini Rev Med Chem 2015; 15:1052-62. [PMID: 26156420 PMCID: PMC4997954 DOI: 10.2174/1389557515666150709115355] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 06/23/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs), a recently discovered class of small non-coding RNAs, constitute a promising approach to anti-cancer treatments when they are used in combination with other agents. MiRNAs are evolutionarily conserved non-coding RNAs that negatively regulate gene expression by binding to the complementary sequence in the 3'-untranslated region (UTR) of target genes. MiRNAs typically suppress gene expression by direct association with target transcripts, thus decreasing the expression levels of target proteins. The delivery to cells of synthetic miRNAs that mimic endogenous miRNA targeting genes involved in the DNA-Damage Response (DDR) can perturb the process, making cells more sensitive to chemotherapy or radiotherapy. This review examines how cells respond to combined therapy and it provides insights into the role of miRNAs in targeting the DDR repair pathway when they are used in combination with chemical compounds or ionizing radiation to enhance cellular sensitivity to treatments.
Collapse
Affiliation(s)
- Maddalena Mognato
- Department of Biology, School of Science, University of Padova, Padova, Italy.
| | | |
Collapse
|
1827
|
Morii K, Aoyama Y, Nakamura S, Okushin H. Synergistic anti-tumor effects of zoledronic acid and radiotherapy against metastatic hepatocellular carcinoma. Intern Med 2015; 54:2609-13. [PMID: 26466697 DOI: 10.2169/internalmedicine.54.4430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 72-year-old man with advanced hepatocellular carcinoma and decompensated hepatitis C virus-related cirrhosis suffered from a metastatic femoral fracture. After undergoing radiotherapy, he was only treated with supportive care, except for the administration of zoledronic acid (ZA). Thereafter, the initially elevated serum α-fetoprotein and des-gamma carboxyprothrombin levels declined to within the normal ranges. Hepatic and metastatic adrenal tumors, distant from the radiation field, exhibited a surprising regression. ZA is known to inhibit the activity of osteoclasts, bone-residential macrophages, and has been reported to have a direct anti-tumor effect. ZA may adjust the immunological milieu in tumor microenvironments by inhibiting the tumor-associated macrophages. Because radiotherapy can enhance the presentation of tumor-associated antigens, ZA and radiotherapy may exert synergistic anti-tumor effects.
Collapse
Affiliation(s)
- Kazuhiko Morii
- Department of Hepatology, Japanese Red Cross Society Himeji Hospital, Japan
| | | | | | | |
Collapse
|
1828
|
Zhu X, Chen S, Luo Q, Ye C, Liu M, Zhou X. Body temperature sensitive micelles for MRI enhancement. Chem Commun (Camb) 2015; 51:9085-8. [DOI: 10.1039/c5cc02587g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CEST MRI signal enhancement at body temperature.
Collapse
Affiliation(s)
- Xiaolei Zhu
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center of Magnetic Resonance in Wuhan
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Shizhen Chen
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center of Magnetic Resonance in Wuhan
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Qing Luo
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center of Magnetic Resonance in Wuhan
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center of Magnetic Resonance in Wuhan
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center of Magnetic Resonance in Wuhan
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center of Magnetic Resonance in Wuhan
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| |
Collapse
|
1829
|
Bergamo A, Sava G. Linking the future of anticancer metal-complexes to the therapy of tumour metastases. Chem Soc Rev 2015; 44:8818-35. [DOI: 10.1039/c5cs00134j] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer chemotherapy is almost always applied to patients with one or more diagnosed metastases and is expected to impact these lesions, thus providing significant benefits to the patient.
Collapse
Affiliation(s)
| | - Gianni Sava
- Callerio Foundation Onlus
- 34127 Trieste
- Italy
- Department of Life Sciences
- University of Trieste
| |
Collapse
|
1830
|
Mi Li, Lianqing Liu, Ning Xi, Yuechao Wang, Xiubin Xiao, Weijing Zhang. Quantitative Analysis of Drug-Induced Complement-Mediated Cytotoxic Effect on Single Tumor Cells Using Atomic Force Microscopy and Fluorescence Microscopy. IEEE Trans Nanobioscience 2015; 14:84-94. [DOI: 10.1109/tnb.2014.2370759] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
1831
|
Wilson MK, Collyar D, Chingos DT, Friedlander M, Ho TW, Karakasis K, Kaye S, Parmar MKB, Sydes MR, Tannock IF, Oza AM. Outcomes and endpoints in cancer trials: bridging the divide. Lancet Oncol 2015; 16:e43-52. [PMID: 25638556 DOI: 10.1016/s1470-2045(14)70380-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer is not one disease. Outcomes and endpoints in trials should incorporate the therapeutic modality and cancer type because these factors affect clinician and patient expectations. In this Review, we discuss how to: define the importance of endpoints; make endpoints understandable to patients; improve the use of patient-reported outcomes; advance endpoints to parallel changes in trial design and therapeutic interventions; and integrate these improvements into trials and practice. Endpoints need to reflect benefit to patients, and show that changes in tumour size either in absolute terms (response and progression) or relative to control (progression) are clinically relevant. Improvements in trial design should be accompanied by improvements in available endpoints. Stakeholders need to come together to determine the best approach for research that ensures accountability and optimises the use of available resources.
Collapse
Affiliation(s)
- Michelle K Wilson
- University of Toronto Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | | | | - Michael Friedlander
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Tony W Ho
- AstraZeneca, Wilmington DE 19850-5437, USA
| | | | - Stan Kaye
- Drug Development Unit and Gynaecology Unit, Royal Marsden Hospital and Institute of Cancer Research, London, UK
| | | | - Matthew R Sydes
- MRC Clinical Trials Unit, University College London, London, UK
| | - Ian F Tannock
- University of Toronto Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Amit M Oza
- University of Toronto Princess Margaret Cancer Centre, Toronto, ON, Canada.
| |
Collapse
|
1832
|
van der Linden A, Blokker BM, Kap M, Weustink AC, Riegman PHJ, Oosterhuis JW. Post-mortem tissue biopsies obtained at minimally invasive autopsy: an RNA-quality analysis. PLoS One 2014; 9:e115675. [PMID: 25531551 PMCID: PMC4274113 DOI: 10.1371/journal.pone.0115675] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/26/2014] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Bereaved relatives often refuse to give consent for post-mortem investigation of deceased cancer patients, mainly because of the mutilation due to conventional autopsy (CA). Minimally invasive autopsy (MIA) may be a more acceptable alternative and, if implemented in clinical practice, creates an opportunity to more often obtain post-mortem tissue samples of (recurred) primary tumors and metastases for molecular research. As a measure for tissue quality for molecular studies, we hereby present a feasibility study, comparing the RNA quality of MIA and CA samples, and fresh frozen samples as reference. MATERIALS AND METHODS Tissue samples of heart, liver and kidney were prospectively collected from 24 MIAs followed by CA, and compared to corresponding archival fresh frozen tissue. After RNA isolation and RT-qPCR, RNA integrity numbers (RIN) and GAPDH expression (six amplicon sizes ranging from 71 to 530 base pairs) were measured. RIN values and GAPDH Cq values were analyzed and compared between all sample groups and post-mortem intervals (PMI). RESULTS RIN values in MIA samples were significantly higher than those in CA samples. GAPDH was expressed significantly higher in MIA samples than in CA samples and 530 bp PCR products could be measured in all cases. GAPDH expression was significantly lower in samples with PMI >15 hours. As expected, the samples of the fresh frozen reference standard performed best in all analyses. CONCLUSION MIA samples showed better RNA quality than CA samples, probably due to shorter PMI. Both had lower RNA quality and expression levels than fresh frozen tissue, however, remaining GAPDH RNA was still sufficiently intact. Therefore, other highly expressed genes are most likely also detectable. Gene array analysis should be performed to gain insight into the quality of entire post-mortem genomes. Reducing PMI will further improve the feasibility of demanding molecular research on post-mortem tissues, this is most likely more feasible with MIA than CA.
Collapse
Affiliation(s)
| | | | - Marcel Kap
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
1833
|
Bailey KM, Cornnell HH, Ibrahim-Hashim A, Wojtkowiak JW, Hart CP, Zhang X, Leos R, Martinez GV, Baker AF, Gillies RJ. Evaluation of the "steal" phenomenon on the efficacy of hypoxia activated prodrug TH-302 in pancreatic cancer. PLoS One 2014; 9:e113586. [PMID: 25532146 PMCID: PMC4273999 DOI: 10.1371/journal.pone.0113586] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/26/2014] [Indexed: 11/19/2022] Open
Abstract
Pancreatic ductal adenocarcinomas are desmoplastic and hypoxic, both of which are associated with poor prognosis. Hypoxia-activated prodrugs (HAPs) are specifically activated in hypoxic environments to release cytotoxic or cytostatic effectors. TH-302 is a HAP that is currently being evaluated in a Phase III clinical trial in pancreatic cancer. Using animal models, we show that tumor hypoxia can be exacerbated using a vasodilator, hydralazine, improving TH-302 efficacy. Hydralazine reduces tumor blood flow through the "steal" phenomenon, in which atonal immature tumor vasculature fails to dilate in coordination with normal vasculature. We show that MIA PaCa-2 tumors exhibit a "steal" effect in response to hydralazine, resulting in decreased tumor blood flow and subsequent tumor pH reduction. The effect is not observed in SU.86.86 tumors with mature tumor vasculature, as measured by CD31 and smooth muscle actin (SMA) immunohistochemistry staining. Combination therapy of hydralazine and TH-302 resulted in a reduction in MIA PaCa-2 tumor volume growth after 18 days of treatment. These studies support a combination mechanism of action for TH-302 with a vasodilator that transiently increases tumor hypoxia.
Collapse
Affiliation(s)
- Kate M. Bailey
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States of America
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida 33612, United States of America
| | - Heather H. Cornnell
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States of America
| | - Arig Ibrahim-Hashim
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States of America
| | - Jonathan W. Wojtkowiak
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States of America
| | - Charles P. Hart
- Threshold Pharmaceuticals, South San Francisco, California 94080, United States of America
| | - Xiaomeng Zhang
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States of America
| | - Rafael Leos
- Arizona Cancer Center, Hematology/Oncology Section, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States of America
| | - Gary V. Martinez
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States of America
| | - Amanda F. Baker
- Arizona Cancer Center, Hematology/Oncology Section, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States of America
| | - Robert J. Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States of America
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States of America
- * E-mail:
| |
Collapse
|
1834
|
Gerdes MJ, Sood A, Sevinsky C, Pris AD, Zavodszky MI, Ginty F. Emerging understanding of multiscale tumor heterogeneity. Front Oncol 2014; 4:366. [PMID: 25566504 PMCID: PMC4270176 DOI: 10.3389/fonc.2014.00366] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/02/2014] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multifaceted disease characterized by heterogeneous genetic alterations and cellular metabolism, at the organ, tissue, and cellular level. Key features of cancer heterogeneity are summarized by 10 acquired capabilities, which govern malignant transformation and progression of invasive tumors. The relative contribution of these hallmark features to the disease process varies between cancers. At the DNA and cellular level, germ-line and somatic gene mutations are found across all cancer types, causing abnormal protein production, cell behavior, and growth. The tumor microenvironment and its individual components (immune cells, fibroblasts, collagen, and blood vessels) can also facilitate or restrict tumor growth and metastasis. Oncology research is currently in the midst of a tremendous surge of comprehension of these disease mechanisms. This will lead not only to novel drug targets but also to new challenges in drug discovery. Integrated, multi-omic, multiplexed technologies are essential tools in the quest to understand all of the various cellular changes involved in tumorigenesis. This review examines features of cancer heterogeneity and discusses how multiplexed technologies can facilitate a more comprehensive understanding of these features.
Collapse
Affiliation(s)
- Michael J. Gerdes
- Diagnostic Imaging and Biomedical Technologies, GE Global Research, Niskayuna, NY, USA
| | - Anup Sood
- Diagnostic Imaging and Biomedical Technologies, GE Global Research, Niskayuna, NY, USA
| | - Christopher Sevinsky
- Diagnostic Imaging and Biomedical Technologies, GE Global Research, Niskayuna, NY, USA
| | - Andrew D. Pris
- Diagnostic Imaging and Biomedical Technologies, GE Global Research, Niskayuna, NY, USA
| | - Maria I. Zavodszky
- Diagnostic Imaging and Biomedical Technologies, GE Global Research, Niskayuna, NY, USA
| | - Fiona Ginty
- Diagnostic Imaging and Biomedical Technologies, GE Global Research, Niskayuna, NY, USA
| |
Collapse
|
1835
|
Korpela E, Liu SK. Endothelial perturbations and therapeutic strategies in normal tissue radiation damage. Radiat Oncol 2014; 9:266. [PMID: 25518850 PMCID: PMC4279961 DOI: 10.1186/s13014-014-0266-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/18/2014] [Indexed: 02/08/2023] Open
Abstract
Most cancer patients are treated with radiotherapy, but the treatment can also damage the surrounding normal tissue. Radiotherapy side-effects diminish patients’ quality of life, yet effective biological interventions for normal tissue damage are lacking. Protecting microvascular endothelial cells from the effects of irradiation is emerging as a targeted damage-reduction strategy. We illustrate the concept of the microvasculature as a mediator of overall normal tissue radiation toxicity through cell death, vascular inflammation (hemodynamic and molecular changes) and a change in functional capacity. Endothelial cell targeted therapies that protect against such endothelial cell perturbations and the development of acute normal tissue damage are mostly under preclinical development. Since acute radiation toxicity is a common clinical problem in cutaneous, gastrointestinal and mucosal tissues, we also focus on damage in these tissues.
Collapse
Affiliation(s)
- Elina Korpela
- Biological Sciences, Sunnybrook Research Institute and Odette Cancer Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, M4N 3M5, Canada. .,Department of Medical Biophysics, University of Toronto, 101 College St., Toronto, M5G 1L7, Canada.
| | - Stanley K Liu
- Biological Sciences, Sunnybrook Research Institute and Odette Cancer Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, M4N 3M5, Canada. .,Department of Medical Biophysics, University of Toronto, 101 College St., Toronto, M5G 1L7, Canada. .,Department of Radiation Oncology, University of Toronto, 149 College St., Toronto, M5T 1P5, Canada.
| |
Collapse
|
1836
|
TSPAN12 is a critical factor for cancer-fibroblast cell contact-mediated cancer invasion. Proc Natl Acad Sci U S A 2014; 111:18691-6. [PMID: 25512506 DOI: 10.1073/pnas.1412062112] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Communication between cancer cells and their microenvironment controls cancer progression. Although the tumor suppressor p53 functions in a cell-autonomous manner, it has also recently been shown to function in a non-cell-autonomous fashion. Although functional defects have been reported in p53 in stromal cells surrounding cancer, including mutations in the p53 gene and decreased p53 expression, the role of p53 in stromal cells during cancer progression remains unclear. We herein show that the expression of α-smooth muscle actin (α-SMA), a marker of cancer-associated fibroblasts (CAFs), was increased by the ablation of p53 in lung fibroblasts. CAFs enhanced the invasion and proliferation of lung cancer cells when cocultured with p53-depleted fibroblasts and required contact between cancer and stromal cells. A comprehensive analysis using a DNA chip revealed that tetraspanin 12 (TSPAN12), which belongs to the tetraspanin protein family, was derepressed by p53 knockdown. TSPAN12 knockdown in p53-depleted fibroblasts inhibited cancer cell proliferation and invasion elicited by coculturing with p53-depleted fibroblasts in vitro, and inhibited tumor growth in vivo. It also decreased CXC chemokine ligand 6 (CXCL6) secretion through the β-catenin signaling pathway, suggesting that cancer cell contact with TSPAN12 in fibroblasts transduced β-catenin signaling into fibroblasts, leading to the secretion of CXCL6 to efficiently promote invasion. These results suggest that stroma-derived p53 plays a pivotal role in epithelial cancer progression and that TSPAN12 and CXCL6 are potential targets for lung cancer therapy.
Collapse
|
1837
|
Hirt C, Papadimitropoulos A, Mele V, Muraro MG, Mengus C, Iezzi G, Terracciano L, Martin I, Spagnoli GC. "In vitro" 3D models of tumor-immune system interaction. Adv Drug Deliv Rev 2014; 79-80:145-54. [PMID: 24819215 DOI: 10.1016/j.addr.2014.05.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/22/2014] [Accepted: 05/01/2014] [Indexed: 02/07/2023]
Abstract
Interaction between cancer cells and immune system critically affects development, progression and treatment of human malignancies. Experimental animal models and conventional "in vitro" studies have provided a wealth of information on this interaction, currently used to develop immune-mediated therapies. Studies utilizing three-dimensional culture technologies have emphasized that tumor architecture dramatically influences cancer cell-immune system interaction by steering cytokine production and regulating differentiation patterns of myeloid cells, and decreasing the sensitivity of tumor cells to lymphocyte effector functions. Hypoxia and increased production of lactic acid by tumor cells cultured in 3D architectures appear to be mechanistically involved. 3D culture systems could be further developed to (i) include additional cell partners potentially influencing cancer cell-immune system interaction, (ii) enable improved control of hypoxia, and (iii) allow the use of freshly derived clinical cancer specimens. Such advanced models will represent new tools for cancer immunobiology studies and for pre-clinical assessment of innovative treatments.
Collapse
|
1838
|
Sung KE, Beebe DJ. Microfluidic 3D models of cancer. Adv Drug Deliv Rev 2014; 79-80:68-78. [PMID: 25017040 DOI: 10.1016/j.addr.2014.07.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 01/04/2023]
Abstract
Despite advances in medicine and biomedical sciences, cancer still remains a major health issue. Complex interactions between tumors and their microenvironment contribute to tumor initiation and progression and also contribute to the development of drug resistant tumor cell populations. The complexity and heterogeneity of tumors and their microenvironment make it challenging to both study and treat cancer. Traditional animal cancer models and in vitro cancer models are limited in their ability to recapitulate human structures and functions, thus hindering the identification of appropriate drug targets and therapeutic strategies. The development and application of microfluidic 3D cancer models have the potential to overcome some of the limitations inherent to traditional models. This review summarizes the progress in microfluidic 3D cancer models, their benefits, and their broad application to basic cancer biology, drug screening, and drug discovery.
Collapse
|
1839
|
Sun H, Guo D, Su Y, Yu D, Wang Q, Wang T, Zhou Q, Ran X, Zou Z. Hyperplasia of pericytes is one of the main characteristics of microvascular architecture in malignant glioma. PLoS One 2014; 9:e114246. [PMID: 25478951 PMCID: PMC4257691 DOI: 10.1371/journal.pone.0114246] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/05/2014] [Indexed: 11/18/2022] Open
Abstract
Objectives To investigate the role of pericytes in constructing the malformed microvessels (MVs) and participating microvascular architecture heterogeneity of glioma. Methods Forty human glioma tissue samples (WHO grade II-IV) were included in present study. Observation of blood vessel patterns, quantitative analysis of endothelial cells (ECs)- and pericyte-labeled MVs and comparison between malignant grades based on single- or double-immunohistochemical staining. The MV number density (MVND), microvascular pericyte number density (MPND), and microvascular pericyte area density (MPAD) were calculated. The expression of PDGFβ was also scored after immunostaining. Results In grade II glioma, most of tumor MVs were the thin-wall CD34+ vessels with near normal morphology. In addition to thin-wall CD34+ MVs, more thick-wall MVs were found in grade III glioma, which often showed α-SMA positive. Most of MVs in grade IV glioma were in the form of plexus, curled cell cords and glomeruloid microvascular proliferation while the α-SMA+ cells were the main components. The MVs usually showed disordered arrangement, loose connection and active cell proliferation as shown by Ki67 and α-SMA coexpression. With the increase of glioma grades, the α-SMA+ MVND, CD34+ MVND and MPND were significantly augmented although the increase of CD34+ MVND but not MPAD was statistically insignificant between grade III and IV. It was interesting that some vessel-like structures only consist of α-SMA+ cells, assuming the guiding role of pericytes in angiogenesis. The expression level of PDGFβ was upregulated and directly correlated with the MPND in different glioma grades. Conclusion Hyperplasia of pericytes was one of the significant characteristics of malignant glioma and locally proliferated pericytes were the main constituent of MVs in high grade glioma. The pathological characteristics of pericytes could be used as indexes of malignant grades of glioma.
Collapse
Affiliation(s)
- Huiqin Sun
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
- * E-mail: (HS); (ZZ)
| | - Deyu Guo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Dongmei Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qingliang Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Tao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Qing Zhou
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xinze Ran
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zhongmin Zou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
- * E-mail: (HS); (ZZ)
| |
Collapse
|
1840
|
Valcz G, Sipos F, Tulassay Z, Molnar B, Yagi Y. Importance of carcinoma-associated fibroblast-derived proteins in clinical oncology. J Clin Pathol 2014; 67:1026-1031. [PMID: 25135950 DOI: 10.1136/jclinpath-2014-202561] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carcinoma-associated fibroblast (CAF) as prominent cell type of the tumour microenvironment has complex interaction with both the cancer cells and other non-neoplastic surrounding cells. The CAF-derived regulators and extracellular matrix proteins can support cancer progression by providing a protective microenvironment for the cancer cells via reduction of chemotherapy sensitivity. On the other hand, these proteins may act as powerful prognostic markers as well as potential targets of anticancer therapy. In this review, we summarise the clinical importance of the major CAF-derived signals influencing tumour behaviour and determining the outcome of chemotherapy.
Collapse
Affiliation(s)
- Gabor Valcz
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ferenc Sipos
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Zsolt Tulassay
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, Hungary
| | - Bela Molnar
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, Hungary
| | - Yukako Yagi
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
1841
|
de Gramont A, Watson S, Ellis LM, Rodón J, Tabernero J, de Gramont A, Hamilton SR. Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat Rev Clin Oncol 2014; 12:197-212. [PMID: 25421275 DOI: 10.1038/nrclinonc.2014.202] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Predictive biomarkers are becoming increasingly important tools in drug development and clinical research. The importance of using both guidelines for specimen acquisition and analytical methods for biomarker measurements that are standardized has become recognized widely as an important issue, which must be addressed in order to provide high-quality, validated assays. Herein, we review the major challenges in biomarker validation processes, including pre-analytical (sample-related), analytical, and post-analytical (data-related) aspects of assay development. Recommendations for improving biomarker assay development and method validation are proposed to facilitate the use of predictive biomarkers in clinical trials and the practice of oncology.
Collapse
Affiliation(s)
- Armand de Gramont
- New Drug Evaluation Laboratory, Centre of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), 1011 Lausanne, Switzerland
| | - Sarah Watson
- INSERM U830, Genetics and Biology of Paediatric Tumours Group, Institut Curie, France
| | - Lee M Ellis
- Departments of Surgical Oncology, and Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, USA
| | - Jordi Rodón
- Medical Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO) and Universitat Autonoma de Barcelona (UAB), Spain
| | - Josep Tabernero
- Medical Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO) and Universitat Autonoma de Barcelona (UAB), Spain
| | - Aimery de Gramont
- Medical Oncology Department, Institut Hospitalier Franco-Britannique, France
| | - Stanley R Hamilton
- Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, USA
| |
Collapse
|
1842
|
Bianchi G, Ghobrial IM. Biological and Clinical Implications of Clonal Heterogeneity and Clonal Evolution in Multiple Myeloma. CURRENT CANCER THERAPY REVIEWS 2014; 10:70-79. [PMID: 25705146 PMCID: PMC4334389 DOI: 10.2174/157339471002141124121404] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clonal heterogeneity and clonal evolution have emerged as critical concepts in the field of oncology over the past four decades, largely thanks to the implementation of novel technologies such as comparative genomic hybridization, whole genome/exome sequencing and epigenetic analysis. Along with the identification of cancer stem cells in the majority of neoplasia, the recognition of intertumor and intratumor variability has provided a novel perspective to understand the mechanisms behind tumor evolution and its implication in terms of treatment failure and cancer relapse or recurrence. First hypothesized over two decades ago, clonal heterogeneity and clonal evolution have been confirmed in multiple myeloma (MM), an incurable cancer of plasma cells, almost universally preceded by a pre-malignant conditioned named monoclonal gammopathy of undetermined significance (MGUS). The genetic events and molecular mechanisms underlying such evolution have been difficult to dissect. Moreover, while a role for the bone marrow microenvironment in supporting MM cell survival, proliferation and drug-resistance has been well established, whether it is directly involved in driving evolution from MGUS to MM is at present unclear. We present in this review a historical excursus on the concepts of clonal heterogeneity and clonal evolution in MM with a special emphasis on their role in the progression from MGUS to MM; the contribution of the microenvironment; and the clinical implications in terms of resistance to treatment and disease relapse/recurrence.
Collapse
Affiliation(s)
- Giada Bianchi
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Irene M Ghobrial
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
1843
|
Jeschke J, Collignon E, Fuks F. DNA methylome profiling beyond promoters - taking an epigenetic snapshot of the breast tumor microenvironment. FEBS J 2014; 282:1801-14. [PMID: 25331982 DOI: 10.1111/febs.13125] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/06/2014] [Accepted: 10/19/2014] [Indexed: 12/22/2022]
Abstract
Breast cancer, one of the most common and deadliest malignancies in developed countries, is a remarkably heterogeneous disease, which is clinically reflected by patients who display similar pathological features but respond differently to treatments. In the search for mediators of responsiveness, the tumor microenvironment (TME), in particular tumor-associated immune cells, has been pushed into the spotlight as it has become clear that the TME is an active component of breast cancer disease that affects clinical outcomes. Thus, the characterization of the TME in terms of cell identities and their frequencies has generated a great deal of interest. The common methods currently used for this purpose are either limited in accuracy or application, and DNA methylation has recently been proposed as an alternative approach. The aim of this review is to discuss DNA methylation profiling beyond promoters as a potential clinical tool for TME characterization and cell typing within tumors. With respect to this, we review the role of DNA methylation in breast cancer and cell-lineage specification, as well as inform about the composition and clinical relevance of the TME.
Collapse
Affiliation(s)
- Jana Jeschke
- Laboratory of Cancer Epigenetics, Université Libre de Bruxelles, Brussels, Belgium
| | | | | |
Collapse
|
1844
|
Chen L, Choyke PL, Wang N, Clarke R, Bhujwalla ZM, Hillman EMC, Wang G, Wang Y. Unsupervised deconvolution of dynamic imaging reveals intratumor vascular heterogeneity and repopulation dynamics. PLoS One 2014; 9:e112143. [PMID: 25379705 PMCID: PMC4224420 DOI: 10.1371/journal.pone.0112143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 10/12/2014] [Indexed: 02/06/2023] Open
Abstract
With the existence of biologically distinctive malignant cells originated within the same tumor, intratumor functional heterogeneity is present in many cancers and is often manifested by the intermingled vascular compartments with distinct pharmacokinetics. However, intratumor vascular heterogeneity cannot be resolved directly by most in vivo dynamic imaging. We developed multi-tissue compartment modeling (MTCM), a completely unsupervised method of deconvoluting dynamic imaging series from heterogeneous tumors that can improve vascular characterization in many biological contexts. Applying MTCM to dynamic contrast-enhanced magnetic resonance imaging of breast cancers revealed characteristic intratumor vascular heterogeneity and therapeutic responses that were otherwise undetectable. MTCM is readily applicable to other dynamic imaging modalities for studying intratumor functional and phenotypic heterogeneity, together with a variety of foreseeable applications in the clinic.
Collapse
Affiliation(s)
- Li Chen
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, United States of America
| | - Peter L. Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Niya Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, United States of America
| | - Robert Clarke
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C. 20057, United States of America
| | - Zaver M. Bhujwalla
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States of America
| | - Elizabeth M. C. Hillman
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Ge Wang
- Department of Biomedical Engineering, Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, United States of America
- * E-mail:
| |
Collapse
|
1845
|
Chen F, Qi X, Qian M, Dai Y, Sun Y. Tackling the tumor microenvironment: what challenge does it pose to anticancer therapies? Protein Cell 2014; 5:816-26. [PMID: 25185441 PMCID: PMC4225463 DOI: 10.1007/s13238-014-0097-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/28/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer is a highly aggressive and devastating disease, and impediments to a cure arise not just from cancer itself. Targeted therapies are difficult to achieve since the majority of cancers are more intricate than ever imagined. Mainstream methodologies including chemotherapy and radiotherapy as routine clinical regimens frequently fail, eventually leading to pathologies that are refractory and incurable. One major cause is the gradual to rapid repopulation of surviving cancer cells during intervals of multiple-dose administration. Novel stress-responsive molecular pathways are increasingly unmasked and show promise as emerging targets for advanced strategies that aim at both de novo and acquired resistance. We highlight recent data reporting that treatments particularly those genotoxic can induce highly conserved damage responses in non-cancerous constituents of the tumor microenvironment (TMEN). Master regulators, including but not limited to NF-kB and C/EBP-β, are implicated and their signal cascades culminate in a robust, chronic and genome-wide secretory program, forming an activated TMEN that releases a myriad of soluble factors. The damage-elicited but essentially off target and cell non-autonomous secretory phenotype of host stroma causes adverse consequences, among which is acquired resistance of cancer cells. Harnessing signals arising from the TMEN, a pathophysiological niche frequently damaged by medical interventions, has the potential to promote overall efficacy and improve clinical outcomes provided that appropriate actions are ingeniously integrated into contemporary therapies. Thereby, anticancer regimens should be well tuned to establish an innovative clinical avenue, and such advancement will allow future oncological treatments to be more specific, accurate, thorough and personalized.
Collapse
Affiliation(s)
- Fei Chen
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Xinyi Qi
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Min Qian
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Yue Dai
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Yu Sun
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
- VA Seattle Medical Center, Seattle, WA 98108 USA
- Department of Medicine, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
1846
|
Suh DH, Kim HS, Kim B, Song YS. Metabolic orchestration between cancer cells and tumor microenvironment as a co-evolutionary source of chemoresistance in ovarian cancer: a therapeutic implication. Biochem Pharmacol 2014; 92:43-54. [PMID: 25168677 DOI: 10.1016/j.bcp.2014.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
Abstract
Our group reported a significant association between hexokinase II overexpression and chemoresistance in ovarian cancer, suggesting that aerobic glycolysis in the so-called Warburg effect might contribute to cancer progression. However, a growing body of evidence indicates contradictory findings with regard to the Warburg effect, such as high mitochondrial activity in highly invasive tumors and low ATP contribution of glycolysis in ovarian cancer. As a solution for the dilemma of the Warburg effect, the "reverse Warburg effect" was proposed in which aerobic glycolysis might occur in the stromal compartment of the tumor rather than in the cancer cells, indicating that the glycolytic tumor stroma feed the cancer cells through a type of symbiotic relationship. The reverse Warburg effect acting on the relationship between cancer cells and cancer-associated fibroblasts has evolved into dynamic interplay between cancer cells and multiple tumor stromal compartments, including cancer-associated fibroblasts, the extracellular matrix, endothelial cells, mesenchymal stem cells, adipocytes, and tumor-associated macrophages. Peritoneal cavities including ascites and the omentum also form a unique environment that is highly receptive for carcinomatosis in the advanced stages of ovarian cancer. The complicated but ingeniously orchestrated stroma-mediated cancer metabolism in ovarian cancer provides great heterogeneity in tumors with chemoresistance, which makes the disease thus far difficult to cure by single stromal-targeting agents. This review will discuss the experimental and clinical evidence of the cross-talk between cancer cells and various components of tumor stroma in terms of heterogeneous chemoresistance with focal points for therapeutic intervention in ovarian cancer.
Collapse
Affiliation(s)
- Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea
| | - Boyun Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea.
| |
Collapse
|
1847
|
Røsland GV, Engelsen AST. Novel points of attack for targeted cancer therapy. Basic Clin Pharmacol Toxicol 2014; 116:9-18. [PMID: 25154903 PMCID: PMC4309509 DOI: 10.1111/bcpt.12313] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/11/2014] [Indexed: 12/13/2022]
Abstract
New molecular insight reveals novel points of attack for targeted cancer therapy. The recent advances in cancer genomics and novel insight into the complex biology of cancer make the promise of personalized, targeted cancer medicine closer than ever. The massive parallel sequencing endeavours performed by The Cancer Genome Atlas, the International Cancer Genome Consortium and by numerous individual investigators have provided a comprehensive genomic characterization of a wide range of cancers. The joint efforts enabled by the improved sequencing technology have demonstrated that individual cancers comprise mutational repertoires with only a few frequently recurrent driver genes. Thus, the identification of new drug targets and novel drugs have accelerated and renewed the hopes of personalized cancer therapy achieving clinical reality for a wider range of cancers. Together with cost-effective sequencing technology to perform comprehensive mutational profiling of each individual cancer, this provides the basis for a personalized cancer medicine revolution within the next few years. The aim of this MiniReview is to provide an overview of the history and evolution of targeted cancer therapy, exemplified by molecularly targeted drugs successfully implemented in the clinic. Furthermore, we aim to highlight novel molecular targets for therapeutic intervention, as well as the main present challenges including inter- and intratumor heterogeneity and cellular plasticity in addition to the importance of the tumor micro-environment. Many cancer patients already receive some form of tailored therapy, and recent evidence suggests that novel and highly innovative, targeted approaches are on their way into the clinic.
Collapse
|
1848
|
Ivers LP, Cummings B, Owolabi F, Welzel K, Klinger R, Saitoh S, O'Connor D, Fujita Y, Scholz D, Itasaki N. Dynamic and influential interaction of cancer cells with normal epithelial cells in 3D culture. Cancer Cell Int 2014; 14:108. [PMID: 25379014 PMCID: PMC4221723 DOI: 10.1186/s12935-014-0108-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/15/2014] [Indexed: 02/04/2023] Open
Abstract
Background The cancer microenvironment has a strong impact on the growth and dynamics of cancer cells. Conventional 2D culture systems, however, do not reflect in vivo conditions, impeding detailed studies of cancer cell dynamics. This work aims to establish a method to reveal the interaction of cancer and normal epithelial cells using 3D time-lapse. Methods GFP-labelled breast cancer cells, MDA-MB-231, were co-cultured with mCherry-labelled non-cancerous epithelial cells, MDCK, in a gel matrix. In the 3D culture, the epithelial cells establish a spherical morphology (epithelial sphere) thus providing cancer cells with accessibility to the basal surface of epithelia, similar to the in vivo condition. Cell movement was monitored using time-lapse analyses. Ultrastructural, immunocytochemical and protein expression analyses were also performed following the time-lapse study. Results In contrast to the 2D culture system, whereby most MDA-MB-231 cells exhibit spindle-shaped morphology as single cells, in the 3D culture the MDA-MB-231 cells were found to be single cells or else formed aggregates, both of which were motile. The single MDA-MB-231 cells exhibited both round and spindle shapes, with dynamic changes from one shape to the other, visible within a matter of hours. When co-cultured with epithelial cells, the MDA-MB-231 cells displayed a strong attraction to the epithelial spheres, and proceeded to surround and engulf the epithelial cell mass. The surrounded epithelial cells were eventually destroyed, becoming debris, and were taken into the MDA-MB-231 cells. However, when there was a relatively large population of normal epithelial cells, the MDA-MB-231 cells did not engulf the epithelial spheres effectively, despite repeated contacts. MDA-MB-231 cells co-cultured with a large number of normal epithelial cells showed reduced expression of monocarboxylate transporter-1, suggesting a change in the cell metabolism. A decreased level of gelatin-digesting ability as well as reduced production of matrix metaroproteinase-2 was also observed. Conclusions This culture method is a powerful technique to investigate cancer cell dynamics and cellular changes in response to the microenvironment. The method can be useful for various aspects such as; different combinations of cancer and non-cancer cell types, addressing the organ-specific affinity of cancer cells to host cells, and monitoring the cellular response to anti-cancer drugs. Electronic supplementary material The online version of this article (doi:10.1186/s12935-014-0108-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura P Ivers
- School of Medicine and Medical Science, University College Dublin, Dublin, 4 Ireland
| | - Brendan Cummings
- School of Medicine and Medical Science, University College Dublin, Dublin, 4 Ireland
| | - Funke Owolabi
- School of Medicine and Medical Science, University College Dublin, Dublin, 4 Ireland
| | | | - Rut Klinger
- Conway Institute, University College Dublin, Dublin, 4 Ireland ; School of Biomolecular and Biomedical Science, University College Dublin, Dublin, 4 Ireland
| | - Sayaka Saitoh
- Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815 Japan
| | - Darran O'Connor
- Conway Institute, University College Dublin, Dublin, 4 Ireland ; School of Biomolecular and Biomedical Science, University College Dublin, Dublin, 4 Ireland
| | - Yasuyuki Fujita
- Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815 Japan
| | - Dimitri Scholz
- Conway Institute, University College Dublin, Dublin, 4 Ireland
| | - Nobue Itasaki
- School of Medicine and Medical Science, University College Dublin, Dublin, 4 Ireland
| |
Collapse
|
1849
|
Abstract
Genetic analyses have shaped much of our understanding of cancer. However, it is becoming increasingly clear that cancer cells display features of normal tissue organization, where cancer stem cells (CSCs) can drive tumor growth. Although often considered as mutually exclusive models to describe tumor heterogeneity, we propose that the genetic and CSC models of cancer can be harmonized by considering the role of genetic diversity and nongenetic influences in contributing to tumor heterogeneity. We offer an approach to integrating CSCs and cancer genetic data that will guide the field in interpreting past observations and designing future studies.
Collapse
Affiliation(s)
- Antonija Kreso
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
1850
|
Niu M, Naguib YW, Aldayel AM, Shi YC, Hursting SD, Hersh MA, Cui Z. Biodistribution and in vivo activities of tumor-associated macrophage-targeting nanoparticles incorporated with doxorubicin. Mol Pharm 2014; 11:4425-36. [PMID: 25314115 PMCID: PMC4255729 DOI: 10.1021/mp500565q] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Tumor-associated
macrophages (TAMs) are increasingly considered
a viable target for tumor imaging and therapy. Previously, we reported
that innovative surface-functionalization of nanoparticles may help
target them to TAMs. In this report, using poly(lactic-co-glycolic) acid (PLGA) nanoparticles incorporated with doxorubicin
(DOX) (DOX-NPs), we studied the effect of surface-modification of
the nanoparticles with mannose and/or acid-sensitive sheddable polyethylene
glycol (PEG) on the biodistribution of DOX and the uptake of DOX by
TAMs in tumor-bearing mice. We demonstrated that surface-modification
of the DOX-NPs with both mannose and acid-sensitive sheddable PEG
significantly increased the accumulation of DOX in tumors, enhanced
the uptake of the DOX by TAMs, but decreased the distribution of DOX
in mononuclear phagocyte system (MPS), such as liver. We also confirmed
that the acid-sensitive sheddable PEGylated, mannose-modified DOX-nanoparticles
(DOX-AS-M-NPs) targeted TAMs because depletion of TAMs in tumor-bearing
mice significantly decreased the accumulation of DOX in tumor tissues.
Furthermore, in a B16-F10 tumor-bearing mouse model, we showed that
the DOX-AS-M-NPs were significantly more effective than free DOX in
controlling tumor growth but had only minimum effect on the macrophage
population in mouse liver and spleen. The AS-M-NPs are promising in
targeting cytotoxic or macrophage-modulating agents into tumors to
improve tumor therapy.
Collapse
Affiliation(s)
- Mengmeng Niu
- College of Pharmacy, Pharmaceutics Division, The University of Texas at Austin , Austin, Texas 78712, United States
| | | | | | | | | | | | | |
Collapse
|