1901
|
Abstract
Several bacterial species have inherent ability to colonize solid tumors in vivo. However, their natural anti-tumor activity can be enhanced by genetic engineering that enables these bacteria express or transfer therapeutic molecules into target cells. In this review, we summarize latest research on cancer therapy using genetically modified bacteria with particular emphasis on blocking tumor angiogenesis. Despite recent progress, only a few recent studies on bacterial tumor therapy have focused on anti-angiogenesis. Bacteria-mediated anti-angiogenesis therapy for cancer, however, is an attractive approach given that solid tumors are often characterized by increased vascularization. Here, we discuss four different approaches for using modified bacteria as anti-cancer therapeutics--bactofection, DNA vaccination, alternative gene therapy and transkingdom RNA interference--with a specific focus on angiogenesis suppression. Critical areas and future directions for this field are also outlined.
Collapse
|
1902
|
Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, Geurtsen W. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol 2011; 56:709-21. [PMID: 21227403 DOI: 10.1016/j.archoralbio.2010.12.008] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 12/07/2010] [Accepted: 12/14/2010] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to compare the in vitro osteo/odontogenic differentiation potential of mesenchymal stem cells (MSCs) derived from the dental pulp (dental pulp stem cells - DPSCs) or the apical papilla (stem cells from the apical papilla - SCAP) of permanent developing teeth. DESIGN DPSCs and SCAP cultures were established from impacted third molars of young healthy donors at the stage of root development. Cultures were analysed for stem cell markers, including STRO-1, CD146, CD34 and CD45 using flow cytometry. Cells were then induced for osteo/odontogenic differentiation by media containing dexamethasone, KH(2)PO(4) and β-glycerophosphate. Cultures were analysed for morphology, growth characteristics, mineralization potential (Alizarin Red method) and differentiation markers (dentine sialophosphoprotein-DSPP, bone sialoprotein-BSP, osteocalcin-OCN, alkaline phosphatase-ALP), using immunocytochemistry and reverse transcriptase-polymerase chain reaction. RESULTS All DPSCs and SCAP cultures were positive for STRO-1, CD146 and CD34, in percentages varying according to cell type and donor, but negative for CD45. Both types of MSCs displayed an active potential for cellular migration, organization and mineralization, producing 3D mineralized structures. These structures progressively expressed differentiation markers, including DSPP, BSP, OCN, ALP, having the characteristics of osteodentin. SCAP, however, showed a significantly higher proliferation rate and mineralization potential, which might be of significance for their use in bone/dental tissue engineering. CONCLUSIONS This study provides evidence that different types of dental MSCs can be used in tissue engineering/regeneration protocols as an approachable stem cell source for osteo/odontogenic differentiation and biomineralization that could be further applied for stem cell-based clinical therapies.
Collapse
Affiliation(s)
- A Bakopoulou
- Department of Fixed Prosthesis & Implant Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
1903
|
|
1904
|
Huang GTJ. Dental pulp and dentin tissue engineering and regeneration: advancement and challenge. Front Biosci (Elite Ed) 2011; 3:788-800. [PMID: 21196351 PMCID: PMC3289134 DOI: 10.2741/e286] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hard tissue is difficult to repair especially dental structures. Tooth enamel is incapable of self-repairing whereas dentin and cementum can regenerate with limited capacity. Enamel and dentin are commonly under the attack by caries. Extensive forms of caries destroy enamel and dentin and can lead to dental pulp infection. Entire pulp amputation followed by the pulp space disinfection and filling with an artificial rubber-like material is employed to treat the infection -- commonly known as root canal or endodontic therapy. Regeneration of dentin relies on having vital pulps; however, regeneration of pulp tissue has been difficult as the tissue is encased in dentin without collateral blood supply except from the root apical end. With the advent of modern tissue engineering concept and the discovery of dental stem cells, regeneration of pulp and dentin has been tested. This article will review the recent endeavor on pulp and dentin tissue engineering and regeneration. The prospective outcomes of current advancements and challenges in this line of research are discussed.
Collapse
Affiliation(s)
- George T-J Huang
- Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA.
| |
Collapse
|
1905
|
Advanced and Prospective Technologies for Potential Use in Craniofacial Tissues Regeneration by Stem Cells and Growth Factors. J Craniofac Surg 2011; 22:342-8. [PMID: 21239932 DOI: 10.1097/scs.0b013e3181f7e185] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
1906
|
Hu J, Hu B, Xu Y. C‐N Difference Schemes for Dissipative Symmetric Regularized Long Wave Equations with Damping Term. MATHEMATICAL PROBLEMS IN ENGINEERING 2011; 2011. [DOI: 10.1155/2011/651642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 02/25/2011] [Indexed: 02/07/2023]
Abstract
We study the initial‐boundary problem of dissipative symmetric regularized
long wave equations with damping term. Crank‐Nicolson nonlinear‐implicit finite difference
scheme is designed. Existence and uniqueness of numerical solutions are derived. It is proved
that the finite difference scheme is of second‐order convergence and unconditionally stable by the
discrete energy method. Numerical simulations verify the theoretical analysis.
Collapse
|
1907
|
Tsujigiwa H, Katase N, Sathi GA, Buery RR, Hirata Y, Kubota M, Nakano K, Kawakami T, Nagatsuka H. Transplanted Bone Marrow derived Cells Differentiated toTooth, Bone and Connective Tissues in Mice. J HARD TISSUE BIOL 2011. [DOI: 10.2485/jhtb.20.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
1908
|
Sun HH, Jin T, Yu Q, Chen FM. Biological approaches toward dental pulp regeneration by tissue engineering. J Tissue Eng Regen Med 2010; 5:e1-16. [PMID: 21413154 DOI: 10.1002/term.369] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/31/2010] [Indexed: 01/07/2023]
Abstract
Root canal therapy has been the predominant approach in endodontic treatment, wherein the entire pulp is cleaned out and replaced with a gutta-percha filling. However, living pulp is critical for the maintenance of tooth homeostasis and essential for tooth longevity. An ideal form of therapy, therefore, might consist of regenerative approaches in which diseased/necrotic pulp tissues are removed and replaced with regenerated pulp tissues to revitalize the teeth. Dental pulp regeneration presents one of the most challenging issues in regenerative dentistry due to the poor intrinsic ability of pulp tissues for self-healing and regrowth. With the advent of modern tissue engineering and the discovery of dental stem cells, biological therapies have paved the way to utilize stem cells, delivered or internally recruited, to generate dental pulp tissues, where growth factors and a series of dentine extracellular matrix molecules are key mediators that regulate the complex cascade of regeneration events to be faithfully fulfilled.
Collapse
Affiliation(s)
- Hai-Hua Sun
- Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an 710032, Shaanxi, People's Republic of China
| | | | | | | |
Collapse
|
1909
|
Pellicciari C. Histochemistry through the years, browsing a long-established journal: novelties in traditional subjects. Eur J Histochem 2010; 54:e51. [PMID: 21263750 PMCID: PMC3167322 DOI: 10.4081/ejh.2010.e51] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/10/2010] [Indexed: 12/14/2022] Open
Abstract
Histochemical journals represent a traditional forum where methodological and technological improvements can be presented and validated in view of their applications to investigate not only cytology and histology in normal and diseased conditions but to test as well hypotheses on more basic issues for life sciences, such as comparative and evolutionary biology. The earliest scientific journals on histochemistry began their publication in the first half of the ‘50s of the last century, and their readership did not probably change over the years; rather, the authors’ interests may have progressively been changing as well as the main topics of their articles. This hypothesis is discussed, based on the subjects of the article published in the first and last ten years in the European Journal of Histochemistry, as an example of old journal which started publication in 1954, being since then the official organ of the Italian Society of Histochemistry. This survey confirmed that histochemistry has provided and still offers unique opportunities for studying the structure, chemical composition and function of cells and tissues in a wide variety of living organisms, especially when the topological distribution of specific molecular components has diagnostic or predictive significance, as it occurs in human and veterinary biology and pathology. Some subjects (e.g. histochemistry applied to muscle cells or to mineralized tissues) have recently become rather popular, whereas a wider application of the histochemical approach may be envisaged for plant cells and tissues.
Collapse
Affiliation(s)
- C Pellicciari
- Dipartimento di Biologia Animale, University of Pavia, Italy.
| |
Collapse
|
1910
|
Ohara T, Itaya T, Usami K, Ando Y, Sakurai H, Honda MJ, Ueda M, Kagami H. Evaluation of scaffold materials for tooth tissue engineering. J Biomed Mater Res A 2010; 94:800-5. [PMID: 20336748 DOI: 10.1002/jbm.a.32749] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recently, the possibility of tooth tissue engineering has been reported. Although there are a number of available materials, information about scaffolds for tooth tissue engineering is still limited. To improve the manageability of tooth tissue engineering, the effect of scaffolds on in vivo tooth regeneration was evaluated. Collagen and fibrin were selected for this study based on the biocompatibility to dental papilla-derived cells and the results were compared with those of polyglycolic acid (PGA) fiber and beta-tricalcium phosphate (beta-TCP) porous block, which are commonly used for tooth, dentin and bone tissue engineering. Isolated porcine tooth germ-derived cells were seeded onto one of those scaffolds and transplanted to the back of nude mice. Tooth bud-like structures were observed more frequently in collagen and fibrin gels than on PGA or beta-TCP, while the amount of hard tissue formation was less. The results showed that collagen and fibrin gel support the initial regeneration process of tooth buds possibly due to their ability to support the growth of epithelial and mesenchymal cells. On the other hand, maturation of tooth buds was difficult in fibrin and collagen gels, which may require other factors.
Collapse
Affiliation(s)
- Takayuki Ohara
- Research and Development Center, Hitachi Medical Corporation, Kashiwa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
1911
|
Wall DM, Srikanth C, McCormick BA. Targeting tumors with salmonella Typhimurium- potential for therapy. Oncotarget 2010; 1:721-728. [PMID: 21321381 PMCID: PMC3157733 DOI: 10.18632/oncotarget.206] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 12/29/2010] [Indexed: 11/25/2022] Open
Abstract
When one considers the organism Salmonella enterica serotype Typhimurium (S. Typhimurium), one usually thinks of the Gram-negative enteric pathogen that causes the severe food borne illness, gastroentertitis. In this context, the idea of Salmonella being exploited as a cancer therapeutic seems pretty remote. However, there has been an escalating interest in the development of tumor-therapeutic bacteria for use in the treatment of a variety of cancers. This strategy takes advantage of the remarkable ability of certain bacteria to preferentially replicate and accumulate within tumors. In the case of S. Typhimurium, this organism infects and selectively grows within implanted tumors, achieving tumor/normal tissue ratios of approximately 1,000:1. Salmonella also has some attractive properties well suited for the design of a chemotherapeutic agent. In particular, this pathogen can easily be manipulated to carry foreign genes, and since this species is a facultative anaerobe, it is able to survival in both oxygenated and hypoxic conditions, implying this organism could colonize both small metastatic lesions as well as larger tumors. These observations are the impetus to a burgeoning field focused on the development of Salmonella as a clinically useful anti-cancer agent. We will discuss three cutting edge technologies employing Salmonella to target tumors.
Collapse
Affiliation(s)
- Daniel M. Wall
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, United Kingdom
| | - C.V. Srikanth
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, United States of America
| | - Beth A. McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, United States of America
| |
Collapse
|
1912
|
Huang Z, Newcomb CJ, Bringas P, Stupp SI, Snead ML. Biological synthesis of tooth enamel instructed by an artificial matrix. Biomaterials 2010; 31:9202-11. [PMID: 20869764 PMCID: PMC2956865 DOI: 10.1016/j.biomaterials.2010.08.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 08/05/2010] [Indexed: 01/13/2023]
Abstract
The regenerative capability of enamel, the hardest tissue in the vertebrate body, is fundamentally limited due to cell apoptosis following maturation of the tissue. Synthetic strategies to promote enamel formation have the potential to repair damage, increase the longevity of teeth and improve the understanding of the events leading to tissue formation. Using a self-assembling bioactive matrix, we demonstrate the ability to induce ectopic formation of enamel at chosen sites adjacent to a mouse incisor cultured in vivo under the kidney capsule. The resulting material reveals the highly organized, hierarchical structure of hydroxyapatite crystallites similar to native enamel. This artificially triggered formation of organized mineral demonstrates a pathway for developing cell fabricated materials for treatment of dental caries, the most ubiquitous disease in man. Additionally, the artificial matrix provides a unique tool to probe cellular mechanisms involved in tissue formation further enabling the development of tooth organ replacements.
Collapse
Affiliation(s)
- Zhan Huang
- The Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
1913
|
Volponi AA, Pang Y, Sharpe PT. Stem cell-based biological tooth repair and regeneration. Trends Cell Biol 2010; 20:715-22. [PMID: 21035344 PMCID: PMC3000521 DOI: 10.1016/j.tcb.2010.09.012] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 12/18/2022]
Abstract
Teeth exhibit limited repair in response to damage, and dental pulp stem cells probably provide a source of cells to replace those damaged and to facilitate repair. Stem cells in other parts of the tooth, such as the periodontal ligament and growing roots, play more dynamic roles in tooth function and development. Dental stem cells can be obtained with ease, making them an attractive source of autologous stem cells for use in restoring vital pulp tissue removed because of infection, in regeneration of periodontal ligament lost in periodontal disease, and for generation of complete or partial tooth structures to form biological implants. As dental stem cells share properties with mesenchymal stem cells, there is also considerable interest in their wider potential to treat disorders involving mesenchymal (or indeed non-mesenchymal) cell derivatives, such as in Parkinson's disease.
Collapse
Affiliation(s)
- Ana Angelova Volponi
- Department of Craniofacial Development and MRC Centre for Transplantation, Kings College London; NIHR comprehensive Biomedical Research Centre at Guys and St Thomas’ NHS Foundation Trust and Kings College London, London, UK
| | - Yvonne Pang
- Department of Craniofacial Development and MRC Centre for Transplantation, Kings College London; NIHR comprehensive Biomedical Research Centre at Guys and St Thomas’ NHS Foundation Trust and Kings College London, London, UK
- Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Paul T. Sharpe
- Department of Craniofacial Development and MRC Centre for Transplantation, Kings College London; NIHR comprehensive Biomedical Research Centre at Guys and St Thomas’ NHS Foundation Trust and Kings College London, London, UK
| |
Collapse
|
1914
|
Kuo TF, Lin HC, Hung AT, Yang KC, Lin HF, Tanng TK, Chen ST, Wang AHJ. GELATIN–CHONDROITIN–HYALURONAN TRI-COPOLYMER SCAFFOLD SEEDED WITH DENTAL BUD CELLS FOR ODONTOGENESIS: AN EX VIVOSTUDY ON NUDE MICE. BIOMEDICAL ENGINEERING: APPLICATIONS, BASIS AND COMMUNICATIONS 2010; 22:535-547. [DOI: 10.4015/s1016237210002274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A biologically regenerated tooth may provide a new treatment for tooth loss. In this study, a tissue engineering approach was applied to demonstrate the tooth regeneration. The dental buds of the second molar tooth from 1.5-month-old miniature pigs were harvested by surgical operation before eruption. The dental bud tissues were cultured and expanded in vitro for three weeks to obtain dental bud cells (DBCs). The phenotypes of DBCs were identified with a flowcytometry, and the DBCs were seeded into a gelatin–chondroitin–hyaluronan tri-copolymer (GCHT) scaffold. The DBCs/GCHT scaffold constructs were implanted under dermis of nude mice's thoracic dorsum. Mice were sacrificed at predetermined intervals, and the developing tooth-like tissues were harvested for histological examinations. The present results of flowcytometry showed that the DBCs expressed specific surface markers of mesenchymal stem cells. Animal study revealed that the tooth-like structures expressed cytokeratin 14 at 4, 8, and 12 weeks postoperatively. The vascular endothelial growth factor was expressed on 12 weeks. Dentin-like mineralized tissue and dentin genetic-like cells were generated that expressed dentin martrix protein-1 on 16 and 20 weeks. Osteocytes were formed on 24 weeks and expressed osteopontin. This study reveals that the DBCs combined with an appropriate scaffold regenerated tooth-like structure with specific proteins for odontogenesis in nude mice.
Collapse
Affiliation(s)
- Tzong-Fu Kuo
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taiwan
| | - Hsin-Chi Lin
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taiwan
| | - An-Ting Hung
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taiwan
| | - Kai-Chiang Yang
- Institute of Biomedical Engineering, National Taiwan University, Taiwan
| | - Huei-Feng Lin
- Institute of Biomedical Engineering, National Taiwan University, Taiwan
- Division of Medical Engineering, National Health Research Institute, Taiwan
| | | | | | - Andrew HJ Wang
- Institute of Biological Chemistry, Academia Sinica, Taiwan
| |
Collapse
|
1915
|
Bhatia SK. Tissue engineering for clinical applications. Biotechnol J 2010; 5:1309-23. [PMID: 21154670 DOI: 10.1002/biot.201000230] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/13/2010] [Accepted: 10/29/2010] [Indexed: 01/06/2023]
Abstract
Tissue engineering is increasingly being recognized as a beneficial means for lessening the global disease burden. One strategy of tissue engineering is to replace lost tissues or organs with polymeric scaffolds that contain specialized populations of living cells, with the goal of regenerating tissues to restore normal function. Typical constructs for tissue engineering employ biocompatible and degradable polymers, along with organ-specific and tissue-specific cells. Once implanted, the construct guides the growth and development of new tissues; the polymer scaffold degrades away to be replaced by healthy functioning tissue. The ideal biomaterial for tissue engineering not only defends against disease and supports weakened tissues or organs, it also provides the elements required for healing and repair, stimulates the body's intrinsic immunological and regenerative capacities, and seamlessly interacts with the living body. Tissue engineering has been investigated for virtually every organ system in the human body. This review describes the potential of tissue engineering to alleviate disease, as well as the latest advances in tissue regeneration. The discussion focuses on three specific clinical applications of tissue engineering: cardiac tissue regeneration for treatment of heart failure; nerve regeneration for treatment of stroke; and lung regeneration for treatment of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Sujata K Bhatia
- Experimental Station, DuPont Applied BioSciences,Wilmington, DE 19880, USA.
| |
Collapse
|
1916
|
Huo L, Luo Y, Zhang T, Zhu Z, Li F, Zhao Y. Unexpected primary osseous lymphoma as the cause of lactic acidosis in a patient suffering from pancreatitis. Clin Nucl Med 2010; 35:790-793. [PMID: 20838288 DOI: 10.1097/rlu.0b013e3181ef0978] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 45-year-old man was admitted due to acute pancreatitis. A severe lactic acidosis was found. Following active therapy, the signs and symptoms from pancreatitis was improved, but acidosis was exacerbated. FDG PET/CT images were acquired to investigate the etiology of lactic acidosis and/or other unknown pathology. The images showed widespread abnormal FDG activity in the bone marrows throughout the body, suggestive of hematologic malignancy, which was confirmed as primary osseous non-Hodgkin lymphoma following a histopathological examination of the bone marrow. Chemotherapy against lymphoma was initiated and status of the lactic acidosis was rapidly corrected.
Collapse
Affiliation(s)
- Li Huo
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
1917
|
Heparanase, heparan sulfate and perlecan distribution along with the vascular penetration during stellate reticulum retraction in the mouse enamel organ. Arch Oral Biol 2010; 55:778-87. [PMID: 20684947 DOI: 10.1016/j.archoralbio.2010.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 06/22/2010] [Accepted: 07/06/2010] [Indexed: 11/24/2022]
|
1918
|
Abstract
Atherosclerosis is now recognized as a chronic inflammatory disease and is characterized by features of inflammation at all stages of its development. It also appears to display elements of autoimmunity, and several autoantibodies including those directed against oxidized low-density lipoprotein (ox-LDL) and heat shock proteins (Hsps) have been identified in atherosclerosis. Immune complexes (ICs) may form between these antigens and autoantibodies and via Fc receptor signaling and complement activation may modulate the inflammation in atherosclerosis. Antibody isotype may direct the role that ICs play in atherogenesis, immunoglobulin G (IgG) being potentially pro-atherogenic and immunoglobulin M (IgM) playing a protective role. Therapeutic options targeting complement activation and those which are potentially Fc-receptor mediated have been investigated in animal models, though targeting Fc receptor signaling is an area that needs further investigation.
Collapse
|
1919
|
Abstract
Since the discovery in 1899 of bifidobacteria as numerically dominant microbes in the feces of breast-fed infants, there have been numerous studies addressing their role in modulating gut microflora as well as their other potential health benefits. Because of this, they are frequently incorporated into foods as probiotic cultures. An understanding of their full interactions with intestinal microbes and the host is needed to scientifically validate any health benefits they may afford. Recently, the genome sequences of nine strains representing four species of Bifidobacterium became available. A comparative genome analysis of these genomes reveals a likely efficient capacity to adapt to their habitats, with B. longum subsp. infantis exhibiting more genomic potential to utilize human milk oligosaccharides, consistent with its habitat in the infant gut. Conversely, B. longum subsp. longum exhibits a higher genomic potential for utilization of plant-derived complex carbohydrates and polyols, consistent with its habitat in an adult gut. An intriguing observation is the loss of much of this genome potential when strains are adapted to pure culture environments, as highlighted by the genomes of B. animalis subsp. lactis strains, which exhibit the least potential for a gut habitat and are believed to have evolved from the B. animalis species during adaptation to dairy fermentation environments.
Collapse
Affiliation(s)
- Ju-Hoon Lee
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| | - Daniel J. O'Sullivan
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| |
Collapse
|
1920
|
Abstract
The continuous growth of rodent incisors requires the presence of stem cells capable of generating ameloblasts and odontoblasts. While epithelial stem cells giving rise to ameloblasts have been well-characterized, cells giving rise to the odontoblasts in incisors have not been fully characterized. The goal of this study was to gain insight into the potential population in dental pulps of unerupted and erupted incisors that give rise to odontoblasts. We show that pulps from unerupted incisors contain a significant mesenchymal-stem-cell (MSC)-like population (cells expressing CD90+/CD45-, CD117+/CD45-, Sca-1+/CD45-) and few CD45+ cells. Our in vitro studies showed that these cells displayed extensive osteo-dentinogenic potential, but were unable to differentiate into chondrocytes and adipocytes. Dental pulps from erupted incisors displayed increased percentages of CD45+ and decreased percentages of cells expressing markers of an MSC-like population. Despite these differences, pulps from erupted incisors also displayed extensive osteo-dentinogenic potential and inability to differentiate into chondrocytes and adipocytes. These results provide evidence that continuous generation of odontoblasts and dentin on the labial and lingual sides of unerupted and erupted incisors is supported by a progenitor population and not multipotent MSCs in the dental pulp.
Collapse
Affiliation(s)
- A Balic
- Division of Pediatric Dentistry, Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|
1921
|
Abstract
It is known from paleontology studies that two premolars have been lost during mouse evolution. During mouse mandible development, two bud-like structures transiently form that may represent rudimentary precursors of the lost premolars. However, the interpretation of these structures and their significance for mouse molar development are highly controversial because of a lack of molecular data. Here, we searched for typical tooth signaling centers in these two bud-like structures, and followed their fate using molecular markers, 3D reconstructions, and lineage tracing in vitro. Transient signaling centers were indeed found to be located at the tips of both the anterior and posterior rudimentary buds. These centers expressed a similar set of molecular markers as the "primary enamel knot" (pEK), the signaling center of the first molar (M1). These two transient signaling centers were sequentially patterned before and anterior to the M1 pEK. We also determined the dynamics of the M1 pEK, which, slightly later during development, spread up to the field formerly occupied by the posterior transient signaling center. It can be concluded that two rudimentary tooth buds initiate the sequential development of the mouse molars and these have previously been mistaken for early stages of M1 development. Although neither rudiment progresses to form an adult tooth, the posterior one merges with the adjacent M1, which may explain the anterior enlargement of the M1 during mouse family evolution. This study highlights how rudiments of lost structures can stay integrated and participate in morphogenesis of functional organs and help in understanding their evolution, as Darwin suspected long ago.
Collapse
|
1922
|
Dihydropyrimidine dehydrogenase polymorphisms and fluoropyrimidine toxicity: ready for routine clinical application within personalized medicine? EPMA J 2010. [PMID: 23199091 PMCID: PMC3405332 DOI: 10.1007/s13167-010-0041-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fluoropyrimidines, including 5-fluorouracil (5-FU), are widely used in the treatment of solid tumors and remain the backbone of many combination regimens. Despite their clinical benefit, fluoropyrimidines are associated with gastrointestinal and hematologic toxicities, which often lead to treatment discontinuation. 5-FU undergoes complex metabolism, dihydropyrimidine dehydrogenase (DPD) being the rate-limiting enzyme of inactivation of 5-FU and its prodrugs. Several studies have demonstrated significant associations between severe toxicities by fluoropyrimidines and germline polymorphisms of DPD gene. To date, more than 30 SNPs and deletions have been identified within DPD, the majority of these variants having no functional consequences on enzymatic activity. However, the identification of deficient DPD genotypes may help identify poor-metabolizer patients at risk of developing potentially life-threatening toxicities after standard doses of fluoropyrimidines.
Collapse
|
1923
|
Fu G, Yin Y, Hu B, Xu G. Bifidobacteriumas a Delivery System of Functional Genes for Cancer Gene Therapy. EMERGING CANCER THERAPY 2010:99-117. [DOI: 10.1002/9780470626528.ch5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
1924
|
Percutaneous coronary intervention results in acute increases in native and oxidized lipoprotein(a) in patients with acute coronary syndrome and stable coronary artery disease. Clin Biochem 2010; 43:1107-11. [PMID: 20621076 DOI: 10.1016/j.clinbiochem.2010.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/29/2010] [Accepted: 06/29/2010] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To investigate possible changes of native and oxidized lipoprotein(a) [ox-Lp(a)] levels after percutaneous coronary intervention (PCI). DESIGN AND METHODS Lp(a), ox-Lp(a), and Lp(a) immune complexes (IC) and autoantibody levels were studied in 111 patients with acute coronary syndrome (ACS) and 68 patients with stable coronary artery disease (CAD) before and after PCI. RESULTS Compared with pre-PCI, Lp(a), ox-Lp(a), and Lp(a)-IC levels acutely increased, while the autoantibody decreased in both the ACS and stable CAD patients. They all returned toward baseline by 1 to 2 days. The absolute change of ox-Lp(a) was found positively related with both the diameter of stenosis (R=0.273, P=0.004) and the number of vessel disease (R=0.312, P=0.001) in the ACS patients, while not in the stable CAD patients. CONCLUSION PCI results in acute plasma increases of ox-Lp(a) and Lp(a). Ox-Lp(a) may be present in ruptured or permeable plaques and be released into the circulation by PCI.
Collapse
|
1925
|
Lugea A, Gong J, Nguyen J, Nieto J, French SW, Pandol SJ. Cholinergic mediation of alcohol-induced experimental pancreatitis. Alcohol Clin Exp Res 2010; 34:1768-81. [PMID: 20626730 DOI: 10.1111/j.1530-0277.2010.01264.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The mechanisms initiating pancreatitis in patients with chronic alcohol abuse are poorly understood. Although alcohol feeding has been previously suggested to alter cholinergic pathways, the effects of these cholinergic alterations in promoting pancreatitis have not been characterized. For this study, we determined the role of the cholinergic system in ethanol-induced sensitizing effects on cerulein pancreatitis. METHODS Rats were pair-fed control and ethanol-containing Lieber-DeCarli diets for 6 weeks followed by parenteral administration of 4 hourly intraperitoneal injections of the cholecystokinin analog, cerulein at 0.5 μg/kg. This dose of cerulein was selected because it caused pancreatic injury in ethanol-fed but not in control-fed rats. Pancreatitis was preceded by treatment with the muscarinic receptor antagonist atropine or by bilateral subdiaphragmatic vagotomy. Measurement of pancreatic pathology included serum lipase activity, pancreatic trypsin, and caspase-3 activities, and markers of pancreatic necrosis, apoptosis, and autophagy. In addition, we measured the effects of ethanol feeding on pancreatic acetylcholinesterase activity and pancreatic levels of the muscarinic acetylcholine receptors m1 and m3. Finally, we examined the synergistic effects of ethanol and carbachol on inducing acinar cell damage. RESULTS We found that atropine blocked almost completely pancreatic pathology caused by cerulein administration in ethanol-fed rats, while vagotomy was less effective. Ethanol feeding did not alter expression levels of cholinergic muscarinic receptors in the pancreas but significantly decreased pancreatic acetylcholinesterase activity, suggesting that acetylcholine levels and cholinergic input within the pancreas can be higher in ethanol-fed rats. We further found that ethanol treatment of pancreatic acinar cells augmented pancreatic injury responses caused by the cholinergic agonist, carbachol. CONCLUSION These results demonstrate key roles for the cholinergic system in the mechanisms of alcoholic pancreatitis.
Collapse
Affiliation(s)
- Aurelia Lugea
- USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, Veterans Affairs Greater Los Angeles Healthcare System and University of California, Los Angeles, California 90073, USA.
| | | | | | | | | | | |
Collapse
|
1926
|
Chen FM, Jin Y. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:219-55. [PMID: 19860551 DOI: 10.1089/ten.teb.2009.0562] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The management of periodontal tissue defects that result from periodontitis represents a medical and socioeconomic challenge. Concerted efforts have been and still are being made to accelerate and augment periodontal tissue and bone regeneration, including a range of regenerative surgical procedures, the development of a variety of grafting materials, and the use of recombinant growth factors. More recently, tissue-engineering strategies, including new cell- and/or matrix-based dimensions, are also being developed, analyzed, and employed for periodontal regenerative therapies. Tissue engineering in periodontology applies the principles of engineering and life sciences toward the development of biological techniques that can restore lost alveolar bone, periodontal ligament, and root cementum. It is based on an understanding of the role of periodontal formation and aims to grow new functional tissues rather than to build new replacements of periodontium. Although tissue engineering has merged to create more opportunities for predictable and optimal periodontal tissue regeneration, the technique and design for preclinical and clinical studies remain in their early stages. To date, the reconstruction of small- to moderate-sized periodontal bone defects using engineered cell-scaffold constructs is technically feasible, and some of the currently developed concepts may represent alternatives for certain ideal clinical scenarios. However, the predictable reconstruction of the normal structure and functionality of a tooth-supporting apparatus remains challenging. This review summarizes current regenerative procedures for periodontal healing and regeneration and explores their progress and difficulties in clinical practice, with particular emphasis placed upon current challenges and future possibilities associated with tissue-engineering strategies in periodontal regenerative medicine.
Collapse
Affiliation(s)
- Fa-Ming Chen
- Department of Periodontology and Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | | |
Collapse
|
1927
|
Increased mRNA expression of interferon-induced Mx1 and immunomodulation following oral administration of IFN-α2b-transformed B. longum to mice. Arch Microbiol 2010; 192:633-8. [PMID: 20535450 DOI: 10.1007/s00203-010-0589-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/04/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
|
1928
|
Leschner S, Weiss S. Salmonella—allies in the fight against cancer. J Mol Med (Berl) 2010; 88:763-73. [PMID: 20526574 DOI: 10.1007/s00109-010-0636-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/06/2010] [Accepted: 05/14/2010] [Indexed: 01/30/2023]
|
1929
|
Balic A, Aguila HL, Caimano MJ, Francone VP, Mina M. Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars. Bone 2010; 46:1639-51. [PMID: 20193787 PMCID: PMC2881695 DOI: 10.1016/j.bone.2010.02.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 12/15/2022]
Abstract
In the past few years there have been significant advances in the identification of putative stem cells also referred to as "mesenchymal stem cells" (MSC) in dental tissues including the dental pulp. It is thought that MSC in dental pulp share certain similarities with MSC isolated from other tissues. However, cells in dental pulp are still poorly characterized. This study focused on the characterization of progenitor and stem cells in dental pulps of erupted and unerupted mice molars. Our study showed that dental pulps from unerupted molars contain a significant number of cells expressing CD90+/CD45-, CD117+/CD45-, Sca-1+/CD45- and little if any CD45+ cells. Our in vitro functional studies showed that dental pulp cells from unerupted molars displayed extensive osteo-dentinogenic potential but were unable to differentiate into chondrocytes and adipocytes. Dental pulps from erupted molars displayed a reduced number of cells, contained a higher percentage of CD45+ and a lower percentage of cells expressing CD90+/CD45-, CD117+/CD45- as compared to unerupted molars. In vitro functional assays demonstrated the ability of a small fraction of cells to differentiate into odontoblasts, osteoblasts, adipocytes and chondrocytes. There was a significant reduction in the osteo-dentinogenic potential of the pulp cells derived from erupted molars compared to unerupted molars. Furthermore, the adipogenic and chondrogenic differentiation of pulp cells from erupted molars was dependent on a long induction period and were infrequent. Based on these findings we propose that the dental pulp of the erupted molars contain a small population of multipotent cells, whereas the dental pulp of the unerupted molars does not contain multipotent cells but is enriched in osteo-dentinogenic progenitors engaged in the formation of coronal and radicular odontoblasts.
Collapse
Affiliation(s)
- Anamaria Balic
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT
| | - H. Leonardo Aguila
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Melissa J. Caimano
- Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Victor P. Francone
- Department of Neuroscience, School of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Mina Mina
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
1930
|
|
1931
|
Zelikin AN. Drug releasing polymer thin films: new era of surface-mediated drug delivery. ACS NANO 2010; 4:2494-2509. [PMID: 20423067 DOI: 10.1021/nn100634r] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Polymer films and coatings are among the popular and most successful tools to modulate surface properties of biomaterials, specifically tissue responses and fouling behavior. Over the past decade, a novel opportunity has been widely investigated, namely utility of surface coatings in surface-mediated drug delivery. In these applications, deposited polymer films act as both a coating to modulate surface properties and a reservoir for active therapeutic cargo. The field has recently accelerated beyond the proof-of-concept reports toward delivering practical solutions and established technologies for biomedical applications. This review briefly summarizes the recent successes of polymer thin films, specifically those constructed by sequential polymer deposition technique, in surface-mediated drug delivery.
Collapse
Affiliation(s)
- Alexander N Zelikin
- Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark.
| |
Collapse
|
1932
|
Yu J, He H, Tang C, Zhang G, Li Y, Wang R, Shi J, Jin Y. Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging. BMC Cell Biol 2010; 11:32. [PMID: 20459680 PMCID: PMC2877667 DOI: 10.1186/1471-2121-11-32] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 05/08/2010] [Indexed: 12/13/2022] Open
Abstract
Background Dental pulp stem cells (DPSCs) can be driven into odontoblast, osteoblast, and chondrocyte lineages in different inductive media. However, the differentiation potential of naive DPSCs after serial passaging in the routine culture system has not been fully elucidated. Results DPSCs were isolated from human/rat dental pulps by the magnetic activated cell sorting based on STRO-1 expression, cultured and passaged in the conventional culture media. The biological features of STRO-1+ DPSCs at the 1st and 9th passages were investigated. During the long-term passage, the proliferation ability of human STRO-1+ DPSCs was downregulated as indicated by the growth kinetics. When compared with STRO-1+ DPSCs at the 1st passage (DPSC-P1), the expression of mature osteoblast-specific genes/proteins (alkaline phosphatase, bone sialoprotein, osterix, and osteopontin), odontoblast-specific gene/protein (dentin sialophosphoprotein and dentin sialoprotein), and chondrocyte-specific gene/protein (type II collagen) was significantly upregulated in human STRO-1+ DPSCs at the 9th passage (DPSC-P9). Furthermore, human DPSC-P9 cells in the mineralization-inducing media presented higher levels of alkaline phosphatase at day 3 and day 7 respectively, and produced more mineralized matrix than DPSC-P9 cells at day 14. In vivo transplantation results showed that rat DPSC-P1 cell pellets developed into dentin, bone and cartilage structures respectively, while DPSC-P9 cells can only generate bone tissues. Conclusions These findings suggest that STRO-1+ DPSCs consist of several interrelated subpopulations which can spontaneously differentiate into odontoblasts, osteoblasts, and chondrocytes. The differentiation capacity of these DPSCs changes during cell passaging, and DPSCs at the 9th passage restrict their differentiation potential to the osteoblast lineage in vivo.
Collapse
Affiliation(s)
- Jinhua Yu
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | | | | | | | | | | | | | | |
Collapse
|
1933
|
Kim K, Lee CH, Kim BK, Mao JJ. Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res 2010; 89:842-7. [PMID: 20448245 DOI: 10.1177/0022034510370803] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Tooth regeneration by cell delivery encounters translational hurdles. We hypothesized that anatomically correct teeth can regenerate in scaffolds without cell transplantation. Novel, anatomically shaped human molar scaffolds and rat incisor scaffolds were fabricated by 3D bioprinting from a hybrid of poly-epsilon-caprolactone and hydroxyapatite with 200-microm-diameter interconnecting microchannels. In each of 22 rats, an incisor scaffold was implanted orthotopically following mandibular incisor extraction, whereas a human molar scaffold was implanted ectopically into the dorsum. Stromal-derived factor-1 (SDF1) and bone morphogenetic protein-7 (BMP7) were delivered in scaffold microchannels. After 9 weeks, a putative periodontal ligament and new bone regenerated at the interface of rat incisor scaffold with native alveolar bone. SDF1 and BMP7 delivery not only recruited significantly more endogenous cells, but also elaborated greater angiogenesis than growth-factor-free control scaffolds. Regeneration of tooth-like structures and periodontal integration by cell homing provide an alternative to cell delivery, and may accelerate clinical applications.
Collapse
Affiliation(s)
- K Kim
- Columbia University College of Dental Medicine, 630 W. 168th St., PH7E - CDM, New York, NY 10032, USA
| | | | | | | |
Collapse
|
1934
|
Yen AH, Yelick PC. Dental tissue regeneration - a mini-review. Gerontology 2010; 57:85-94. [PMID: 20453484 DOI: 10.1159/000314530] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 02/05/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND with today's 21st century technological advancements, it is expected that individuals will either retain their natural teeth or obtain functional tooth replacements throughout their entire life. Modern dental therapies for the replacement of missing teeth largely utilize partial or complete dentures and titanium implants capped with prosthetic crowns. Although these prostheses serve a purpose, they are not equivalent, neither in function nor aesthetics, to natural teeth. Recent progress in dental tissue engineering has lent significant credibility to the concept that biological replacement teeth therapies may soon be available to replace missing teeth. OBJECTIVE in this review, we summarize the emerging concepts of whole-tooth replacement strategies, using postnatal dental stem cells (DSCs) and dental tissue engineering approaches. METHODS we provide a thorough and extensive review of the literature. RESULTS current approaches to achieve clinically relevant biological replacement tooth therapies rely on the cultivation of DSCs capable of relaying odontogenic induction signals, through dental epithelial-mesenchymal cell interactions. DSC expansion and differentiation can be achieved by programming progenitor stem cells to adopt dental lineages, using instructive, bioengineered scaffold materials. Periodontal ligament regeneration in particular has demonstrated significant progress recently, despite the somewhat unpredictable clinical outcomes, with regard to its capacity to augment conventional metallic dental implants and as an important component for whole-tooth tissue engineering. Following recent advances made in DSC and tissue engineering research, various research groups are in the midst of performing 'proof of principle' experiments for whole-tooth regeneration, with associated functional periodontal tissues. This mini-review focuses on recent and promising developments in the fields of pulp and periodontal tissue DSCs that are of particular relevance for dental tissue and whole-tooth regeneration. CONCLUSION continued advances in the derivation of useable DSC populations and optimally designed scaffold materials unequivocally support the feasibility of dental tissue and whole-tooth tissue engineering.
Collapse
Affiliation(s)
- A-H Yen
- Department of Oral and Maxillofacial Pathology, Division of Craniofacial and Molecular Genetics, Tufts University, Boston, Mass., USA
| | | |
Collapse
|
1935
|
Hu B, Wang Z, Xu Y. Combined hybrid method applied in the Reissner–Mindlin plate model. FINITE ELEMENTS IN ANALYSIS AND DESIGN 2010; 46:428-437. [DOI: 10.1016/j.finel.2010.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
1936
|
Vital pulp therapy-current progress of dental pulp regeneration and revascularization. Int J Dent 2010; 2010:856087. [PMID: 20454445 PMCID: PMC2861196 DOI: 10.1155/2010/856087] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 12/14/2009] [Accepted: 02/10/2010] [Indexed: 12/16/2022] Open
Abstract
Pulp vitality is extremely important for the tooth viability, since it provides nutrition and acts as biosensor to detect pathogenic stimuli. In the dental clinic, most dental pulp infections are irreversible due to its anatomical position and organization. It is difficult for the body to eliminate the infection, which subsequently persists and worsens. The widely used strategy currently in the clinic is to partly or fully remove the contaminated pulp tissue, and fill and seal the void space with synthetic material. Over time, the pulpless tooth, now lacking proper blood supply and nervous system, becomes more vulnerable to injury. Recently, potential for successful pulp regeneration and revascularization therapies is increasing due to accumulated knowledge of stem cells, especially dental pulp stem cells. This paper will review current progress and feasible strategies for dental pulp regeneration and revascularization.
Collapse
|
1937
|
Catón J, Tucker AS. Current knowledge of tooth development: patterning and mineralization of the murine dentition. J Anat 2010; 214:502-15. [PMID: 19422427 DOI: 10.1111/j.1469-7580.2008.01014.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The integument forms a number of different types of mineralized element, including dermal denticles, scutes, ganoid scales, elasmoid scales, fin rays and osteoderms found in certain fish, reptiles, amphibians and xenarthran mammals. To this list can be added teeth, which are far more widely represented and studied than any of the other mineralized elements mentioned above, and as such can be thought of as a model mineralized system. In recent years the focus for studies on tooth development has been the mouse, with a wealth of genetic information accrued and the availability of cutting edge techniques. It is the mouse dentition that this review will concentrate on. The development of the tooth will be followed, looking at what controls the shape of the tooth and how signals from the mesenchyme and epithelium interact to lead to formation of a molar or incisor. The number of teeth generated will then be investigated, looking at how tooth germ number can be reduced or increased by apoptosis, fusion of tooth germs, creation of new tooth germs, and the generation of additional teeth from existing tooth germs. The development of mineralized tissue will then be detailed, looking at how the asymmetrical deposition of enamel is controlled in the mouse incisor. The continued importance of epithelial-mesenchymal interactions at these later stages of tooth development will also be discussed. Tooth anomalies and human disorders have been well covered by recent reviews, therefore in this paper we wish to present a classical review of current knowledge of tooth development, fitting together data from a large number of recent research papers to draw general conclusions about tooth development.
Collapse
Affiliation(s)
- Javier Catón
- Department of Craniofacial Development and Orthodontics, King's College London, Guy's Hospital, UK
| | | |
Collapse
|
1938
|
Huo N, Tang L, Yang Z, Qian H, Wang Y, Han C, Gu Z, Duan Y, Jin Y. Differentiation of dermal multipotent cells into odontogenic lineage induced by embryonic and neonatal tooth germ cell-conditioned medium. Stem Cells Dev 2010; 19:93-104. [PMID: 19469666 DOI: 10.1089/scd.2009.0048] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stem cell-based therapy represents a novel and more advantageous modality of treatment for tooth defect or loss. However, this strategy is challenged in the circumstances where tooth-derived stem cells are not readily accessible. In present study we sought to explore the possibility of utilizing dermal multipotent cells (DMCs) easily available from skin tissue for odontogenic induction. Using the limiting dilution technique, colony-forming cell population was isolated and characterized by proliferative activity and multilineage differentiation potential. By exposure to conditioned medium of embryonic and neonatal tooth germ cells in culture, the proliferation and mineralization activity of DMCs was elevated, while the embryonic tooth germ cell-conditioned medium (ETGC-CM) produced more significant effects. Meanwhile, ETGC-CM-treated DMCs phenocopied the odontoblasts in vitro as indicated by specific lineage markers. Following in vivo transplantation as cell pellet, ETGC-CM-treated DMCs were capable of producing blocks of mineralized tissues, which resembled those of dental pulp stem cell (DPSC) explants in the same subcutaneous pockets environment. These observations suggest that although more sufficient and continuous inductive microenvironment may be needed for undifferentiated DMCs to perform as odontoblasts, ETGC-CM-treated DMCs indeed acquire properties as those of DPSCs. Our work highlights the potential utility of DMCs as an alternative candidate cell source in hopes of developing more practical strategy of tooth regeneration research and offering promising opportunities for therapeutic approach.
Collapse
Affiliation(s)
- Na Huo
- Department of Orthodontics, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
1939
|
Wang JJ, Han AZ, Meng Y, Gong JB, Zhang CN, Li K, Liu YX. Measurement of oxidized lipoprotein (a) in patients with acute coronary syndromes and stable coronary artery disease by 2 ELISAs: Using different capture antibody against oxidized lipoprotein (a) or oxidized LDL. Clin Biochem 2010; 43:571-5. [PMID: 20060390 DOI: 10.1016/j.clinbiochem.2009.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
|
1940
|
Fujii N, Fujimoto K, Michinobu T, Akada M, Hill JP, Shiratori S, Ariga K, Shigehara K. The Simplest Layer-by-Layer Assembly Structure: Best Paired Polymer Electrolytes with One Charge per Main Chain Carbon Atom for Multilayered Thin Films. Macromolecules 2010. [DOI: 10.1021/ma100473j] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nozomu Fujii
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kouji Fujimoto
- Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Tsuyoshi Michinobu
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Global Edge Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Misaho Akada
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) and JST, CREST, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jonathan P. Hill
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) and JST, CREST, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Seimei Shiratori
- Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) and JST, CREST, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kiyotaka Shigehara
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
1941
|
Abstract
Population-based differences in toxicity and clinical outcome following treatment with anticancer drugs have an important effect on oncology practice and drug development. These differences arise from complex interactions between biological and environmental factors, which include genetic diversity affecting drug metabolism and the expression of drug targets, variations in tumour biology and host physiology, socioeconomic disparities, and regional preferences in treatment standards. Some well-known examples include the high prevalence of activating epidermal growth factor receptor (EGFR) mutations in pulmonary adenocarcinoma among northeast (China, Japan, Korea) and parts of southeast Asia (excluding India) non-smokers, which predict sensitivity to EGFR kinase inhibitors, and the sharp contrast between Japan and the west in the management and survival outcome of gastric cancer. This review is a critical overview of population-based differences in the four most prevalent cancers in the world: lung, breast, colorectal, and stomach cancer. Particular attention is given to the clinical relevance of such knowledge in terms of the individualisation of drug therapy and in the design of clinical trials.
Collapse
|
1942
|
Ning F, Guo Y, Tang J, Zhou J, Zhang H, Lu W, Gao Y, Wang L, Pei D, Duan Y, Jin Y. Differentiation of mouse embryonic stem cells into dental epithelial-like cells induced by ameloblasts serum-free conditioned medium. Biochem Biophys Res Commun 2010; 394:342-7. [PMID: 20206604 DOI: 10.1016/j.bbrc.2010.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
Embryonic stem cells (ESCs) possess an intrinsic self-renewal ability and can differentiate into numerous types of functional tissue cells; however, whether ESCs can differentiate toward the odontogenic lineage is still unknown. In this study, we developed an efficient culture strategy to induce the differentiation of murine ESCs (mESCs) into dental epithelial cells. By culturing mESCs in ameloblasts serum-free conditioned medium (ASF-CM), we could induce their differentiation toward dental epithelial cell lineages; however, similar experiments with the tooth germ cell-conditioned medium (TGC-CM) did not yield effective results. After culturing the cells for 14days in the differentiation-inducing media, the expression of ameloblast-specific proteins such as cytokeratin (CK)14, ameloblastin (AMBN), and amelogenin (AMGN) was markedly higher in mESCs obtained with embryoid body (EB) formation than in mESCs obtained without EB formation. We observed that immunocompromised mice implanted with induced murine EBs (mEBs) showed tissue regenerative capacity and produced odontogenic epithelial-like structures, whereas those implanted with mSCE monolayer cells mainly formed connective tissues. Thus, for the first time, we report that ASF-CM provides a suitable microenvironment for inducing mESC differentiation along the odontogenic epithelial cell lineage. This result has important implications for tooth tissue engineering.
Collapse
Affiliation(s)
- Fang Ning
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032 Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1943
|
Zhang C, Li K, Shi B, Wang X, Liu X, Qin W, Han A, Wang J. Detection of serum β2-GPI–Lp(a) complexes in patients with systemic lupus erythematosus. Clin Chim Acta 2010; 411:395-9. [PMID: 20026018 DOI: 10.1016/j.cca.2009.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/03/2009] [Accepted: 12/09/2009] [Indexed: 11/29/2022]
|
1944
|
|
1945
|
Abstract
Chronic alcohol use has been linked to chronic pancreatitis for over a century, but it has not been until the last decade that the role of alcohol in chronic pancreatitis has been elucidated in animals and, only in recent years, in human populations. Although a dose-dependent association between alcohol consumption and chronic pancreatitis may exist, a staistical association has been shown only with the consumption of >or=5 alcoholic drinks per day. Smoking also confers a strong, independent and dose-dependent risk of pancreatitis that may be additive or multiplicative when combined with alcohol. Alcohol increases the risk of acute pancreatitis in several ways and, most importantly, changes the immune response to injury. Genetic factors are also important and further studies are needed to clarify the role of gene-environment interactions in pancreatitis. In humans, aggressive interventional counseling against alcohol use may reduce the frequency of recurrent attacks of disease and smoking cessation may help to slow the progression of acute to chronic pancreatitis.
Collapse
|
1946
|
Honda MJ, Tsuchiya S, Shinohara Y, Shinmura Y, Sumita Y. Recent advances in engineering of tooth and tooth structures using postnatal dental cells. JAPANESE DENTAL SCIENCE REVIEW 2010. [DOI: 10.1016/j.jdsr.2009.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
1947
|
Boudou T, Crouzier T, Ren K, Blin G, Picart C. Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:441-67. [PMID: 20217734 DOI: 10.1002/adma.200901327] [Citation(s) in RCA: 529] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The design of advanced functional materials with nanometer- and micrometer-scale control over their properties is of considerable interest for both fundamental and applied studies because of the many potential applications for these materials in the fields of biomedical materials, tissue engineering, and regenerative medicine. The layer-by-layer deposition technique introduced in the early 1990s by Decher, Moehwald, and Lvov is a versatile technique, which has attracted an increasing number of researchers in recent years due to its wide range of advantages for biomedical applications: ease of preparation under "mild" conditions compatible with physiological media, capability of incorporating bioactive molecules, extra-cellular matrix components and biopolymers in the films, tunable mechanical properties, and spatio-temporal control over film organization. The last few years have seen a significant increase in reports exploring the possibilities offered by diffusing molecules into films to control their internal structures or design "reservoirs," as well as control their mechanical properties. Such properties, associated with the chemical properties of films, are particularly important for designing biomedical devices that contain bioactive molecules. In this review, we highlight recent work on designing and controlling film properties at the nanometer and micrometer scales with a view to developing new biomaterial coatings, tissue engineered constructs that could mimic in vivo cellular microenvironments, and stem cell "niches."
Collapse
Affiliation(s)
- Thomas Boudou
- Grenoble-INP, LMGP-MINATEC, CNRS UMR 5628 3, Parvis Louis Néel, 38016 Grenoble, France
| | | | | | | | | |
Collapse
|
1948
|
Abstract
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a potent inducer of tumor cell apoptosis, but concerns of considerable liver toxicity limit its uses in human cancer therapy. Here, we show that i.v. injected Escherichia coli DH5α (E. coli DH5α) specifically replicates in solid tumors and metastases in live animals. E. coli DH5α does not enter tumor cells and suits for being the vector for soluble TRAIL (sTRAIL), which induces apoptosis by activating cell-surface death receptors. With the high ‘tumor-targeting' nature, we demonstrate that intratumoral (i.t.) and intravenous injection of sTRAIL-expressing E. coli DH5α results in the tumor-targeted release of biologically active molecules, which leads to a dramatic reduction in the tumor growth rate and the prolonged survival of tumor-bearing mice. TRAIL delivery by E. coli DH5α did not cause any detectable toxicity to any organs, suggesting that E. coli DH5α-delivered sTRAIL protein therapy may provide a feasible and effective form of treatment for solid tumors.
Collapse
|
1949
|
Severe lactic acidosis in a patient with B-cell lymphoma: a case report and review of the literature. Case Rep Med 2010; 2009:534561. [PMID: 20069124 PMCID: PMC2804112 DOI: 10.1155/2009/534561] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 11/20/2009] [Indexed: 11/17/2022] Open
Abstract
Lactic acidosis is commonly observed in clinical situations such as shock and sepsis, as a result of tissue hypoperfusion and hypoxia. Lymphoma and leukemia are among other clinical situations where lactic acidosis has been reported. We present a case of a 59-year-old female with lactic acidosis who was found to have aggressive B-cell lymphoma. There have been 29 cases of lymphoma induced lactic acidosis reported thus far; however all reported cases have abnormal vital signs or concomitant medical conditions that may lead to lactic acidosis. The pathogenesis of malignancy-induced lactic acidosis is not well understood; however associated factors include increased glycolysis, increased lactate production by cancer cells, and decreased hepatic clearance of lactate. When it occurs, lactic acidosis is a poor prognostic sign in these patients. Prompt diagnosis and treatment of underlying lymphoma or leukemia remains the only way to achieve complete resolution of lactic acidosis in these patients.
Collapse
|
1950
|
Zuo JM, Zhang YM, Zhang TD, Chang F. A New Conservative Difference Scheme for the General Rosenau-RLW Equation. BOUNDARY VALUE PROBLEMS 2010; 2010:516260. [DOI: 10.1155/2010/516260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|