151
|
Malicdan MCV, Vilboux T, Ben-Zeev B, Guo J, Eliyahu A, Pode-Shakked B, Dori A, Kakani S, Chandrasekharappa SC, Ferreira C, Shelestovich N, Marek-Yagel D, Pri-Chen H, Blatt I, Niederhuber JE, He L, Toro C, Taylor RW, Deeken J, Yardeni T, Wallace DC, Gahl WA, Anikster Y. A novel inborn error of the coenzyme Q10 biosynthesis pathway: cerebellar ataxia and static encephalomyopathy due to COQ5 C-methyltransferase deficiency. Hum Mutat 2018; 39:69-79. [PMID: 29044765 PMCID: PMC5722658 DOI: 10.1002/humu.23345] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/27/2017] [Accepted: 09/11/2017] [Indexed: 01/08/2023]
Abstract
Primary coenzyme Q10 (CoQ10 ; MIM# 607426) deficiencies are an emerging group of inherited mitochondrial disorders with heterogonous clinical phenotypes. Over a dozen genes are involved in the biosynthesis of CoQ10 , and mutations in several of these are associated with human disease. However, mutations in COQ5 (MIM# 616359), catalyzing the only C-methylation in the CoQ10 synthetic pathway, have not been implicated in human disease. Here, we report three female siblings of Iraqi-Jewish descent, who had varying degrees of cerebellar ataxia, encephalopathy, generalized tonic-clonic seizures, and cognitive disability. Whole-exome and subsequent whole-genome sequencing identified biallelic duplications in the COQ5 gene, leading to reduced levels of CoQ10 in peripheral white blood cells of all affected individuals and reduced CoQ10 levels in the only muscle tissue available from one affected proband. CoQ10 supplementation led to clinical improvement and increased the concentrations of CoQ10 in blood. This is the first report of primary CoQ10 deficiency caused by loss of function of COQ5, with delineation of the clinical, laboratory, histological, and molecular features, and insights regarding targeted treatment with CoQ10 supplementation.
Collapse
Affiliation(s)
- May Christine V. Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, 20892 Maryland, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Thierry Vilboux
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
- Inova Translational Medicine Institute, Falls Church, 22042 Virginia, USA
| | - Bruria Ben-Zeev
- Pediatric Neurology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Department of Pathology, Sheba Medical Center, Tel-Hashomer, 52621, Israel
| | - Jennifer Guo
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, 20892 Maryland, USA
| | - Aviva Eliyahu
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Ben Pode-Shakked
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Amir Dori
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Joseph Sagol Neuroscience Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Sravan Kakani
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Settara C. Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Carlos Ferreira
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Natalia Shelestovich
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, USA
| | - Dina Marek-Yagel
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Department of Pathology, Sheba Medical Center, Tel-Hashomer, 52621, Israel
| | - Hadass Pri-Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, 52621, Israel
| | - Ilan Blatt
- Department of Neurology, Sheba Medical Center, Tel-Hashomer, 5621 Israel
| | - John E. Niederhuber
- Inova Translational Medicine Institute, Falls Church, 22042 Virginia, USA
- Johns Hopkins University School of Medicine, 733 North Broadway Street, Baltimore, MD, USA
| | - Langping He
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, 20892 Maryland, USA
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - John Deeken
- Inova Translational Medicine Institute, Falls Church, 22042 Virginia, USA
| | - Tal Yardeni
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, USA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, USA
| | - William A. Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, 20892 Maryland, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Yair Anikster
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, 52621, Israel
| |
Collapse
|
152
|
Abstract
Angiogenesis is an important determinant of tissue function, from delivery of oxygen and other substrates to removal of waste products, in health and disease (e.g., adaptive or pathological remodelling). The phenotype and functional responses of endothelial cells are conditioned by systemic humoral signals and local environmental factors, including the haemodynamic forces that act upon them. Here we describe some interventions that have been helpful in unraveling the integrative nature of the complex in vivo response, and quantitative assessment of angiogenesis in muscle.
Collapse
|
153
|
Kim JM, Lim KS, Ko KB, Ryu YC. Estimation of pork quality in live pigs using biopsied muscle fibre number composition. Meat Sci 2017; 137:130-133. [PMID: 29175766 DOI: 10.1016/j.meatsci.2017.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/13/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
Here, we newly provided the parameters for estimating meat quality in live pigs using the muscle biopsy. The biopsied longissimus thoracis muscle was used to identify the muscle fibre characteristics (MFCs). Of the various MFCs in biopsied muscle, muscle fibre number (MFN) composition showed the greatest correlation with the MFCs in postmortem muscle (P<0.001). Moreover, the pigs cluster groups, based on the biopsied MFN composition, demonstrated statistically significant differences in meat quality traits such as muscle pH, drip loss, and meat colour (P<0.05). Therefore, we conclude that the MFN parameters in live pigs are closely related to the postmortem muscle metabolic rate and ultimately with the quality of meat. We suggest that the higher type I and lower type IIB MFN in biopsied muscle will result in better pork quality.
Collapse
Affiliation(s)
- Jun-Mo Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Kyu-Sang Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Kyung-Bo Ko
- Division of Biotechnology, SARI, Jeju National University, Jeju-Si 63243, Republic of Korea
| | - Youn-Chul Ryu
- Division of Biotechnology, SARI, Jeju National University, Jeju-Si 63243, Republic of Korea.
| |
Collapse
|
154
|
Fardeau M. [About the technique of muscle biopsy (IV). The advent of histochemistry and cytoenzymology in the analysis of muscle biopsies. A short and personal historical overview]. Med Sci (Paris) 2017; 33 Hors série n°1:7-10. [PMID: 29139379 DOI: 10.1051/medsci/201733s102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Michel Fardeau
- Professeur honoraire au CNAM, Fondateur de la Société Française de Myologie, Paris, France
| |
Collapse
|
155
|
Bittante G, Cecchinato A, Tagliapietra F, Verdiglione R, Simonetto A, Schiavon S. Crossbred young bulls and heifers sired by double-muscled Piemontese or Belgian Blue bulls exhibit different effects of sexual dimorphism on fattening performance and muscularity but not on meat quality traits. Meat Sci 2017; 137:24-33. [PMID: 29149626 DOI: 10.1016/j.meatsci.2017.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 01/06/2023]
Abstract
As double-muscled Belgian Blue (BB) and Piemontese (PIEM) breeds are heavily selected for different objectives (the former mainly for muscularity, the latter for ease of calving), the aim of this study was to compare sexual dimorphism in 56 crossbred young bulls and heifers obtained from dairy cows mated to bulls of the two beef breeds. Young PIEM- and BB-sired bulls had similar fattening performances and beef traits, although the BB crossbreds were slightly more muscular. Otherwise, the BB-sired heifers exceeded the PIEM-sired heifers in growth rate (1.12 vs. 0.98kg/d), feed efficiency (0.129 vs. 0.121kg/kg DM), increases in muscle scores (1.45 vs. 0.98 SEUROP scores) and carcass yield (0.612 vs. 0.605), but not in fatness, retail cut proportions and meat quality traits. Sexual dimorphism is, therefore, less distinct in BB than in PIEM crossbreds. In conclusion, BB sires are to be preferred for "product quality", and PIEM sires for "process quality", on account of welfare and ethical issues.
Collapse
Affiliation(s)
- Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Franco Tagliapietra
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Rina Verdiglione
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Alberto Simonetto
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
156
|
Tůmová E, Chodová D, Vlčková J, Němeček T, Uhlířová L, Skřivanová V. Age-related changes in the carcass yield and meat quality of male and female nutrias ( Myocastor coypus ) under intensive production system. Meat Sci 2017; 133:51-55. [DOI: 10.1016/j.meatsci.2017.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 10/19/2022]
|
157
|
Joo ST, Joo SH, Hwang YH. The Relationships between Muscle Fiber Characteristics, Intramuscular Fat Content, and Fatty Acid Compositions in M. longissimus lumborum of Hanwoo Steers. Korean J Food Sci Anim Resour 2017; 37:780-786. [PMID: 29147102 PMCID: PMC5686337 DOI: 10.5851/kosfa.2017.37.5.780] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 11/10/2022] Open
Abstract
The objective of this study was to investigate the relationship between muscle fiber characteristics, intramuscular fat (IMF) content, and fatty acids composition in longissimus lumborum (LL) muscle from Hanwoo steers. The LL muscles were obtained from four quality grades (QG) carcasses and subjected to histochemical analysis. There were significant (p<0.05) differences in fiber number percentage (FNP) and fiber area percentage (FAP) of muscle fiber types among muscles from four QGs. Both FNP and FAP of type I increased while those of type IIB decreased with increasing QG from QG 2 to QG 1++ (p<0.05). Also, with increasing QG, the saturated fatty acid (SFA) proportion decreased while monounsaturated fatty acid (MUFA) increased significantly (p<0.05). IMF content was positively correlated with both FNP and FAP of type I, but negatively correlated with those of type IIB. The proportions of SFA and MUFA were significantly (p<0.001) correlated with both type I and IIB composition. These results implied that muscle fiber type composition is an important factor influencing fatty acid composition in LL muscle of Hanwoo steer.
Collapse
Affiliation(s)
- Seon-Tea Joo
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52852, Korea.,Department of Animal Science, Gyeongsang National University, Jinju 52852, Korea
| | - Sung-Hyun Joo
- Department of Animal Science, Gyeongsang National University, Jinju 52852, Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Korea
| |
Collapse
|
158
|
Joo SH, Lee KW, Hwang YH, Joo ST. Histochemical Characteristics in Relation to Meat Quality Traits of Eight Major Muscles from Hanwoo Steers. Korean J Food Sci Anim Resour 2017; 37:716-725. [PMID: 29147095 PMCID: PMC5686330 DOI: 10.5851/kosfa.2017.37.5.716] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 11/06/2022] Open
Abstract
The objective of this study was to determine the relationship between composition of muscle fiber types and meat quality traits of eight major muscles from Hanwoo steers. Longissimus lumborum (LL), psoas major (PM), semimembranosus (SM), semitendinosus (ST), gluteus medius (GM), triceps brachii (TB), rectus abdominis (RA) and superficialis flexor (SF) muscles were obtained from 9 Hanwoo steers and subjected to histochemical analysis. There were significant (p<0.05) differences in fiber number percentage (FNP) and fiber area percentage (FAP) of fiber types among these 8 major muscles. SF had the highest FNP of type I (55.9%), followed by PM (46.4%), TB (45.4%), RA (38.5%), LD (36.8%), GM (36.0%), SM (22.2%), and ST (18.8%). FAP of type IIB ranged from 9.9% in SF to 58.7% in ST. Meat quality traits, including fat content, myoglobin content, collagen content, CIE L* and a*, drip and cooking loss, sarcomere length and Warner-Bratzler shear force, were all significantly (p<0.05) different among these muscles. Due to such diversities among these 8 muscles, lack of correlations were found between fiber type composition and meat quality traits. These results suggest that correlation for each individual muscle should be used to improve meat quality and profitability of retail beef cuts.
Collapse
Affiliation(s)
- Sung-Hyun Joo
- Department of Animal Science, Gyeongsang National University, Jinju 52852, Korea
| | - Kyu-Won Lee
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52852, Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Korea
| | - Seon-Tea Joo
- Department of Animal Science, Gyeongsang National University, Jinju 52852, Korea.,Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52852, Korea
| |
Collapse
|
159
|
Huang H, Zhao Y, Shang X, Liu X, Ren H. Expression of carbonic anhydrase III and skeletal muscle remodeling following selective denervation. Mol Med Rep 2017; 16:8289-8294. [PMID: 28983629 DOI: 10.3892/mmr.2017.7644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 07/31/2017] [Indexed: 11/06/2022] Open
Abstract
Carbonic anhydrase III (CAIII) is expressed selectively in type I (slow‑twitch) myofibers. To investigate the association between changes in the expression of CAIII and skeletal muscle structure following denervation, the present study stained adjacent sections of skeletal muscle for ATPase and immunohistochemically for CAIII. In addition, differences in the protein expression and phosphatase activity of CAIII were examined by western blot and phosphatase staining between rat soleus and extensol digitorum longus (EDL) muscles, which are composed of predominantly slow‑ and fast‑twitch fibers, respectively. Upon denervation, the EDL muscle showed more pronounced structural changes, compared with the soleus muscle. There was a transformation from fast to slow fibers, and a concomitant increase in fibers positive for CAIII. Following denervation, the protein expression of CAIII initially increased and then decreased in the soleus muscle, whereas the protein expression of CAIII in the EDL muscle increased gradually with time. In contrast to the protein changes, phosphatase activity in the soleus and EDL muscles decreased significantly following denervation. These results indicated that, following denervation, changes in the expression of CAIII were associated with myofiber remodeling. Specifically, the change in the expression of CAIII reflected the conversion to type I myofibers, suggesting the importance of CAIII in resistance to fatigue in skeletal muscle.
Collapse
Affiliation(s)
- He Huang
- Department of Neurology, Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Yanling Zhao
- Department of Geriatrics, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Xiliang Shang
- Department of Sports Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Xueyuan Liu
- Department of Neurology, Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Huimin Ren
- Institute of Neurology, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
160
|
Zhang X, Owens CM, Schilling MW. Meat: the edible flesh from mammals only or does it include poultry, fish, and seafood? Anim Front 2017. [DOI: 10.2527/af.2017.0437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Xue Zhang
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS
| | - Casey M. Owens
- Department of Poultry Science, University of Arkansas, Fayetteville, AR
| | - M. Wes Schilling
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS
| |
Collapse
|
161
|
Kanazawa Y, Ikegami K, Sujino M, Koinuma S, Nagano M, Oi Y, Onishi T, Sugiyo S, Takeda I, Kaji H, Shigeyoshi Y. Effects of aging on basement membrane of the soleus muscle during recovery following disuse atrophy in rats. Exp Gerontol 2017; 98:153-161. [PMID: 28803135 DOI: 10.1016/j.exger.2017.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/19/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
Abstract
Aging is known to lead to the impaired recovery of muscle after disuse as well as the increased susceptibility of the muscle to damage. Here, we show that, in the older rats, reloading after disuse atrophy, causes the damage of the muscle fibers and the basement membrane (BM) that structurally support the muscle fibers. Male Wistar rats of 3-(young) and 20-(older) months of age were subjected to hindlimb-unloading for 2weeks followed by reloading for a week. In the older rats, the soleus muscles showed necrosis and central nuclei fiber indicating the regeneration of muscle fibers. Furthermore, ectopic immunoreactivity of collagen IV, a major component of the BM, remained mostly associated with the necrotic appearance, suggesting that the older rats were impaired with the ability of repairing the damaged BM. Further, after unloading and reloading, the older rats did not show a significant alteration, although the young rats showed clear response of Col4a1 and Col4a2 genes, both coding for collagen IV. In addition, during the recovery phase, the young rats showed increase in the amount of Hsp47 and Sparc mRNA, which are protein folding-related factor genes, while the older rats did not show any significant variation. Taken together, our findings suggest that the atrophic muscle fibers of the older rats induced by unloading were vulnerable to the weight loading, and that attenuated reactivity of the BM-synthesizing fibroblast to gravity contributes to the fragility of muscle fibers in the older animals.
Collapse
Affiliation(s)
- Yuji Kanazawa
- Department of Physical Therapy, Osaka University of Human Sciences, Shojyaku, Settsu, 566-8501, Japan; Department of Anatomy and Neurobiology, Graduate school of Medical Sciences, Kindai University, Ohnohigashi, Osakasayama 589-8511, Japan
| | - Keisuke Ikegami
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama 589-8511, Japan
| | - Mitsugu Sujino
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama 589-8511, Japan
| | - Satoshi Koinuma
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama 589-8511, Japan
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Graduate school of Medical Sciences, Kindai University, Ohnohigashi, Osakasayama 589-8511, Japan; Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama 589-8511, Japan
| | - Yuki Oi
- Faculty of Health Care Sciences, Takarazuka University of Medical and Health care, Hanayashiki Midorigaoka, Takarazuka 666-0162, Japan
| | - Tomoya Onishi
- Faculty of Health Care Sciences, Takarazuka University of Medical and Health care, Hanayashiki Midorigaoka, Takarazuka 666-0162, Japan
| | - Shinichi Sugiyo
- Department of Physical Therapy, Osaka University of Human Sciences, Shojyaku, Settsu, 566-8501, Japan
| | - Isao Takeda
- Department of Physical Therapy, Osaka University of Human Sciences, Shojyaku, Settsu, 566-8501, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama 589-8511, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Graduate school of Medical Sciences, Kindai University, Ohnohigashi, Osakasayama 589-8511, Japan; Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama 589-8511, Japan.
| |
Collapse
|
162
|
Complete Removal of the Epitrochleoanconeus Muscles in Patients with Cubital Tunnel Syndrome: Results From a Small Prospective Case Series. World Neurosurg 2017; 104:142-147. [DOI: 10.1016/j.wneu.2017.04.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 11/23/2022]
|
163
|
Jeong JY, Jeong TC, Yang HS, Kim GD. Multivariate analysis of muscle fiber characteristics, intramuscular fat content and fatty acid composition in porcine longissimus thoracis muscle. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
164
|
Nygaard RH, Jensen JK, Voermans NC, Heinemeier KM, Schjerling P, Holm L, Agergaard J, Mackey AL, Andersen JL, Remvig L, Kjaer M. Skeletal muscle morphology, protein synthesis, and gene expression in Ehlers-Danlos syndrome. J Appl Physiol (1985) 2017; 123:482-488. [PMID: 28596275 DOI: 10.1152/japplphysiol.01044.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
Patients with Ehlers-Danlos syndrome (EDS) are known to have genetically impaired connective tissue and skeletal muscle symptoms in form of pain, fatigue, and cramps; however earlier studies have not been able to link these symptoms to morphological muscle changes. We obtained skeletal muscle biopsies in patients with classic EDS [cEDS; n = 5 (Denmark)+ 8 (The Netherlands)] and vascular EDS (vEDS; n = 3) and analyzed muscle fiber morphology and content (Western blotting and muscle fiber type/area distributions) and muscle mRNA expression and protein synthesis rate (RT-PCR and stable isotope technique). The cEDS patients did not differ from healthy controls (n = 7-11) with regard to muscle fiber type/area, myosin/α-actin ratio, muscle protein synthesis rate, or mRNA expression. In contrast, the vEDS patients demonstrated higher expression of matrix proteins compared with cEDS patients (fibronectin and MMP-2). The cEDS patients had surprisingly normal muscle morphology and protein synthesis, whereas vEDS patients demonstrated higher mRNA expression for extracellular matrix remodeling in skeletal musculature compared with cEDS patients.NEW & NOTEWORTHY This study is the first of its kind to systematically investigate muscle biopsies from Ehlers-Danlos patients, focusing on muscle structure and function. These patients suffer from severe muscle symptoms, but in our study they show surprisingly normal muscle findings, which points toward indirect muscle symptoms originating from the surrounding connective tissue. These findings have basal physiological importance and implications for future physiotherapeutic treatment options for these patients.
Collapse
Affiliation(s)
- Rie H Nygaard
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; .,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob K Jensen
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicol C Voermans
- Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Katja M Heinemeier
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Holm
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Agergaard
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper L Andersen
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Remvig
- Department of Infectious Medicine and Rheumatology, Rigshospitalet, Denmark; and
| | - Michael Kjaer
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
165
|
Siqin Q, Nishiumi T, Yamada T, Wang S, Liu W, Wu R, Borjigin G. Relationships among muscle fiber type composition, fiber diameter and MRF gene expression in different skeletal muscles of naturally grazing Wuzhumuqin sheep during postnatal development. Anim Sci J 2017; 88:2033-2043. [PMID: 28730689 PMCID: PMC5763406 DOI: 10.1111/asj.12848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 04/20/2017] [Indexed: 01/08/2023]
Abstract
The aim of this study was to determine the relationships among muscle fiber‐type composition, fiber diameter, and myogenic regulatory factor (MRF) gene expression in different skeletal muscles during development in naturally grazing Wuzhumuqin sheep. Three major muscles (i.e. the Longissimus dorsi (LD), Biceps femoris (BF) and Triceps brachii (TB)) were obtained from 20 Wuzhumuqin sheep and 20 castrated rams at each of the following ages: 1, 3, 6, 9, 12 and 18 months. Muscle fiber‐type composition and fiber diameter were measured using histochemistry and morphological analysis, and MRF gene expression levels were determined using real‐time PCR. In the LD muscle, changes in the proportion of each of different types of fiber (I, IIA and IIB) were relatively small. In the BF muscle, a higher proportion of type I and a 6.19‐fold lower proportion of type IIA fibers were observed (P < 0.05). In addition, the compositions of type I and IIA fibers continuously changed in the TB muscle (P < 0.05). Moreover, muscle diameter gradually increased throughout development (P < 0.05). Almost no significant difference was found in MRF gene expression patterns, which appeared to be relatively stable. These results suggest that changes in fiber‐type composition and increases in fiber size may be mutually interacting processes during muscle development.
Collapse
Affiliation(s)
- Qimuge Siqin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Tadayuki Nishiumi
- Division of Life and Food Science, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Takahisa Yamada
- Division of Life and Food Science, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Shuiqing Wang
- Mongolian Sheep Animal Husbandry Co., Ltd, Hohhot, China
| | - Wenjun Liu
- Division of Life and Food Science, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Rihan Wu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Gerelt Borjigin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
166
|
Chodová D, Tůmová E, Sládková K, Langrová I, Jankovská I, Vadlejch J, Čadková Z, Krejčířová R. Effects of subclinical Eimeria tenella infection on Pectoralis major muscle in broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1351899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Darina Chodová
- Department of Animal Husbandry, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Eva Tůmová
- Department of Animal Husbandry, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Karolína Sládková
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Iva Langrová
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ivana Jankovská
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jaroslav Vadlejch
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Zuzana Čadková
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Romana Krejčířová
- Department of Veterinary Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
167
|
Andersson EA, Frank P, Pontén M, Ekblom B, Ekblom M, Moberg M, Sahlin K. Improving Strength, Power, Muscle Aerobic Capacity, and Glucose Tolerance through Short-term Progressive Strength Training Among Elderly People. J Vis Exp 2017. [PMID: 28715403 DOI: 10.3791/55518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This protocol describes the simultaneous use of a broad span of methods to examine muscle aerobic capacity, glucose tolerance, strength, and power in elderly people performing short-term resistance training (RET). Supervised progressive resistance training for 1 h three times a week over 8 weeks was performed by RET participants (71±1 years, range 65-80). Compared to a control group without training, the RET showed improvements on the measures used to indicate strength, power, glucose tolerance, and several parameters of muscle aerobic capacity. Strength training was performed in a gym with only robust fitness equipment. An isokinetic dynamometer for knee extensor strength permitted the measurement of concentric, eccentric, and static strength, which increased for the RET group (8-12% post- versus pre-test). The power (rate of force development, RFD) at the initial 0-30 ms also showed an increase for the RET group (52%). A glucose tolerance test with frequent blood glucose measurements showed improvements only for the RET group in terms of blood glucose values after 2 h (14%) and the area under the curve (21%). The blood lipid profile also improved (8%). From muscle biopsy samples prepared using histochemistry, the amount of fiber type IIa increased, and a trend towards a decrease in IIx in the RET group reflected a change to a more oxidative profile in terms of fiber composition. Western blot (to determine the protein content related to the signaling for muscle protein synthesis) showed a rise of 69% in both Akt and mTOR in the RET group; this also showed an increase in mitochondrial proteins for OXPHOS complex II and citrate synthase (both ~30%) and for complex IV (90%), in only the RET group. We demonstrate that this type of progressive resistance training offers various improvements (e.g., strength, power, aerobic capacity, glucose tolerance, and plasma lipid profile).
Collapse
Affiliation(s)
- Eva A Andersson
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH; Department of Neuroscience, Karolinska Institutet;
| | - Per Frank
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH; Department of Physiology and Pharmacology, Karolinska Institutet
| | - Marjan Pontén
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH
| | - Björn Ekblom
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH
| | - Maria Ekblom
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH; Department of Neuroscience, Karolinska Institutet
| | - Marcus Moberg
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH
| | - Kent Sahlin
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH
| |
Collapse
|
168
|
Swash M. Six issues in muscle disease. J Neurol Neurosurg Psychiatry 2017; 88:603-607. [PMID: 28501819 DOI: 10.1136/jnnp-2017-315771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/09/2017] [Accepted: 04/13/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Swash
- Department of Neurology, Barts and the London School of Medicine, QMUL at the Royal London Hospital, London, UK.,Physiology, Institute of Neuroscience, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
169
|
Valberg SJ, Nicholson AM, Lewis SS, Reardon RA, Finno CJ. Clinical and histopathological features of myofibrillar myopathy in Warmblood horses. Equine Vet J 2017; 49:739-745. [PMID: 28543538 DOI: 10.1111/evj.12702] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/12/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND To report a novel exertional myopathy, myofibrillar myopathy (MFM) in Warmblood (WB) horses. OBJECTIVES To 1) describe the distinctive clinical and myopathic features of MFM in Warmblood horses and 2) investigate the potential inheritance of MFM in a Warmblood family. STUDY DESIGN Retrospective selection of MFM cases and prospective evaluation of a Warmblood family. METHODS Retrospectively, muscle biopsies were selected from Warmblood horses diagnosed with MFM and clinical histories obtained (n = 10). Prospectively, muscle biopsies were obtained from controls (n = 8) and a three generation WB family (n = 11). Samples were assessed for histopathology [scored 0-3], fibre types, cytoskeletal and Z disc protein aggregates, electron microscopic alterations (EM) and muscle glycogen concentrations. RESULTS Myofibrillar myopathy-affected cases experienced exercise intolerance, reluctance to go forward, stiffness and poorly localised lameness. Abnormal aggregates of the cytoskeletal protein desmin were found in up to 120 type 2a and a few type 2x myofibres of MFM cases. Desmin positive fibres did not stain for developmental myosin, α actinin or dystrophin. Scores for internalised myonuclei (score MFM 0.83 ± 0.67, controls 0.22 ± 0.45), anguloid atrophy (MFM 0.95 ± 0.55, controls 0.31 ± 0.37) and total myopathic scores (MFM 5.85 ± 2.10, controls 1.41 ± 2.17) were significantly higher in MFM cases vs. CONTROLS Focal Z disc degeneration, myofibrillar disruption and accumulation of irregular granular material was evident in MFM cases. Muscle glycogen concentrations were similar between MFM cases and controls. In the Warmblood family, desmin positive aggregates were found in myofibres of the founding dam and in horses from two subsequent generations. MAIN LIMITATIONS Restricted sample size due to limited availability of well phenotyped cases. CONCLUSIONS A distinctive and potentially heritable form of MFM exists in Warmblood horses that present with exercise intolerance and abnormal hindlimb gait. Muscle tissue is characterised by ectopic accumulation of desmin and Z disc and myofibrillar degeneration.
Collapse
Affiliation(s)
- S J Valberg
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| | - A M Nicholson
- Wilhite & Frees Equine Hospital, Peculiar, Missouri, USA
| | - S S Lewis
- Hagyard Equine Medical Institute, Lexington, Kentucky, USA
| | - R A Reardon
- West End Equine Veterinary Services, Inc., Delano, Minnesota, USA
| | - C J Finno
- Department of Population Health and Reproduction, University of California Davis, Davis, California, USA
| |
Collapse
|
170
|
Andersen JL, Gruschy-Knudsen T. Rapid switch-off of the human myosin heavy chain IIX gene after heavy load muscle contractions is sustained for at least four days. Scand J Med Sci Sports 2017; 28:371-380. [DOI: 10.1111/sms.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Affiliation(s)
- J. L. Andersen
- Institute of Sports Medicine; Bispebjerg Hospital and Center for Healthy Aging; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - T. Gruschy-Knudsen
- Institute of Sports Medicine; Bispebjerg Hospital and Center for Healthy Aging; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
171
|
Andersen JL, Jørgensen JR, Zeeman P, Bech-Pedersen DT, Sørensen J, Ara I, Andersen LL. Effects of high-intensity physical training on muscle fiber characteristics in poststroke patients. Muscle Nerve 2017; 56:954-962. [PMID: 27977854 DOI: 10.1002/mus.25514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2016] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Stroke is a leading cause of disability worldwide. High-intensity physical training can improve muscle strength and gait speed, but adaptive mechanisms at the muscle cellular level are largely unknown. METHODS Outpatients with poststroke hemiparesis participated in a 3-month rehabilitation program combining high-intensity strength and body-weight supported treadmill-training. Biopsies sampled bilaterally from vastus lateralis muscles, before, after, and at 1-year follow-up after intervention, were analyzed for fiber size, type, and capillarization. RESULTS At baseline, paretic lower limbs had smaller muscle fiber size and lower type I and IIA and higher type IIX percentages than nonparetic lower limbs. Paretic lower limbs had increased type IIA fibers after training. At follow-up, no difference between the lower limbs remained. CONCLUSIONS Although high-intensity training appeared not to induce changes in fiber size or capillarization, increased type IIA fiber percentages may contribute to muscle power and endurance, which is crucial for functional capacity. Muscle Nerve 56: 954-962, 2017.
Collapse
Affiliation(s)
- Jesper L Andersen
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Building 8, Bispebjerg Bakke 23, DK-2400, NV, Copenhagen, Denmark
| | - Jørgen R Jørgensen
- Center for Rehabilitation of Brain Injury, University of Copenhagen, Copenhagen, Denmark
| | - Peter Zeeman
- Center for Rehabilitation of Brain Injury, University of Copenhagen, Copenhagen, Denmark
| | - Daniel T Bech-Pedersen
- Center for Rehabilitation of Brain Injury, University of Copenhagen, Copenhagen, Denmark
| | - Jane Sørensen
- Center for Rehabilitation of Brain Injury, University of Copenhagen, Copenhagen, Denmark
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Lars L Andersen
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Physical Activity and Human Performance group, SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
172
|
The relationship between muscle fiber characteristics and some meat quality parameters in Turkish native sheep breeds. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
173
|
Lacerda DC, Ferraz-Pereira KN, Visco DB, Pontes PB, Chaves WF, Guzman-Quevedo O, Manhães-de-Castro R, Toscano AE. Perinatal undernutrition associated to experimental model of cerebral palsy increases adverse effects on chewing in young rats. Physiol Behav 2017; 173:69-78. [DOI: 10.1016/j.physbeh.2017.01.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 11/30/2022]
|
174
|
Bechshøft RL, Malmgaard-Clausen NM, Gliese B, Beyer N, Mackey AL, Andersen JL, Kjær M, Holm L. Improved skeletal muscle mass and strength after heavy strength training in very old individuals. Exp Gerontol 2017; 92:96-105. [PMID: 28363433 DOI: 10.1016/j.exger.2017.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/12/2017] [Accepted: 03/13/2017] [Indexed: 12/15/2022]
Abstract
Age-related loss of muscle mass and function represents personal and socioeconomic challenges. The purpose of this study was to determine the adaptation of skeletal musculature in very old individuals (83+ years) performing 12weeks of heavy resistance training (3×/week) (HRT) compared to a non-training control group (CON). Both groups received similar protein supplementations. We studied 26 participants (86.9±3.2 (SD) (83-94, range) years old) per-protocol. Quadriceps cross-sectional area (CSA) differed between groups at post-test (P<0.05) and increased 1.5±0.7cm2 (3.4%) (P<0.05) in HRT only. The increase in CSA is correlated inversely with the baseline level of CSA (R2=0.43, P<0.02). Thigh muscle isometric strength, isokinetic peak torque and power increased significantly only in HRT by 10-15%, whereas knee extension one-repetition maximum (1 RM) improved by 91%. Physical functional tests, muscle fiber type distribution and size did not differ significantly between groups. We conclude that in protein supplemented very old individuals, heavy resistance training can increase muscle mass and strength, and that the relative improvement in mass is more pronounced when initial muscle mass is low.
Collapse
Affiliation(s)
- Rasmus Leidesdorff Bechshøft
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nikolaj Mølkjær Malmgaard-Clausen
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bjørn Gliese
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nina Beyer
- Musculoskeletal Rehabilitation Research Unit, Dept. of Physical and Occupational Therapy, Bispebjerg Hospital, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Jesper Løvind Andersen
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Michael Kjær
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Lars Holm
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
175
|
Ragionieri L, Ivanovska A, Pendovski L, Ravanetti F, Botti M, Gazza F, Cacchioli A. Influence of genetic selection on the myofibre type composition of porcine biceps femoris muscle: a comparative study of a purebred (Nero di Parma) and commercial hybrid pigs (Large White × Landrace × Duroc). ZOOMORPHOLOGY 2017. [DOI: 10.1007/s00435-017-0346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
176
|
The effect of maternal nutrition level during the periconception period on fetal muscle development and plasma hormone concentrations in sheep. Animal 2017; 10:1689-96. [PMID: 27641929 DOI: 10.1017/s1751731116000835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The effect of maternal nutrition level during the periconception period on the muscle development of fetus and maternal-fetal plasma hormone concentrations in sheep were examined. Estrus was synchronized in 55 Karayaka ewes and were either fed ad libitum (well-fed, WF, n=23) or 0.5×maintenance (under-fed, UF, n=32) 6 days before and 7 days after mating. Non-pregnant ewes (WF, n=13; UF, n=24) and ewes carrying twins (WF, n=1) and female (WF, n=1; UF, n=3) fetuses were removed from the experiment. The singleton male fetuses from well-fed (n=8) and under-fed (n=5) ewes were collected on day 90 of gestation and placental characteristics, fetal BWs and dimensions, fetal organs and muscles weights were recorded. Maternal (on day 7 after mating) and fetal (on day 90 of pregnancy) blood samples were collected to analyze plasma hormone concentrations. Placental characteristics, BW and dimensions, organs and muscles weights of fetuses were not affected by maternal feed intake during the periconception period. Maternal nutrition level did not affect fiber numbers and the muscle cross-sectional area of the fetal longissimus dorsi (LD), semitendinosus (ST) muscles, but the cross-sectional area of the secondary fibers in the fetal LD and ST muscles from the UF ewes were higher than those from the WF ewes (P<0.05). Also, the ratio of secondary to primary fibers in the ST muscle were tended to be lower in the fetuses from the UF ewes (P=0.07). Maternal nutrition level during the periconception period did not cause any significant changes in fetal plasma insulin and maternal and fetal plasma IGF-I, cortisol, progesterone, free T3 and T4 concentrations. However, maternal cortisol concentrations were lower while insulin concentrations were higher in the WF ewes than those in the UF ewes (P<0.05). These results indicate that the reduced maternal feed intake during the periconception period may alter muscle fiber diameter without affecting fiber types, fetal weights and organ developments and plasma hormone concentrations in the fetus.
Collapse
|
177
|
Carroll AM, Cheng R, Collie-Duguid ESR, Meharg C, Scholz ME, Fiering S, Fields JL, Palmer AA, Lionikas A. Fine-mapping of genes determining extrafusal fiber properties in murine soleus muscle. Physiol Genomics 2017; 49:141-150. [PMID: 28087756 PMCID: PMC5374456 DOI: 10.1152/physiolgenomics.00092.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 02/08/2023] Open
Abstract
Muscle fiber cross-sectional area (CSA) and proportion of different fiber types are important determinants of muscle function and overall metabolism. Genetic variation plays a substantial role in phenotypic variation of these traits; however, the underlying genes remain poorly understood. This study aimed to map quantitative trait loci (QTL) affecting differences in soleus muscle fiber traits between the LG/J and SM/J mouse strains. Fiber number, CSA, and proportion of oxidative type I fibers were assessed in the soleus of 334 genotyped female and male mice of the F34 generation of advanced intercross lines (AIL) derived from the LG/J and SM/J strains. To increase the QTL detection power, these data were combined with 94 soleus samples from the F2 intercross of the same strains. Transcriptome of the soleus muscle of LG/J and SM/J females was analyzed by microarray. Genome-wide association analysis mapped four QTL (genome-wide P < 0.05) affecting the properties of muscle fibers to chromosome 2, 3, 4, and 11. A 1.5-LOD QTL support interval ranged between 2.36 and 4.67 Mb. On the basis of the genomic sequence information and functional and transcriptome data, we identified candidate genes for each of these QTL. The combination of analyses in F2 and F34 AIL populations with transcriptome and genomic sequence data in the parental strains is an effective strategy for refining QTL and nomination of the candidate genes.
Collapse
Affiliation(s)
- A M Carroll
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill Aberdeen, United Kingdom.,The New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand
| | - R Cheng
- Research School of Biology, Australian National University, Acton, Australia
| | - E S R Collie-Duguid
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill Aberdeen, United Kingdom.,Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Old Aberdeen, Aberdeen, United Kingdom
| | - C Meharg
- Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - M E Scholz
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill Aberdeen, United Kingdom
| | - S Fiering
- Department of Microbiology/Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire; and
| | - J L Fields
- Department of Microbiology/Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire; and
| | - A A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - A Lionikas
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill Aberdeen, United Kingdom;
| |
Collapse
|
178
|
Reduced protein diets increase intramuscular fat of psoas major, a red muscle, in lean and fatty pig genotypes. Animal 2017; 11:2094-2102. [DOI: 10.1017/s1751731117000921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
179
|
Hwang YH, Joo SH, Bakhsh A, Ismail I, Joo ST. Muscle Fiber Characteristics and Fatty Acid Compositions of the Four Major Muscles in Korean Native Black Goat. Korean J Food Sci Anim Resour 2017; 37:948-954. [PMID: 29725218 PMCID: PMC5932948 DOI: 10.5851/kosfa.2017.37.6.948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/09/2017] [Accepted: 12/09/2017] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to investigate the relationship between muscle fiber characteristics and fatty acid composition of four major muscles in Korean native black goat (KNBG). Longissimus lumborum (LL), psoas major (PM), semimembranosus (SM), and gluteus medius (GM) were obtained from five male KNBGs of 36 mon of age and subjected to histochemical analysis and to determine fatty acid composition and meat quality traits. There were significant (p<0.05) differences in fiber number percentage (FNP) and fiber area percentage (FAP) of fiber types among these four muscles. PM had the highest FNP of type I and the lowest FNP of type IIB, while SM had the highest FNP of type IIB. The highest fat content was observed in LL while SM had the lowest fat content. The proportions of SFA and MUFA were significantly (p<0.05) different among four muscles due to differences in the majority of fatty acids such as oleic (C18:1) and palmitic (C16:0) acids. The PUFA/SFA ratio was significantly (p<0.05) different among four muscles, and the highest PUFA/SFA ratio was observed in PM. Results suggested that LL and PM might be healthful because of higher desirable fatty acid value and PUFA/SFA ratio, respectively. Also, data showed that correlations between muscle fiber types and fatty acids proportion of goat muscles were reversed with those of cattle muscles.
Collapse
Affiliation(s)
- Young-Hwa Hwang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Korea
| | - Sung-Hyun Joo
- Department of Animal Science, Gyeongsang National University, Jinju 52852, Korea
| | - Allah Bakhsh
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52852, Korea
| | - Ishamri Ismail
- Department of Animal Science, Gyeongsang National University, Jinju 52852, Korea
| | - Seon-Tea Joo
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Korea.,Department of Animal Science, Gyeongsang National University, Jinju 52852, Korea.,Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52852, Korea
| |
Collapse
|
180
|
Antonio-Santos J, Ferreira DJS, Gomes Costa GL, Matos RJB, Toscano AE, Manhães-de-Castro R, Leandro CG. Resistance Training Alters the Proportion of Skeletal Muscle Fibers but Not Brain Neurotrophic Factors in Young Adult Rats. J Strength Cond Res 2016; 30:3531-3538. [PMID: 27870699 PMCID: PMC5145253 DOI: 10.1519/jsc.0000000000001449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Antonio-Santos, J, Ferreira, DJS, Gomes Costa, GL, Matos, RJB, Toscano, AE, Manhães-de-Castro, R, and Leandro, CG. Resistance training alters the proportion of skeletal muscle fibers but not brain neurotrophic factors in young adult rats. J Strength Cond Res 30(12): 3531–3538, 2016—Resistance training (RT) is related to improved muscular strength and power output. Different programs of RT for rats have been developed, but peripheral and central response has not been evaluated directly in the same animal. To test the hypothesis that RT induces central and peripheral adaptations, this study evaluated the effects of a RT on the performance of a weekly maximum overload test, fiber-type typology, and brain neurotrophic factors in young adult rats. Thirty-one male Wistar rats (65 ± 5 days) were divided in 2 groups: nontrained (NT, n = 13) and trained (T, n = 18). Trained group was submitted to a program of RT ladder climbing, gradually added mass, 5 days per week during 8 weeks at 80% of individual maximum overload. This test was weekly performed to adjust the individual load throughout the weeks for both groups. After 48 hours from the last session of exercise, soleus and extensor digital longus (EDL) muscles were removed for myofibrillar ATPase staining analysis. Spinal cord, motor cortex, and cerebellum were removed for RT-PCR analysis of BDNF and insulin-like growth factor-1 (IGF-1) gene expression. In EDL muscle, T animals showed an increase in the proportion of type IIb fibers and a reduction of type IIa fibers. Insulin-like growth factor-1 gene expression was reduced in the cerebellum of T animals (NT: 1.025 ± 0.12; T: 0.57 ± 0.11). Our data showed that 8 weeks of RT were enough to increase maximum overload capacity and the proportion of glycolytic muscle fibers, but there were no associations with the expression of growth neurotrophic factors.
Collapse
Affiliation(s)
- José Antonio-Santos
- 1Department of Physical Education and Sport Science, Academic Center of Vitoria de Santo Antao, Federal University of Pernambuco, Recife, Brazil;2Department of Nursing, Academic Center of Vitoria de Santo Antao, Federal University of Pernambuco, Recife, Brazil; and3Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | | | | | | |
Collapse
|
181
|
Korfage JAM, Koolstra JH, Langenbach GEJ, van Eijden TMGJ. Fiber-type Composition of the Human Jaw Muscles—(Part 1) Origin and Functional Significance of Fiber-type Diversity. J Dent Res 2016; 84:774-83. [PMID: 16109984 DOI: 10.1177/154405910508400901] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This is the first of two articles on the fiber-type composition of the human jaw muscles. The present article discusses the origin of fiber-type composition and its consequences. This discussion is presented in the context of the requirements for functional performance and adaptation that are imposed upon the jaw muscles. The human masticatory system must perform a much larger variety of motor tasks than the average limb or trunk motor system. An important advantage of fiber-type diversity, as observed in the jaw muscles, is that it optimizes the required function while minimizing energy use. The capacity for adaptation is reflected by the large variability in fiber-type composition among muscle groups, individual muscles, and muscle regions. Adaptive changes are related, for example, to the amount of daily activation and/or stretch of fibers. Generally, the number of slow, fatigue-resistant fibers is relatively large in muscles and muscle regions that are subjected to considerable activity and/or stretch.
Collapse
Affiliation(s)
- J A M Korfage
- Department of Functional Anatomy, Academic Center for Dentistry Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
182
|
Lim KS, Lee KT, Park JE, Chung WH, Jang GW, Choi BH, Hong KC, Kim TH. Identification of differentially expressed genes in longissimus muscle of pigs with high and low intramuscular fat content using RNA sequencing. Anim Genet 2016; 48:166-174. [DOI: 10.1111/age.12518] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 01/07/2023]
Affiliation(s)
- K. S. Lim
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science; Rural Development Administration; Wanju 565-851 Korea
- College of Life Science and Biotechnology; Korea University; Seoul 136-713 Korea
| | - K. T. Lee
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science; Rural Development Administration; Wanju 565-851 Korea
| | - J. E. Park
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science; Rural Development Administration; Wanju 565-851 Korea
| | - W. H. Chung
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science; Rural Development Administration; Wanju 565-851 Korea
| | - G. W. Jang
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science; Rural Development Administration; Wanju 565-851 Korea
| | - B. H. Choi
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science; Rural Development Administration; Wanju 565-851 Korea
| | - K. C. Hong
- College of Life Science and Biotechnology; Korea University; Seoul 136-713 Korea
| | - T. H. Kim
- Animal Genomics and Bioinformatics Division; National Institute of Animal Science; Rural Development Administration; Wanju 565-851 Korea
| |
Collapse
|
183
|
Thompson C, Wylie LJ, Blackwell JR, Fulford J, Black MI, Kelly J, McDonagh STJ, Carter J, Bailey SJ, Vanhatalo A, Jones AM. Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training. J Appl Physiol (1985) 2016; 122:642-652. [PMID: 27909231 DOI: 10.1152/japplphysiol.00909.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/13/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1) SIT and [Formula: see text]-depleted beetroot juice as a placebo (SIT+PL); 2) SIT and [Formula: see text]-rich beetroot juice (~13 mmol [Formula: see text]/day; SIT+BR); or 3) no training and [Formula: see text]-rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR (P < 0.05) but not SIT+PL. The peak work rate attained during incremental exercise increased more in SIT+BR than in SIT+PL (P < 0.05) or NT+BR (P < 0.001). The reduction in muscle and blood [lactate] and the increase in muscle pH from preintervention to postintervention were greater at 3 min of severe-intensity exercise in SIT+BR compared with SIT+PL and NT+BR (P < 0.05). However, the change in severe-intensity exercise performance was not different between SIT+BR and SIT+PL (P > 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only (P < 0.05). These findings suggest that BR supplementation may enhance some aspects of the physiological adaptations to SIT.NEW & NOTEWORTHY We investigated the influence of nitrate-rich and nitrate-depleted beetroot juice on the muscle metabolic and physiological adaptations to 4 wk of sprint interval training. Compared with placebo, dietary nitrate supplementation reduced the O2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval training.
Collapse
Affiliation(s)
| | - Lee J Wylie
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Jamie R Blackwell
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Jonathan Fulford
- National Institute for Health Research Exeter Clinical Research Facility, University of Exeter, Exeter, United Kingdom; and
| | - Matthew I Black
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - James Kelly
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | | | - James Carter
- Gatorade Sports Science Institute, PepsiCo Research & Development, Barrington, Illinois
| | - Stephen J Bailey
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Anni Vanhatalo
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Andrew M Jones
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom;
| |
Collapse
|
184
|
Abstract
Motor unit territories in masticatory muscles appear to be smaller than territories in limb muscles, and this would suggest a more localized organization of motor control in masticatory muscles. Motor unit cross-sectional areas show a wide range of values, which explains the large variability of motor unit force output. The proportion of motor unit muscle fibers containing more than one myosin heavy-chain (MHC) isoform is considerably larger in masticatory muscles than in limb and trunk muscles. This explains the continuous range of contraction speeds found in masticatory muscle motor units. Hence, in masticatory muscles, a finer gradation of force and contraction speeds is possible than in limb and in trunk muscles. The proportion of slow-type motor units is relatively large in deep and anterior masticatory muscle regions, whereas more fast-type units are more common in the superficial and posterior muscle regions. Muscle portions with a high proportion of slow-type motor units are better equipped for a finer control of muscle force and a larger resistance to fatigue during chewing and biting than muscle portions with a high proportion of fast units. For the force modulation, masticatory muscles rely mostly on recruitment gradation at low force levels and on rate gradation at high force levels. Henneman's principle of an orderly recruitment of motor units has also been reported for various masticatory muscles. The presence of localized motor unit territories and task-specific motor unit activity facilitates differential control of separate muscle portions. This gives the masticatory muscles the capacity of producing a large diversity of mechanical actions. In this review, the properties of masticatory muscle motor units are discussed.
Collapse
Affiliation(s)
- T M van Eijden
- Department of Functional Anatomy, Academic Center for Dentistry Amsterdam, The Netherlands.
| | | |
Collapse
|
185
|
García Liñeiro JA, Graziotti GH, Rodríguez Menéndez JM, Ríos CM, Affricano NO, Victorica CL. Structural and functional characteristics of the thoracolumbar multifidus muscle in horses. J Anat 2016; 230:398-406. [PMID: 27861847 DOI: 10.1111/joa.12564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2016] [Indexed: 11/29/2022] Open
Abstract
The multifidus muscle fascicles of horses attach to vertebral spinous processes after crossing between one to six metameres. The fascicles within one or two metameres are difficult to distinguish in horses. A vertebral motion segment is anatomically formed by two adjacent vertebrae and the interposed soft tissue structures, and excessive mobility of a vertebral motion segment frequently causes osteoarthropathies in sport horses. The importance of the equine multifidus muscle as a vertebral motion segment stabilizer has been demonstrated; however, there is scant documentation of the structure and function of this muscle. By studying six sport horses postmortem, the normalized muscle fibre lengths of the the multifidus muscle attached to the thoracic (T)4, T9, T12, T17 and lumbar (L)3 vertebral motion segments were determined and the relative areas occupied by fibre types I, IIA and IIX were measured in the same muscles after immunohistochemical typying. The values for the normalized muscle fibre lengths and the relative areas were analysed as completely randomized blocks using an anova (P ≤ 0.05). The vertebral motion segments of the T4 vertebra include multifidus bundles extending between two and eight metameres; the vertebral motion segments of the T9, T12, T17 and L3 vertebrae contain fascicles extending between two and four metameres The muscle fibres with high normalized lengths that insert into the T4 (three and eight metameres) vertebral motion segment tend to have smaller physiological cross-sectional areas, indicating their diminished capacity to generate isometric force. In contrast, the significantly decreased normalized muscle fibre lengths and the increased physiological cross-sectional areas of the fascicles of three metameres with insertions on T9, T17, T12, L3 and the fascicles of four metameres with insertions on L3 increase their capacities to generate isometric muscle force and neutralize excessive movements of the vertebral segments with great mobility. There were no significant differences in the values of relative areas occupied by fibre types I, IIA and IIX. In considering the relative areas occupied by the fibre types in the multifidus muscle fascicles attached to each vertebral motion segment examined, the relative area occupied by the type I fibres was found to be significantly higher in the T4 vertebral motion segment than in the other segments. It can be concluded that the equine multifidus muscle in horses is an immunohistochemically homogeneous muscle with various architectural designs that have functional significance according to the vertebral motion segments considered. The results obtained in this study can serve as a basis for future research aimed at understanding the posture and dynamics of the equine spine.
Collapse
Affiliation(s)
- J A García Liñeiro
- Department of Health and Equine Production, School of Veterinary Sciences, Buenos Aires University, Buenos Aires, Argentina
| | - G H Graziotti
- Department of Anatomy, School of Veterinary Sciences, Buenos Aires University, Buenos Aires, Argentina
| | - J M Rodríguez Menéndez
- Department of Anatomy, School of Veterinary Sciences, Buenos Aires University, Buenos Aires, Argentina
| | - C M Ríos
- Department of Anatomy, School of Veterinary Sciences, Buenos Aires University, Buenos Aires, Argentina
| | - N O Affricano
- Department of Anatomy, School of Veterinary Sciences, Buenos Aires University, Buenos Aires, Argentina
| | - C L Victorica
- Department of Anatomy, School of Veterinary Sciences, Buenos Aires University, Buenos Aires, Argentina
| |
Collapse
|
186
|
Sawano S, Komiya Y, Ichitsubo R, Ohkawa Y, Nakamura M, Tatsumi R, Ikeuchi Y, Mizunoya W. A One-Step Immunostaining Method to Visualize Rodent Muscle Fiber Type within a Single Specimen. PLoS One 2016; 11:e0166080. [PMID: 27814384 PMCID: PMC5096669 DOI: 10.1371/journal.pone.0166080] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022] Open
Abstract
In this study, we present a quadruple immunostaining method for rapid muscle fiber typing of mice and rats using antibodies specific to the adult myosin heavy chain (MyHC) isoforms MyHC1, 2A, 2X, and 2B, which are common marker proteins of distinct muscle fiber types. We developed rat monoclonal antibodies specific to each MyHC isoform and conjugated these four antibodies to fluorophores with distinct excitation and emission wavelengths. By mixing the four types of conjugated antibodies, MyHC1, 2A, 2X, and 2B could be distinguished within a single specimen allowing for facile delineation of skeletal muscle fiber types. Furthermore, we could observe hybrid fibers expressing MyHC2X and MyHC2B together in single longitudinal muscle sections from mice and rats, that was not attained in previous techniques. This staining method is expected to be applied to study muscle fiber type transition in response to environmental factors, and to ultimately develop techniques to regulate animal muscle fiber types.
Collapse
Affiliation(s)
- Shoko Sawano
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Department of Food Nutrition, Fukuoka Women's Junior College, Dazaifu, Japan
| | - Yusuke Komiya
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Riho Ichitsubo
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- CREST, JST, Saitama, Japan
| | - Mako Nakamura
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshihide Ikeuchi
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Wataru Mizunoya
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
187
|
Effects of fibre type and structure of longissimus lumborum (Ll), biceps femoris (Bf) and semimembranosus (Sm) deer muscles salting with different Nacl addition on proteolysis index and texture of dry-cured meats. Meat Sci 2016; 121:390-396. [DOI: 10.1016/j.meatsci.2016.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 11/23/2022]
|
188
|
Gordon T, de Zepetnek JET. Motor unit and muscle fiber type grouping after peripheral nerve injury in the rat. Exp Neurol 2016; 285:24-40. [DOI: 10.1016/j.expneurol.2016.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/17/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
|
189
|
Lee SH, Kim JM, Ryu YC, Ko KS. Effects of Morphological Characteristics of Muscle Fibers on Porcine Growth Performance and Pork Quality. Korean J Food Sci Anim Resour 2016; 36:583-593. [PMID: 27857533 PMCID: PMC5112420 DOI: 10.5851/kosfa.2016.36.5.583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to investigate the effects of morphological characteristics of porcine muscle fibers on growth performance, muscle fiber characteristics, and pork quality taken from the longissimus dorsi muscle. A total of 239 crossbred pigs (164 castrated males and 75 females) were used in this study. Experimental pigs were categorized by the total number of muscle fiber (TNF: High and Low) and cross sectional area of muscle fiber (CSAF: Large, Middle, and Small). Their combinations were classified into six groups (High-Large, HL; High-Middle, HM; High-Small, HS; Low-Large, LL; Low-Middle, LM; Low-Small, LS). The TNF and CSAF were significantly (p<0.05) correlated with growth rate and carcass productivity, while the only of the type I number had no meaningful relationships excluding the correlation with loin area (p<0.001). The proportion of type I area was positively correlated with pH45 min while the proportion of type IIB area was negatively correlated with pH45 min and pH24 h (p<0.05). Drip loss and protein denaturation had strong relationships with the proportion of type IIB number or area. The HL group exhibited the greatest growth performance. In addition, the HL group had significantly greater values in protein solubility than the other groups. In conclusion, this study suggest that high TNF combined to large CSAF improve the ultimate lean meat productivity and assure normal meat quality simultaneously with increased both proportion of number and area of type I, type IIA muscle fibers and lowered proportion of number and area of type IIB.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Department of Nutritional Science and Food Management, College of Science & Industry Convergence, Ewha Womans University, Seoul 03760, Korea
| | - Jun-Mo Kim
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Youn Chul Ryu
- Department of Biotechnology, Sustainable Agriculture Research Institute, Jeju National University, Jeju 63243, Korea
| | - Kwang Suk Ko
- Department of Nutritional Science and Food Management, College of Science & Industry Convergence, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
190
|
Rizo-Roca D, Ríos-Kristjánsson JG, Núñez-Espinosa C, Santos-Alves E, Gonçalves IO, Magalhães J, Ascensão A, Pagès T, Viscor G, Torrella JR. Intermittent hypobaric hypoxia combined with aerobic exercise improves muscle morphofunctional recovery after eccentric exercise to exhaustion in trained rats. J Appl Physiol (1985) 2016; 122:580-592. [PMID: 27765844 DOI: 10.1152/japplphysiol.00501.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/27/2016] [Accepted: 10/13/2016] [Indexed: 01/07/2023] Open
Abstract
Unaccustomed eccentric exercise leads to muscle morphological and functional alterations, including microvasculature damage, the repair of which is modulated by hypoxia. We present the effects of intermittent hypobaric hypoxia and exercise on recovery from eccentric exercise-induced muscle damage (EEIMD). Soleus muscles from trained rats were excised before (CTRL) and 1, 3, 7, and 14 days after a double session of EEIMD protocol. A recovery treatment consisting of one of the following protocols was applied 1 day after the EEIMD: passive normobaric recovery (PNR), a 4-h daily exposure to passive hypobaric hypoxia at 4,000 m (PHR), or hypobaric hypoxia exposure followed by aerobic exercise (AHR). EEIMD produced an increase in the percentage of abnormal fibers compared with CTRL, and it affected the microvasculature by decreasing capillary density (CD, capillaries per mm2) and the capillary-to-fiber ratio (CF). After 14 days, AHR exhibited CD and CF values similar to those of CTRL animals (789 and 3.30 vs. 746 and 3.06) and significantly higher than PNR (575 and 2.62) and PHR (630 and 2.92). Furthermore, VEGF expression showed a significant 43% increase in AHR when compared with PNR. Moreover, after 14 days, the muscle fibers in AHR had a more oxidative phenotype than the other groups, with significantly smaller cross-sectional areas (AHR, 3,745; PNR, 4,502; and PHR, 4,790 µm2), higher citrate synthase activity (AHR, 14.8; PNR, 13.1; and PHR, 12 µmol·min-1·mg-1) and a significant 27% increment in PGC-1α levels compared with PNR. Our data show that hypoxia combined with exercise attenuates or reverses the morphofunctional alterations induced by EEIMD.NEW & NOTEWORTHY Our study provides new insights into the use of intermittent hypobaric hypoxia combined with exercise as a strategy to recover muscle damage induced by eccentric exercise. We analyzed the effects of hypobaric exposure combined with aerobic exercise on histopathological features of muscle damage, fiber morphofunctionality, capillarization, angiogenesis, and the oxidative capacity of damaged soleus muscle. Most of these parameters were improved after a 2-wk protocol of intermittent hypobaric hypoxia combined with aerobic exercise.
Collapse
Affiliation(s)
- D Rizo-Roca
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; and
| | - J G Ríos-Kristjánsson
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; and
| | - C Núñez-Espinosa
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; and
| | - E Santos-Alves
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - I O Gonçalves
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - J Magalhães
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - A Ascensão
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - T Pagès
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; and
| | - G Viscor
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; and
| | - J R Torrella
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; and
| |
Collapse
|
191
|
Latroche C, Gitiaux C, Chrétien F, Desguerre I, Mounier R, Chazaud B. Skeletal Muscle Microvasculature: A Highly Dynamic Lifeline. Physiology (Bethesda) 2016; 30:417-27. [PMID: 26525341 DOI: 10.1152/physiol.00026.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle is highly irrigated by blood vessels. Beyond oxygen and nutrient supply, new vessel functions have been identified. This review presents vessel microanatomy and functions at tissue, cellular, and molecular levels. Mechanisms of vessel plasticity are described during skeletal muscle development and acute regeneration, and in physiological and pathological contexts.
Collapse
Affiliation(s)
- Claire Latroche
- Institut Cochin, INSERM U1016, Paris, France; CNRS 8104, Paris, France; Université Paris Descartes, Paris, France; Institut Pasteur, Paris, France
| | - Cyril Gitiaux
- Institut Cochin, INSERM U1016, Paris, France; CNRS 8104, Paris, France; Université Paris Descartes, Paris, France; Institut Pasteur, Paris, France
| | | | - Isabelle Desguerre
- Institut Cochin, INSERM U1016, Paris, France; CNRS 8104, Paris, France; Université Paris Descartes, Paris, France
| | - Rémi Mounier
- CGPhyMC, CNRS UMR5534, Villeurbanne, France; and Université Claude Bernard Lyon1, Villeurbanne, France
| | - Bénédicte Chazaud
- Institut Cochin, INSERM U1016, Paris, France; CNRS 8104, Paris, France; Université Paris Descartes, Paris, France; CGPhyMC, CNRS UMR5534, Villeurbanne, France; and Université Claude Bernard Lyon1, Villeurbanne, France
| |
Collapse
|
192
|
Zinner C, Morales-Alamo D, Ørtenblad N, Larsen FJ, Schiffer TA, Willis SJ, Gelabert-Rebato M, Perez-Valera M, Boushel R, Calbet JAL, Holmberg HC. The Physiological Mechanisms of Performance Enhancement with Sprint Interval Training Differ between the Upper and Lower Extremities in Humans. Front Physiol 2016; 7:426. [PMID: 27746738 PMCID: PMC5043010 DOI: 10.3389/fphys.2016.00426] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/08/2016] [Indexed: 01/15/2023] Open
Abstract
To elucidate the mechanisms underlying the differences in adaptation of arm and leg muscles to sprint training, over a period of 11 days 16 untrained men performed six sessions of 4–6 × 30-s all-out sprints (SIT) with the legs and arms, separately, with a 1-h interval of recovery. Limb-specific VO2peak, sprint performance (two 30-s Wingate tests with 4-min recovery), muscle efficiency and time-trial performance (TT, 5-min all-out) were assessed and biopsies from the m. vastus lateralis and m. triceps brachii taken before and after training. VO2peak and Wmax increased 3–11% after training, with a more pronounced change in the arms (P < 0.05). Gross efficiency improved for the arms (+8.8%, P < 0.05), but not the legs (−0.6%). Wingate peak and mean power outputs improved similarly for the arms and legs, as did TT performance. After training, VO2 during the two Wingate tests was increased by 52 and 6% for the arms and legs, respectively (P < 0.001). In the case of the arms, VO2 was higher during the first than second Wingate test (64 vs. 44%, P < 0.05). During the TT, relative exercise intensity, HR, VO2, VCO2, VE, and Vt were all lower during arm-cranking than leg-pedaling, and oxidation of fat was minimal, remaining so after training. Despite the higher relative intensity, fat oxidation was 70% greater during leg-pedaling (P = 0.017). The aerobic energy contribution in the legs was larger than for the arms during the Wingate tests, although VO2 for the arms was enhanced more by training, reducing the O2 deficit after SIT. The levels of muscle glycogen, as well as the myosin heavy chain composition were unchanged in both cases, while the activities of 3-hydroxyacyl-CoA-dehydrogenase and citrate synthase were elevated only in the legs and capillarization enhanced in both limbs. Multiple regression analysis demonstrated that the variables that predict TT performance differ for the arms and legs. The primary mechanism of adaptation to SIT by both the arms and legs is enhancement of aerobic energy production. However, with their higher proportion of fast muscle fibers, the arms exhibit greater plasticity.
Collapse
Affiliation(s)
- Christoph Zinner
- Department of Sport Science, Julius Maximilians University WürzburgWürzburg, Germany; Swedish Winter Sports Research Centre, Mid Sweden UniversityÖstersund, Sweden
| | - David Morales-Alamo
- Research Institute of Biomedical and Health Sciences (IUIBS) and Department of Physical Education, University of Las Palmas de Gran Canaria Las Palmas, Spain
| | - Niels Ørtenblad
- Swedish Winter Sports Research Centre, Mid Sweden UniversityÖstersund, Sweden; Institute of Sports Science and Clinical Biomechanics, University of Southern DenmarkOdense, Denmark
| | - Filip J Larsen
- Swedish School of Sport and Health Sciences Stockholm, Sweden
| | - Tomas A Schiffer
- Department of Medical and Health Sciences, Linköping University Linköping, Sweden
| | - Sarah J Willis
- Swedish Winter Sports Research Centre, Mid Sweden University Östersund, Sweden
| | - Miriam Gelabert-Rebato
- Research Institute of Biomedical and Health Sciences (IUIBS) and Department of Physical Education, University of Las Palmas de Gran Canaria Las Palmas, Spain
| | - Mario Perez-Valera
- Research Institute of Biomedical and Health Sciences (IUIBS) and Department of Physical Education, University of Las Palmas de Gran Canaria Las Palmas, Spain
| | - Robert Boushel
- School of Kinesiology, University of British Columbia Vancouver, BC, Canada
| | - Jose A L Calbet
- Research Institute of Biomedical and Health Sciences (IUIBS) and Department of Physical Education, University of Las Palmas de Gran CanariaLas Palmas, Spain; School of Kinesiology, University of British ColumbiaVancouver, BC, Canada
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Mid Sweden UniversityÖstersund, Sweden; School of Kinesiology, University of British ColumbiaVancouver, BC, Canada; School of Sport Sciences, UiT Arctic University of NorwayTromsø, Norway
| |
Collapse
|
193
|
Tsitkanou S, Spengos K, Stasinaki AN, Zaras N, Bogdanis G, Papadimas G, Terzis G. Effects of high-intensity interval cycling performed after resistance training on muscle strength and hypertrophy. Scand J Med Sci Sports 2016; 27:1317-1327. [PMID: 27659479 DOI: 10.1111/sms.12751] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2016] [Indexed: 11/30/2022]
Abstract
Aim of the study was to investigate whether high-intensity interval cycling performed immediately after resistance training would inhibit muscle strength increase and hypertrophy expected from resistance training per se. Twenty-two young men were assigned into either resistance training (RE; N = 11) or resistance training plus high-intensity interval cycling (REC; N = 11). Lower body muscle strength and rate of force development (RFD), quadriceps cross-sectional area (CSA) and vastus lateralis muscle architecture, muscle fiber type composition and capillarization, and estimated aerobic capacity were evaluated before and after 8 weeks of training (2 times per week). Muscle strength and quadriceps CSA were significantly and similarly increased after both interventions. Fiber CSA increased significantly and similarly after both RE (type I: 13.6 ± 3.7%, type IIA: 17.6 ± 4.4%, type IIX: 23.2 ± 5.7%, P < 0.05) and REC (type I: 10.0 ± 2.7%, type IIA: 14.8 ± 4.3% type IIX: 20.8 ± 6.0%, P < 0.05). In contrast, RFD decreased and fascicle angle increased (P < 0.05) only after REC. Capillary density and estimated aerobic capacity increased (P < 0.05) only after REC. These results suggest that high-intensity interval cycling performed after heavy-resistance exercise may not inhibit resistance exercise-induced muscle strength/hypertrophy after 2 months of training, while it prompts aerobic capacity and muscle capillarization. The addition of high-intensity cycling after heavy-resistance exercise may decrease RFD partly due to muscle architectural changes.
Collapse
Affiliation(s)
- S Tsitkanou
- Athletics Laboratory, School of Physical Education and Sport Science, University of Athens, Athens, Greece
| | - K Spengos
- 1st Department of Neurology, Eginition Hospital, University of Athens Medical School, Athens, Greece
| | - A-N Stasinaki
- Athletics Laboratory, School of Physical Education and Sport Science, University of Athens, Athens, Greece
| | - N Zaras
- Athletics Laboratory, School of Physical Education and Sport Science, University of Athens, Athens, Greece
| | - G Bogdanis
- Athletics Laboratory, School of Physical Education and Sport Science, University of Athens, Athens, Greece
| | - G Papadimas
- 1st Department of Neurology, Eginition Hospital, University of Athens Medical School, Athens, Greece
| | - G Terzis
- Athletics Laboratory, School of Physical Education and Sport Science, University of Athens, Athens, Greece
| |
Collapse
|
194
|
de A Braga S, G F Padilha F, M R Ferreira A. Evaluation of Muscle Fiber Types in German Shepherd Dogs of Different Ages. Anat Rec (Hoboken) 2016; 299:1540-1547. [PMID: 27533067 DOI: 10.1002/ar.23464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 06/11/2016] [Accepted: 06/17/2016] [Indexed: 11/06/2022]
Abstract
The objective of this study was to determine and confirm the percentage of type I and type II muscle fibers that comprise the Gluteus Medius muscle in male and female canines of the German Shepherd breed, with standardized care, in different age groups, using the enzyme histochemical method. Muscle samples were collected from the Gluteus Medius muscles of forty clinically healthy dogs of the German Shepherd breed using the technique of percutaneous needle muscle biopsy. The samples were evaluated using histological and enzyme histochemical methods. The percentages of type I and II fibers and the ratio between the quantity of type I fibers/quantity of type II fibers were evaluated using the parameters of weight, age group, correlation between sex and age group, and between the sexes. It was found that there was no significant difference in relation to the types of fibers for the parameters of weight, age group, and age of the females. The correlation between the ages of the males suggested an increase in the percentage of type I fibers, a decrease in the percentage of type II fibers, or an increase in the ratio during the aging process. It was concluded that there was a decrease in the percentage of type II fibers with advancing age in male dogs, but without significant difference in the percentage of type I and type II fibers in relation to the weight. Anat Rec, 299:1540-1547, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sérgio de A Braga
- Department of Pathology and Veterinary Clinic, Veterinary School, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Felipe G F Padilha
- Department of Pathology and Veterinary Clinic, Veterinary School, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Ana M R Ferreira
- Department of Pathology and Veterinary Clinic, Veterinary School, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
195
|
Influence of growth rate and muscle type on muscle fibre type characteristics, protein synthesis capacity and activity of the calpain system in Friesian calves. ACTA ACUST UNITED AC 2016. [DOI: 10.1017/s1357729800052413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe objective of this study was to determine the effect of growth rate on muscle fibre characteristics, concentration of nucleic acids (RNA and DNA) as indicators of muscle protein synthesis capacity and activity of the calpain system at time of slaughter in m. longissimus lumborum (LL) and m. supraspinatus (SS) from calves, in order to elucidate the effect of growth rate on muscle protein turn-over at time of slaughter. Twenty-four Friesian heifer calves were allocated to two different feeding regimens that allowed for a moderate/moderate (MM) or high/high (HH) growth rate from 5 days of age to 90 kg body weight (BW) (period I) and from 90 kg BW to slaughter at 250 kg BW (period II), respectively. The growth rates in the two periods and the weight of LL and SS at slaughter were recorded. Within 30 min after exsanguination, samples were removed from LL and SS, snap-frozen, and later analysed for muscle fibre type frequency and cross-sectional area, DNA and RNA concentration and the activity of the calpain system. High growth rate (i.e. 895 g/day and 1204 g/day in periods I and II, respectively), compared with moderate growth rate (678 g/day and 770 g/day in periods I and II, respectively) had a marked effect on muscle weight and muscle characteristics. High compared with moderate growth rate resulted in hypertrophic growth of type I, IIA and IIB fibres in LL and of type IIA and type IIB fibres in SS, but had no effect on the muscle fibre type frequency in either of the muscles. High growth rate increased total DNA and RNA content and the RNA: DNA ratio in LL, indicating a greater potential for protein synthesis in this muscle, whereas the effect of growth rate was smaller in SS. The activity of µ-calpain, m-calpain and calpastatin was higher in the red SS muscle compared with the whiter LL muscle. However, these enzyme activities were not affected by growth rate, and thus, did not indicate a higher myofibrillar proteolysis in vivo in calves exhibiting high growth rate compared with moderate growth rate. Overall the results showed that different types of muscles react differently to high versus moderate growth rate. High growth rate induced muscle hypertrophy and increased protein synthesis capacity especially in LL and less in SS, but the activities of the enzymes in the calpain system did not show any concomitant increase in muscle protein degradation that would be in favour of improved meat tenderness.
Collapse
|
196
|
Long-term changes in performance and meat quality of Danish Landrace pigs: a study on a current compared with an unimproved genotype. ACTA ACUST UNITED AC 2016. [DOI: 10.1017/s1357729800054916] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractAn experiment was conducted in 1995 in order to examine muscle growth, muscle histochemical properties, muscle metabolism and meat quality of two types of Danish Landrace pigs representing the growth potential of years 1976 and 1995, respectively. Danish Landrace pigs representing 1976 (slow-growing, SG) originated from a breeding station where the population was maintained without being selected for production traits such as daily gain, food conversion ratio and meat content. Pigs representing Danish Landrace of 1995 (fast-growing, FG) were bought from certified Danish pig breeders. The pigs were simultaneously tested for performance from 40 to 95 kg live weight. The daily gain, food conversion ratio and meat content of the carcass were improved proportionately by 0·43, 0·24 and 0·03 in FG pigs compared with SG pigs. In m. longissimus dorsi (LD), the cross-sectional area of muscle fibres was smaller in FG pigs compared with SG pigs indicating increased muscle fibre number. Data further suggest increased satellite cell proliferation in muscles of FG pigs. Serum from FG pigs stimulated the proliferation of C2C12 muscle cells to a greater extent than serum from SG pigs, although the serum level of insulin-like growth factor 1 did not differ between pig types. The effect of serum on protein turn-over of C2C12 myotubes did not depend on pig type. The glycogen concentration in the LD did not differ significantly between pig types, while the activity of citrate synthase, 3-OH-acyl-CoA-dehydrogenase, and lactate dehydrogenase were higher in the LD of SG pigs compared with FG pigs. Pork chop colour of FG pigs was proportionately 0·09 lighter (L⋆) and 0·13 less red (a⋆) than pork chops of SG pigs. The total muscle pigment concentration in the LD, m. biceps femoris and m. vastus intermedius was proportionately reduced by 0·17, 0·19 and 0·11, respectively, in FG pigs compared with SG pigs. In the LD, the concentration of myoglobin was proportionately reduced by 0·17 in FG pigs. The chemical composition of the LD differed between pig types such that the water content was higher and protein content lower in LD from FG pigs compared with SG pigs. The pH of the LD measured 45 min and 24 h post mortem, drip loss and thawing loss were similar for both pig types. Meat tenderness of conditioned pork chops of FG pigs was slightly reduced in accordance with a decreased intensity of the 31 kDa peptide band and increased cooking loss. The present study suggests that increased muscle fibre number and rate of muscle DNA deposition (satellite cell proliferation) have contributed to the increased muscle growth as a result of selection for performance in pigs under Danish conditions. However, the increase in growth performance was accompanied by deterioration in muscle colour and slightly reduced tenderness.
Collapse
|
197
|
Firshman AM, Borgia LA, Valberg SJ. Effects of training at a walk on conventional and underwater treadmills on fiber properties and metabolic responses of superficial digital flexor and gluteal muscles to high-speed exercise in horses. Am J Vet Res 2016; 76:1058-65. [PMID: 26618730 DOI: 10.2460/ajvr.76.12.1058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare effects of training on conventional and underwater treadmills on fiber properties and metabolic responses of the superficial digital flexor (SDF) and gluteal muscles to high-speed exercise in horses. SAMPLE 6 unconditioned Quarter Horse-type horses. PROCEDURES 6 horses were walked on underwater and conventional treadmills for 5 d/wk (maximum, 40 min/d) for 8 weeks in a randomized crossover design (60-day detraining period). Horses underwent a standardized exercise test (SET) at high speed before and after training. Analyte concentrations and fiber characteristics were measured in muscle biopsy specimens obtained from horses before and after each SET. RESULTS Lactate concentration increased 2- to 3-fold in SDF and gluteal muscle after SETs. No training effect was identified on muscle fiber type composition, type II fiber diameter, muscle analyte concentrations, blood lactate concentration, or heart rate responses. Maximum diameters of type I fibers decreased significantly in gluteal muscle with conventional treadmill training and decreased in SDF muscle with both types of training, with maximum diameters greater for horses after underwater versus conventional treadmill training. No change was identified in minimum fiber diameters. CONCLUSIONS AND CLINICAL RELEVANCE SETs involving near-maximal exertion resulted in an anaerobic response in SDF and gluteal muscles of horses. Eight weeks of conventional or underwater treadmill training resulted in minor changes in type I muscle fiber sizes, with no effect on muscle metabolic or heart rate responses to SETs. After rehabilitation involving underwater treadmills, training at progressing speeds is recommended for horses to develop the required fitness for speed work.
Collapse
|
198
|
Gehrke AG, Krull MS, McDonald RS, Sparby T, Thoele J, Troje SW, ZumBerge J, Thompson LV. The Effects of Non-Weight Bearing on Skeletal Muscle in Older Rats: an Interrupted Bout versus an Uninterrupted Bout. Biol Res Nurs 2016; 5:195-202. [PMID: 14737920 DOI: 10.1177/1099800403260693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Age-related changes in skeletal muscle, in combination with bed rest, may result in a poorer rehabilitation potential for an elderly patient. The purpose of this study was to determine the effects of non-weight bearing (hind limb unweighting [HU]) on the soleus and extensor digitorum longus (EDL) in older rats. Two non-weight bearing conditions were used: an uninterrupted bout of HU and an interrupted bout of HU. Twenty-one rats were randomly placed into 1 of 3 groups: control, interrupted HU (2 phases of 7 days of HU, separated by a 4-day weight-bearing phase) and an uninterrupted HU (18 uninterrupted days of HU). Following non-weight bearing, the soleus and EDL muscles were removed. Fiber type identification was performed by myofibrillar ATPase and cross-sectional area was determined. The findings suggest that any period of non-weight bearing leads to a decrease in muscle wet weight (19%-45%). Both type I and type II fibers of the soleus showed atrophy (decrease in cross-sectional area, 35%-44%) with an uninterrupted bout of non-weight bearing. Only the type II fibers of the soleus showed recovery with an interrupted bout of weight bearing. In the EDL, type II fibers were more affected by an uninterrupted bout of non-weight bearing (15% decrease in fiber size) compared to the type I fibers. EDL type II fibers showed more atrophy with interrupted bouts of non-weight bearing than with a single bout (a 40% compared to a 15% decrease). This study shows that initial weight bearing after an episode of non-weight bearing may be damaging to type II fibers of the EDL.
Collapse
|
199
|
Stutzig N, Rzanny R, Moll K, Gussew A, Reichenbach JR, Siebert T. The pH heterogeneity in human calf muscle during neuromuscular electrical stimulation. Magn Reson Med 2016; 77:2097-2106. [PMID: 27436629 DOI: 10.1002/mrm.26329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/02/2016] [Accepted: 06/12/2016] [Indexed: 12/30/2022]
Abstract
PURPOSE The aim of the study was to examine pH heterogeneity during fatigue induced by neuromuscular electrical stimulation (NMES) using phosphorus magnetic resonance spectroscopy (31 P-MRS). It is hypothesized that three pH components would occur in the 31 P-MRS during fatigue, representing three fiber types. METHODS The medial gastrocnemius of eight subjects was stimulated within a 3-Tesla whole body MRI scanner. The maximal force during stimulation (Fstim ) was examined by a pressure sensor. Phosphocreatine (PCr), adenosintriphosphate, inorganic phosphate (Pi), and the corresponding pH were estimated by a nonvolume-selective 31 P-MRS using a small loop coil at rest and during fatigue. RESULTS During fatigue, Fstim and PCr decreased to 27% and 33% of their initial levels, respectively. In all cases, the Pi peak increased when NMES was started and split into three different peaks. Based on the single Pi peaks during fatigue, an alkaline (6.76 ± 0.08), a medium (6.40 ± 0.06), and an acidic (6.09 ± 0.05) pH component were observed compared to the pH (7.02 ± 0.02) at rest. CONCLUSION It is suggested that NMES is able to induce pH heterogeneity in the medial gastrocnemius, and that the single Pi peaks represent the different muscle fiber types of the skeletal muscle. Magn Reson Med 77:2097-2106, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Norman Stutzig
- Exercise Science, Institute of Sport and Movement Science, University of Stuttgart, Stuttgart, Germany
| | - Reinhard Rzanny
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
| | - Kevin Moll
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
| | - Alexander Gussew
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
| | - Tobias Siebert
- Exercise Science, Institute of Sport and Movement Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
200
|
Beef palatability and its relationship with protein degradation and muscle fibre type profile in longissimus thoracis in Alentejana breed from divergent growth pathways. Animal 2016; 11:175-182. [PMID: 27378519 DOI: 10.1017/s1751731116001373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The traditional beef production in the South of Portugal is based on a discontinuous growth (DG) system that requires lower external inputs and could enhance meat quality and financial returns to cattle producers. This system allows farmers to take advantage of the bull's compensatory growth when the pasture is abundant and finishes the cattle on concentrates for 2 to 3 months before slaughter. The fast gain rate before slaughter could be a valuable strategy to improve tenderness and to reduce its inconsistency in beef production. Therefore, the aim of this study was to evaluate the effects of production system (continuous growth (CG) v. DG) on longissimus thoracis muscle properties from Alentejana bulls. In total, 40 Alentejana male calves were allocated to two distinct feeding regimes: in the CG system, animals were fed concentrate plus hay and slaughtered at 18 months of age, whereas in the DG system, animals were fed on hay until 15 months of age and then fed the same diet provided to the CG group until 24 months of age. The DG system had a positive impact on meat tenderness (P<0.001) and global acceptability (P<0.001). DG bulls had greater fibre cross-sectional area (CSA) of glycolytic fibres (P<0.05) and relative area of the muscle (RA) occupied by type IIX fibres (P<0.01) and greater levels of α-actinin (P<0.05) and myosin light chain 2 (P<0.01) proteins, and pH24h (P<0.01) than CG bulls. The latter had greater CSA of type I (P<0.05) and type IIA (P<0.01) and greater RA of type IIA (P<0.05) and oxidative (P<0.05) than CG bulls. The compensatory growth production system had a positive impact on meat tenderness and global acceptability, overcoming the negative effects of slaughter of the bulls at a later age. The DG beef system could be a worthwhile strategy of beef production in Mediterranean areas due to the low-quality pasture in summer.
Collapse
|