151
|
Huang CK, Zhang K, Gong Q, Yu DG, Wang J, Tan X, Quan H. Ethylcellulose-based drug nano depots fabricated using a modified triaxial electrospinning. Int J Biol Macromol 2020; 152:68-76. [DOI: 10.1016/j.ijbiomac.2020.02.239] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 01/09/2023]
|
152
|
A nanofiber-based drug depot with high drug loading for sustained release. Int J Pharm 2020; 583:119397. [DOI: 10.1016/j.ijpharm.2020.119397] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/13/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022]
|
153
|
Kim W, Lee JS, Jang J. Aptamer-Functionalized Three-Dimensional Carbon Nanowebs for Ultrasensitive and Free-Standing PDGF Biosensor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20882-20890. [PMID: 32315526 DOI: 10.1021/acsami.0c03709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Research on flexible biosensors is mostly focused on their use in obtaining information on physical signals (such as temperature, heart rate, pH, and intraocular pressure). Consequently, there are hardly any studies on using flexible electronics for detecting biomolecules and biomarkers that cause diseases. In this study, we propose a flexible, three-dimensional carbon nanoweb (3DCNW)-based aptamer sensor to detect the platelet-induced growth factor (PDGF), which is an oncogenic biomarker. As a template for the 3D structure, poly(acrylonitrile) (PAN) nanowebs were synthesized using a facile electrospinning process. The PAN nanowebs were then subjected to chemical vapor deposition with copper powder. This was followed by Cu etching to generate carbon protrusions on the web surface. As an active site, PDGF-B binding aptamer was introduced on the 3DCNW surface to form biosensor electrodes. The 3DCNW-based aptasensor exhibited excellent sensitivity (down to 1.78 fM), with high selectivity, reversibility, and stability to PDGF-BB.
Collapse
Affiliation(s)
- Wooyoung Kim
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
154
|
Zhang P, Li Y, Tang Y, Shen H, Li J, Yi Z, Ke Q, Xu H. Copper-Based Metal-Organic Framework as a Controllable Nitric Oxide-Releasing Vehicle for Enhanced Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18319-18331. [PMID: 32216291 DOI: 10.1021/acsami.0c01792] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic wounds are one of the most serious complications of diabetes mellitus. Even though utilizing nitric oxide (NO) as a gas medicine to repair diabetic wounds presents a promising strategy, controlling the NO release behavior in the affected area, which is vital for NO-based therapy, still remains a significant challenge. In this work, a copper-based metal-organic framework, namely, HKUST-1, has been introduced as a NO-loading vehicle, and a NO sustained release system with the core-shell structure has been designed through the electrospinning method. The results show that the NO is quantificationally and stably loaded in the HKUST-1 particles, and the NO-loaded HKUST-1 particles are well incorporated into the core layer of the coaxial nanofiber. Therefore, NO can be controllably released with an average release rate of 1.74 nmol L-1 h-1 for more than 14 days. Moreover, the additional copper ions released from the degradable HKUST-1 play a synergistic role with NO to promote endothelial cell growth and significantly improve the angiogenesis, collagen deposition as well as anti-inflammatory property in the wound bed, which eventually accelerate the diabetic wound healing. These results suggest that such a copper-based metal-organic framework material as a controllable NO-releasing vehicle is a highly efficient therapy for diabetic wounds.
Collapse
Affiliation(s)
- Pengju Zhang
- College of Chemistry and Materials Science, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| | - You Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yaohui Tang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hui Shen
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiankai Li
- College of Chemistry and Materials Science, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qinfei Ke
- College of Chemistry and Materials Science, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
- Shanghai Institute of Technology, School of Materials Science and Engineering, No. 120 Caobao Road, Shanghai 200235, China
| | - He Xu
- College of Chemistry and Materials Science, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| |
Collapse
|
155
|
Abdel-Mohsen AM, Frankova J, Abdel-Rahman RM, Salem AA, Sahffie NM, Kubena I, Jancar J. Chitosan-glucan complex hollow fibers reinforced collagen wound dressing embedded with aloe vera. II. Multifunctional properties to promote cutaneous wound healing. Int J Pharm 2020; 582:119349. [PMID: 32315748 DOI: 10.1016/j.ijpharm.2020.119349] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
This study presents an innovative multifunctional system in fabricating new functional wound dressing (FWD) products that could be used for skin regeneration, especially in cases of infected chronic wounds and ulcers. The innovation is based on the extraction, characterization, and application of collagen (CO)/chitosan-glucan complex hollow fibers (CSGC)/aloe vera (AV) as a novel FWS. For the first time, specific hollow fibers were extracted with controlled inner (500-900 nm)/outer (2-3 µm) diameters from mycelium of Schizophyllum commune. Further on, research and evaluation of morphology, hydrolytic stability, and swelling characteristics of CO/CSGC@AV were carried out. The obtained FWS showed high hydrolytic stability with enhanced swelling characteristics compared to native collagen. The hemostatic effect of FWS increased significantly in the presence of CSGC, compared to native CO and displayed excellent biocompatibility which was tested by using normal human dermal fibroblast (NHDF). The FWS showed high antibacterial activity against different types of bacteria (positive/negative grams). From in vivo measurements, the novel FWS increased the percentage of wound closure after one week of treatment. All these results imply that the new CO/CSGC@AV-FWD has the potential for clinical skin regeneration and applying for controlled drug release.
Collapse
Affiliation(s)
- A M Abdel-Mohsen
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno 612 00, Czechia; SCITEG, a.s., Brno, Czechia; Pretreatment and Finishing of Cellulosic based Textiles Department, Textile Industries Research Division, National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| | - J Frankova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15 Olomouc, Czechia
| | - Rasha M Abdel-Rahman
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno 612 00, Czechia
| | - A A Salem
- Pharmacology Department, National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| | - N M Sahffie
- Pathology Department National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| | - I Kubena
- Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, CZ 61662 Brno, Czechia
| | - J Jancar
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno 612 00, Czechia; SCITEG, a.s., Brno, Czechia; Institute of Materials Chemistry, Facility of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno 612 00, Czechia
| |
Collapse
|
156
|
Chen Y, Qiu L, Ma X, Dong L, Jin Z, Xia G, Du P, Xiong J. Electrospun cellulose polymer nanofiber membrane with flame resistance properties for lithium-ion batteries. Carbohydr Polym 2020; 234:115907. [DOI: 10.1016/j.carbpol.2020.115907] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 01/20/2023]
|
157
|
Controlled release of doxycycline within core/shell
poly(ε‐caprolactone)
/poly(ethylene oxide) fibers via coaxial electrospinning. J Appl Polym Sci 2020. [DOI: 10.1002/app.49273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
158
|
Rashedi S, Afshar S, Rostami A, Ghazalian M, Nazockdast H. Co-electrospun poly(lactic acid)/gelatin nanofibrous scaffold prepared by a new solvent system: morphological, mechanical and in vitro degradability properties. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1740987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shiva Rashedi
- Department of Polymer Engineering, Amirkabir University of Technology-Mahshahr Campus, Khuzestan, Iran
| | - Shahnoosh Afshar
- Department of Polymer Engineering, Islamic Azad University-Mahshahr Campus, Khuzestan, Iran
| | - Amir Rostami
- Department of Chemical Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
| | - Malihe Ghazalian
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hossein Nazockdast
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
159
|
Zhang T, Gu J, Liu X, Wei D, Zhou H, Xiao H, Zhang Z, Yu H, Chen S. Bactericidal and antifouling electrospun PVA nanofibers modified with a quaternary ammonium salt and zwitterionic sulfopropylbetaine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110855. [PMID: 32279770 DOI: 10.1016/j.msec.2020.110855] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 02/02/2023]
Abstract
Bacterial adhesion and colonization on material surfaces have attracted great attention due to their potential threat to human health. Combining bactericidal and antifouling functions has been confirmed as an optimal strategy to prevent microbial infection. In this work, biodegradable electrospun polyvinyl alcohol (PVA) nanofibers were chosen due to its high specific area and abundant reactive hydroxyl groups. A quaternary ammonium salt (IQAS) and zwitterionic sulfopropylbetaine (ISB), both containing isocyanate (NCO) groups, were chemically bonded to the PVA nanofiber surface via a coupling reaction between the OH groups of the PVA nanofibers and the NCO groups of IQAS or ISB. The results indicated that the antimicrobial rates of PVA nanofibers modified by IQAS (0.5%) reached 99.9% against both gram-positive Staphylococcus aureus (S. aureus, ATCC 6538) and gram-negative Escherichia coli (E. coli, ATCC 25922). Additionally, the live/dead staining and cytotoxicity test indicated that the dual functional IQAS/ISB/PVA nanofibers exhibited excellent bactericidal and antifouling activities with low cytotoxicity. This work may provide practical guidelines to fabricate bactericidal and antifouling materials for healthcare applications, including but not limited to wound dressings, textile, food packaging and air filtration.
Collapse
Affiliation(s)
- Teng Zhang
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Jingwei Gu
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Xiangyu Liu
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Dengshuai Wei
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huiling Zhou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhuocheng Zhang
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Huali Yu
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Shiguo Chen
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
160
|
Cheng X, Cheng G, Xing X, Yin C, Cheng Y, Zhou X, Jiang S, Tao F, Deng H, Li Z. Controlled release of adenosine from core-shell nanofibers to promote bone regeneration through STAT3 signaling pathway. J Control Release 2020; 319:234-245. [DOI: 10.1016/j.jconrel.2019.12.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 12/13/2022]
|
161
|
Huang X, Liu J, Huang Z, Ke X, Liu L, Wang N, Liu J, Guo Z, Yang Y, Shi Z. Flexible free-standing sulfurized polyacrylonitrile electrode for stable Li/Na storage. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
162
|
Zaarour B, Zhu L, Jin X. A Review on the Secondary Surface Morphology of Electrospun Nanofibers: Formation Mechanisms, Characterizations, and Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.201903981] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Bilal Zaarour
- Engineering Research Center of Technical Textiles, Ministry of Education, College of TextilesDonghua University, No. 2999 North Renmin Road Songjiang, Shanghai 201620 China
- Textile Industries Mechanical Engineering and Techniques DepartmentFaculty of Mechanical and Electrical Engineering, Damascus University Damascus Syria
| | - Lei Zhu
- Engineering Research Center of Technical Textiles, Ministry of Education, College of TextilesDonghua University, No. 2999 North Renmin Road Songjiang, Shanghai 201620 China
| | - Xiangyu Jin
- Engineering Research Center of Technical Textiles, Ministry of Education, College of TextilesDonghua University, No. 2999 North Renmin Road Songjiang, Shanghai 201620 China
| |
Collapse
|
163
|
Yu Z, Shen L, Li D, Pun EYB, Zhao X, Lin H. Fluctuation of photon-releasing with ligand coordination in polyacrylonitrile-based electrospun nanofibers. Sci Rep 2020; 10:926. [PMID: 31969625 PMCID: PMC6976676 DOI: 10.1038/s41598-020-57641-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/02/2020] [Indexed: 11/09/2022] Open
Abstract
Multivariate terbium-complexes were incorporated into polyacrylonitrile (PAN) and electrospun into flexible multifunctional nanofibers with a uniform diameter of ~200 nm. Fluorescence comparison in multi-ligand-binding nanofibers under ultraviolet (UV) radiation verifies that the differentiated β-diketone ligands with dual functions are the primary cause of the spectral fluctuation, adequately illustrating the available methods for the quantification of intermolecular reciprocities between organic ligands and central Tb3+ ions. Especially under 308 nm UVB-LED pumping, the total emission spectral power of supramolecular Tb-complexes/PAN nanofibers are identified to be 2.88 µW and the total emission photon number reaches to 7.94 × 1012 cps which are nearly six times higher than those of the binary complex ones in the visible region, respectively. By modifying the sorts of organic ligands, the luminous flux and luminous efficacy of multi-ligand Tb-complexes/PAN nanofibers are up to 1553.42 μlm and 13.72 mlm/W, respectively. Efficient photon-releasing and intense green-emission demonstrate that the polymer-capped multi-component terbium-complexes fibers have potential prospects for making designable flexible optoelectronic devices.
Collapse
Affiliation(s)
- Zhimin Yu
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian, 116034, P.R. China
| | - Lifan Shen
- College of Microelectronics and Key Laboratory of Optoelectronics Technology, Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, P.R. China
| | - Desheng Li
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian, 116034, P.R. China
| | - Edwin Yue Bun Pun
- Department of Electronic Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| | - Xin Zhao
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian, 116034, P.R. China.
| | - Hai Lin
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian, 116034, P.R. China.
- Department of Electronic Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.
| |
Collapse
|
164
|
Triviño MLT, Jeon H, Lim ACS, Hiremath V, Sekine Y, Seo JG. Encapsulation of Phase-Changing Eutectic Salts in Magnesium Oxide Fibers for High-Temperature Carbon Dioxide Capture: Beyond the Capacity-Stability Tradeoff. ACS APPLIED MATERIALS & INTERFACES 2020; 12:518-526. [PMID: 31808675 DOI: 10.1021/acsami.9b15632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Eutectic mixture (EM)-promoted MgO sorbents exhibit high CO2 sorption capacities but experience a significant decrease in uptake after multiple sorption-regeneration cycles due to EM movement and redistribution at high temperatures. Encapsulation of a pseudoliquid, phase-changing EM promoter with MgO may thus prevent the loss of active interface by confining the EM within a fixed area inside a MgO shell. In this work, we successfully embedded an EM composed of KNO3 and LiNO3 in a MgO fiber matrix via core-shell electrospinning. The synthesized sorbent achieved relatively high and steady sorption capacities, maintaining a stable uptake of ∼20 wt % after 25 sorption-regeneration cycles. The sorbent was also characterized using various techniques including in situ transmission electron microscopy (TEM) to describe its morphology, from which it was confirmed that the eutectic salt existed in distributed hollow pockets within the MgO fiber matrix and stayed confined within these fixed areas, favorably limiting its movement and redistribution when exposed to high temperatures where it exists in the liquid form. The EM may also be described as a glue that holds the fiber together, while MgO acts as a protective shell that prevents structural changes and rearrangement caused by EM movement, allowing the sorbent to retain its cyclic stability after multiple cycles and demonstrating its potential for industrial use after further improvement. Thus, the microencapsulation of a phase-changing EM material with pure MgO metal oxide was successfully achieved and might be explored for various material applications.
Collapse
Affiliation(s)
- Monica Louise T Triviño
- Department of Energy Science and Technology , Myongji University , 116 Myongji-ro , Yongin-si 17058 , Gyeonggi-do , Republic of Korea
| | - Hyeongbin Jeon
- Department of Energy Science and Technology , Myongji University , 116 Myongji-ro , Yongin-si 17058 , Gyeonggi-do , Republic of Korea
| | - Alan Christian S Lim
- Department of Energy Science and Technology , Myongji University , 116 Myongji-ro , Yongin-si 17058 , Gyeonggi-do , Republic of Korea
| | - Vishwanath Hiremath
- Department of Energy Science and Technology , Myongji University , 116 Myongji-ro , Yongin-si 17058 , Gyeonggi-do , Republic of Korea
| | - Yasushi Sekine
- Department of Applied Chemistry , Waseda University , 3-4-1, Okubo, Shinjuku , Tokyo 169-8555 , Japan
| | - Jeong Gil Seo
- Department of Energy Science and Technology , Myongji University , 116 Myongji-ro , Yongin-si 17058 , Gyeonggi-do , Republic of Korea
| |
Collapse
|
165
|
Wang M, Wang K, Yang Y, Liu Y, Yu DG. Electrospun Environment Remediation Nanofibers Using Unspinnable Liquids as the Sheath Fluids: A Review. Polymers (Basel) 2020; 12:E103. [PMID: 31947986 PMCID: PMC7022330 DOI: 10.3390/polym12010103] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Electrospinning, as a promising platform in multidisciplinary engineering over the past two decades, has overcome major challenges and has achieved remarkable breakthroughs in a wide variety of fields such as energy, environmental, and pharmaceutics. However, as a facile and cost-effective approach, its capability of creating nanofibers is still strongly limited by the numbers of treatable fluids. Most recently, more and more efforts have been spent on the treatments of liquids without electrospinnability using multifluid working processes. These unspinnable liquids, although have no electrospinnability themselves, can be converted into nanofibers when they are electrospun with an electrospinnable fluid. Among all sorts of multifluid electrospinning methods, coaxial electrospinning is the most fundamental one. In this review, the principle of modified coaxial electrospinning, in which unspinnable liquids are explored as the sheath working fluids, is introduced. Meanwhile, several typical examples are summarized, in which electrospun nanofibers aimed for the environment remediation were prepared using the modified coaxial electrospinning. Based on the exploration of unspinnable liquids, the present review opens a way for generating complex functional nanostructures from other kinds of multifluid electrospinning methods.
Collapse
Affiliation(s)
| | - Ke Wang
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.W.); (Y.Y.); (Y.L.)
| | | | | | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.W.); (Y.Y.); (Y.L.)
| |
Collapse
|
166
|
Pearce HA, Kim YS, Diaz-Gomez L, Mikos AG. Tissue Engineering Scaffolds. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
167
|
Leung CM, Dhand C, Mayandi V, Ramalingam R, Lim FP, Barathi VA, Dwivedi N, Orive G, Beuerman RW, Ramakrishna S, Toh YC, Loh XJ, Verma NK, Chua AWC, Lakshminarayanan R. Wound healing properties of magnesium mineralized antimicrobial nanofibre dressings containing chondroitin sulphate – a comparison between blend and core–shell nanofibres. Biomater Sci 2020; 8:3454-3471. [DOI: 10.1039/d0bm00530d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Effect of chondroitin sulphate incorporated PCL/gelatin as blends or core–shell composite nanofibres are compared in terms of their biocompatibility for skin cells and wound healing in porcine model of partial thickness burns.
Collapse
|
168
|
Chen J, Pan H, Duan H, Deng W, Zhang F, Yang X, Pan W. Self-assembled liposome from core-sheath chitosan-based fibres for buccal delivery of carvedilol: formulation, characterization and in vitro and ex vivo buccal absorption. ACTA ACUST UNITED AC 2019; 72:343-355. [PMID: 31863466 DOI: 10.1111/jphp.13210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/16/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES A novel drug delivery system based on self-assembled liposome from core-sheath nanofibres for buccal delivery of Carvedilol (Car) was explored. METHODS The Car-loaded PVP/PC (phospholipids) layer was coated with chitosan-PVA (CS-PVA) or CS-PVP to increase retention period in the mouth. SEM, confocal laser scanning microscopy (CLSM), XRD and Fourier transform infrared spectroscopy were applied to characterize fibre diameter and drug state. Appearance, particle size and encapsulation efficiency of self-assembled liposome were investigated by transmission electron microscopy (TEM) and Zeta-sizer Nano. The dissolution test and permeation tests across porcine buccal mucosa and TR146 cell model also were run. KEY FINDINGS Confocal laser scanning microscopy and XRD confirmed the core-sheath structure of coaxial fibre and non-crystalline form of Car, separately. TEM demonstrated the sphere morphology of self-assembled liposome from spun fibres after contacting water. The dissolution test implied the ratio of PC to Car had a huge impact on drug release. The permeation tests across porcine buccal mucosa and TR146 cell model showed similar result, namely our formulation having a better permeation performance than Car suspension. The indirect toxicity against TR146 cells presented 5 mg/ml (or lower) of fibre extraction was safe for cells. CONCLUSIONS These researches exhibited this drug delivery system was promising and advantageous for Car buccal delivery.
Collapse
Affiliation(s)
- Jianting Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Hao Pan
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Hongliang Duan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenbin Deng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Fei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinggang Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
169
|
Ma L, Shi X, Zhang X, Li L. Electrospinning of polycaprolacton/chitosan core-shell nanofibers by a stable emulsion system. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123956] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
170
|
Yu D, Wang M, Li X, Liu X, Zhu L, Annie Bligh SW. Multifluid electrospinning for the generation of complex nanostructures. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1601. [DOI: 10.1002/wnan.1601] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/04/2019] [Accepted: 10/13/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Deng‐Guang Yu
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Menglong Wang
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Xiaoyan Li
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Xinkuan Liu
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Li‐Min Zhu
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Sim Wan Annie Bligh
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| |
Collapse
|
171
|
Application-Based Production and Testing of a Core-Sheath Fiber Strain Sensor for Wearable Electronics: Feasibility Study of Using the Sensors in Measuring Tri-Axial Trunk Motion Angles. SENSORS 2019; 19:s19194288. [PMID: 31623321 PMCID: PMC6806223 DOI: 10.3390/s19194288] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 01/20/2023]
Abstract
Wearable electronics are recognized as a vital tool for gathering in situ kinematic information of human body movements. In this paper, we describe the production of a core–sheath fiber strain sensor from readily available materials in a one-step dip-coating process, and demonstrate the development of a smart sleeveless shirt for measuring the kinematic angles of the trunk relative to the pelvis in complicated three-dimensional movements. The sensor’s piezoresistive properties and characteristics were studied with respect to the type of core material used. Sensor performance was optimized by straining above the intended working region to increase the consistency and accuracy of the piezoresistive sensor. The accuracy of the sensor when tracking random movements was tested using a rigorous 4-h random wave pattern to mimic what would be required for satisfactory use in prototype devices. By processing the raw signal with a machine learning algorithm, we were able to track a strain of random wave patterns to a normalized root mean square error of 1.6%, highlighting the consistency and reproducible behavior of the relatively simple sensor. Then, we evaluated the performance of these sensors in a prototype motion capture shirt, in a study with 12 participants performing a set of eight different types of uniaxial and multiaxial movements. A machine learning random forest regressor model estimated the trunk flexion, lateral bending, and rotation angles with errors of 4.26°, 3.53°, and 3.44° respectively. These results demonstrate the feasibility of using smart textiles for capturing complicated movements and a solution for the real-time monitoring of daily activities.
Collapse
|
172
|
Afshar S, Rashedi S, Nazockdast H, Ghazalian M. Preparation and characterization of electrospun poly(lactic acid)-chitosan core-shell nanofibers with a new solvent system. Int J Biol Macromol 2019; 138:1130-1137. [DOI: 10.1016/j.ijbiomac.2019.07.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/10/2019] [Accepted: 07/07/2019] [Indexed: 12/14/2022]
|
173
|
Schilling K, El Khatib M, Plunkett S, Xue J, Xia Y, Vinogradov SA, Brown E, Zhang X. Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33548-33558. [PMID: 31436082 PMCID: PMC6916729 DOI: 10.1021/acsami.9b08341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Tissue oxygenation is one of the key determining factors in bone repair and bone tissue engineering. Adequate tissue oxygenation is essential for survival and differentiation of the bone-forming cells and ultimately the success of bone tissue regeneration. Two-photon phosphorescence lifetime microscopy (2PLM) has been successfully applied in the past to image oxygen distributions in tissue with high spatial resolution. However, delivery of phosphorescent probes into avascular compartments, such as those formed during early bone defect healing, poses significant problems. Here, we report a multifunctional oxygen-reporting fibrous matrix fabricated through encapsulation of a hydrophilic oxygen-sensitive, two-photon excitable phosphorescent probe, PtP-C343, in the core of fibers during coaxial electrospinning. The oxygen-sensitive fibers support bone marrow stromal cell growth and differentiation and at the same time enable real-time high-resolution probing of partial pressures of oxygen via 2PLM. The hydrophilicity of the probe facilitates its gradual release into the nearby microenvironment, allowing fibers to act as a vehicle for probe delivery into the healing tissue. In conjunction with a cranial defect window chamber model, which permits simultaneous imaging of the bone and neovasculature in vivo via two-photon laser scanning microscopy, the oxygen-reporting fibers provide a useful tool for minimally invasive, high-resolution, real-time 3D mapping of tissue oxygenation during bone defect healing, facilitating studies aimed at understanding the healing process and advancing design of tissue-engineered constructs for enhanced bone repair and regeneration.
Collapse
Affiliation(s)
- Kevin Schilling
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14620, USA
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 146421, USA
| | - Mirna El Khatib
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shane Plunkett
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Sergei A. Vinogradov
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding authors contact information: Xinping Zhang, The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA, ; Edward Brown, Department of Biomedical Engineering, University of Rochester, Goergen Hall Box 270168Rochester, NY 14642, USA, ; Sergei A. Vinogradov, Department of Biochemistry and Biophysics, Perelman School of Medicine, Department of Chemistry, School of Arts and Sciences University of Pennsylvania Philadelphia, PA 19104,
| | - Edward Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14620, USA
- Corresponding authors contact information: Xinping Zhang, The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA, ; Edward Brown, Department of Biomedical Engineering, University of Rochester, Goergen Hall Box 270168Rochester, NY 14642, USA, ; Sergei A. Vinogradov, Department of Biochemistry and Biophysics, Perelman School of Medicine, Department of Chemistry, School of Arts and Sciences University of Pennsylvania Philadelphia, PA 19104,
| | - Xinping Zhang
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14620, USA
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 146421, USA
- Corresponding authors contact information: Xinping Zhang, The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA, ; Edward Brown, Department of Biomedical Engineering, University of Rochester, Goergen Hall Box 270168Rochester, NY 14642, USA, ; Sergei A. Vinogradov, Department of Biochemistry and Biophysics, Perelman School of Medicine, Department of Chemistry, School of Arts and Sciences University of Pennsylvania Philadelphia, PA 19104,
| |
Collapse
|
174
|
Meng S, Kong T, Ma W, Wang H, Zhang H. 2D Crystal-Based Fibers: Status and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902691. [PMID: 31410999 DOI: 10.1002/smll.201902691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/05/2019] [Indexed: 06/10/2023]
Abstract
2D crystals are emerging new materials in multidisciplinary fields including condensed state physics, electronics, energy, environmental engineering, and biomedicine. To employ 2D crystals for practical applications, these nanoscale crystals need to be processed into macroscale materials, such as suspensions, fibers, films, and 3D macrostructures. Among these macromaterials, fibers are flexible, knittable, and easy to use, which can fully reflect the advantages of the structure and properties of 2D crystals. Therefore, the fabrication and application of 2D crystal-based fibers is of great importance for expanding the impact of 2D crystals. In this Review, 2D crystals that are successfully prepared are overviewed based on their composition of elements. Subsequently, methods for preparing 2D crystals, 2D crystals dispersions, and 2D crystal-based fibers are systematically introduced. Then, the applications of 2D crystal-based fibers, such as flexible electronic devices, high-efficiency catalysis, and adsorption, are also discussed. Finally, the status-of-quo, perspectives, and future challenges of 2D crystal-based fibers are summarized. This Review provides directions and guidelines for developing new 2D crystal-based fibers and exploring their potentials in the fields of smart wearable devices.
Collapse
Affiliation(s)
- Si Meng
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- China and Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518000, China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518000, China
| | - Wujun Ma
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huide Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- China and Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518000, China
| | - Han Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- China and Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518000, China
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
175
|
Massella D, Argenziano M, Ferri A, Guan J, Giraud S, Cavalli R, Barresi AA, Salaün F. Bio-Functional Textiles: Combining Pharmaceutical Nanocarriers with Fibrous Materials for Innovative Dermatological Therapies. Pharmaceutics 2019; 11:E403. [PMID: 31405229 PMCID: PMC6723157 DOI: 10.3390/pharmaceutics11080403] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
In the field of pharmaceutical technology, significant attention has been paid on exploiting skin as a drug administration route. Considering the structural and chemical complexity of the skin barrier, many research works focused on developing an innovative way to enhance skin drug permeation. In this context, a new class of materials called bio-functional textiles has been developed. Such materials consist of the combination of advanced pharmaceutical carriers with textile materials. Therefore, they own the possibility of providing a wearable platform for continuous and controlled drug release. Notwithstanding the great potential of these materials, their large-scale application still faces some challenges. The present review provides a state-of-the-art perspective on the bio-functional textile technology analyzing the several issues involved. Firstly, the skin physiology, together with the dermatological delivery strategy, is keenly described in order to provide an overview of the problems tackled by bio-functional textiles technology. Secondly, an overview of the main dermatological nanocarriers is provided; thereafter the application of these nanomaterial to textiles is presented. Finally, the bio-functional textile technology is framed in the context of the different dermatological administration strategies; a comparative analysis that also considers how pharmaceutical regulation is conducted.
Collapse
Affiliation(s)
- Daniele Massella
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France.
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy.
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Ada Ferri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy
| | - Jinping Guan
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Stéphane Giraud
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Antonello A Barresi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy
| | - Fabien Salaün
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France
| |
Collapse
|
176
|
Wang M, Hai T, Feng Z, Yu DG, Yang Y, Bligh SA. The Relationships between the Working Fluids, Process Characteristics and Products from the Modified Coaxial Electrospinning of Zein. Polymers (Basel) 2019; 11:E1287. [PMID: 31374977 PMCID: PMC6723308 DOI: 10.3390/polym11081287] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022] Open
Abstract
The accurate prediction and manipulation of nanoscale product sizes is a major challenge in material processing. In this investigation, two process characteristics were explored during the modified coaxial electrospinning of zein, with the aim of understanding how this impacts the products formed. The characteristics studied were the spreading angle at the unstable region (θ) and the length of the straight fluid jet (L). An electrospinnable zein core solution was prepared and processed with a sheath comprising ethanolic solutions of LiCl. The width of the zein nanoribbons formed (W) was found to be more closely correlated with the spreading angle and straight fluid jet length than with the experimental parameters (the electrolyte concentrations and conductivity of the shell fluids). Linear equations W = 546.44L - 666.04 and W = 2255.3θ - 22.7 could be developed with correlation coefficients of Rwl2 = 0.9845 and Rwθ2 = 0.9924, respectively. These highly linear relationships reveal that the process characteristics can be very useful tools for both predicting the quality of the electrospun products, and manipulating their sizes for functional applications. This arises because any changes in the experimental parameters would have an influence on both the process characteristics and the solid products' properties.
Collapse
Affiliation(s)
- Menglong Wang
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Tao Hai
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Zhangbin Feng
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China.
| | - Yaoyao Yang
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Sw Annie Bligh
- Caritas Institute of Higher Education, 2 Chui Ling Lane, Tseung Kwan O, New Territories, Hong Kong 999077, China.
| |
Collapse
|
177
|
Han D, Steckl AJ. Coaxial Electrospinning Formation of Complex Polymer Fibers and their Applications. Chempluschem 2019; 84:1453-1497. [PMID: 31943926 DOI: 10.1002/cplu.201900281] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/27/2019] [Indexed: 12/12/2022]
Abstract
The formation of fibers by electrospinning has experienced explosive growth in the past decade, recently reaching 4,000 publications and 1,500 patents per year. This impressive growth of interest is due to the ability to form fibers with a variety of materials, which lend themselves to a large and rapidly expanding set of applications. In particular, coaxial electrospinning, which forms fibers with multiple core-sheath layers from different materials in a single step, enables the combination of properties in a single fiber that are not found in nature in a single material. This article is a detailed review of coaxial electrospinning: basic mechanisms, early history and current status, and an in-depth discussion of various applications (biomedical, environmental, sensors, energy, catalysis, textiles). We aim to provide readers who are currently involved in certain aspects of coaxial electrospinning research an appreciation of other applications and of current results.
Collapse
Affiliation(s)
- Daewoo Han
- Department of Electrical Engineering and Computer Science, University of Cincinnati Nanoelectronics Laboratory, Cincinnati, OH 45221-0030, USA
| | - Andrew J Steckl
- Department of Electrical Engineering and Computer Science, University of Cincinnati Nanoelectronics Laboratory, Cincinnati, OH 45221-0030, USA
| |
Collapse
|
178
|
Luo H, Zhou X, Ellingford C, Zhang Y, Chen S, Zhou K, Zhang D, Bowen CR, Wan C. Interface design for high energy density polymer nanocomposites. Chem Soc Rev 2019; 48:4424-4465. [PMID: 31270524 DOI: 10.1039/c9cs00043g] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides a detailed overview on the latest developments in the design and control of the interface in polymer based composite dielectrics for energy storage applications. The methods employed for interface design in composite systems are described for a variety of filler types and morphologies, along with novel approaches employed to build hierarchical interfaces for multi-scale control of properties. Efforts to achieve a close control of interfacial properties and geometry are then described, which includes the creation of either flexible or rigid polymer interfaces, the use of liquid crystals and developing ceramic and carbon-based interfaces with tailored electrical properties. The impact of the variety of interface structures on composite polarization and energy storage capability are described, along with an overview of existing models to understand the polarization mechanisms and quantitatively assess the potential benefits of different structures for energy storage. The applications and properties of such interface-controlled materials are then explored, along with an overview of existing challenges and practical limitations. Finally, a summary and future perspectives are provided to highlight future directions of research in this growing and important area.
Collapse
Affiliation(s)
- Hang Luo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China.
| | - Xuefan Zhou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China.
| | - Christopher Ellingford
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, CV4 7AL, UK.
| | - Yan Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China. and Department of Mechanical Engineering, University of Bath, Bath, BA2 2ET, UK.
| | - Sheng Chen
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Kechao Zhou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China.
| | - Dou Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China.
| | - Chris R Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 2ET, UK.
| | - Chaoying Wan
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, CV4 7AL, UK.
| |
Collapse
|
179
|
Pant B, Park M, Park SJ. Drug Delivery Applications of Core-Sheath Nanofibers Prepared by Coaxial Electrospinning: A Review. Pharmaceutics 2019; 11:E305. [PMID: 31266186 PMCID: PMC6680404 DOI: 10.3390/pharmaceutics11070305] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 11/16/2022] Open
Abstract
Electrospinning has emerged as one of the potential techniques for producing nanofibers. The use of electrospun nanofibers in drug delivery has increased rapidly over recent years due to their valuable properties, which include a large surface area, high porosity, small pore size, superior mechanical properties, and ease of surface modification. A drug loaded nanofiber membrane can be prepared via electrospinning using a model drug and polymer solution; however, the release of the drug from the nanofiber membrane in a safe and controlled way is challenging as a result of the initial burst release. Employing a core-sheath design provides a promising solution for controlling the initial burst release. Numerous studies have reported on the preparation of core-sheath nanofibers by coaxial electrospinning for drug delivery applications. This paper summarizes the physical phenomena, the effects of various parameters in coaxial electrospinning, and the usefulness of core-sheath nanofibers in drug delivery. Furthermore, this report also highlights the future challenges involved in utilizing core-sheath nanofibers for drug delivery applications.
Collapse
Affiliation(s)
- Bishweshwar Pant
- Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, Korea
| | - Mira Park
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Science, Chonbuk National University, Jeonju 561-756, Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, Korea.
| |
Collapse
|
180
|
The Relationships between Process Parameters and Polymeric Nanofibers Fabricated Using a Modified Coaxial Electrospinning. NANOMATERIALS 2019; 9:nano9060843. [PMID: 31159474 PMCID: PMC6630586 DOI: 10.3390/nano9060843] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 02/02/2023]
Abstract
The concrete relationship between the process parameters and nanoproduct properties is an important challenge for applying nanotechnology to produce functional nanomaterials. In this study, the relationships between series of process parameters and the medicated nanofibers’ diameter were investigated. With an electrospinnable solution of hydroxypropyl methylcellulose (HPMC) and ketoprofen as the core fluid, four kinds of nanofibers were prepared with ethanol as a sheath fluid and under the variable applied voltages. Based on these nanofibers, a series of relationships between the process parameters and the nanofibers’ diameters (D) were disclosed, such as with the height of the Taylor cone (H, D = 125 + 363H), with the angle of the Taylor cone (α, D = 1576 − 19α), with the length of the straight fluid jet (L, D = 285 + 209L), and with the spreading angle of the instable region (θ, D = 2342 − 43θ). In vitro dissolution tests verified that the smaller the diameters, the faster ketoprofen (KET) was released from the HPMC nanofibers. These concrete process-property relationships should provide a way to achieve new knowledge about the electrostatic energy-fluid interactions, and to meanwhile improve researchers’ capability to optimize the coaxial process conditions to achieve the desired nanoproducts.
Collapse
|
181
|
Xu H, Gao J, Li M, Zhao Y, Zhang M, Zhao T, Wang L, Jiang W, Zhu G, Qian X, Fan Y, Yang J, Luo W. Mesoporous WO 3 Nanofibers With Crystalline Framework for High-Performance Acetone Sensing. Front Chem 2019; 7:266. [PMID: 31058141 PMCID: PMC6482242 DOI: 10.3389/fchem.2019.00266] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/01/2019] [Indexed: 12/03/2022] Open
Abstract
Semiconducting metal oxides with abundant active sites are regarded as promising candidates for environmental monitoring and breath analysis because of their excellent gas sensing performance and stability. Herein, mesoporous WO3 nanofibers with a crystalline framework and uniform pore size is successfully synthesized in an aqueous phase using an electrospinning method, with ammonium metatungstate as the tungsten sources, and SiO2 nanoparticles and polyvinylpyrrolidone as the sacrificial templates. The obtained mesoporous WO3 nanofibers exhibit a controllable pore size of 26.3–42.2 nm, specific surface area of 24.1–34.4 m2g−1, and a pore volume of 0.15–0.24 cm3g−1. This unique hierarchical structure, with uniform mesopores and interconnected channels, could facilitate the diffusion and transportation of gas molecules in the framework. Gas sensors, based on mesoporous WO3 nanofibers, exhibit an excellent performance in acetone sensing with a low limit of detection (<1 ppm), short response-recovery time (24 s/27 s), a linear relationship in a broad range, and good selectivity.
Collapse
Affiliation(s)
- Haiyun Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Jie Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Minhan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Yuye Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Ming Zhang
- Materials Genome Institute, Shanghai University, Shanghai, China
| | - Tao Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China.,Institute of Functional Materials, Donghua University, Shanghai, China.,School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Guanjia Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Xiaoyong Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Yuchi Fan
- Institute of Functional Materials, Donghua University, Shanghai, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China.,Institute of Functional Materials, Donghua University, Shanghai, China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China.,Institute of Functional Materials, Donghua University, Shanghai, China
| |
Collapse
|
182
|
Guo J, Yu Y, Wang H, Zhang H, Zhang X, Zhao Y. Conductive Polymer Hydrogel Microfibers from Multiflow Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805162. [PMID: 30884163 DOI: 10.1002/smll.201805162] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Conductive hydrogels are receiving increasing attention for their utility in electronic area applications requiring flexible conductors. Here, it is presented novel conductive hydrogel microfibers with alginate shells and poly (3, 4-ethylenedioxythiophene): poly (4-styrenesulfonate) (PEDOT: PSS) cores fabricated using a multiflow capillary microfluidic spinning approach. Based on multiflow microfluidics, alginate shells are formed immediately from the fast gelation reaction between sodium alginate (Na-Alg) and sheath laminar calcium chloride flows, while PEDOT: PSS cores are solidified slowly in the hollow alginate hydrogel shell microreactors after their precursor solutions are injected in situ as the center fluids. The resultant PEDOT: PSS-containing microfibers are with features of designed morphology and highly controllable package, because material compositions or the sizes of their shell hydrogels can be tailored by using different concentrations or flow rates of pregel solutions. Moreover, the practical values of these microfibers in stretch sensitivity and bending stability are explored based on various electrical characterizations of the compound materials. Thus, it is believed that these microfluidic spinning PEDOT: PSS conductive microfibers will find important utility in electronic applications requiring flexible electronic systems.
Collapse
Affiliation(s)
- Jiahui Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Han Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoxuan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
183
|
Controlling burst effect with PLA/PVA coaxial electrospun scaffolds loaded with BMP-2 for bone guided regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:602-612. [DOI: 10.1016/j.msec.2018.12.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/19/2018] [Accepted: 12/07/2018] [Indexed: 11/19/2022]
|
184
|
Memic A, Abudula T, Mohammed HS, Joshi Navare K, Colombani T, Bencherif SA. Latest Progress in Electrospun Nanofibers for Wound Healing Applications. ACS APPLIED BIO MATERIALS 2019; 2:952-969. [DOI: 10.1021/acsabm.8b00637] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tuerdimaimaiti Abudula
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Halimatu S. Mohammed
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kasturi Joshi Navare
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02120, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Sorbonne University, UTC CNTS UMR 7338, Biomechanics and Bioengineering, University of Technology of Compiegne, 60203 Compiegne, Cedex, France
| |
Collapse
|
185
|
Chang G, Ullah W, Li A, Das SK, Lin L, Wang X. Self-constructed side-by-side nanofiber photocatalyst via oppositely charged electrospinning and its photocatalytic degradation of rhodamine B. NEW J CHEM 2019. [DOI: 10.1039/c9nj03305j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fabricating side by side (SBS) nanofibers with two distinct materials using dual spinnerets is challenging because of the formation of bulk heterojunctions, which limits the application of these nanofibers.
Collapse
Affiliation(s)
- Guoqing Chang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- State Key Laboratory of Silicon Materials
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Wajid Ullah
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- State Key Laboratory of Silicon Materials
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Aike Li
- School of Bioscience and Bioengineering
- Hebei University of Economics and Business
- Shijiazhuang 050061
- China
| | - Sandeep K. Das
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- State Key Laboratory of Silicon Materials
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Liwei Lin
- Department of Mechanical Engineering and Berkeley Sensor and Actuator Center
- University of California
- Berkeley 94720
- USA
| | - Xu Wang
- School of Aerospace
- Mechanical and Manufacturing Engineering
- RMIT University
- Bundoora East
- Australia
| |
Collapse
|