151
|
Maleki A, Seyedhamzeh M, Yuan M, Agarwal T, Sharifi I, Mohammadi A, Kelicen-Uğur P, Hamidi M, Malaki M, Al Kheraif AA, Cheng Z, Lin J. Titanium-Based Nanoarchitectures for Sonodynamic Therapy-Involved Multimodal Treatments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206253. [PMID: 36642806 DOI: 10.1002/smll.202206253] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Sonodynamic therapy (SDT) has considerably revolutionized the healthcare sector as a viable noninvasive therapeutic procedure. It employs a combination of low-intensity ultrasound and chemical entities, known as a sonosensitizer, to produce cytotoxic reactive oxygen species (ROS) for cancer and antimicrobial therapies. With nanotechnology, several unique nanoplatforms are introduced as a sonosensitizers, including, titanium-based nanomaterials, thanks to their high biocompatibility, catalytic efficiency, and customizable physicochemical features. Additionally, developing titanium-based sonosensitizers facilitates the integration of SDT with other treatment modalities (for example, chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy), hence increasing overall therapeutic results. This review summarizes the most recent developments in cancer therapy and tissue engineering using titanium nanoplatforms mediated SDT. The synthesis strategies and biosafety aspects of Titanium-based nanoplatforms for SDT are also discussed. Finally, various challenges and prospects for its further development and potential clinical translation are highlighted.
Collapse
Affiliation(s)
- Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Mohammad Seyedhamzeh
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, 721302, India
| | - Ibrahim Sharifi
- Department of Materials Engineering, Faculty of Engineering, Shahrekord University, Shahrekord, 64165478, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Pelin Kelicen-Uğur
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Sıhhiye, Ankara, 06430, Turkey
| | - Mehrdad Hamidi
- Department of Pharmaceutical Nanotechnology, School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
- Trita Nanomedicine Research & Technology Development Center (TNRTC), Zanjan Health Technology Park, Zanjan, 45156-13191, Iran
| | - Massoud Malaki
- Department of Mechanical Engineering, Faculty of Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Abdulaziz A Al Kheraif
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
152
|
Liu L, Zhang J, An R, Xue Q, Cheng X, Hu Y, Huang Z, Wu L, Zeng W, Miao Y, Li J, Zhou Y, Chen HY, Liu H, Ye D. Smart Nanosensitizers for Activatable Sono-Photodynamic Immunotherapy of Tumors by Redox-Controlled Disassembly. Angew Chem Int Ed Engl 2023; 62:e202217055. [PMID: 36602292 DOI: 10.1002/anie.202217055] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Tumor-targeted and stimuli-activatable nanosensitizers are highly desirable for cancer theranostics. However, designing smart nanosensitizers with multiple imaging signals and synergistic therapeutic activities switched on is challenging. Herein, we report tumor-targeted and redox-activatable nanosensitizers (1-NPs) for sono-photodynamic immunotherapy of tumors by molecular co-assembly and redox-controlled disassembly. 1-NPs show a high longitudinal relaxivity (r1 =18.7±0.3 mM-1 s-1 ), but "off" dual fluorescence (FL) emission (at 547 and 672 nm), "off" sono-photodynamic therapy and indoleamine 2,3-dioxygenase 1 (IDO1) inhibition activities. Upon reduction by glutathione (GSH), 1-NPs rapidly disassemble and remotely release small molecules 2-Gd, Zn-PPA-SH and NLG919, concurrently switching on (1) dual FL emission, (2) sono-photodynamic therapy and (3) IDO1 inhibition activities. After systemic injection, 1-NPs are effective for bimodal FL and magnetic resonance (MR) imaging-guided sono-photodynamic immunotherapy of orthotropic breast and brain tumors in mice under combined ultrasound (US) and 671-nm laser irradiation.
Collapse
Affiliation(s)
- Lingjun Liu
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Qi Xue
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xi Cheng
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zheng Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yinxing Miao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Jie Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu Zhou
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Hong Liu
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
153
|
Gong M, Huang Y, Feng H, Lin J, Huang A, Hu J, Tang Q, Zhu X, Han S, Lu J, Wang J. A nanodrug combining CD47 and sonodynamic therapy efficiently inhibits osteosarcoma deterioration. J Control Release 2023; 355:68-84. [PMID: 36682726 DOI: 10.1016/j.jconrel.2023.01.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/03/2023] [Accepted: 01/14/2023] [Indexed: 01/24/2023]
Abstract
Treatments for osteosarcoma (OS) with pulmonary metastases reach a bottleneck with a survival rate of 10-20%. The suppressive tumor associated macrophages(TAMs) and CD47 over-expression greatly lead to the treatment failure. Sonodynamic therapy (SDT) can generate ROS with deep tumor penetration to induce tumor cell apoptosis, which is reported to further induce M1 macrophage polarization. CD47 inhibition combined with SDT to synergistically modulate TAMs may induce superior effects for OS treatment. In this work, for the first time, a biomimetic nanodrug named MPIRx was deveploped by loading IR780 (a sonosensitizer) and RRx-001 (a CD47 inhibitor) in PEG-PCL nanomicelles and then coating with OS cell membranes. After ultrasound activation, the nanodrug significantly inhibited OS proliferation and migration, induced apoptosis and immunogenic cell death in OS cells. Furthermore, MPIRx could guide macrophage migrating towards tumor cells and promote M1-type polarization while increasing the phagocytosis activity of macrophages on OS cells. Ultimately, MPIRx showed good tumor accumulation in vivo and successfully inhibited subcutaneous OS and orthotopic tumor with deterioration of pulmonary metastasis. Overall, by creating a local oxidative microenvironment and modulating the TAMs/CD47 in tumor tissue, the MPIRx nanodrug presents a novel strategy for macrophage-related immunotherapy to successfully eliminate OS and inhibit the intractable pulmonary metastasis.
Collapse
Affiliation(s)
- Ming Gong
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Yufeng Huang
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Huixiong Feng
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Jiaming Lin
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Anfei Huang
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Jinxin Hu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Qinglian Tang
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Xiaojun Zhu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Shisong Han
- Zhuhai Institute of Translational Medicine, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, PR China.
| | - Jinchang Lu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China.
| | - Jin Wang
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China.
| |
Collapse
|
154
|
Recent advances in augmenting Fenton chemistry of nanoplatforms for enhanced chemodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
155
|
Qi G, Yu T, Li J, Guo Z, Ma K, Jin Y. Imaging Guided Endogenic H 2 -Augmented Electrochemo-Sonodynamic Domino Co-therapy of Tumor in Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208414. [PMID: 36541158 DOI: 10.1002/adma.202208414] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Precise and on-demand release of sufficient hydrogen (H2 ) to tumor sites remains a key challenge for emerging H2 -oncotherapy, and little is known about the physiological effects of "abundant" H2 on complex tumor microenvironments (TME). Here, a highly efficient and cost-effective imaging-guided/-assessed H2 -therapy of tumors based on a joint electrochemo-sonodynamic treatment (H2 -EC/SD co-therapy) with strong "domino effect" triggered by endogenous H2 generation at tumor sites is reported to speedily eliminate tumor tissue (≤80 mm3 ) within 1 day. Adequate H2 is controllably generated in tumor sites through mild electrochemistry in vivo due to acidic TME by using clinical acupuncture Fe needles as electrodes. Besides starvation damage due to gas blockage/destruction of vessels, nano-/micro-bubbles of H2 formed in situ can elevate the tumor's internal temperature and burst vessels to further destroy the tumor under ultrasound irradiation. Remarkably, vulnerable homeostasis of TME is disturbed as H2 also participates in the physiological activity of tumor cells, leading to tumor dysfunction. Last but not least, the body's inflammatory response to cancer is reduced after the treatment, which is beneficial for the body's immune system during post-treatment recovery. Based on all of these merits, the H2 -EC/SD co-therapy provides a potentially safe and viable therapeutic strategy for future clinical applications.
Collapse
Affiliation(s)
- Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Tengfei Yu
- Department of Ultrasound, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jianmei Li
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Zirui Guo
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Kongshuo Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
156
|
Song K, Chen G, He Z, Shen J, Ping J, Li Y, Zheng L, Miao Y, Zhang D. Protoporphyrin-sensitized degradable bismuth nanoformulations for enhanced sonodynamic oncotherapy. Acta Biomater 2023; 158:637-648. [PMID: 36621634 DOI: 10.1016/j.actbio.2022.12.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
Decreasing the scavenging capacity of reactive oxygen species (ROS) and enhancing ROS production are the two principal objectives in the development of novel sonosensitizers for sonodynamic therapy (SDT). Herein, we designed a protoporphyrin-sensitized bismuth-based semiconductor (P-NBOF) as a sonosensitizer to generate ROS and synergistically depleted glutathione for enhanced SDT against tumors. The bismuth-based nanomaterial (NBOF) is a wide-bandgap semiconductor. Sensitization by protoporphyrin made it easier to excite electrons under ultrasonic stimulation, and the energy of the lowest unoccupied electron orbital in protoporphyrin was higher than the conduction-band energy of NBOF. Under ultrasound excitation, the excited electrons in the protoporphyrin were injected into the conduction band of the NBOF, increasing its reducing ability leading to the production of more superoxide anion radicals and also helping to increase the charge separation of protoporphyrin leading to the production of more singlet oxygen. Meanwhile, P-NBOF continuously depleted glutathione, which was not only conducive to breaking the redox balance of the tumor microenvironment to enhance the therapeutic efficacy of SDT, but also promoted its degradation and metabolism. The construction of this P-NBOF sonosensitizer thus provided an effective strategy to enhance SDT for tumors. STATEMENT OF SIGNIFICANCE: To enhance the efficacy of sonodynamic tumor therapy, we developed a degradable protoporphyrin-sensitized bismuth-based nano-semiconductor (P-NBOF) by optimizing the band structure and glutathione-depletion ability. Protoporphyrin in P-NBOF under excitation preferentially generates free electrons, which are then injected into the conduction band of NBOF, improving the reducing ability of NBOF and promoting the separation of electron-hole pairs, thereby enhancing the production capacity of reactive oxygen species. Furthermore, P-NBOF can deplete glutathione, reduce the scavenging of reactive oxygen species, and reactivate and amplify the effect of sonodynamic therapy. The construction of the nanotherapeutic platform provides an option for enhancing sonodynamic therapy.
Collapse
Affiliation(s)
- Kang Song
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guobo Chen
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zongyan He
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jing Shen
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jing Ping
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, The Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, The Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
157
|
Li J, Liu X, Zheng Y, Cui Z, Jiang H, Li Z, Zhu S, Wu S. Achieving Fast Charge Separation by Ferroelectric Ultrasonic Interfacial Engineering for Rapid Sonotherapy of Bacteria-Infected Osteomyelitis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210296. [PMID: 36626342 DOI: 10.1002/adma.202210296] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Bacteria-infected osteomyelitis is life-threatening without effective therapeutic methods clinically. Here, a rapid and effective therapeutic strategy to treat osteomyelitis through ferroelectric polarization interfacial engineering of BiFeO3 /MXene (Ti3 C2 ) triggered by ultrasound (US) is reported. Under US, the ferroelectric polarization induces the formation of the piezoelectric field. US cavitation effect induced sonoluminescence stimulates BiFeO3 /Ti3 C2 to produce photogenerated carriers. With synergistic action of the polarization electric field and Schottky junction, BiFeO3 /Ti3 C2 accelerates the separation of electrons and holes and simultaneously inhibits the backflow of electrons, thus improving the utilization of polarized charges and photogenerated charges and consequently enhancing the yield of reactive oxygen species under US. As a result, 99.87 ± 0.05% of Staphylococcus aureus are efficiently killed in 20 min with the assistance of ultrasonic heating. The theory of ferroelectric ultrasonic interfacial engineering is proposed, which brings new insight for developing ferroelectric ultrasonic responsive materials used for the diagnosis and therapy of deep tissue infection and other acoustoelectric devices.
Collapse
Affiliation(s)
- Jianfang Li
- School of Materials Science and Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Zhenduo Cui
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Shuilin Wu
- School of Materials Science and Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
158
|
Magneto-mechanical therapeutic effects and associated cell death pathways of magnetic nanocomposites with distinct geometries. Acta Biomater 2023; 161:238-249. [PMID: 36858162 DOI: 10.1016/j.actbio.2023.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
Recent years have witnessed important developments in the emerging field of magneto-mechanical therapies. While such approaches have been demonstrated as a highly efficient route to augment, complement, or entirely replace other therapeutic strategies, important aspects are still poorly understood. Among these, the dependence between the cell death pathway and the geometry of magnetic nanocomposites enabling magneto-mechanical therapies under a low-frequency rotating magnetic field (RMF) is yet to be deciphered. To provide insights into this important problem, we evaluate the cell death pathway for two magnetic nanocomposites with highly distinct geometries: Zn0.2Fe2.8O4-PLGA magnetic nanospheres (MNSs) and Zn0.2Fe2.8O4-PLGA magnetic nanochains (MNCs). We show that under exposure to an RMF, the MNSs and the MNCs exhibit a corkscrewed circular propulsion mode and a steering propulsion mode, respectively. This distinct behavior, with important implications for the associated magneto-mechanical forces exerted by these nanomaterials on surrounding structures (e.g., the cellular membrane), depends on their specific geometries. Next, using numerical simulations and cell viability experiments, we demonstrate that the field strength of the RMF and the rotating speed of the MNSs or MNCs have strong implications for their magneto-mechanical therapeutic performance. Last, we reveal that the magneto-mechanical effects of MNSs are more prone to induce cell apoptosis, whereas those of the MNCs favor instead cell necrosis. Overall, this work enhances the current understanding of the dependences existing between the magneto-mechanical therapeutic effects of magnetic nanocomposites with different geometries and associated cell death pathways, paving the way for novel functionalization routes which could enable significantly enhanced cures and biomedical tools. STATEMENT OF SIGNIFICANCE.
Collapse
|
159
|
Gao C, Kwong CHT, Wang Q, Kam H, Xie B, Lee SMY, Chen G, Wang R. Conjugation of Macrophage-Mimetic Microalgae and Liposome for Antitumor Sonodynamic Immunotherapy via Hypoxia Alleviation and Autophagy Inhibition. ACS NANO 2023; 17:4034-4049. [PMID: 36739531 DOI: 10.1021/acsnano.3c00041] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sonodynamic therapy (SDT) is a noninvasive technique for local antitumor treatment; however, its clinical application is often limited by the low tumor accumulation of SDT agents, tumor's hypoxic microenvironment, and cytoprotective effects of autophagy. To address these issues, herein we developed surface-engineered chlorella (Chl, a green algae) as a targeted drug carrier and sustainable oxygen supplier (via photosynthesis) for significantly improved SDT via hypoxia alleviation as well as autophagy inhibition of chloroquine phosphate. In this design, the macrophage membrane was coated onto Chl to form macrophage-mimetic Chl (MChl) to increase its biocompatibility and targeted tumor accumulation driven by the inflammatory-homing effects of macrophage membranes. In addition, the membrane coating on Chl allowed lipid insertion to yield β-cyclodextrin (β-CD) modified MChl (CD-MChl). Subsequently, supramolecular conjugates of MChl-NP were constructed via host-guest interactions between CD-MChl and adamantane (ADA)-modified liposome (ADA-NP), and the anchored liposome went with CD-MChl hand-in-hand to the tumor tissues for co-delivery of Chl, hematoporphyrin, and chloroquine phosphate (loaded in ADA-NP). The synergistic therapy achieved via local oxygenation, SDT, and autophagy inhibition maximally improved the therapeutic efficacy of MChl-CQ-HP-NP against melanoma. Tumor rechallenging results revealed that the changes of tumor microenvironment including hypoxia alleviation, SDT induced immunogenic cell death, and autophagy inhibition collectively induced a strong antitumor immune response and memory.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Cheryl H T Kwong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Qingfu Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Beibei Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Guosong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
160
|
Wang Y, Gong F, Han Z, Lei H, Zhou Y, Cheng S, Yang X, Wang T, Wang L, Yang N, Liu Z, Cheng L. Oxygen-Deficient Molybdenum Oxide Nanosensitizers for Ultrasound-Enhanced Cancer Metalloimmunotherapy. Angew Chem Int Ed Engl 2023; 62:e202215467. [PMID: 36591974 DOI: 10.1002/anie.202215467] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Oxygen-deficient molybdenum oxide (MoOX ) nanomaterials are prepared as novel nanosensitizers and TME-stimulants for ultrasound (US)-enhanced cancer metalloimmunotherapy. After PEGylation, MoOX -PEG exhibits efficient capability for US-triggered reactive oxygen species (ROS) generation and glutathione (GSH) depletion. Under US irradiation, MoOX -PEG generates a massive amount of ROS to induce cancer cell damage and immunogenic cell death (ICD), which can effectively suppress tumor growth. More importantly, MoOX -PEG itself further stimulates the maturation of dendritic cells (DCs) and triggeres the activation of the cGAS-STING pathway to enhance the immunological effect. Due to the robust ICD induced by SDT and efficient DC maturation stimulated by MoOX -PEG, the combination treatment of MoOX -triggered SDT and aCTLA-4 further amplifies antitumor therapy, inhibits cancer metastases, and elicits robust immune responses to effectively defeat abscopal tumors.
Collapse
Affiliation(s)
- Yuanjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhihui Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yangkai Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Shuning Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xiaoyuan Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Tianyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Li Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
161
|
Wen D, Li K, Deng R, Feng J, Zhang H. Defect-Rich Glassy IrTe 2 with Dual Enzyme-Mimic Activities for Sono-Photosynergistic-Enhanced Oncotherapy. J Am Chem Soc 2023; 145:3952-3960. [PMID: 36757875 DOI: 10.1021/jacs.2c09967] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The complexity, diversity, and heterogeneity of malignant tumors pose a formidable challenge for antitumor therapy. To achieve the goal of significantly enhancing the antitumor effect, nanomedicine-based synergistic therapy is one of the important strategies. Herein, we innovatively report a defect-rich glassy IrTe2 (G-IrTe2) with weak Ir-Te bond strength for synergistic sonodynamic therapy (SDT), chemodynamic therapy (CDT), and mild photothermal therapy (PTT). G-IrTe2 sonosensitizer under ultrasound (US) stimuli exhibits excellent reactive oxygen species (ROS) production performance. Besides, catalase (CAT)-like activity of G-IrTe2 can provide abundant oxygen to enhance the SDT effect. Then, the theoretical calculation verifies that US stimuli can easily make the irregular Ir-Te bond to be broken in amorphous IrTe2 and free electrons will be released to combine with the oxygen and further form singlet oxygen (1O2). Meanwhile, G-IrTe2 with peroxidase (POD)-like activity can also catalyze endogenous H2O2 to produce more ROS for chemodynamic therapy (CDT), which is conducive to better tumor ablation. Furthermore, the ROS produced by sono-/chemodynamic processes can cause mitochondrial dysfunction and further give rise to heat shock protein (HSP) downregulated expression, maximizing the efficiency of mild PTT. Therefore, such glassy IrTe2 with rich defect could be significantly involved in synergistic oncotherapy and then effectively achieve outstanding antitumor efficacy. This study provides a new research idea for expanding the application of inorganic glassy nanomaterials in promoting the therapeutic effect of tumors.
Collapse
Affiliation(s)
- Ding Wen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
162
|
Yang XY, Lu YF, Xu JX, Du YZ, Yu RS. Recent Advances in Well-Designed Therapeutic Nanosystems for the Pancreatic Ductal Adenocarcinoma Treatment Dilemma. Molecules 2023; 28:molecules28031506. [PMID: 36771172 PMCID: PMC9920782 DOI: 10.3390/molecules28031506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with an extremely poor prognosis and low survival rate. Due to its inconspicuous symptoms, PDAC is difficult to diagnose early. Most patients are diagnosed in the middle and late stages, losing the opportunity for surgery. Chemotherapy is the main treatment in clinical practice and improves the survival of patients to some extent. However, the improved prognosis is associated with higher side effects, and the overall prognosis is far from satisfactory. In addition to resistance to chemotherapy, PDAC is significantly resistant to targeted therapy and immunotherapy. The failure of multiple treatment modalities indicates great dilemmas in treating PDAC, including high molecular heterogeneity, high drug resistance, an immunosuppressive microenvironment, and a dense matrix. Nanomedicine shows great potential to overcome the therapeutic barriers of PDAC. Through the careful design and rational modification of nanomaterials, multifunctional intelligent nanosystems can be obtained. These nanosystems can adapt to the environment's needs and compensate for conventional treatments' shortcomings. This review is focused on recent advances in the use of well-designed nanosystems in different therapeutic modalities to overcome the PDAC treatment dilemma, including a variety of novel therapeutic modalities. Finally, these nanosystems' bottlenecks in treating PDAC and the prospect of future clinical translation are briefly discussed.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Yuan-Fei Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Jian-Xia Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou 310005, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence: (Y.-Z.D.); (R.-S.Y.); Tel.: +86-571-88208435 (Y.-Z.D.); +86-571-87783925 (R.-S.Y.)
| | - Ri-Sheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
- Correspondence: (Y.-Z.D.); (R.-S.Y.); Tel.: +86-571-88208435 (Y.-Z.D.); +86-571-87783925 (R.-S.Y.)
| |
Collapse
|
163
|
A robust Au@Cu 2-xS nanoreactor assembled by silk fibroin for enhanced intratumoral glucose depletion and redox dyshomeostasis. Biomaterials 2023; 293:121970. [PMID: 36549040 DOI: 10.1016/j.biomaterials.2022.121970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Intracellular redox dyshomeostasis promoted by tumor microenvironment (TME) modulation has become an appealing therapeutic target for cancer management. Herein, a dual plasmonic Au/SF@Cu2-xS nanoreactor (abbreviation as ASC) is elaborately developed by covalent immobilization of sulfur defective Cu2-xS nanodots onto the surface of silk fibroin (SF)-capped Au nanoparticles. Tumor hypoxia can be effectively alleviated by ASC-mediated local oxygenation, owing to the newfound catalase-mimic activity of Cu2-xS. The semiconductor of Cu2-xS with narrow bandgap energy of 2.54 eV enables a more rapid dissociation of electron-hole (e-/h+) pair for a promoted US-triggered singlet oxygen (1O2) generation, in the presence of Au as electron scavenger. Moreover, Cu2-xS is devote to Fenton-like reaction to catalyze H2O2 into ·OH under mild acidity and simultaneously deplete glutathione to aggravate intracellular oxidative stress. In another aspect, Au nanoparticles with glucose oxidase-mimic activity consumes intrinsic glucose, which contributes to a higher degree of oxidative damage and energy exhaustion of cancer cells. Importantly, such tumor starvation and 1O2 yield can be enhanced by Cu2-xS-catalyzed O2 self-replenishment in H2O2-rich TME. ASC-initiated M1 macrophage activation and therapy-triggered immunogenetic cell death (ICD) favors the systematic tumor elimination by eliciting antitumor immunity. This study undoubtedly enriches the rational design of SF-based nanocatalysts for medical utilizations.
Collapse
|
164
|
Zhang S, Xia S, Chen L, Chen Y, Zhou J. Covalent Organic Framework Nanobowls as Activatable Nanosensitizers for Tumor-Specific and Ferroptosis-Augmented Sonodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206009. [PMID: 36594611 PMCID: PMC9951320 DOI: 10.1002/advs.202206009] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/21/2022] [Indexed: 05/15/2023]
Abstract
Covalent organic frameworks (COFs) have attracted increasing attention for biomedical applications. COFs-based nanosensitizers with uniform nanoscale morphology and tumor-specific curative effects are in high demand; however, their synthesis is yet challenging. In this study, distinct COF nanobowls are synthesized in a controlled manner and engineered as activatable nanosensitizers with tumor-specific sonodynamic activity. High crystallinity ensures an ordered porous structure of COF nanobowls for the efficient loading of the small-molecule sonosensitizer rose bengal (RB). To circumvent non-specific damage to normal tissues, the sonosensitization effect is specifically inhibited by the in situ growth of manganese oxide (MnOx ) on RB-loaded COFs. Upon reaction with tumor-overexpressed glutathione (GSH), the "gatekeeper" MnOx is rapidly decomposed to recover the reactive oxygen species (ROS) generation capability of the COF nanosensitizers under ultrasound irradiation. Increased intracellular ROS stress and GSH consumption concomitantly induce ferroptosis to improve sonodynamic efficacy. Additionally, the unconventional bowl-shaped morphology renders the nanosensitizers with enhanced tumor accumulation and retention. The combination of tumor-specific sonodynamic therapy and ferroptosis achieves high efficacy in killing cancer cells and inhibiting tumor growth. This study paves the way for the development of COF nanosensitizers with unconventional morphologies for biomedicine, offering a paradigm to realize activatable and ferroptosis-augmented sonodynamic tumor therapy.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Ultrasound Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Shujun Xia
- Department of Ultrasound Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Liang Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Jianqiao Zhou
- Department of Ultrasound Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| |
Collapse
|
165
|
Zhang T, Zheng Q, Xie C, Fan G, Wang Y, Wu Y, Fu Y, Huang J, Craig DQM, Cai X, Li X. Integration of Silica Nanorattles with Manganese-Doped In 2S 3/InOOH to Enable Ultrasound-Mediated Tumor Theranostics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4883-4894. [PMID: 36662514 DOI: 10.1021/acsami.2c18095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a result of their radiation-free nature and deep-penetration ability, tumor theranostics mediated by ultrasound have become increasingly recognized as a modality with high potential for translation into clinical cancer treatment. The effective integration of ultrasound imaging and sonodynamic therapy (SDT) into one nanoplatform remains an enormous challenge yet to be fully resolved. Here, a novel theranostic system, consisting of rattle-type SiO2 (r-SiO2) loaded with Mn-doped In2S3/InOOH (SMISO), was designed and synthesized to enable an improved ultrasound imaging-guided therapy. With Mn-doped In2S3/InOOH (MISO) and a heterojunction structure, this novel sonosensitizer facilitates the generation of reactive oxygen species (ROS) for SDT. By coupling interfaces between the shell and core in rattle-type SiO2, multiple reflections/scattering are generated, while MISO has high acoustic impedance. By integrating r-SiO2 and MISO, the SMISO composite nanoparticles (NPs) increase the acoustic reflection and provide enhanced contrast for ultrasound imaging. Through the effective accumulation in tumors, which was monitored by B-mode ultrasound imaging in vivo, SMISO composite NPs effectively inhibited tumor growth without adverse side effects under ultrasound irradiation treatment. This work therefore provides a new approach to integrate a novel gas-free ultrasound contrast agent and a semiconductor sonosensitizer for cancer theranostics.
Collapse
Affiliation(s)
- Tian Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Qiang Zheng
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 215123, P. R. China
| | - Congkun Xie
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Gonglin Fan
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 215123, P. R. China
| | - Yifan Wang
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 215123, P. R. China
| | - Yongjun Wu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Yike Fu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, P. R. China
| | - Jie Huang
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Duncan Q M Craig
- University College London School of Pharmacy, London WC1N 1AX, U.K
| | - Xiujun Cai
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 215123, P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, P. R. China
| |
Collapse
|
166
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
167
|
Liu Q, Zhao Y, Zhou H, Chen C. Ferroptosis: challenges and opportunities for nanomaterials in cancer therapy. Regen Biomater 2023; 10:rbad004. [PMID: 36817975 PMCID: PMC9926950 DOI: 10.1093/rb/rbad004] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/31/2022] [Indexed: 01/22/2023] Open
Abstract
Ferroptosis, a completely new form of regulated cell death, is mainly caused by an imbalance between oxidative damage and reductive protection and has shown great anti-cancer potential. However, existing small-molecule ferroptosis inducers have various limitations, such as poor water solubility, drug resistance and low targeting ability, hindering their clinical applications. Nanotechnology provides new opportunities for ferroptosis-driven tumor therapy. Especially, stimuli-responsive nanomaterials stand out among others and have been widely researched because of their unique spatiotemporal control advantages. Therefore, it's necessary to summarize the application of those stimuli-responsive nanomaterials in ferroptosis. Here, we describe the physiological feature of ferroptosis and illustrate the current challenges to induce ferroptosis for cancer therapy. Then, nanomaterials that induce ferroptosis are classified and elaborated according to the external and internal stimuli. Finally, the future perspectives in the field are proposed. We hope this review facilitates paving the way for the design of intelligent nano-ferroptosis inducers.
Collapse
Affiliation(s)
- Qiaolin Liu
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| |
Collapse
|
168
|
Chen S, Zhu P, Mao L, Wu W, Lin H, Xu D, Lu X, Shi J. Piezocatalytic Medicine: An Emerging Frontier using Piezoelectric Materials for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2208256. [PMID: 36634150 DOI: 10.1002/adma.202208256] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Emerging piezocatalysts have demonstrated their remarkable application potential in diverse medical fields. In addition to their ultrahigh catalytic activities, their inherent and unique charge-carrier-releasing properties can be used to initiate various redox catalytic reactions, displaying bright prospects for future medical applications. Triggered by mechanical energy, piezocatalytic materials can release electrons/holes, catalyze redox reactions of substrates, or intervene in biological processes to promote the production of effector molecules for medical purposes, such as decontamination, sterilization, and therapy. Such a medical application of piezocatalysis is termed as piezocatalytic medicine (PCM) herein. To pioneer novel medical technologies, especially therapeutic modalities, this review provides an overview of the state-of-the-art research progress in piezocatalytic medicine. First, the principle of piezocatalysis and the preparation methodologies of piezoelectric materials are introduced. Then, a comprehensive summary of the medical applications of piezocatalytic materials in tumor treatment, antisepsis, organic degradation, tissue repair and regeneration, and biosensing is provided. Finally, the main challenges and future perspectives in piezocatalytic medicine are discussed and proposed, expecting to fuel the development of this emerging scientific discipline.
Collapse
Affiliation(s)
- Si Chen
- Shanghai Tenth People's Hospital, Clinical Center For Brain And Spinal Cord Research, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Piao Zhu
- Shanghai Tenth People's Hospital, Clinical Center For Brain And Spinal Cord Research, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Lijie Mao
- Shanghai Tenth People's Hospital, Clinical Center For Brain And Spinal Cord Research, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Wencheng Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Deliang Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Xiangyu Lu
- Shanghai Tenth People's Hospital, Clinical Center For Brain And Spinal Cord Research, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Jianlin Shi
- Shanghai Tenth People's Hospital, Clinical Center For Brain And Spinal Cord Research, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| |
Collapse
|
169
|
Huang L, Nie T, Jiang L, Chen Y, Zhou Y, Cai X, Zheng Y, Wang L, Wu J, Ying T. Acidity-Biodegradable Iridium-Coordinated Nanosheets for Amplified Ferroptotic Cell Death Through Multiple Regulatory Pathways. Adv Healthc Mater 2023; 12:e2202562. [PMID: 36610060 DOI: 10.1002/adhm.202202562] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/15/2022] [Indexed: 01/09/2023]
Abstract
Ferroptosis-based treatment strategies display the potential to suppress some malignant tumors with intrinsic apoptosis resistance. However, current related cancer treatments are still hampered by insufficient intracellular reactive oxygen species (ROS) levels and Fe2+ contents, posing considerable challenges for their clinical translation. Herein, an intracellular acid-biodegradable iridium-coordinated nanosheets (Ir-Hemin) with sonodynamic therapy (SDT) properties to effectively induce ferroptosis in tumor cells through multiple regulatory pathways are proposed. Under ultrasound (US) irradiation, Ir-Hemin nanosheets act as nanosonosensitizers to effectively generate ROS, subsequently causing the accumulation of lipid peroxides (LPO) and inducing ferroptotic cell death. Furthermore, these Ir-Hemin nanosheets decompose quickly to release hemin and Ir(IV), which deplete intracellular glutathione (GSH) to deactivate the enzyme glutathione peroxidase 4 (GPX4) and initiate the ferroptosis pathway. Specifically, the released hemin enables heme oxygenase 1 (HO-1) upregulation for endogenous ferrous ion supplementation, which compensates for the toxicity concerns brought about by the large uptake of exogenous iron. Surprisingly, Ir-Hemin nanosheets exhibit high tumor accumulation and trigger effective ferroptosis for tumor therapy. These Ir-Hemin nanosheets display pronounced synergistic anticancer efficacy under US stimulation both in vitro and in vivo, providing a strong rationale for the application of ferroptosis in cancer treatment.
Collapse
Affiliation(s)
- Lili Huang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.,Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Tongtong Nie
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Lixian Jiang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Ying Chen
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yixuan Zhou
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.,Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.,Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Longchen Wang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.,Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Jianrong Wu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.,Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.,Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| |
Collapse
|
170
|
Qin Y, Geng X, Sun Y, Zhao Y, Chai W, Wang X, Wang P. Ultrasound nanotheranostics: Toward precision medicine. J Control Release 2023; 353:105-124. [PMID: 36400289 DOI: 10.1016/j.jconrel.2022.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022]
Abstract
Ultrasound (US) is a mechanical wave that can penetrate biological tissues and trigger complex bioeffects. The mechanisms of US in different diagnosis and treatment are different, and the functional application of commercial US is also expanding. In particular, recent developments in nanotechnology have led to a wider use of US in precision medicine. In this review, we focus on US in combination with versatile micro and nanoparticles (NPs)/nanovesicles for tumor theranostics. We first introduce US-assisted drug delivery as a stimulus-responsive approach that spatiotemporally regulates the deposit of nanomedicines in target tissues. Multiple functionalized NPs and their US-regulated drug-release curves are analyzed in detail. Moreover, as a typical representative of US therapy, sonodynamic antitumor strategy is attracting researchers' attention. The collaborative efficiency and mechanisms of US and various nano-sensitizers such as nano-porphyrins and organic/inorganic nanosized sensitizers are outlined in this paper. A series of physicochemical processes during ultrasonic cavitation and NPs activation are also discussed. Finally, the new applications of US and diagnostic NPs in tumor-monitoring and image-guided combined therapy are summarized. Diagnostic NPs contain substances with imaging properties that enhance US contrast and photoacoustic imaging. The development of such high-resolution, low-background US-based imaging methods has contributed to modern precision medicine. It is expected that the integration of non-invasive US and nanotechnology will lead to significant breakthroughs in future clinical applications.
Collapse
Affiliation(s)
- Yang Qin
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaorui Geng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yitong Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Wenyu Chai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
171
|
Zhang H, Mao Z, Kang Y, Zhang W, Mei L, Ji X. Redox regulation and its emerging roles in cancer treatment. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
172
|
Zhou M, Liang S, Liu D, Ma K, Peng Y, Wang Z. Engineered Nanoprobes for Immune Activation Monitoring. ACS NANO 2022; 16:19940-19958. [PMID: 36454191 DOI: 10.1021/acsnano.2c09743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The activation of the immune system is critical for cancer immunotherapy and treatments of inflammatory diseases. Non-invasive visualization of immunoactivation is designed to monitor the dynamic nature of the immune response and facilitate the assessment of therapeutic outcomes, which, however, remains challenging. Conventional imaging modalities, such as positron emission tomography, computed tomography, etc., were utilized for imaging immune-related biomarkers. To explore the dynamic immune monitoring, probes with signals correlated to biomarkers of immune activation or prognosis are urgently needed. These emerging molecular probes, which turn on the signal only in the presence of the intended biomarker, can improve the detection specificity. These probes with "turn on" signals enable non-invasive, dynamic, and real-time imaging with high sensitivity and efficiency, showing significance for multifunctionality/multimodality imaging. As a result, more and more innovative engineered nanoprobes combined with diverse imaging modalities were developed to assess the activation of the immune system. In this work, we comprehensively review the recent and emerging advances in engineered nanoprobes for monitoring immune activation in cancer or other immune-mediated inflammatory diseases and discuss the potential in predicting the efficacy following treatments. Research on real-time in vivo immunoimaging is still under exploration, and this review can provide guidance and facilitate the development and application of next-generation imaging technologies.
Collapse
Affiliation(s)
- Mengli Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Kongshuo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yuxuan Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
173
|
Li S, Sun W, Ouyang M, Yu B, Chen Y, Wang Y, Zhou D. Hemoglobin‐Related Biomaterials and their Applications. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Shaobing Li
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| | - Wei Sun
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| | - Min Ouyang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| | - Bo Yu
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
| | - Yan Chen
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
| | - Yupeng Wang
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
| | - Dongfang Zhou
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| |
Collapse
|
174
|
Li C, Zhu P, Xiang H, Jin Y, Lu B, Shen Y, Wang W, Huang B, Chen Y. 3D-CEUS tracking of injectable chemo-sonodynamic therapy-enabled mop-up of residual renal cell carcinoma after thermal ablation. Mater Today Bio 2022; 18:100513. [PMID: 36569591 PMCID: PMC9771734 DOI: 10.1016/j.mtbio.2022.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Thermal ablation (TA), as a minimally invasive therapeutic technique, has been extensively used to the treatment of solid tumors, such as renal cell carcinoma (RCC), which, unfortunately, still fails to overcome the high risk of local recurrence and distant metastasis since the incomplete ablation cannot be ignored due to various factors such as the indistinguishable tumor margins and limited ablation zone. Herein, we report the injectable thermosensitive hydrogel by confining curcumin (Cur)-loaded hollow mesoporous organosilica nanoparticles (Cur@HMON@gel) which can locate in tumor site more than half a month and mop up the residual RCC under ultrasound (US) irradiation after transforming from colloidal sol status to elastic gel matrix at physiological temperature. Based on the US-triggered accelerated diffusion of the model chemotherapy drug with multi-pharmacologic functions, the sustained and controlled release of Cur has been demonstrated in vitro. Significantly, US is employed as an external energy to trigger Cur, as a sonosensitizer also, to generate reactive oxygen species (ROS) for sonodynamic tumor therapy (SDT) in parallel. Tracking by the three-dimensional contrast-enhanced ultrasound (3D-CEUS) imaging, the typical decreased blood perfusions have been observed since the residual xenograft tumor after incomplete TA were effectively suppressed during the chemo-sonodynamic therapy process. The high in vivo biocompatibility and biodegradability of the multifunctional nanoplatform confined by thermogel provide the potential of their further clinical translation for the solid tumor eradication under the guidance and monitoring of 3D-CEUS.
Collapse
Affiliation(s)
- Cuixian Li
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China,Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, PR China
| | - Piao Zhu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, PR China,Corresponding author.
| | - Huijing Xiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yunjie Jin
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China,Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, PR China
| | - Beilei Lu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China,Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, PR China
| | - Yujia Shen
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China,Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, PR China
| | - Wenping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China,Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, PR China,Corresponding author. Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China.
| | - Beijian Huang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China,Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, PR China,Corresponding author. Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China,Corresponding author.
| |
Collapse
|
175
|
Pan M, Hu D, Yuan L, Yu Y, Li Y, Qian Z. Newly developed gas-assisted sonodynamic therapy in cancer treatment. Acta Pharm Sin B 2022. [PMID: 37521874 PMCID: PMC10372842 DOI: 10.1016/j.apsb.2022.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sonodynamic therapy (SDT) is an emerging noninvasive treatment modality that utilizes low-frequency and low-intensity ultrasound (US) to trigger sensitizers to kill tumor cells with reactive oxygen species (ROS). Although SDT has attracted much attention for its properties including high tumor specificity and deep tissue penetration, its anticancer efficacy is still far from satisfactory. As a result, new strategies such as gas-assisted therapy have been proposed to further promote the effectiveness of SDT. In this review, the mechanisms of SDT and gas-assisted SDT are first summarized. Then, the applications of gas-assisted SDT for cancer therapy are introduced and categorized by gas types. Next, therapeutic systems for SDT that can realize real-time imaging are further presented. Finally, the challenges and perspectives of gas-assisted SDT for future clinical applications are discussed.
Collapse
|
176
|
Li Y, Huang C, Xu Y. Colon cancer exosome-derived biomimetic nanoplatform for curcumin-mediated sonodynamic therapy and calcium overload. Front Bioeng Biotechnol 2022; 10:1069676. [PMID: 36457858 PMCID: PMC9705788 DOI: 10.3389/fbioe.2022.1069676] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 10/03/2023] Open
Abstract
Sonodynamic therapy (SDT) possesses unique properties such as being minimally invasive, exhibiting low toxicity, as well as ability to impart the treatment in the deep tissues, and hence has been extensively used. However, inherent defects such as low water-soluble sonosensitizers can limit the clinical application of SDT, and tumor microenvironment (TME) can further compromise the effect of a single SDT. To overcome these challenges, we have designed a bionic nano-system (ECaC) by coating mesoporous calcium carbonate nanoparticles (CaCO3 NPs) and sonosensitizer curcumin (Cur) into tumor-derived exosomes for developing enhanced SDT. Exosome membrane could endow CaCO3 NPs with homologous targeting abilities. In addition, compared with the bare CaCO3 NPs, ECaC showed significant accumulation in the tumor cell species. Subsequently, CaCO3 NPs upon reaching the tumor site can be degraded into Ca2+ in response to the acidic microenvironment of the tumor to destroy the cellular mitochondria. Hence, the cellular respiration could be destroyed to be a vulnerable state, causing oxidative stress, enhancing Cur-mediated chemotherapy/SDT. This synergistically dynamic therapy has demonstrated significant anti-tumor effects under in vitro and in vivo settings without exhibiting any toxic side effects. Our prepared biomimetic nano-system can effectively deliver the hydrophobic Cur to the tumor sites, which holds great promise in field of drug delivery and can broaden the application of exosomes, as this method has a certain enlightenment effect on the subsequent development of exosomes.
Collapse
Affiliation(s)
- Yang Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
- School of Pharmacy, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
- Department of Gastrointestinal Surgery, Shenzhen People’s Hospital The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Chunyu Huang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
- School of Pharmacy, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| |
Collapse
|
177
|
Li M, Zhang Y, Zhang X, Liu Z, Tang J, Feng M, Chen B, Wu D, Liu J. Degradable Multifunctional Porphyrin-Based Porous Organic Polymer Nanosonosensitizer for Tumor-Specific Sonodynamic, Chemo- and Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48489-48501. [PMID: 36281484 DOI: 10.1021/acsami.2c14776] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sonodynamic therapy (SDT) benefiting from its intrinsic merits, such as noninvasiveness and deep tissue penetrability, is receiving increasing considerable attention in reactive oxygen species (ROS)-based tumor treatment. However, current sonosensitizers usually suffer from low tumor lesion accumulation, insufficient ROS generation efficiency under ultrasound, and non-biodegradability, which seriously impede the therapeutic outcomes. Additionally, it is difficult that SDT alone can completely eradicate tumors because of the complex and immunosuppressive tumor microenvironment (TME). Herein, we simultaneously employ sonosensitive porphyrin building blocks and glutathione (GSH)-responsive disulfide bonds to construct a novel degradable multifunctional porphyrin-based hollow porous organic polymer (POP) nanosonosensitizer (H-Pys-HA@M/R), which combine SDT, "on-demand" chemotherapy, and immunotherapy. Taking the unique advantages of POPs with designable structures and high specific surface area, this H-Pys-HA@M/R nanosonosensitizer can achieve tumor target accumulation, GSH-triggered drug release, and low-frequency ultrasound-activating ROS generation with encouraging results. Furthermore, this multifunctional nanosonosensitizer can effectively evoke immunogenic cell death (ICD) response through the combination of SDT and chemotherapy for both primary and distal tumor growth suppression. Meanwhile, H-Pys-HA@M/R exhibits favorable biodegradation and biosafety. Therefore, this study provides a new strategy for reasonably designing and constructing POP-related sonosensitizers combining SDT/chemotherapy/immunotherapy triple treatment modalities to eradicate malignant tumors.
Collapse
Affiliation(s)
- Meiting Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Yaqian Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Xiaoge Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Zhuoyin Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Miao Feng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Baizhu Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong518107, People's Republic of China
| |
Collapse
|
178
|
Khorshidi S, Younesi S, Karkhaneh A. Peroxide mediated oxygen delivery in cancer therapy. Colloids Surf B Biointerfaces 2022; 219:112832. [PMID: 36137337 DOI: 10.1016/j.colsurfb.2022.112832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
Hypoxia is a serious obstacle in cancer treatment. The aberrant vascular network as well as the abnormal extracellular matrix arrangement results in formation of a hypoxic regions in tumors which show high resistance to the curing. Hypoxia makes the cancer treatment challengeable via two mechanisms; first and foremost, hypoxia changes the cell metabolism and leads the cells towards an aggressive and metastatic phenotype and second, hypoxia decreases the efficiency of the various cancer treatment modalities. Most of the cancer treatment methods including chemotherapy, radiotherapy, photodynamic therapy, sonodynamic therapy and immunotherapy are negatively affected by the oxygen deprivation. Therefore, the regional oxygenation is requisite to alleviate the negative impacts of the hypoxia on tumor cells and tumor therapy modalities. A great deal of effort has been put forth to resolve the problem of hypoxia in tumors. Peroxides have gained tremendous attention as oxygen generating components in cancer therapy. The concurrent loading of the peroxides and cancer treatment components into a single delivery system can bring about a multipurpose delivery system and substantially encourage the success of the cancer amelioration. In this review, we have tried to after the description of a relation between hypoxia and cancer treatment modalities, discuss the role of peroxides in tumor hyperoxygenation and cancer therapy success. Thereafter, we have summarized a number of vehicles for the delivery of the peroxide alone or in combination with other therapeutic components for cancer treatment.
Collapse
Affiliation(s)
- Sajedeh Khorshidi
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Sogol Younesi
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Akbar Karkhaneh
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| |
Collapse
|
179
|
Qiao C, Yang Z, Liu X, Zhang R, Xia Y, Wang L, Chen Z, Jia Q, Wang R, Yang Y, Wang Z. Post-Remedial Oxygen Supply: A New Perspective on Photodynamic Therapy to Suppress Tumor Metastasis. NANO LETTERS 2022; 22:8250-8257. [PMID: 36218311 DOI: 10.1021/acs.nanolett.2c02983] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photodynamic therapy (PDT) holds great promise in tumor therapy due to high safety, efficacy, and specificity. However, the risk of increased metastasis in hypoxic tumors after oxygen-dependent PDT remains underestimated. Here, we propose a post-PDT oxygen supply (POS) strategy to reduce the risk of metastasis. Herein, biocompatible and tumor-targeting Ce6@BSA and PFC@BSA nanoparticles were constructed for PDT and POS in a 4T1-orthotropic breast cancer model. PDT with Ce6@BSA nanoparticles increased tumor metastasis via the HIF-1α signaling pathway, whereas POS significantly reduced the PDT-triggered metastasis by blocking this pathway. Furthermore, POS, with clinical protocols and an FDA-approved photosensitizer (hypericin), and oxygen inhalation reduced PDT-induced metastasis. Our study findings indicate that PDT may increase the risk of tumor metastasis and that POS may solve this problem. POS can reduce the metastasis resulting not only from PDT but also from other oxygen-dependent treatments such as radiotherapy and sonodynamic therapy.
Collapse
Affiliation(s)
- Chaoqiang Qiao
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Zuo Yang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Xuelan Liu
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Ruili Zhang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Yuqiong Xia
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Lexuan Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Zhuang Chen
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Qian Jia
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Ruhao Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P.R. China
| | - Zhongliang Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xidian University, Xi'an, Shaanxi 710126, P.R. China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi 710071, P.R. China
| |
Collapse
|
180
|
Synthesis and Biological Evaluation of PEGylated MWO 4 Nanoparticles as Sonodynamic AID Inhibitors in Treating Diffuse Large B-Cell Lymphoma. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217143. [PMID: 36363970 PMCID: PMC9654119 DOI: 10.3390/molecules27217143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/25/2023]
Abstract
Sonodynamic therapy (SDT) triggered by ultrasound (US) has attracted increasing attention owing to its ability to overcome critical limitations, including low tissue-penetration depth and phototoxicity in photodynamic therapy (PDT). Biogenic metal oxide nanoparticles (NPs) have been used as anti-cancer drugs due to their biocompatibility properties with most biological systems. Here, sonosensitizer MWO4-PEG NPs (M = Fe Mn Co Ni) were synthesized as inhibitors to activation-induced cytidine deaminase (AID), thus neutralizing the extensive carcinogenesis of AID in diffuse large B-cell lymphoma (DLBCL). The physiological properties of these nanomaterials were examined using transmission electron microscopy (TEM). The inhibition of NPs to AID was primarily identified by the affinity interaction prediction between reactive oxygen species (ROS) and AID through molecular dynamics and molecular docking technology. The cell apoptosis and ROS generation in US-triggered NPs treated DLBCL cells (with high levels of AID) were also detected to indicate the sonosensitivity and toxicity of MWO4-PEG NPs to DLBCL cells. The anti-lymphoma studies using DLBCL and AID-deficient DLBCL cell lines indicated a concentration-dependent profile. The synthesized MWO4-PEG NPs in this study manifested good sonodynamic inhibitory effects to AID and well treatment for AID-positive hematopoietic cancers.
Collapse
|
181
|
Sofuni A, Itoi T. Current status and future perspective of sonodynamic therapy for cancer. J Med Ultrason (2001) 2022:10.1007/s10396-022-01263-x. [PMID: 36224458 DOI: 10.1007/s10396-022-01263-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 12/07/2022]
Abstract
There is a tremendous need for prevention and effective treatment of cancer due to the associated morbidity and mortality. In this study, we introduce sonodynamic therapy (SDT), which is expected to be a new cancer treatment modality. SDT is a promising option for minimally invasive treatment of solid tumors and comprises three different components: sonosensitizers, ultrasound, and molecular oxygen. These components are harmless individually, but in combination they generate cytotoxic reactive oxygen species (ROS). We will explore the molecular mechanism by which SDT kills cancer cells, the class of sonosensitizers, drug delivery methods, and in vitro and in vivo studies. At the same time, we will highlight clinical applications for cancer treatment. The progress of SDT research suggests that it has the potential to become an advanced field of cancer treatment in clinical application. In this article, we will focus on the mechanism of action of SDT and its application to cancer treatment, and explain key factors to aid in developing strategies for future SDT development.
Collapse
Affiliation(s)
- Atsushi Sofuni
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
182
|
You C, Li X, Wang D, Chen H, Liang L, Chen Y, Zhao Y, Xiang H. Self‐Assembled Aza‐Boron‐Dipyrromethene for Ferroptosis‐Boosted Sonodynamic Therapy. Angew Chem Int Ed Engl 2022; 61:e202210174. [DOI: 10.1002/anie.202210174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 12/07/2022]
Affiliation(s)
- Changwen You
- Materdicine Lab School of Life Sciences Shanghai University Shanghai 200444 P. R. China
| | - Xingguang Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Dongqiong Wang
- Materdicine Lab School of Life Sciences Shanghai University Shanghai 200444 P. R. China
| | - Hongzhong Chen
- School of Chemistry Chemical Engineering and Biotechnology Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Lei Liang
- Materdicine Lab School of Life Sciences Shanghai University Shanghai 200444 P. R. China
| | - Yu Chen
- Materdicine Lab School of Life Sciences Shanghai University Shanghai 200444 P. R. China
| | - Yanli Zhao
- School of Chemistry Chemical Engineering and Biotechnology Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Huijing Xiang
- Materdicine Lab School of Life Sciences Shanghai University Shanghai 200444 P. R. China
- School of Chemistry Chemical Engineering and Biotechnology Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
183
|
Hu Z, Song X, Ding L, Cai Y, Yu L, Zhang L, Zhou Y, Chen Y. Engineering Fe/Mn-doped zinc oxide nanosonosensitizers for ultrasound-activated and multiple ferroptosis-augmented nanodynamic tumor suppression. Mater Today Bio 2022; 16:100452. [PMID: 36245834 PMCID: PMC9557028 DOI: 10.1016/j.mtbio.2022.100452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
As an effective tumor-therapeutic modality, ultrasound-triggered sonodynamic therapy (SDT) has been extensively explored to induce cancer cell death by activating sonosensitizers to generate reactive oxygen species (ROS). However, the traditional inorganic semiconductor-based sonosensitizers still suffer from inefficient ROS production because of the low separation efficiency of electrons and holes (e-/h+) and their fast recombination. Herein, the iron (Fe) and manganese (Mn) co-doped zinc oxide nanosonosensitizers have been rationally designed and engineered for augmenting the SDT efficiency against tumor by inducing both multiple ferroptosis and apoptosis of tumor cells. The Fe/Mn component was co-doped into the nannostructure of ZnO nanosonosensitizers, which not only catalyzed the Fenton reaction in the hydrogen peroxide-overexpressed tumor microenvironment to produce ROS, but also depleted intracellular glutathione to suppress the consumption of ROS. The doping nanostructure in the engineered nanosonosensitizers substantially augmented the SDT efficacy of ZnO nanosonosensitizers by promoting the separation and hindering the recombination of e-/h+ under ultrasound activation. The multiple ferroptosis and apoptosis in the enhanced SDT effect of Fe/Mn co-doped ZnO nanosonosensitizers were solidly demonstrated both in vitro and in vivo on tumor-bearing mice in accompany with the detailed mechanism assessment by RNA sequenching. This work provides a distinct strategy to augment the nanomedicine-enabled SDT efficency by engineering the inorganic semiconductor-based nanosonosensitizers with transitional metal doping and inducing multiple cell-death pathways including ferroptosis.
Collapse
Affiliation(s)
- Zhongqian Hu
- Department of Ultrasound and Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, PR China
| | - Xinran Song
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Shanghai, PR China
| | - Li Ding
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Shanghai, PR China
| | - Yu Cai
- Department of Ultrasound and Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, PR China
| | - Luodan Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China,Corresponding author.
| | - Lijuan Zhang
- Department of Ultrasound, The Fourth Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, PR China,Corresponding author.
| | - Yajun Zhou
- Department of Ultrasound, The Fourth Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, PR China,Corresponding author.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China,Corresponding author.
| |
Collapse
|
184
|
Liu B, Bian Y, Yuan M, Zhu Y, Liu S, Ding H, Gai S, Yang P, Cheng Z, Lin J. L-buthionine sulfoximine encapsulated hollow calcium peroxide as a chloroperoxidase nanocarrier for enhanced enzyme dynamic therapy. Biomaterials 2022; 289:121746. [DOI: 10.1016/j.biomaterials.2022.121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/30/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
|
185
|
Zhang W, Han B, Gao C, Liu X, Peng Y, Gong C, Hu D, Wang N, Tang S, Zhang B, Zhao M, Peng H. Integrated Platform of Oxygen Self-enriched Nanovesicles: SP94 Peptide-directed Chemo/sonodynamic Therapy for Liver Cancer. Eur J Pharm Biopharm 2022; 179:206-220. [PMID: 36150614 DOI: 10.1016/j.ejpb.2022.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is a most common primary liver cancer among the most deadly malignancies. Selectively killing the cancer cells within the liver urgently requires the novel treatment strategies. The combination of sonodynamic therapy (SDT) and chemotherapy based on the nanotechnology have achieved some achievements in the HCC treatments. However, off-targeting drug delivery to healthy cells and the hypoxic microenvironment in the solid tumors frustrate the efforts to the combined strategy. The hypoxic microenvironment restrains the generation of ROS, leading to the decreased effects of SDT. To improve the clinical outcomes of chemo/SDT strategy, we created a novel oxygen self-enriched active targeted nanovesicle (ICG-DOX NPs/PFH@SP94-Lip). SP94 peptide could enhance the selectivity of the nanovesicles to liver tumor cells rather than normal liver cells. Besides, an oxygen carrier, perfluorohexanes (PFH), was co-loaded into liposomes to increase the oxygen level in tumor tissue, thus improving the effects of SDT. The in vivo studies showed that the ICG-DOX NPs/PFH@SP94-Lip combined with the external US stimulation significantly inhibited effects on tumor growth. Therefore, this novel oxygen self-enriched chemo/SDT nanocomposites represents a proof-of-concept liver tumor treatment strategy.
Collapse
Affiliation(s)
- Wenyuan Zhang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, 39 Xin Yang Road Daqing, 163319, China
| | - Bo Han
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, 39 Xin Yang Road Daqing, 163319, China
| | - Chuya Gao
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, 39 Xin Yang Road Daqing, 163319, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, 39 Xin Yang Road Daqing, 163319, China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, PR China
| | - Chen Gong
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, 39 Xin Yang Road Daqing, 163319, China
| | - Dandan Hu
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, 39 Xin Yang Road Daqing, 163319, China
| | - Na Wang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, 39 Xin Yang Road Daqing, 163319, China
| | - Shukun Tang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, 39 Xin Yang Road Daqing, 163319, China
| | - Beining Zhang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, 39 Xin Yang Road Daqing, 163319, China
| | - Man Zhao
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, 39 Xin Yang Road Daqing, 163319, China.
| | - Haisheng Peng
- Medical College of Shaoxing University, 508 Huancheng western Road, Shaoxing, 312099, China; Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, 39 Xin Yang Road Daqing, 163319, China.
| |
Collapse
|
186
|
Ning S, Dai X, Tang W, Guo Q, Lyu M, Zhu D, Zhang W, Qian H, Yao X, Wang X. Cancer cell membrane-coated C-TiO 2 hollow nanoshells for combined sonodynamic and hypoxia-activated chemotherapy. Acta Biomater 2022; 152:562-574. [PMID: 36067874 DOI: 10.1016/j.actbio.2022.08.067] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 12/07/2022]
Abstract
Sonodynamic therapy (SDT) is a promising strategy for tumor treatment that satisfies all requirements of penetrating deep-seated tissues without causing additional trauma. However, the hypoxic tumor microenvironment impairs the therapeutic effect of SDT. The synergistic treatment of oxygen concentration-dependent SDT and bio-reductive therapy has been proven to be an effective approach to improve the therapeutic efficiency of SDT by exploiting tumor hypoxia. Herein, a biomimetic drug delivery system (C-TiO2/TPZ@CM) was successfully synthesized for combined SDT and hypoxia-activated chemotherapy, which was composed of tirapazamine (TPZ)-loaded C-TiO2 hollow nanoshells (HNSs) as the inner cores and cancer cell membrane (CM) as the outer shells. C-TiO2 HNSs coated with CM achieved tumor targeting via homologous binding. C-TiO2@CM as a nanocarrier loaded with TPZ in the presence of the trapping ability of CM and the special cavity structure of C-TiO2 HNSs. Moreover, C-TiO2 HNSs as sonosensitizers killed cancer cells under ultrasound (US) irradiation. Oxygen depletion during SDT induced a hypoxic environment in the tumor to activate the killing effect of co-delivered TPZ, thereby obtaining satisfactory synergistic therapeutic effects. In addition, C-TiO2@CM exhibited remarkable biocompatibility without manifest damage and toxicity to the blood and major organs of the mice. The study highlighted that C-TiO2/TPZ@CM served as a powerful biomimetic drug delivery system for effective SDT by exploiting tumor hypoxia. STATEMENT OF SIGNIFICANCE: • C-TiO2@CM achieved tumor targeting via homologous binding. • C-TiO2 hollow nanoshells could be used as a sonosensitizer and drug carrier for synergistic SDT and hypoxia-activated chemotherapy. • C-TiO2/TPZ@CM showed no obvious toxicity under the injection dose.
Collapse
Affiliation(s)
- Shipeng Ning
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning 530000, PR China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning 530000, PR China
| | - Xingliang Dai
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Weiwei Tang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, PR China
| | - Qinglong Guo
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Meng Lyu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Daoming Zhu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Wei Zhang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China.
| | - Xiaxi Yao
- School of Chemistry and Materials Engineering, Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu 215500, PR China.
| | - Xianwen Wang
- College and Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, PR China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
187
|
Preparation of porous carbon@TiO2 composites for the adsorption/sonocatalytic degradation of organic dyes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
188
|
Zhao Y, Bian Y, Xiao X, Liu B, Ding B, Cheng Z, Ma P, Lin J. Tumor Microenvironment-Responsive Cu/CaCO 3 -Based Nanoregulator for Mitochondrial Homeostasis Disruption-Enhanced Chemodynamic/Sonodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204047. [PMID: 35997705 DOI: 10.1002/smll.202204047] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The efficiency of reactive oxygen species (ROS)-mediated cancer therapy is restrained by intrinsic characteristics in the tumor microenvironment (TME), such as overexpressed glutathione (GSH), hypoxia and limited efficiency of H2 O2 . In this work, intelligent copper-dropped calcium carbonate loading sonosensitizer Ce6 nanoparticles (Cu/CaCO3 @Ce6, CCC NPs) are established to realize TME-responsive self-supply of oxygen and successively Ca2+ -overloading-strengthened chemodynamic therapy/sonodynamic therapy (CDT/SDT). CCC NPs release Ca2+ , Cu2+ , and Ce6 in weakly acid and GSH-excessive TME. Released Cu2+ can not only consume GSH and turn into Cu+ via a redox reaction, but also provide CDT-creating hydroxyl radicals through the Fenton-like reaction. Under ultrasound irradiation, the intracellular oxidative stress is amplified profoundly relying on singlet oxygen outburst from SDT. Moreover, Ca2+ influx aggravates the mitochondrial disruption, which further accelerates the oxidation level. The facile and feasible design of the Cu-dropped CaCO3 -based nanoregulators will be further developed as a paradigm in ROS-contributed cancer therapy.
Collapse
Affiliation(s)
- Yajie Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yulong Bian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiao Xiao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
189
|
Zhao Y, Liu J, He M, Dong Q, Zhang L, Xu Z, Kang Y, Xue P. Platinum-Titania Schottky Junction as Nanosonosensitizer, Glucose Scavenger, and Tumor Microenvironment-Modulator for Promoted Cancer Treatment. ACS NANO 2022; 16:12118-12133. [PMID: 35904186 DOI: 10.1021/acsnano.2c02540] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To date, the construction of heterogeneous interfaces between sonosensitizers and other semiconductors or noble metals has aroused increasing attention, owing to an enhanced interface charge transfer, augmented spin-flip, and attenuated activation energy of oxygen. Here, a smart therapeutic nanoplatform is constructed by surface immobilization of glucose oxidase (GOx) onto a TiO2@Pt Schottky junction. The sonodynamic therapy (SDT) and starvation therapy (ST) mediated by TiO2@Pt/GOx (TPG) promote systemic tumor suppression upon hypoxia alleviation in tumor microenvironment. The band gap of TiO2@Pt is outstandingly decreased to 2.9 eV, in contrast to that of pristine TiO2. The energy structure optimization enables a more rapid generation of singlet oxygen (1O2) and hydroxyl radicals (•OH) by TiO2@Pt under ultrasound irradiation, resulting from an enhanced separation of hole-electron pair for redox utilization. The tumorous reactive oxygen species (ROS) accumulation and GOx-mediated glucose depletion facilitate oxidative damage and energy exhaustion of cancer cells, both of which can be tremendously amplified by Pt-catalyzed oxygen self-supply. Importantly, the combinatorial therapy triggers intense immunogenetic cell death, which favors a follow-up suppression of distant tumor and metastasis by evoking antitumor immunity. Collectively, this proof-of-concept paradigm provides an insightful strategy for highly efficient SDT/ST, which possesses good clinical potential for tackling cancer.
Collapse
Affiliation(s)
- Yinmin Zhao
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Jiahui Liu
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Mengting He
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Qi Dong
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Lei Zhang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
190
|
You C, Li X, Wang D, Chen H, Liang L, Chen Y, Zhao Y, Xiang H. Self‐Assembled Aza‐Boron‐Dipyrromethene for Ferroptosis‐Boosted Sonodynamic Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Changwen You
- Shanghai University School of Life Sciences CHINA
| | - Xingguang Li
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | | | - Hongzhong Chen
- Nanyang Technological University School of Chemistry, Chemical Engineering and Biotechnology SINGAPORE
| | - Lei Liang
- Shanghai University School of Life Sciences CHINA
| | - Yu Chen
- Shanghai University School of Life Sciences CHINA
| | - Yanli Zhao
- Nanyang Technological University School of Chemistry, Chemical Engineering and Biotechnology 21 Nanyang Link 637371 Singapore SINGAPORE
| | | |
Collapse
|
191
|
Zhang Y, Zhao Y, Zhang Y, Liu Q, Zhang M, Tu K. The crosstalk between sonodynamic therapy and autophagy in cancer. Front Pharmacol 2022; 13:961725. [PMID: 36046833 PMCID: PMC9421066 DOI: 10.3389/fphar.2022.961725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 12/07/2022] Open
Abstract
As a noninvasive treatment approach for cancer and other diseases, sonodynamic therapy (SDT) has attracted extensive attention due to the deep penetration of ultrasound, good focusing, and selective irradiation sites. However, intrinsic limitations of traditional sonosensitizers hinder the widespread application of SDT. With the development of nanotechnology, nanoparticles as sonosensitizers or as a vehicle to deliver sonosensitizers have been designed and used to target tissues or tumor cells with high specificity and accuracy. Autophagy is a common metabolic alteration in both normal cells and tumor cells. When autophagy happens, a double-membrane autophagosome with sequestrated intracellular components is delivered and fused with lysosomes for degradation. Recycling these cell materials can promote survival under a variety of stress conditions. Numerous studies have revealed that both apoptosis and autophagy occur after SDT. This review summarizes recent progress in autophagy activation by SDT through multiple mechanisms in tumor therapies, drug resistance, and lipid catabolism. A promising tumor therapy, which combines SDT with autophagy inhibition using a nanoparticle delivering system, is presented and investigated.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yuanru Zhao
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Mingzhen Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| |
Collapse
|
192
|
Lu D, Wang L, Wang L, An L, Huo M, Xu H, Shi J. Probiotic Engineering and Targeted Sonoimmuno-Therapy Augmented by STING Agonist. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201711. [PMID: 35603970 PMCID: PMC9353485 DOI: 10.1002/advs.202201711] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/03/2022] [Indexed: 05/08/2023]
Abstract
Tumor targeting and effective immunomodulation are of critical significance during tumor treatment by sonodynamic therapy (SDT). Herein, the probiotic engineering of the clinically approved sonosensitizer (hematoporphyrin monomethyl ether (HMME)) is reported onto the probiotic bacterium Bifidobacteria Longum (BiL) for sonosensitive bifidobacterium construction (HMME@BiL cells). Based on the hypoxic tropism feature of the strain, effective tumor-targeted sonodynamic therapeutics can be achieved both in vitro and in vivo. To improve the immunological responses against tumor during sonodynamics, a recently-developed stimulator of interferon genes immune agonist SR717 has been employed to improve the anti-tumor immunity with prominent activities, eradicating both primary and metastatic tumors with high efficiency and satisfied biocompatibility. The present work provides a promising paradigm of microbiotic nanomedicine in a sophisticated sonoimmunotherapeutic strategy against malignant tumors.
Collapse
Affiliation(s)
- Dan Lu
- Department of Medical UltrasoundShanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentNational Clinical Research Center of Interventional MedicineUltrasound Research and Education InstituteShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Liying Wang
- Department of Medical UltrasoundShanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentNational Clinical Research Center of Interventional MedicineUltrasound Research and Education InstituteShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Liping Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| | - Liwei An
- Department of Medical UltrasoundShanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentNational Clinical Research Center of Interventional MedicineUltrasound Research and Education InstituteShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Minfeng Huo
- Department of Medical UltrasoundShanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentNational Clinical Research Center of Interventional MedicineUltrasound Research and Education InstituteShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| | - Huixiong Xu
- Department of Medical UltrasoundShanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentNational Clinical Research Center of Interventional MedicineUltrasound Research and Education InstituteShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Jianlin Shi
- Department of Medical UltrasoundShanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentNational Clinical Research Center of Interventional MedicineUltrasound Research and Education InstituteShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| |
Collapse
|
193
|
Wang C, Tian Y, Wu B, Cheng W. Recent Progress Toward Imaging Application of Multifunction Sonosensitizers in Sonodynamic Therapy. Int J Nanomedicine 2022; 17:3511-3529. [PMID: 35966148 PMCID: PMC9365495 DOI: 10.2147/ijn.s370767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/23/2022] [Indexed: 12/13/2022] Open
Abstract
Sonodynamic therapy (SDT) is a rapidly developing non-surgical therapy that initiates sensitizers’ catalytic reaction using ultrasound, showing great potential for cancer treatment due to its high safety and non-invasive nature. In addition, recent research has found that using different diagnostic and therapeutic methods in tandem can lead to better anticancer outcomes. Therefore, as essential components of SDT, sonosensitizers have been extensively explored to optimize their functions and integrate multiple medical fields. The review is based on five years of articles evaluating the combined use of SDT and imaging in treating cancer. By developing multifunctional sonosensitive particles that combine imaging and sonodynamic therapy, we have integrated diagnosis into the treatment of precision medicine applications, improving SDT cell uptake and antitumor efficacy utilizing different tumour models. This paper describes the imaging principle and the results of cellular and animal imaging of the multifunctional sonosensitizers. Efforts are made in this paper to provide data and design references for future SDT combined imaging research and clinical application development and to provide offer suggestions.
Collapse
Affiliation(s)
- Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Correspondence: Wen Cheng; Bolin Wu, Department of Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People’s Republic of China, Tel +86 13313677182; +86 15663615088, Fax +86 451 85718392; +86 451 86298651, Email ;
| |
Collapse
|
194
|
Bian K, Yang W, Xu Y, Zeng W, Wang H, Liang H, Cui T, Wang Z, Zhang B. Specific-Tuning Band Structure in Hetero-Semiconductor Nanorods to Match with Reduction of Oxygen Molecules for Low-Intensity Yet Highly Effective Sonodynamic/Hole Therapy of Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202921. [PMID: 35801484 DOI: 10.1002/smll.202202921] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Sonosensitizers-assisted sonodynamic therapy (SDT) has been emerging as a promising treatment for cancers, and yet few specific regulations of band structure of sonosensitizers have been reported in relation to oxygen in tissues. Herein, by a gradient doping technique to modulate the band structure of hetero-semiconductor nanorods, it is found that the reduction potential of band-edge is very critical to reactive oxygen species (ROS) production under low-intensity ultrasound (US) irradiation and particularly, when aligned with the reduction of oxygen, ROS generation is found to be most significantly enhanced. Withal, US-generated oxidation holes are found to be effective in consuming overexpressed glutathione in tumor lesions, which amplifies cellular oxidative stress and finally induces tumor cell death. Moreover, the intrinsic fluorescence property of semiconductors provides imaging capability to illumine tumor area and guide the SDT process. This study demonstrates that the reduction potential state of sonosensitizers is of crucial importance in ROS generation and the proposed reduction potential-tailored hetero-semiconductor nanorods materialize low-intensity US irradiation yet highly effective SDT and synergetic hole therapy of tumors with imaging guidance and reduced radiation injury.
Collapse
Affiliation(s)
- Kexin Bian
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Weitao Yang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yan Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Weiwei Zeng
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Hui Wang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Hongying Liang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Tianming Cui
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhuo Wang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Bingbo Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
195
|
Liu Q, Fu Y, Wu B, Tang J, Wang Y, Wu Y, Zhang M, Shen S, Shen Y, Gao C, Ding J, Zhu L. Imaging moiety-directed co-assembly for biodegradation control with synchronous four-modal biotracking. Biomaterials 2022; 287:121665. [PMID: 35809403 DOI: 10.1016/j.biomaterials.2022.121665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022]
Abstract
The complexity of existing methods for biodegradation control limits the multi-functionality of biomedical materials. It is urgent to develop simple and straightforward strategies to control the biodegradation rate with precise tracking of various parameters in real-time. Here, we show an imaging moiety-directed co-assembly strategy, in which different imaging moieties bearing non-covalent interaction sites are covalently introduced into the poly (D,l-lactic acid) (PDLLA) chain as end groups, followed by alternate non-covalent interactions with polymer chains upon compression molding. This strategy takes advantage of a variety of bonding types (including CH-π, CH-F, etc.) to firmly integrate the PDLLA chains and strongly control the biodegradation rate, making the amorphous prototype degraded much slower than higher-molecular-weight counterparts, and the local inflammatory response is insignificant. On this basis, a synchronous four-modal (X-ray computed tomography + fluorescence + photoacoustics + ultrasound) imaging was achieved on the single entity in vivo, even within a millimeter-scale thick-skin tissue. These imaging signals can precisely correlate the multi parameter variation trend of material mass, volume and molecular weight, signifying that co-assembly can be utilized to develop advanced theranostic systems. SINGLE SENTENCE SUMMARY: We developed an imaging moiety-directed co-assembly strategy to control the biodegradation rate and achieve the synchronization of real-time four-modal imaging in vivo. These imaging signals can precisely correlate the multi-parameter variation trend of material mass, volume and molecular weight, which provided comprehensive biomedical information accessing both qualitatively and quantitatively.
Collapse
Affiliation(s)
- Qingsong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Ye Fu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Bin Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jingyu Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yaoben Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yanping Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yang Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Caiyun Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
196
|
Xie F, Liu Z, Wang P, Cai M, Li Y, Yan J, Lin Q, Luo F. Self-Delivering Nanodrugs Developed via Small-Molecule-Directed Assembly and Macrophage Cloaking for Sonodynamic-Augmented Immunotherapy. Adv Healthc Mater 2022; 11:e2102770. [PMID: 35575205 DOI: 10.1002/adhm.202102770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/09/2022] [Indexed: 01/24/2023]
Abstract
The self-delivery of sonosensitizers and immunomodulators to tumor areas, which is highly recommended for enhancing sonodynamic immunotherapy, remains a challenge. Herein, a self-delivering nanodrug (HB-NLG8189, drug loading: ≈100 wt%) is developed by the small-molecule self-assembly of "HB" (a new clinical photosensitizer) and NLG8189 (indoleamine-(2,3)-dioxygenase (IDO) pathway inhibitor) for sonodynamic-augmented immunotherapy; this preparation method ensures the absence of excipient-related toxicity and immunogenicity. To evade immune recognition and prolong the circulation time, the HB-NLG8189 nanodrugs are camouflaged using macrophage cell membranes (MPCMs). The constructed HB-NLG8189@MPCM nanodrugs show an ability to preferentially accumulate within tumors. Upon ultrasound triggering, the HB-NLG8189@MPCM is able to generate reactive oxygen species efficiently for robust sonodynamic therapy; it induces immunogenic cell death, initiates an antitumor immune response to activate tumor-specific effector T cells, and promotes the secretion of inflammatory cytokines. The concomitant delivery of NLG8189 reverses the immunosuppressive tumor microenvironment by restraining IDO-1 activation and the intratumoral infiltration of regulatory T cells. Sonodynamic-augmented immunotherapy with HB-NLG8189@MPCM significantly inhibits the growth of both primary and distant tumors with little systemic toxicity. The biomimetic self-delivery nanodrug provides a promising paradigm for improving sonodynamic immunotherapy.
Collapse
Affiliation(s)
- Fang Xie
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, P. R. China
| | - Zongjunlin Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, P. R. China
| | - Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350007, P. R. China
| | - Meimei Cai
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, P. R. China
| | - Yang Li
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350007, P. R. China
| | - Jianghua Yan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, P. R. China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, P. R. China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361000, P. R. China
| |
Collapse
|
197
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
198
|
Wang H, Tao J, Xu C, Tian Y, Lu G, Yang B, Teng Z. Flexible CuS-embedded human serum albumin hollow nanocapsules with peroxidase-like activity for synergistic sonodynamic and photothermal cancer therapy. NANOSCALE 2022; 14:9702-9714. [PMID: 35766330 DOI: 10.1039/d2nr00258b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoparticle flexibility is an important parameter in determining cell uptake and tumor accumulation, thus modulating therapeutic efficiency in cancer treatment. Herein, we successfully prepared CuS-embedded human serum albumin hollow nanocapsules (denoted CuS/HSA) by a hard-core-assisted layer-by-layer coating approach. This approach afforded CuS/HSA hollow nanocapsules with controllable shell thickness, tunable flexibility, uniform size (272.9 nm), a large hollow cavity, peroxidase-like activity, excellent photothermal conversion ability, and a high tetra-(4-aminophenyl) porphyrin (TAPP) loading capacity (27.3 wt%). The peroxidase-like activity of the CuS nanoparticles enabled them to overcome tumor hypoxia and augment the sonodynamic therapeutic (SDT) effects and photothermal conversion ability for photothermal therapy (PTT). In vitro experiments showed that the CuS/HSA-TAPP hollow nanocapsules efficiently induced cancer cell apoptosis under US irradiation and cancer cell ablation under laser irradiation, thus facilitating synergistic SDT and PTT. Importantly, the flexibility of the CuS/HSA hollow nanocapsules resulted in significantly enhanced cellular internalization and a longer mean residence time (131.3 h) than their solid counterparts (21.0 h). In a breast tumor model, the flexible CuS/HSA hollow nanocapsules exhibited high tumor accumulation of up to 27.1%. In vivo experiments demonstrated that the flexible CuS/HSA-TAPP hollow nanocapsules effectively eliminated breast tumors via the synergistic effect of SDT and PTT.
Collapse
Affiliation(s)
- Haijiao Wang
- Department of Gynecology Oncology, The First Hospital of Jilin University, Changchun 130021, Jilin, P. R. China
| | - Jun Tao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, P. R. China
| | - Chaoli Xu
- Department of Ultrasound Diagnostic, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, P. R. China.
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ying Tian
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210002, Jiangsu, P. R. China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210029, Jiangsu, P. R. China
| | - Bin Yang
- Department of Ultrasound Diagnostic, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, P. R. China.
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, P. R. China
| |
Collapse
|
199
|
Zhong X, Dai X, Wang Y, Wang H, Qian H, Wang X. Copper-based nanomaterials for cancer theranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1797. [PMID: 35419993 DOI: 10.1002/wnan.1797] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
Abstract
Copper-based nanomaterials (Cu-based NMs) with favorable biocompatibility and unique properties have attracted the attention of many biomedical researchers. Cu-based NMs are one of the most widely studied materials in cancer treatment. In recent years, great progress has been made in the field of biomedicine, especially in the treatment and diagnosis of tumors. This review begins with the classification of Cu-based NMs and the recent synthetic strategies of Cu-based NMs. Then, according to the abundant and special properties of Cu-based NMs, their application in biomedicine is summarized in detail. For biomedical imaging, such as photoacoustic imaging, positron emission tomography imaging, and multimodal imaging based on Cu-based NMs are summarized, as well as strategies to improve the diagnostic effectiveness. Moreover, a series of unique structures and functions as well as the underlying property activity relationship of Cu-based NMs were shown to highlight their promising therapeutic performance. Cu-based NMs have been widely used in monotherapies, such as photothermal therapy (PTT) and chemodynamic therapy (CDT). Moreover, the sophisticated design in composition, structure, and surface fabrication of Cu-based NMs can endow these NMs with more modalities in cancer diagnosis and therapy. To further improve the efficiency of cancer treatment, combined therapy based on Cu-based NMs was introduced in detail. Finally, the challenges, critical factors, and future prospects for the clinical translation of Cu-based NMs as multifunctional theranostic agents were also considered and discussed. The aim of this review is to provide a better understanding and key consideration for the rational design of this increasingly important new paradigm of Cu-based NMs as theranostic agents. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Xiaoyan Zhong
- School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xingliang Dai
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| |
Collapse
|
200
|
Ju Y, Shi X, Xu S, Ma X, Wei R, Hou H, Chu C, Sun D, Liu G, Tan Y. Atomically Precise Water-Soluble Graphene Quantum Dot for Cancer Sonodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105034. [PMID: 35038238 PMCID: PMC9259723 DOI: 10.1002/advs.202105034] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/05/2021] [Indexed: 05/05/2023]
Abstract
Although water-soluble graphene quantum dots (GQDs) have shown various promising bio-applications due to their intriguing optical and chemical properties, the large heterogeneity in compositions, sizes, and shapes of these GQDs hampers the better understanding of their structure-properties correlation and further uses in terms of large-scale manufacturing practices and safety concerns. It is shown here that a water-soluble atomically-precise GQD (WAGQD-C96 ) is synthesized and exhibits a deep-red emission and excellent sonodynamic sensitization. By decorating sterically hindered water-soluble functional groups, WAGQD-C96 can be monodispersed in water without further aggregation. The deep-red emission of WAGQD-C96 facilitates the tracking of its bio-process, showing a good cell-uptake and long-time retention in tumor tissue. Compared to traditional molecular sonosensitizers, WAGQD-C96 generates superior reactive oxygen species and demonstrates excellent tumor inhibition potency as an anti-cancer sonosensitizer in in vivo studies. A good biosafety of WAGQD-C96 is validated in both in vitro and in vivo assays.
Collapse
Affiliation(s)
- Yang‐Yang Ju
- State Key Laboratory for Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiao‐Xiao Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361005China
| | - Shu‐Yu Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361005China
| | - Xiao‐Hui Ma
- State Key Laboratory for Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Rong‐Jing Wei
- State Key Laboratory for Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Hao Hou
- State Key Laboratory for Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Cheng‐Chao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361005China
| | - Di Sun
- School of Chemistry and Chemical EngineeringState Key Laboratory of Crystal MaterialsShandong UniversityJi'nan250100China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361005China
| | - Yuan‐Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| |
Collapse
|