151
|
Liang S, Yao J, Liu D, Rao L, Chen X, Wang Z. Harnessing Nanomaterials for Cancer Sonodynamic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211130. [PMID: 36881527 DOI: 10.1002/adma.202211130] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Immunotherapy has made remarkable strides in cancer therapy over the past decade. However, such emerging therapy still suffers from the low response rates and immune-related adverse events. Various strategies have been developed to overcome these serious challenges. Therein, sonodynamic therapy (SDT), as a non-invasive treatment, has received ever-increasing attention especially in the treatment of deep-seated tumors. Significantly, SDT can effectively induce immunogenic cell death to trigger systemic anti-tumor immune response, termed sonodynamic immunotherapy. The rapid development of nanotechnology has revolutionized SDT effects with robust immune response induction. As a result, more and more innovative nanosonosensitizers and synergistic treatment modalities are established with superior efficacy and safe profile. In this review, the recent advances in cancer sonodynamic immunotherapy are summarized with a particular emphasis on how nanotechnology can be explored to harness SDT for amplifying anti-tumor immune response. Moreover, the current challenges in this field and the prospects for its clinical translation are also presented. It is anticipated that this review can provide rational guidance and facilitate the development of nanomaterials-assisted sonodynamic immunotherapy, helping to pave the way for next-generation cancer therapy and eventually achieve a durable response in patients.
Collapse
Affiliation(s)
- Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jianjun Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
152
|
Zhuang F, Xiang H, Huang B, Chen Y. Ultrasound-Triggered Cascade Amplification of Nanotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303158. [PMID: 37222084 DOI: 10.1002/adma.202303158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Indexed: 05/25/2023]
Abstract
Ultrasound (US)-triggered cascade amplification of nanotherapies has attracted considerable attention as an effective strategy for cancer treatment. With the remarkable advances in materials chemistry and nanotechnology, a large number of well-designed nanosystems have emerged that incorporate presupposed cascade amplification processes and can be activated to trigger therapies such as chemotherapy, immunotherapy, and ferroptosis, under exogenous US stimulation or specific substances generated by US actuation, to maximize antitumor efficacy and minimize detrimental effects. Therefore, summarizing the corresponding nanotherapies and applications based on US-triggered cascade amplification is essential. This review comprehensively summarizes and highlights the recent advances in the design of intelligent modalities, consisting of unique components, distinctive properties, and specific cascade processes. These ingenious strategies confer unparalleled potential to nanotherapies based on ultrasound-triggered cascade amplification and provide superior controllability, thus overcoming the unmet requirements of precision medicine and personalized treatment. Finally, the challenges and prospects of this emerging strategy are discussed and it is expected to encourage more innovative ideas and promote their further development.
Collapse
Affiliation(s)
- Fan Zhuang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
- Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai, 200032, P. R. China
| | - Huijing Xiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Beijian Huang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
- Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai, 200032, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
153
|
Chen P, Zhang P, Shah NH, Cui Y, Wang Y. A Comprehensive Review of Inorganic Sonosensitizers for Sonodynamic Therapy. Int J Mol Sci 2023; 24:12001. [PMID: 37569377 PMCID: PMC10418994 DOI: 10.3390/ijms241512001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Sonodynamic therapy (SDT) is an emerging non-invasive cancer treatment method in the field of nanomedicine, which has the advantages of deep penetration, good therapeutic efficacy, and minimal damage to normal tissues. Sonosensitizers play a crucial role in the process of SDT, as their structure and properties directly determine the treatment outcome. Inorganic sonosensitizers, with their high stability and longer circulation time in the human body, have great potential in SDT. In this review, the possible mechanisms of SDT including the ultrasonic cavitation, reactive oxygen species generation, and activation of immunity are briefly discussed. Then, the latest research progress on inorganic sonosensitizers is systematically summarized. Subsequently, strategies for optimizing treatment efficacy are introduced, including combination therapy and image-guided therapy. The challenges and future prospects of sonodynamic therapy are discussed. It is hoped that this review will provide some guidance for the screening of inorganic sonosensitizers.
Collapse
Affiliation(s)
- Peng Chen
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (P.C.); (P.Z.); (N.H.S.)
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Ping Zhang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (P.C.); (P.Z.); (N.H.S.)
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Navid Hussain Shah
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (P.C.); (P.Z.); (N.H.S.)
| | - Yanyan Cui
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (P.C.); (P.Z.); (N.H.S.)
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
154
|
Xing L, Tang Y, Li L, Tao X. ROS in hepatocellular carcinoma: What we know. Arch Biochem Biophys 2023:109699. [PMID: 37499994 DOI: 10.1016/j.abb.2023.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Hepatocellular carcinoma (HCC), which is a primary liver cancer subtype, has a poor prognosis due to its high degree of malignancy. The lack of early diagnosis makes systemic therapy the only hope for HCC patients with advanced disease; however, resistance to drugs is a major obstacle. In recent years, targeted molecular therapy has gained popularity as a potential treatment for HCC. An increase in reactive oxygen species (ROS), which are cancer markers and a potential target for HCC therapy, can both promote and inhibit the disease. At present, many studies have examined targeted regulation of ROS in the treatment of HCC. Here, we reviewed the latest drugs that are still in the experimental stage, including nanocarrier drugs, exosome drugs, antibody drugs, aptamer drugs and polysaccharide drugs, to provide new hope for the clinical treatment of HCC patients.
Collapse
Affiliation(s)
- Lin Xing
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; School of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yuting Tang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; School of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Lu Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
155
|
Yuan H, Ma J, Huang W, Gong P, Shi F, Xu X, Fu C, Wang X, Wong YK, Long Y, Sun X, Li W, Li Z, Wang J. Antitumor Effects of a Distinct Sonodynamic Nanosystem through Enhanced Induction of Immunogenic Cell Death and Ferroptosis with Modulation of Tumor Microenvironment. JACS AU 2023; 3:1507-1520. [PMID: 37234112 PMCID: PMC10206594 DOI: 10.1021/jacsau.3c00156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Sonodynamic therapy (SDT) holds great promise to be applied for cancer therapy in clinical settings. However, its poor therapeutic efficacy has limited its applications owing to the apoptosis-resistant mechanism of cancer cells. Moreover, the hypoxic and immunosuppressive tumor microenvironment (TME) also weakens the efficacy of immunotherapy in solid tumors. Therefore, reversing TME remains a formidable challenge. To circumvent these critical issues, we developed an ultrasound-augmented strategy to regulate the TME by utilizing an HMME-based liposomal nanosystem (HB liposomes), which can synergistically promote the induction of ferroptosis/apoptosis/immunogenic cell death (ICD) and initiate the reprograming of TME. The RNA sequencing analysis demonstrated that apoptosis, hypoxia factors, and redox-related pathways were modulated during the treatment with HB liposomes under ultrasound irradiation. The in vivo photoacoustic imaging experiment showed that HB liposomes enhanced oxygen production in the TME, alleviated TME hypoxia, and helped to overcome the hypoxia of the solid tumors, consequently improving the SDT efficiency. More importantly, HB liposomes extensively induced ICD, resulting in enhanced T-cell recruitment and infiltration, which normalizes the immunosuppressive TME and facilitates antitumor immune responses. Meanwhile, the HB liposomal SDT system combined with PD1 immune checkpoint inhibitor achieves superior synergistic cancer inhibition. Both in vitro and in vivo results indicate that the HB liposomes act as a sonodynamic immune adjuvant that is able to induce ferroptosis/apoptosis/ICD via generated lipid-reactive oxide species during the SDT and reprogram TME due to ICD induction. This sonodynamic nanosystem integrating oxygen supply, reactive oxygen species generation, and induction of ferroptosis/apoptosis/ICD is an excellent strategy for effective TME modulation and efficient tumor therapy.
Collapse
Affiliation(s)
- Haitao Yuan
- Department
of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical
Engineering Technology Research and Development Center, and Shenzhen
Clinical Research Centre for Geriatrics, Shenzhen People’s
Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Jingbo Ma
- Department
of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical
Engineering Technology Research and Development Center, and Shenzhen
Clinical Research Centre for Geriatrics, Shenzhen People’s
Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Wei Huang
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Ping Gong
- Department
of Emergency, Shenzhen People’s Hospital, The First Affiliated
Hospital, Southern University of Science
and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Fei Shi
- Department
of Infectious Disease, Shenzhen People’s Hospital, The First
Affiliated Hospital, Southern University
of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Xiaolong Xu
- Department
of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical
Engineering Technology Research and Development Center, and Shenzhen
Clinical Research Centre for Geriatrics, Shenzhen People’s
Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Chunjin Fu
- Artemisinin
Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Xiaoxian Wang
- Department
of Hyperbaric Oxygen Medicine, People’s Hospital, The First
Affiliated Hospital, Southern University
of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Yin Kwan Wong
- Department
of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Ying Long
- Department
of Hyperbaric Oxygen Medicine, People’s Hospital, The First
Affiliated Hospital, Southern University
of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Xin Sun
- Department
of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical
Engineering Technology Research and Development Center, and Shenzhen
Clinical Research Centre for Geriatrics, Shenzhen People’s
Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Weihua Li
- Medical
Imaging Department, Shenzhen Second People’s
Hospital/the First Affiliated Hospital of Shenzhen University Health
Science Center, Shenzhen 518035, P. R. China
| | - Zhijie Li
- Department
of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical
Engineering Technology Research and Development Center, and Shenzhen
Clinical Research Centre for Geriatrics, Shenzhen People’s
Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
| | - Jigang Wang
- Department
of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical
Engineering Technology Research and Development Center, and Shenzhen
Clinical Research Centre for Geriatrics, Shenzhen People’s
Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, P. R. China
- Artemisinin
Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| |
Collapse
|
156
|
Qu X, Yin F, Pei M, Chen Q, Zhang Y, Lu S, Zhang X, Liu Z, Li X, Chen H, Zhang Y, Qin H. Modulation of Intratumoral Fusobacterium nucleatum to Enhance Sonodynamic Therapy for Colorectal Cancer with Reduced Phototoxic Skin Injury. ACS NANO 2023. [PMID: 37201179 DOI: 10.1021/acsnano.3c01308] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Intratumoral pathogens can contribute to cancer progression and affect therapeutic response. Fusobacterium nucleatum, a core pathogen of colorectal cancer (CRC), is an important cause of low therapeutic efficacy and metastasis. Thus, the modulation of intratumoral pathogens may provide a target for cancer therapy and metastasis inhibition. Herein, we propose an intratumoral F. nucleatum-modulating strategy for enhancing the therapeutic efficacy of CRC and inhibiting lung metastasis by designing an antibacterial nanoplatform (Au@BSA-CuPpIX), which produced reactive oxygen species (ROS) under ultrasound and exhibited strong antibacterial activity. Importantly, Au@BSA-CuPpIX reduced the levels of apoptosis-inhibiting proteins by inhibiting intratumoral F. nucleatum, thereby enhancing ROS-induced apoptosis. In vivo results demonstrated that Au@BSA-CuPpIX effectively eliminated F. nucleatum to enhance the therapeutic efficacy of sonodynamic therapy (SDT) for orthotopic CRC and inhibit lung metastasis. Notably, entrapped gold nanoparticles reduced the phototoxicity of metalloporphyrin accumulated in the skin during tumor treatment, preventing severe inflammation and damage to the skin. Therefore, this study proposes a strategy for the elimination of F. nucleatum in CRC to enhance the therapeutic effect of SDT, thus providing a promising paradigm for improving cancer treatment with fewer toxic side effects and promoting the clinical translational potential of SDT.
Collapse
Affiliation(s)
- Xiao Qu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Fang Yin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Manman Pei
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Qian Chen
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuanyuan Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Shengwei Lu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xuelian Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Ziyuan Liu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xinyao Li
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai 200050, China
| | - Yang Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Precision Medicine Center, Taizhou Central Hospital, 999 Donghai Road, Taizhou, Zhejiang 318000, China
| | - Huanlong Qin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
157
|
Shi D, Wu F, Huang L, Li Y, Ke S, Li J, Hou Z, Fan Z. Bioengineered nanogenerator with sustainable reactive oxygen species storm for self-reinforcing sono-chemodynamic oncotherapy. J Colloid Interface Sci 2023; 646:649-662. [PMID: 37220698 DOI: 10.1016/j.jcis.2023.05.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/25/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023]
Abstract
Oxidative stress-based antitumor modalities derived from reactive oxygen species (ROS) storms have attracted increasing attention. Nevertheless, low delivery efficiency, poor selectivity, hypoxia and overexpressed glutathione (GSH) have severely restricted the sustainable generation of the ROS storm in tumor cells. Herein, we design a bioengineered nanogenerator by coordination-driven co-assembly of sonosensitizer indocyanine green (ICG), Fenton-like agent copper ion (CuⅡ) and mitochondrial respiratory inhibitor metformin (MET), which is then camouflaged by a cancer cytomembrane to induce a sustainable intracellular ROS storm for on-demand self-reinforcing sono-chemodynamic oncotherapy. Such a nanogenerator with a core-shell structure, suitable diameter and outstanding stability can efficiently accumulate in tumor regions and then internalize into tumor cells through the camouflaging and homologous targeting strategy of the cancer cytomembrane. The nanogenerator shows an exceptional instability under the triple stimulations of acidic lysosomes, overexpressed GSH and ultrasound (US) radiation, thereby resulting in the rapid disassembly and burst drug release. Interestingly, the released MET significantly enhances the sonodynamic therapy (SDT) efficacy of the released ICG by inhibiting mitochondrial respiration and meanwhile the released CuⅡ obviously reduces ROS elimination by downregulating overexpressed GSH for self-amplifying and self-protecting the intracellular ROS storm. Moreover, such a nanogenerator almost completely achieves the tumor ablation in vivo in a single therapy cycle. Taken together, our bioengineered nanogenerator with a sustainable ROS storm can provide a promising strategy for ROS storm-based oncotherapy.
Collapse
Affiliation(s)
- Dao Shi
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; College of Materials, Xiamen University, Xiamen 361005, China
| | - Feng Wu
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Lingling Huang
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Ying Li
- Xiamen Key Laboratory of Traditional Chinese Bio-engineering, Xiamen Medical College, Xiamen 361021, China
| | - Sunkui Ke
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, China.
| | - Jinyao Li
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| | - Zhenqing Hou
- College of Materials, Xiamen University, Xiamen 361005, China.
| | - Zhongxiong Fan
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
158
|
Loke YL, Beishenaliev A, Wang PW, Lin CY, Chang CY, Foo YY, Faruqu FN, Leo BF, Misran M, Chung LY, Shieh DB, Kiew LV, Chang CC, Teo YY. ROS-generating alginate-coated gold nanorods as biocompatible nanosonosensitisers for effective sonodynamic therapy of cancer. ULTRASONICS SONOCHEMISTRY 2023; 96:106437. [PMID: 37187119 DOI: 10.1016/j.ultsonch.2023.106437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Sonodynamic therapy (SDT) emerges as a promising non-invasive alternative for eradicating malignant tumours. However, its therapeutic efficacy remains limited due to the lack of sonosensitisers with high potency and biosafety. Previously, gold nanorods (AuNRs) have been extensively studied for their applications in photodynamic or photothermal cancer therapy, but their sonosensitising properties are largely unexplored. Here, we reported the applicability of alginate-coated AuNRs (AuNRsALG) with improved biocompatibility profiles as promising nanosonosensitisers for SDT for the first time. AuNRsALG were found stable under ultrasound irradiation (1.0 W/cm2, 5 min) and maintained structural integrity for 3 cycles of irradiation. The exposure of the AuNRsALG to ultrasound irradiation (1.0 W/cm2, 5 min) was shown to enhance the cavitation effect significantly and generate a 3 to 8-fold higher amount of singlet oxygen (1O2) than other reported commercial titanium dioxide nanosonosensitisers. AuNRsALG exerted dose-dependent sonotoxicity on human MDA-MB-231 breast cancer cells in vitro, with ∼ 81% cancer cell killing efficacy at a sub-nanomolar level (IC50 was 0.68 nM) predominantly through apoptosis. The protein expression analysis showed significant DNA damage and downregulation of anti-apoptotic Bcl-2, suggesting AuNRsALG induced cell death through the mitochondrial pathway. The addition of mannitol, a reactive oxygen species (ROS) scavenger, inhibited cancer-killing effect of AuNRsALG-mediated SDT, further verifying that the sonotoxicity of AuNRsALG is driven by the production of ROS. Overall, these results highlight the potential application of AuNRsALG as an effective nanosonosensitising agent in clinical settings.
Collapse
Affiliation(s)
- Yean Leng Loke
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Adilet Beishenaliev
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pei-Wen Wang
- Institute of Oral Medicine and School of Dentistry, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 70101 Tainan, Taiwan; Center of Applied Nanomedicine, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Chung-Yin Lin
- Institute for Radiological Research, Chang Gung University, 33303 Taoyuan, Taiwan; Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 33303 Taoyuan, Taiwan
| | - Chia-Yu Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 30068 Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, 30068 Hsinchu, Taiwan
| | - Yiing Yee Foo
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Farid Nazer Faruqu
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Bey Fen Leo
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Misni Misran
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Dar-Bin Shieh
- Institute of Oral Medicine and School of Dentistry, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 70101 Tainan, Taiwan; Center of Applied Nanomedicine, National Cheng Kung University, 70101 Tainan, Taiwan; Department of Stomatology, National Cheng Kung University Hospital, 70403 Tainan, Taiwan
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 30068 Hsinchu, Taiwan.
| | - Chia-Ching Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 30068 Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, 30068 Hsinchu, Taiwan; Department of Electrophysics, National Yang Ming Chiao Tung University, 30010 Hsinchu, Taiwan; Institute of Physics, Academia Sinica, Nankang, 11529 Taipei, Taiwan; Brain Research Center, National Tsing Hua University, 300044 Hsinchu, Taiwan, ROC.
| | - Yin Yin Teo
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
159
|
Deng K, Yu Y, Zhao Y, Li J, Li K, Zhao H, Wu M, Huang S. Tumor-targeted AIE polymeric micelles mediated immunogenic sonodynamic therapy inhibits cancer growth and metastasis. NANOSCALE 2023; 15:8006-8018. [PMID: 37067275 DOI: 10.1039/d3nr00473b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) exhibit potent sonosensitivity in nanocarriers compared with conventional organic sonosensitizers owing to the strong fluorescence emission in the aggregated state. However, the premature drug leakage and ineffective tumor targeting of current AIE nanosonosensitizers critically restrict their clinical applications. Here, an AIEgen-based sonosensitizer (AIE/Biotin-M) with excellent sonosensitivity was developed by assembling salicylaldazine-based amphiphilic polymers (AIE-1) and 4T1 tumor-targeting amphiphilic polymers (DSPE-PEG-Biotin) for the effective delivery of salicylaldazine to 4T1 tumor tissues, aiming to mediate immunogenic SDT. In vitro, AIE/Biotin-M were highly stable and generated plentiful singlet oxygen (1O2) under ultrasound (US) irradiation. After AIE/Biotin-M targeted accumulation in the tumor, upon US irradiation, the generation of 1O2 not only led to cancer cell death, but also elicited a systemically immune response by causing the immunogenic cell death (ICD) of cancer cells. In addition to mediating SDT, AIE/Biotin-M could chelate and reduce Fe3+, Cu2+ and Zn2+ by salicylaldazine for inhibiting neovascularization in tumor tissues. Ultimately, AIE/Biotin-M systemically inhibited tumor growth and metastasis upon US irradiation. This study presents a facile approach to the development of AIE nanosonosensitizers for cancer SDT.
Collapse
Affiliation(s)
- Kai Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Yifeng Yu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yong Zhao
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jiami Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Kunheng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Hongyang Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Meng Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| | - Shiwen Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
160
|
Lin G, Nash GT, Luo T, Ghosh I, Sohoni S, Christofferson AJ, Liu G, Engel GS, Lin W. 2D Nano-Sonosensitizers Facilitate Energy Transfer to Enhance Sonodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212069. [PMID: 36840977 PMCID: PMC10175216 DOI: 10.1002/adma.202212069] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Indexed: 05/09/2023]
Abstract
Although sonodynamic therapy (SDT) has shown promise for cancer treatment, the lack of efficient sonosensitizers (SSs) has limited the clinical application of SDT. Here, a new strategy is reported for designing efficient nano-sonosensitizers based on 2D nanoscale metal-organic layers (MOLs). Composed of Hf-oxo secondary building units (SBUs) and iridium-based linkers, the MOL is anchored with 5,10,15,20-tetra(p-benzoato)porphyrin (TBP) sensitizers on the SBUs to afford TBP@MOL. TBP@MOL shows 14.1- and 7.4-fold higher singlet oxygen (1 O2 ) generation than free TBP ligands and Hf-TBP, a 3D nanoscale metal-organic framework, respectively. The 1 O2 generation of TBP@MOL is enhanced by isolating TBP SSs on the SBUs of the MOL, which prevents aggregation-induced quenching of the excited sensitizers, and by triplet-triplet Dexter energy transfer between excited iridium-based linkers and TBP SSs, which more efficiently harnesses broad-spectrum sonoluminescence. Anchoring TBP on the MOL surface also enhances the energy transfer between the excited sensitizer and ground-state triplet oxygen to increase 1 O2 generation efficacy. In mouse models of colorectal and breast cancer, TBP@MOL demonstrates significantly higher SDT efficacy than Hf-TBP and TBP. This work uncovers a new strategy to design effective nano-sonosensitizers by facilitating energy transfer to efficiently capture broad-spectrum sonoluminescence and enhance 1 O2 generation.
Collapse
Affiliation(s)
- Gan Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Geoffrey T Nash
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Taokun Luo
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Indranil Ghosh
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Siddhartha Sohoni
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Andrew J Christofferson
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gregory S Engel
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
161
|
Truong Hoang Q, Huynh KA, Nguyen Cao TG, Kang JH, Dang XN, Ravichandran V, Kang HC, Lee M, Kim JE, Ko YT, Lee TI, Shim MS. Piezocatalytic 2D WS 2 Nanosheets for Ultrasound-Triggered and Mitochondria-Targeted Piezodynamic Cancer Therapy Synergized with Energy Metabolism-Targeted Chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300437. [PMID: 36780270 DOI: 10.1002/adma.202300437] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Indexed: 05/05/2023]
Abstract
Piezoelectric nanomaterials that can generate reactive oxygen species (ROS) by piezoelectric polarization under an external mechanical force have emerged as an effective platform for cancer therapy. In this study, piezoelectric 2D WS2 nanosheets are functionalized with mitochondria-targeting triphenylphosphonium (TPP) for ultrasound (US)-triggered, mitochondria-targeted piezodynamic cancer therapy. In addition, a glycolysis inhibitor (FX11) that can inhibit cellular energy metabolism is loaded into TPP- and poly(ethylene glycol) (PEG)-conjugated WS2 nanosheet (TPEG-WS2 ) to potentiate its therapeutic efficacy. Upon US irradiation, the sono-excited electrons and holes generated in the WS2 are efficiently separated by piezoelectric polarization, which subsequently promotes the production of ROS. FX11-loaded TPEG-WS2 (FX11@TPEG-WS2 ) selectively accumulates in the mitochondria of human breast cancer cells. In addition, FX11@TPEG-WS2 effectively inhibits the production of adenosine triphosphate . Thus, FX11@TPEG-WS2 exhibits outstanding anticancer effects under US irradiation. An in vivo study using tumor-xenograft mice demonstrates that FX11@TPEG-WS2 effectively accumulated in the tumors. Its tumor accumulation is visualized using in vivo computed tomography . Notably, FX11@TPEG-WS2 with US irradiation remarkably suppresses the tumor growth of mice without systemic toxicity. This study demonstrates that the combination of piezodynamic therapy and energy metabolism-targeted chemotherapy using mitochondria-targeting 2D WS2 is a novel strategy for the selective and effective treatment of tumors.
Collapse
Affiliation(s)
- Quan Truong Hoang
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Kim Anh Huynh
- Department of Materials Science and Engineering, Gachon University, Seongnam, Gyeonggi-Do, 13306, Republic of Korea
| | - Thuy Giang Nguyen Cao
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Ji Hee Kang
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Xuan Nghia Dang
- Department of Materials Science and Engineering, Gachon University, Seongnam, Gyeonggi-Do, 13306, Republic of Korea
| | - Vasanthan Ravichandran
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea
| | - Minjong Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea
| | - Jong-Eun Kim
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Tae Il Lee
- Department of Materials Science and Engineering, Gachon University, Seongnam, Gyeonggi-Do, 13306, Republic of Korea
| | - Min Suk Shim
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| |
Collapse
|
162
|
Xiao F, Chen Y, Qi J, Yao Q, Xie J, Jiang X. Multi-Targeted Peptide-Modified Gold Nanoclusters for Treating Solid Tumors in the Liver. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210412. [PMID: 36863998 DOI: 10.1002/adma.202210412] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/05/2023] [Indexed: 05/19/2023]
Abstract
Apoptosis and autophagy determine the fate of cancer cells. However, simply promoting apoptosis of tumor cells is limited in the treatment of unresectable solid liver tumors. Generally, autophagy is considered the anti-apoptotic "guardian". But the pro-apoptotic effects of autophagy can be activated by excessive endoplasmic reticulum (ER) stress. Here, amphiphilic peptide-modified glutathione (GSH)-gold nanocluster aggregates (AP1 P2 -PEG NCs) were designed with the enrichment of solid liver tumors and the prolonged stress in the ER, which can achieve the mutual promotion of autophagy and apoptosis in liver tumor cells. In this study, orthotopic and subcutaneous liver tumor models show the anti-tumor effectiveness of AP1 P2 -PEG NCs, with a better antitumor effect than sorafenib, biosafety (Lethal Dose, 50% (LD50 ) of 827.3 mg kg-1 ), wide therapeutic window (non-toxic in 20 times of therapeutic concentration) and high stability (blood half-life of 4 h). These findings identify an effective strategy to develop peptide-modified gold nanocluster aggregates with low toxicity, high potency, and selectivity for solid liver tumors treatment.
Collapse
Affiliation(s)
- Feng Xiao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Guangdong, 518055, P. R. China
| | - Yao Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Guangdong, 518055, P. R. China
| | - Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Guangdong, 518055, P. R. China
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore, 117585, Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore, 117585, Singapore
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Guangdong, 518055, P. R. China
| |
Collapse
|
163
|
Zhu H, Deng J, Yuan M, Rong X, Xiang X, Du F, Luo X, Cheng C, Qiu L. Semiconducting Titanate Supported Ruthenium Clusterzymes for Ultrasound-Amplified Biocatalytic Tumor Nanotherapies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206911. [PMID: 36765452 DOI: 10.1002/smll.202206911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/15/2023] [Indexed: 05/04/2023]
Abstract
The external-stimulation-induced reactive-oxygen-species (ROS) generation has attracted increasing attention in therapeutics for malignant tumors. However, engineering a nanoplatform that integrates with efficient biocatalytic ROS generation, ultrasound-amplified ROS production, and simultaneous relief of tumor hypoxia is still a great challenge. Here, we create new semiconducting titanate-supported Ru clusterzymes (RuNC/BTO) for ultrasound-amplified biocatalytic tumor nanotherapies. The morphology and chemical/electronic structure analysis prove that the biocatalyst consists of Ru nanoclusters that are tightly stabilized by Ru-O coordination on BaTiO3 . The peroxidase (POD)- and halogenperoxidase-like biocatalysis reveals that the RuNC/BTO can produce abundant •O2 - radicals. Notably, the RuNC/BTO exhibits the highest turnover number (63.29 × 10-3 s-1 ) among the state-of-the-art POD-mimics. Moreover, the catalase-like activity of the RuNC/BTO facilitates the decomposition of H2 O2 to produce O2 for relieving the hypoxia of the tumor and amplifying the ROS level via ultrasound irradiation. Finally, the systematic cellular and animal experiments have validated that the multi-modal strategy presents superior tumor cell-killing effects and suppression abilities. We believe that this work will offer an effective clusterzyme that can adapt to the tumor microenvironment-specific catalytic therapy and also provide a new pathway for engineering high-performance ROS production materials across broad therapeutics and biomedical fields.
Collapse
Affiliation(s)
- Huang Zhu
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiuhong Deng
- West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Minjia Yuan
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiao Rong
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xi Xiang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fangxue Du
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Qiu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
164
|
He M, Yu H, Zhao Y, Liu J, Dong Q, Xu Z, Kang Y, Xue P. Ultrasound-Activatable g-C 3 N 4 -Anchored Titania Heterojunction as an Intracellular Redox Homeostasis Perturbator for Augmented Oncotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300244. [PMID: 36843276 DOI: 10.1002/smll.202300244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Indexed: 05/25/2023]
Abstract
Energy band structure of inorganic nano-sonosensitizers is usually optimized by surface decoration with noble metals or metal oxide semiconductors, aiming to enhance interfacial charge transfer, augment spin-flip and promote radical generation. To avoid potential biohazards of metallic elements, herein, metal-free graphitic carbon nitride quantum dots (g-C3 N4 QDs) are anchored onto hollow mesoporous TiO2 nanostructure to formulate TiO2 @g-C3 N4 heterojunction. The direct Z-scheme charge transfer significantly improves the separation/recombination dynamics of electron/hole (e- /h+ ) pairs upon ultrasound (US) stimulation, which promotes the yield of singlet oxygen (1 O2 ) and hydroxyl radicals (·OH). The conjugated g-C3 N4 QDs with peroxidase-mimic activity further react with the elevated endogenous H2 O2 and aggravate oxidative stress. After loading prodrug romidepsin (RMD) in TiO2 @g-C3 N4 , stimulus-responsive drug delivery can be realized by US irradiation. The disulfide bridge of the released RMD tends to be reduced by glutathione (GSH) into a monocyclic dithiol, which arrests cell cycle in G2/M phase and evokes apoptosis through enhanced histone acetylation. Importantly, reactive oxygen species accumulation accompanied by GSH depletion is devoted to deleterious redox dyshomeostasis, leading to augmented systemic oncotherapy by eliciting antitumor immunity. Collectively, this paradigm provides useful insights in optimizing the performance of TiO2 -based nano-sonosensitizers for tackling critical diseases.
Collapse
Affiliation(s)
- Mengting He
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Honglian Yu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yinmin Zhao
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Jiahui Liu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Qi Dong
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| |
Collapse
|
165
|
Meng N, Xu P, Wen C, Liu H, Gao C, Shen XC, Liang H. Near-infrared-II-activatable sulfur-deficient plasmonic Bi 2S 3-x-Au heterostructures for photoacoustic imaging-guided ultrasound enhanced high performance phototherapy. J Colloid Interface Sci 2023; 644:437-453. [PMID: 37126893 DOI: 10.1016/j.jcis.2023.04.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Bismuth sulfide is widely used as an n-type semiconductor material in photocatalytic reactions. However, bismuth sulfide has poor absorption in the near-infrared region and low charge separation efficiency, limiting its application in phototherapy and sonodynamic therapy (SDT). In this study, we successfully synthesized an "all-in-one" phototheranostic nanoplatform, namely Bi2S3-x-Au@HA, based on a single second near-infrared (NIR-II) light-responsive Schottky-type Bi2S3-x-Au heterostructure for photoacoustic (PA) imaging-guided SDT-enhanced photodynamic therapy (PDT)/photothermal therapy (PTT). Bi2S3-x-Au@HA exhibits excellent NIR-II plasmonic and photothermal properties, rendering it with NIR-II PA imaging capabilities for accurate diagnosis. Additionally, the high-density sulfur vacancies constructed on the Bi2S3 surface cause it to possess a reduced band gap (1.21 eV) that can act as an electron trap. Using the density functional theory, we confirmed that the light and ultrasound-induced electrons are more likely to aggregate on the Au nanoparticle surface through interfacial self-assembly, which promotes electron-hole separation and enhances photocatalytic activity with increased reactive oxygen species (ROS) generation. With a further modification of hyaluronic acid (HA), Bi2S3-x-Au@HA can selectively target cancer cells through HA and CD44 protein interactions. Both in vitro and in vivo experiments demonstrated that Bi2S3-x-Au@HA effectively suppressed tumor growth through SDT-enhanced PTT/PDT under a single NIR-II laser and ultrasound irradiation with negligible toxicity. Our findings provide a framework for fabricating Schottky-type heterostructures as single NIR-II light-responsive nanotheranostic agents for PA imaging-guided cancer phototherapy.
Collapse
Affiliation(s)
- Nianqi Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Peijing Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Huihui Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Cunji Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
166
|
Wang X, Dai X, Chen Y. Sonopiezoelectric Nanomedicine and Materdicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301693. [PMID: 37093550 DOI: 10.1002/smll.202301693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Endogenous electric field is ubiquitous in a multitude of important living activities such as bone repair, cell signal transduction, and nerve regeneration, signifying that regulating the electric field in organisms is highly beneficial to maintain organism health. As an emerging and promising research direction, piezoelectric nanomedicine and materdicine precisely activated by ultrasound with synergetic advantages of deep tissue penetration, remote spatiotemporal selectivity, and mechanical-electrical energy interconversion, have been progressively utilized for disease treatment and tissue repair by participating in the modulation of endogenous electric field. This specific nanomedicine utilizing piezoelectric effect activated by ultrasound is typically regarded as "sonopiezoelectric nanomedicine". This comprehensive review summarizes and discusses the substantially employed sonopiezoelectric nanomaterials and nanotherapies to provide an insight into the internal mechanism of the corresponding biological behavior/effect of sonopiezoelectric biomaterials in versatile disease treatments. This review primarily focuses on the sonopiezoelectric biomaterials for biosensing, drug delivery, tumor therapy, tissue regeneration, antimicrobia, and further illuminates the underlying sonopiezoelectric mechanism. In addition, the challenges and developments/prospects of sonopiezoelectric nanomedicine are analyzed for promoting the further clinical translation. It is earnestly expected that this kind of nanomedicine/biomaterials-enabled sonopiezoelectric technology will provoke the comprehensive investigation and promote the clinical development of the next-generation multifunctional materdicine.
Collapse
Affiliation(s)
- Xue Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
167
|
Chen K, Zhou A, Zhou X, Liu Y, Xu Y, Ning X. An Intelligent Cell-Derived Nanorobot Bridges Synergistic Crosstalk Between Sonodynamic Therapy and Cuproptosis to Promote Cancer Treatment. NANO LETTERS 2023; 23:3038-3047. [PMID: 36951267 DOI: 10.1021/acs.nanolett.3c00434] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent progress in cuproptosis sheds light on the development of treatment approaches for advancing sonodynamic therapy (SDT) due to its unique cell death mechanism. Herein, we elaborately developed an intelligent cell-derived nanorobot (SonoCu), composed of macrophage-membrane-camouflaged nanocarrier encapsulating copper-doped zeolitic imidazolate framework-8 (ZIF-8), perfluorocarbon, and sonosensitizer Ce6, for synergistically triggering cuproptosis-augmented SDT. SonoCu not only improved tumor accumulation and cancer-cell uptake through cell-membrane camouflaging but responded to ultrasound stimuli to enhance intratumor blood flow and oxygen supply, which consequently overcame treatment barriers and activated sonodynamic cuproptosis. Importantly, the SDT effectiveness could be further amplified by cuproptosis through multiple mechanisms, including reactive oxygen species accumulation, proteotoxic stress, and metabolic regulation, which synergistically sensitized cancer cell death. Particularly, SonoCu exhibited ultrasound-responsive cytotoxicity against cancer cells but not healthy cells, endowing it with good biosafety. Therefore, we present the first anticancer combination of SDT and cuproptosis, which may inspire studies pursuing a rational multimodal treatment strategy.
Collapse
Affiliation(s)
- Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yuhang Liu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
168
|
Huang S, Ding D, Lan T, He G, Ren J, Liang R, Zhong H, Chen G, Lu X, Shuai X, Wei B. Multifunctional nanodrug performs sonodynamic therapy and inhibits TGF-β to boost immune response against colorectal cancer and liver metastasis. Acta Biomater 2023; 164:538-552. [PMID: 37037269 DOI: 10.1016/j.actbio.2023.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
Liver metastasis is the leading cause of death in colorectal cancer. Immunotherapy using immune checkpoint blockade (ICB) is ineffective due to its immunological cold tumor nature. Herein, we prepared a nanodrug (NCG) encapsulating the transforming growth factor-β receptor inhibitor galunisertib (Gal) and the sonosensitizer chlorin e6 (Ce6), which was aimed to turn this type of cold tumor into a hot one to promote the ICB-based immunotherapy against it. After delivery to the tumor, NCG under ultrasonic irradiation generated reactive oxygen species causing tumor immunogenic cell death and releasing immunostimulatory signals such as calreticulin and HMGB1, which increased tumor immunogenicity and activated the innate T lymphocyte immune response. Moreover, NCG responded to the acidic microenvironment and released Gal, inhibiting phosphorylation and inducing immunosuppressive Smad2/3 signaling. Consequently, the differentiation of MDSCs was inhibited, M1-like polarization of tumor-associated macrophages was induced, and the immunosuppressive barrier of tumor-associated fibroblasts was destroyed to increase the infiltration of effector T cells, which reversed the immunosuppression of the tumor microenvironment and improved the therapeutic efficacy of anti-PD-L1 antibodies. Notably, in the liver metastasis mouse model, combination therapy using NCG (+) and aPD-L1 inhibited the growth of colon cancer liver metastasis, manifesting potential in treating this popular yet intractable malignancy. STATEMENT OF SIGNIFICANCE: Only a limited number of patients with colorectal cancer and liver metastasis can benefit from immune checkpoint blockade therapy, as most of them are microsatellite stable, immunologically cold tumors. Interestingly, there is compelling evidence that sonodynamic therapy (SDT) can convert immunosuppressed cold tumors into hot ones, trigger tumor immunogenic cell death non-invasively, and boost cytotoxic T cells infiltration. However, its therapeutic efficacy is constrained by the abundance of transforming growth factor-β (TGF-β) cytokines in the tumor microenvironment. Here, we reported a TGF-β-targeted inhibitory nanodrug that improved SDT in colon cancer and liver metastasis, reversed the immunosuppressive tumor microenvironment and boosted the immune response to anti-PD-L1 therapy in this cancer. It demonstrated the potential to cure this prevalent but incurable malignancy.
Collapse
Affiliation(s)
- Shengxin Huang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dongbing Ding
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tianyun Lan
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guanhui He
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiannan Ren
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rongpu Liang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huihai Zhong
- School of Materials Science and Engineering of Sun Yat-sen University, Guangzhou, China
| | - Gengjia Chen
- School of Materials Science and Engineering of Sun Yat-sen University, Guangzhou, China
| | - Xue Lu
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Bo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
169
|
Roy S, Bag N, Bardhan S, Hasan I, Guo B. Recent Progress in NIR-II Fluorescence Imaging-guided Drug Delivery for Cancer Theranostics. Adv Drug Deliv Rev 2023; 197:114821. [PMID: 37037263 DOI: 10.1016/j.addr.2023.114821] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) has become a prevalent choice owing to its appealing advantages like deep penetration depth, low autofluorescence, decent spatiotemporal resolution, and a high signal-to-background ratio. This would expedite the innovation of NIR-II imaging-guided drug delivery (IGDD) paradigms for the improvement of the prognosis of patients with tumors. This work systematically reviews the recent progress of such NIR-II IGDD-mediated cancer therapeutics and collectively brings its essence to the readers. Special care has been taken to assess their performances based on their design approach, such as enhancing their drug loading and triggering release, designing intrinsic and extrinsic fluorophores, and/ or overcoming biological barriers. Besides, the state-of-the-art NIR-II IGDD platforms for different therapies like chemo-, photodynamic, photothermal, chemodynamic, immuno-, ion channel, gas-therapies, and multiple functions such as stimulus-responsive imaging and therapy, and monitoring of drug release and therapeutic response, have been updated. In addition, for boosting theranostic outcomes and clinical translation, the innovation directions of NIR-II IGDD platforms are summarized, including renal-clearable, biodegradable, sub-cellular targeting, and/or afterglow, chemiluminescence, X-ray excitable NIR-IGDD, and even cell therapy. This review will propel new directions for safe and efficient NIR-II fluorescence-mediated anticancer drug delivery.
Collapse
Affiliation(s)
- Shubham Roy
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China
| | - Neelanjana Bag
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Souravi Bardhan
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Ikram Hasan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
170
|
Ping J, Du J, Ouyang R, Miao Y, Li Y. Recent advances in stimuli-responsive nano-heterojunctions for tumor therapy. Colloids Surf B Biointerfaces 2023; 226:113303. [PMID: 37086684 DOI: 10.1016/j.colsurfb.2023.113303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Stimuli-responsive catalytic therapy based on nano-catalysts has attracted much attention in the field of biomedicine for tumor therapy, due to its excellent and unique properties. However, the complex tumor microenvironment conditions and the rapid charge recombination in the catalyst limit catalytic therapy's effectiveness and further development. Effective heterojunction nanomaterials are constructed to address these problems to improve catalytic performance. Specifically, on the one hand, the band gap of the material is adjusted through the heterojunction structure to promote the charge separation efficiency under exogenous stimulation and further improve the catalytic capacity. On the other hand, the construction of a heterojunction structure can not only preserve the function of the original catalyst but also achieve significantly enhanced synergistic therapy ability. This review summarized the construction and functions of stimuli-responsive heterojunction nanomaterials under the excitation of X-rays, visible-near infrared light, and ultrasound in recent years, and further introduces their application in cancer therapy. Hopefully, the summary of stimuli-responsive heterojunction nanomaterials' applications will help researchers promote the development of nanomaterials in cancer therapy.
Collapse
Affiliation(s)
- Jing Ping
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruizhuo Ouyang
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
171
|
Yu Q, Shi W, Li S, Liu H, Zhang J. Emerging Advancements in Piezoelectric Nanomaterials for Dynamic Tumor Therapy. Molecules 2023; 28:molecules28073170. [PMID: 37049933 PMCID: PMC10095813 DOI: 10.3390/molecules28073170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Cancer is one of the deadliest diseases, having spurred researchers to explore effective therapeutic strategies for several centuries. Although efficacious, conventional chemotherapy usually introduces various side effects, such as cytotoxicity or multi−drug resistance. In recent decades, nanomaterials, possessing unique physical and chemical properties, have been used for the treatment of a wide range of cancers. Dynamic therapies, which can kill target cells using reactive oxygen species (ROS), are promising for tumor treatment, as they overcome the drawbacks of chemotherapy methods. Piezoelectric nanomaterials, featuring a unique property to convert ultrasound vibration energy into electrical energy, have also attracted increasing attention in biomedical research, as the piezoelectric effect can drive chemical reactions to generate ROS, leading to the newly emerging technique of ultrasound−driven tumor therapy. Piezoelectric materials are expected to bring a better solution for efficient and safe cancer treatment, as well as patient pain relief. In this review article, we highlight the most recent achievements of piezoelectric biomaterials for tumor therapy, including the mechanism of piezoelectric catalysis, conventional piezoelectric materials, modified piezoelectric materials and multifunctional piezoelectric materials for tumor treatment.
Collapse
Affiliation(s)
- Qian Yu
- School of Life Science, Jiangsu University, Zhenjiang 212013, China
| | - Wenhui Shi
- School of Life Science, Jiangsu University, Zhenjiang 212013, China
| | - Shun Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hong Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
172
|
Tumor microenvironment remodeling via targeted depletion of M2-like tumor-associated macrophages for cancer immunotherapy. Acta Biomater 2023; 160:239-251. [PMID: 36774974 DOI: 10.1016/j.actbio.2023.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/28/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
M2-like tumor-associated macrophages (TAMs) typically exhibit numerous tumor-promoting properties. Reducing the abundance of M2-like TAMs would shed light on the relief of immunosuppressive tumor microenvironment (TME), activation of the host immune system, infiltration of CD8+ T cells into the TME and restoring the function of the infiltrating T cells, which collectively inhibits tumor growth. Therefore, targeted depletion of M2-like TAMs can be a promising immunotherapy approach. In this study, we rationally constructed an M2-like TAMs-targeted nanoliposome, which encapsulates zoledronic acid (ZA) in the core, loads hematoporphyrin monomethyl ether (HMME, a typical sonosensitizer) in the lipid bilayer, and modifies M2pep peptide (the targeting unit) on the surface (designated as M-H@lip-ZA). Our aim is to validate the effectiveness of M-H@lip-ZA nanoliposomes to remodel TME via targeted depletion of M2-like TAMs for cancer immunotherapy. Through the M2pep peptide, M-H@lip-ZA can be efficiently delivered to M2-like TAMs. In the meantime, reactive oxygen species (ROS) resulting from sonodynamic therapy (SDT), together with inner ZA that shows high affinity and cytotoxicity to TAMs, can effectively deplete M2-like TAMs and remodel TME (normalize tumor vasculatures, strengthen intertumoral perfusion, ease tumor hypoxia, increase immune-promoting cytokines and decrease immunosuppressive cytokines). The tumor growth can be effectively inhibited. This work proposed a new paradigm for cancer immunotherapy via targeted depletion of M2-like TAMs. STATEMENT OF SIGNIFICANCE: • M2-like TAMs-targeted nanoliposome (M-H@lip-ZA) was designed and prepared. • Sonodynamic therapy (SDT), together with zoledronic acid (ZA) that shows high affinity and cytotoxicity to tumor-associated macrophages (TAMs), can effectively deplete M2-like TAMs. Subsequently, immune-promoting tumor microenvironment (TME) can be formed, which includes normalized tumor vasculatures, enhanced intertumoral perfusion, relieved tumor hypoxia, increased immune-promoting cytokines, and decreased immunosuppressive cytokines. • The targeted depletion of M2-like TAMs is a promising cancer immunotherapy approach.
Collapse
|
173
|
Li Y, Lin L, Xie J, Wei L, Xiong S, Yu K, Zhang B, Wang S, Li Z, Tang Y, Chen G, Li Z, Yu Z, Wang X. ROS-Triggered Self-Assembled Nanoparticles Based on a Chemo-Sonodynamic Combinational Therapy Strategy for the Noninvasive Elimination of Hypoxic Tumors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15893-15906. [PMID: 36940438 DOI: 10.1021/acsami.3c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The hypopermeability and hypoxia in the tumor milieu are important factors that limit multiple treatments. Herein, the reactive oxygen species (ROS)-triggered self-assembled nanoparticles (RP-NPs) was constructed. The natural small molecule Rhein (Rh) was encapsulated into RP-NPs as a sonosensitizer highly accumulated at the tumor site. Then highly tissue-permeable ultrasound (US) irradiation induced apoptosis of tumor cells through the excitation of Rh and acoustic cavitation, which prompted the rapid production of large amounts of ROS in the hypoxic tumor microenvironment. In addition, the thioketal bond structures in the innovatively designed prodrug LA-GEM were triggered and broken by ROS to achieve rapid targeted release of the gemcitabine (GEM). Sonodynamic therapy (SDT) increased the tissue permeability of solid tumors and actively disrupted redox homeostasis via mitochondrial pathways to kill hypoxic tumor cells, and the triggered response mechanism to GEM synergistically amplified the effect of chemotherapy. The chemo-sonodynamic combinational treatment approach is highly effective and noninvasive, with promising applications for hypoxic tumor elimination, such as in cervical cancer (CCa) patients who want to maintain their reproductive function.
Collapse
Affiliation(s)
- Yibing Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, China
| | - Ling Lin
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Jiashan Xie
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Lixue Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Shuping Xiong
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Kunyi Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Bingchen Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Shengtao Wang
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan, 528000, China
| | - Zibo Li
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Yan Tang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Guimei Chen
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Zhongjun Li
- Department of Obstetrics and Gynecology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, Dongguan, Guangdong 523058, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
174
|
Fu LH, Wu XY, He J, Qi C, Lin J, Huang P. Biomimetic Nanoplatform with H 2O 2 Homeostasis Disruption and Oxidative Stress Amplification for Enhanced Chemodynamic Therapy. Acta Biomater 2023; 162:44-56. [PMID: 36934891 DOI: 10.1016/j.actbio.2023.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/04/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Chemodynamic therapy (CDT) is a powerful cancer treatment strategy by producing excessive amount of reactive oxygen species (ROS) to kill cancer cells. However, the inadequate hydrogen peroxide (H2O2) supply and antioxidant defense systems in tumor tissue significantly impair the therapeutic effect of CDT, hindering its further applications. Herein, we present an intelligent nanoplatform with H2O2 homeostasis disruption and oxidative stress amplification properties for enhanced CDT. This nanoplatform is obtained by encapsulating glucose oxidase (GOx) in a pH- and glutathione (GSH)-responsive degradable copper doped-zeolitic imidazolate framework (Cu-ZIF8), followed by loading of 3-amino-1,2,4-triazole (3AT) and modification of hyaluronic acid (HA) for tumor targeting delivery. The GOx@Cu-ZIF8-3AT@HA not only reduces energy supply and increases H2O2 level by exhausting intratumoral glucose, but also disturbs tumor antioxidant defense systems by inhibiting the activity of catalase and depleting intracellular GSH, resulting in disrupted H2O2 homeostasis in tumor. Moreover, the elevated H2O2 will transform into highly toxic •OH by Cu+ that generated from redox reaction between Cu2+ and GSH, amplifying the oxidative stress to enhance the CDT efficacy. Consequently, GOx@Cu-ZIF8-3AT@HA has significantly inhibited the 4T1 xenograft tumor growth without discernible side effects, which provides a promising strategy for cancer management. STATEMENT OF SIGNIFICANCE: The inadequate hydrogen peroxide (H2O2) level and antioxidant defense system in tumor tissues significantly impair the therapeutic effect of chemodynamic therapy (CDT). Herein, we developed an intelligent nanoplatform with H2O2 homeostasis disruption and oxidative stress amplification properties for enhanced CDT. In this nanoplatform, glucose oxidase (GOx) could exhaust intratumoral glucose to reduce energy supply accompanied with production of H2O2, while the suppression of catalase activity by 3-amino-1,2,4-triazole (3AT) and depletion of glutathione by Cu2+ would weaken the antioxidant defense system of tumors. Ultimately, the raised H2O2 level would convert to highly toxic hydroxyl radical (•OH) by Fenton-like reaction, amplifying the CDT efficacy. This work provides a promising strategy for cancer management.
Collapse
Affiliation(s)
- Lian-Hua Fu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xin-Yue Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jin He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chao Qi
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
175
|
Xia L, Chen J, Xie Y, Zhang S, Xia W, Feng W, Chen Y. Photo-/piezo-activated ultrathin molybdenum disulfide nanomedicine for synergistic tumor therapy. J Mater Chem B 2023; 11:2895-2903. [PMID: 36919643 DOI: 10.1039/d3tb00209h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Molybdenum disulfide (MoS2), as a transition metal dichalcogenide, has attracted tremendous attention owing to its remarkable electronic, physical, and chemical properties. In this study, based on the energy-converting nanomedicine, we report multifunctional two-dimensional (2D) MoS2 nanosheets with inherent plasmonic property and piezocatalytic activity for imaging-guided synergistic tumor therapy. MoS2 nanosheets display strong plasmon resonances in the near-infrared (NIR) region, especially in the second NIR biological window, possessing a notable light energy to heat effect under 1064 nm laser irradiation, which not only serves as a robust photothermal agent for cancer cell ablation but also acts as a contrast-enhanced agent for thermal imaging and photoacoustic imaging. Meanwhile, MoS2 nanosheets feature a remarkable piezotronic effect, exhibiting mechanical vibration energy to electricity under the stimulation of ultrasound-mediated microscopic pressure for reactive oxygen species generation to further kill cancer cells. The new function for old materials may open up the in-depth exploration of MoS2-based functional biomaterials in the future clinical application of imaging-guided photothermal and piezocatalytic synergetic treatment.
Collapse
Affiliation(s)
- Lili Xia
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China.
| | - Junjie Chen
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shan Zhang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Weiwei Xia
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China. .,Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China. .,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China. .,Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
176
|
Yang F, Dong J, Li Z, Wang Z. Metal-Organic Frameworks (MOF)-Assisted Sonodynamic Therapy in Anticancer Applications. ACS NANO 2023; 17:4102-4133. [PMID: 36802411 DOI: 10.1021/acsnano.2c10251] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sonodynamic therapy (SDT) has emerged as a promising therapeutic modality for anticancer treatments and is becoming a cutting-edge interdisciplinary research field. This review starts with the latest developments of SDT and provides a brief comprehensive discussion on ultrasonic cavitation, sonodynamic effect, and sonosensitizers in order to popularize the basic principles and probable mechanisms of SDT. Then the recent progress of MOF-based sonosensitizers is overviewed, and the preparation methods and properties (e.g., morphology, structure, and size) of products are presented in a fundamental perspective. More importantly, many deep observations and understanding toward MOF-assisted SDT strategies were described in anticancer applications, aiming to highlight the advantages and improvements of MOF-augmented SDT and synergistic therapies. Last but not least, the review also pointed out the probable challenges and technological potential of MOF-assisted SDT for the future advance. In all, the discussions and summaries of MOF-based sonosensitizers and SDT strategies will promote the fast development of anticancer nanodrugs and biotechnologies.
Collapse
Affiliation(s)
- Fangfang Yang
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 266071 Qingdao, China
| | - Jun Dong
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 266071 Qingdao, China
| | - Zhanfeng Li
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 266071 Qingdao, China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 266071 Qingdao, China
| |
Collapse
|
177
|
Mandal AA, Kushwaha R, Yadav AK, Banerjee S. Metal Complexes for Cancer Sonodynamic Therapy. Chembiochem 2023; 24:e202200597. [PMID: 36385722 DOI: 10.1002/cbic.202200597] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Sonodynamic therapy (SDT) for cancer treatment is gaining attention owing to its non-invasive property and ultrasound's (US) deep tissue penetration ability. In SDT, US activates the sonosensitizer at the target deep-seated tumors to generate reactive oxygen species (ROS), which ultimately damage tumors. However, drawbacks such as insufficient ROS production, aggregation of sonosensitizer, off-target side effects, etc., of the current organic/nanomaterial-based sonosensitizers limit the effectiveness of cancer SDT. Very recently, metal complexes with tunable physiochemical properties (such as sonostability, HOMO to LUMO energy gap, ROS generation ability, aqueous solubility, emission, etc.) have been devised as effective sonosensitizers, which could overcome the limitations of organic/nanomaterial-based sonosensitizers. This concept introduces all the reported metal-based sonosensitizers and delineates the prospects of metal complexes in cancer sonodynamic therapy. This new concept of metal-based sonosensitizer can deliver next-generation cancer drugs.
Collapse
|
178
|
Manganese oxide-modified bismuth oxychloride piezoelectric nanoplatform with multiple enzyme-like activities for cancer sonodynamic therapy. J Colloid Interface Sci 2023; 640:839-850. [PMID: 36905893 DOI: 10.1016/j.jcis.2023.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Sonodynamic therapy (SDT) is considered as a new-rising strategy for cancer therapeutics, but the inefficient production of reactive oxygen species (ROS) by current sonosensitizers seriously hinders its further applications. Herein, a piezoelectric nanoplatform is fabricated for enhancing SDT against cancer, in which manganese oxide (MnOx) with multiple enzyme-like activities is loaded on the surface of piezoelectric bismuth oxychloride nanosheets (BiOCl NSs) to form a heterojunction. When exposed to ultrasound (US) irradiation, piezotronic effect can remarkably promote the separation and transport of US-induced free charges, and further enhance ROS generation in SDT. Meanwhile, the nanoplatform shows multiple enzyme-like activities from MnOx, which can not only downregulate the intracellular glutathione (GSH) level, but also disintegrate endogenous hydrogen peroxide (H2O2) to generate oxygen (O2) and hydroxyl radicals (•OH). As a result, the anticancer nanoplatform substantially boosts ROS generation and reverses tumor hypoxia. Ultimately, it reveals remarkable biocompatibility and tumor suppression in a murine model of 4 T1 breast cancer under US irradiation. This work provides a feasible pathway for improving SDT using piezoelectric platforms.
Collapse
|
179
|
Wu W, Xu M, Qiao B, Huang T, Guo H, Zhang N, Zhou L, Li M, Tan Y, Zhang M, Xie X, Shuai X, Zhang C. Nanodroplet-enhanced sonodynamic therapy potentiates immune checkpoint blockade for systemic suppression of triple-negative breast cancer. Acta Biomater 2023; 158:547-559. [PMID: 36539109 DOI: 10.1016/j.actbio.2022.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Immune checkpoint blockade (ICB) has shown great promise in treating various advanced malignancies including triple-negative breast cancer (TNBC). However, only limited number of patients could benefit from it due to the low immune response rate caused by insufficient matured dendritic cells (DCs) and inadequate tumor infiltration of cytotoxic T lymphocytes (CTLs). Here, we report a combination therapeutic strategy which integrates STING pathway activation, hypoxia relief and sonodynamic therapy (SDT) with anti-PD-L1 therapy to improve the therapeutic outcome. The synthesized nanodroplet consisted of a O2-filled Perfluorohexane (PFH) core and a lipid membrane carrying sonosensitizer IR-780 and STING agonist Vadimezan (DMXAAs). It released O2 inside the hypoxic tumor tissue, thereby enhancing SDT which relied on O2 to generate cytotoxic reactive oxygen species (ROS). The co-delivered STING agonist DMXAAs promoted the maturation and tumor antigen cross-presenting of DCs for priming of CTLs. Moreover, SDT induced immunogenic cell death (ICD) of tumor to release abundant tumor-associated antigens, which increased tumor immunogenicity to promote tumor infiltration of CTLs. Consequently, not only a robust adaptive immune response was elicited but also the immunologically "cold" TNBC was turned "hot" to enable a potent anti-PD-L1 therapy. The nanodroplet demonstrated strong efficacy to systemically suppress TNBC growth and mimic distant tumor in vivo. STATEMENT OF SIGNIFICANCE: Only a limited number of triple-negative breast cancer (TNBC) patients can benefit from immune checkpoint blockade therapy due to its low immune response rate caused by insufficient matured DCs and inadequate tumor infiltration of cytotoxic T lymphocytes (CTLs). Interestingly, compelling evidence has shown that sonodynamic therapy (SDT) not only directly kills cancer cells but also elicits immunogenic cell death (ICD), which promotes tumor infiltration of cytotoxic T lymphocytes to transform an immunosuppressive "cold" tumor into a "hot" one. However, the hypoxic tumor microenvironment severely restricts the therapeutic efficiency of SDT, wherein, oxygen is indispensable in the process of ROS generation. Here, we report an O2-filled nanodroplet-enhanced sonodynamic therapy that significantly potentiated immune checkpoint blockade for systemic suppression of TNBC.
Collapse
Affiliation(s)
- Wenxin Wu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Xu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Qiao
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tongyi Huang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huanling Guo
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nan Zhang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Luyao Zhou
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Manying Li
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Tan
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minru Zhang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Chunyang Zhang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
180
|
Maleki A, Seyedhamzeh M, Yuan M, Agarwal T, Sharifi I, Mohammadi A, Kelicen-Uğur P, Hamidi M, Malaki M, Al Kheraif AA, Cheng Z, Lin J. Titanium-Based Nanoarchitectures for Sonodynamic Therapy-Involved Multimodal Treatments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206253. [PMID: 36642806 DOI: 10.1002/smll.202206253] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Sonodynamic therapy (SDT) has considerably revolutionized the healthcare sector as a viable noninvasive therapeutic procedure. It employs a combination of low-intensity ultrasound and chemical entities, known as a sonosensitizer, to produce cytotoxic reactive oxygen species (ROS) for cancer and antimicrobial therapies. With nanotechnology, several unique nanoplatforms are introduced as a sonosensitizers, including, titanium-based nanomaterials, thanks to their high biocompatibility, catalytic efficiency, and customizable physicochemical features. Additionally, developing titanium-based sonosensitizers facilitates the integration of SDT with other treatment modalities (for example, chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy), hence increasing overall therapeutic results. This review summarizes the most recent developments in cancer therapy and tissue engineering using titanium nanoplatforms mediated SDT. The synthesis strategies and biosafety aspects of Titanium-based nanoplatforms for SDT are also discussed. Finally, various challenges and prospects for its further development and potential clinical translation are highlighted.
Collapse
Affiliation(s)
- Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Mohammad Seyedhamzeh
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, 721302, India
| | - Ibrahim Sharifi
- Department of Materials Engineering, Faculty of Engineering, Shahrekord University, Shahrekord, 64165478, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Pelin Kelicen-Uğur
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Sıhhiye, Ankara, 06430, Turkey
| | - Mehrdad Hamidi
- Department of Pharmaceutical Nanotechnology, School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
- Trita Nanomedicine Research & Technology Development Center (TNRTC), Zanjan Health Technology Park, Zanjan, 45156-13191, Iran
| | - Massoud Malaki
- Department of Mechanical Engineering, Faculty of Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Abdulaziz A Al Kheraif
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
181
|
Liu L, Zhang J, An R, Xue Q, Cheng X, Hu Y, Huang Z, Wu L, Zeng W, Miao Y, Li J, Zhou Y, Chen HY, Liu H, Ye D. Smart Nanosensitizers for Activatable Sono-Photodynamic Immunotherapy of Tumors by Redox-Controlled Disassembly. Angew Chem Int Ed Engl 2023; 62:e202217055. [PMID: 36602292 DOI: 10.1002/anie.202217055] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Tumor-targeted and stimuli-activatable nanosensitizers are highly desirable for cancer theranostics. However, designing smart nanosensitizers with multiple imaging signals and synergistic therapeutic activities switched on is challenging. Herein, we report tumor-targeted and redox-activatable nanosensitizers (1-NPs) for sono-photodynamic immunotherapy of tumors by molecular co-assembly and redox-controlled disassembly. 1-NPs show a high longitudinal relaxivity (r1 =18.7±0.3 mM-1 s-1 ), but "off" dual fluorescence (FL) emission (at 547 and 672 nm), "off" sono-photodynamic therapy and indoleamine 2,3-dioxygenase 1 (IDO1) inhibition activities. Upon reduction by glutathione (GSH), 1-NPs rapidly disassemble and remotely release small molecules 2-Gd, Zn-PPA-SH and NLG919, concurrently switching on (1) dual FL emission, (2) sono-photodynamic therapy and (3) IDO1 inhibition activities. After systemic injection, 1-NPs are effective for bimodal FL and magnetic resonance (MR) imaging-guided sono-photodynamic immunotherapy of orthotropic breast and brain tumors in mice under combined ultrasound (US) and 671-nm laser irradiation.
Collapse
Affiliation(s)
- Lingjun Liu
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Qi Xue
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xi Cheng
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zheng Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yinxing Miao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Jie Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu Zhou
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Hong Liu
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
182
|
Gong M, Huang Y, Feng H, Lin J, Huang A, Hu J, Tang Q, Zhu X, Han S, Lu J, Wang J. A nanodrug combining CD47 and sonodynamic therapy efficiently inhibits osteosarcoma deterioration. J Control Release 2023; 355:68-84. [PMID: 36682726 DOI: 10.1016/j.jconrel.2023.01.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/03/2023] [Accepted: 01/14/2023] [Indexed: 01/24/2023]
Abstract
Treatments for osteosarcoma (OS) with pulmonary metastases reach a bottleneck with a survival rate of 10-20%. The suppressive tumor associated macrophages(TAMs) and CD47 over-expression greatly lead to the treatment failure. Sonodynamic therapy (SDT) can generate ROS with deep tumor penetration to induce tumor cell apoptosis, which is reported to further induce M1 macrophage polarization. CD47 inhibition combined with SDT to synergistically modulate TAMs may induce superior effects for OS treatment. In this work, for the first time, a biomimetic nanodrug named MPIRx was deveploped by loading IR780 (a sonosensitizer) and RRx-001 (a CD47 inhibitor) in PEG-PCL nanomicelles and then coating with OS cell membranes. After ultrasound activation, the nanodrug significantly inhibited OS proliferation and migration, induced apoptosis and immunogenic cell death in OS cells. Furthermore, MPIRx could guide macrophage migrating towards tumor cells and promote M1-type polarization while increasing the phagocytosis activity of macrophages on OS cells. Ultimately, MPIRx showed good tumor accumulation in vivo and successfully inhibited subcutaneous OS and orthotopic tumor with deterioration of pulmonary metastasis. Overall, by creating a local oxidative microenvironment and modulating the TAMs/CD47 in tumor tissue, the MPIRx nanodrug presents a novel strategy for macrophage-related immunotherapy to successfully eliminate OS and inhibit the intractable pulmonary metastasis.
Collapse
Affiliation(s)
- Ming Gong
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Yufeng Huang
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Huixiong Feng
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Jiaming Lin
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Anfei Huang
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Jinxin Hu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Qinglian Tang
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Xiaojun Zhu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China
| | - Shisong Han
- Zhuhai Institute of Translational Medicine, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, PR China.
| | - Jinchang Lu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China.
| | - Jin Wang
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, PR China.
| |
Collapse
|
183
|
Qi G, Yu T, Li J, Guo Z, Ma K, Jin Y. Imaging Guided Endogenic H 2 -Augmented Electrochemo-Sonodynamic Domino Co-therapy of Tumor in Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208414. [PMID: 36541158 DOI: 10.1002/adma.202208414] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Precise and on-demand release of sufficient hydrogen (H2 ) to tumor sites remains a key challenge for emerging H2 -oncotherapy, and little is known about the physiological effects of "abundant" H2 on complex tumor microenvironments (TME). Here, a highly efficient and cost-effective imaging-guided/-assessed H2 -therapy of tumors based on a joint electrochemo-sonodynamic treatment (H2 -EC/SD co-therapy) with strong "domino effect" triggered by endogenous H2 generation at tumor sites is reported to speedily eliminate tumor tissue (≤80 mm3 ) within 1 day. Adequate H2 is controllably generated in tumor sites through mild electrochemistry in vivo due to acidic TME by using clinical acupuncture Fe needles as electrodes. Besides starvation damage due to gas blockage/destruction of vessels, nano-/micro-bubbles of H2 formed in situ can elevate the tumor's internal temperature and burst vessels to further destroy the tumor under ultrasound irradiation. Remarkably, vulnerable homeostasis of TME is disturbed as H2 also participates in the physiological activity of tumor cells, leading to tumor dysfunction. Last but not least, the body's inflammatory response to cancer is reduced after the treatment, which is beneficial for the body's immune system during post-treatment recovery. Based on all of these merits, the H2 -EC/SD co-therapy provides a potentially safe and viable therapeutic strategy for future clinical applications.
Collapse
Affiliation(s)
- Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Tengfei Yu
- Department of Ultrasound, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jianmei Li
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Zirui Guo
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Kongshuo Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
184
|
Recent advances in augmenting Fenton chemistry of nanoplatforms for enhanced chemodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
185
|
Song K, Chen G, He Z, Shen J, Ping J, Li Y, Zheng L, Miao Y, Zhang D. Protoporphyrin-sensitized degradable bismuth nanoformulations for enhanced sonodynamic oncotherapy. Acta Biomater 2023; 158:637-648. [PMID: 36621634 DOI: 10.1016/j.actbio.2022.12.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
Decreasing the scavenging capacity of reactive oxygen species (ROS) and enhancing ROS production are the two principal objectives in the development of novel sonosensitizers for sonodynamic therapy (SDT). Herein, we designed a protoporphyrin-sensitized bismuth-based semiconductor (P-NBOF) as a sonosensitizer to generate ROS and synergistically depleted glutathione for enhanced SDT against tumors. The bismuth-based nanomaterial (NBOF) is a wide-bandgap semiconductor. Sensitization by protoporphyrin made it easier to excite electrons under ultrasonic stimulation, and the energy of the lowest unoccupied electron orbital in protoporphyrin was higher than the conduction-band energy of NBOF. Under ultrasound excitation, the excited electrons in the protoporphyrin were injected into the conduction band of the NBOF, increasing its reducing ability leading to the production of more superoxide anion radicals and also helping to increase the charge separation of protoporphyrin leading to the production of more singlet oxygen. Meanwhile, P-NBOF continuously depleted glutathione, which was not only conducive to breaking the redox balance of the tumor microenvironment to enhance the therapeutic efficacy of SDT, but also promoted its degradation and metabolism. The construction of this P-NBOF sonosensitizer thus provided an effective strategy to enhance SDT for tumors. STATEMENT OF SIGNIFICANCE: To enhance the efficacy of sonodynamic tumor therapy, we developed a degradable protoporphyrin-sensitized bismuth-based nano-semiconductor (P-NBOF) by optimizing the band structure and glutathione-depletion ability. Protoporphyrin in P-NBOF under excitation preferentially generates free electrons, which are then injected into the conduction band of NBOF, improving the reducing ability of NBOF and promoting the separation of electron-hole pairs, thereby enhancing the production capacity of reactive oxygen species. Furthermore, P-NBOF can deplete glutathione, reduce the scavenging of reactive oxygen species, and reactivate and amplify the effect of sonodynamic therapy. The construction of the nanotherapeutic platform provides an option for enhancing sonodynamic therapy.
Collapse
Affiliation(s)
- Kang Song
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guobo Chen
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zongyan He
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jing Shen
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jing Ping
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, The Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, The Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
186
|
Li J, Liu X, Zheng Y, Cui Z, Jiang H, Li Z, Zhu S, Wu S. Achieving Fast Charge Separation by Ferroelectric Ultrasonic Interfacial Engineering for Rapid Sonotherapy of Bacteria-Infected Osteomyelitis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210296. [PMID: 36626342 DOI: 10.1002/adma.202210296] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Bacteria-infected osteomyelitis is life-threatening without effective therapeutic methods clinically. Here, a rapid and effective therapeutic strategy to treat osteomyelitis through ferroelectric polarization interfacial engineering of BiFeO3 /MXene (Ti3 C2 ) triggered by ultrasound (US) is reported. Under US, the ferroelectric polarization induces the formation of the piezoelectric field. US cavitation effect induced sonoluminescence stimulates BiFeO3 /Ti3 C2 to produce photogenerated carriers. With synergistic action of the polarization electric field and Schottky junction, BiFeO3 /Ti3 C2 accelerates the separation of electrons and holes and simultaneously inhibits the backflow of electrons, thus improving the utilization of polarized charges and photogenerated charges and consequently enhancing the yield of reactive oxygen species under US. As a result, 99.87 ± 0.05% of Staphylococcus aureus are efficiently killed in 20 min with the assistance of ultrasonic heating. The theory of ferroelectric ultrasonic interfacial engineering is proposed, which brings new insight for developing ferroelectric ultrasonic responsive materials used for the diagnosis and therapy of deep tissue infection and other acoustoelectric devices.
Collapse
Affiliation(s)
- Jianfang Li
- School of Materials Science and Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Zhenduo Cui
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Shuilin Wu
- School of Materials Science and Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
187
|
Magneto-mechanical therapeutic effects and associated cell death pathways of magnetic nanocomposites with distinct geometries. Acta Biomater 2023; 161:238-249. [PMID: 36858162 DOI: 10.1016/j.actbio.2023.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
Recent years have witnessed important developments in the emerging field of magneto-mechanical therapies. While such approaches have been demonstrated as a highly efficient route to augment, complement, or entirely replace other therapeutic strategies, important aspects are still poorly understood. Among these, the dependence between the cell death pathway and the geometry of magnetic nanocomposites enabling magneto-mechanical therapies under a low-frequency rotating magnetic field (RMF) is yet to be deciphered. To provide insights into this important problem, we evaluate the cell death pathway for two magnetic nanocomposites with highly distinct geometries: Zn0.2Fe2.8O4-PLGA magnetic nanospheres (MNSs) and Zn0.2Fe2.8O4-PLGA magnetic nanochains (MNCs). We show that under exposure to an RMF, the MNSs and the MNCs exhibit a corkscrewed circular propulsion mode and a steering propulsion mode, respectively. This distinct behavior, with important implications for the associated magneto-mechanical forces exerted by these nanomaterials on surrounding structures (e.g., the cellular membrane), depends on their specific geometries. Next, using numerical simulations and cell viability experiments, we demonstrate that the field strength of the RMF and the rotating speed of the MNSs or MNCs have strong implications for their magneto-mechanical therapeutic performance. Last, we reveal that the magneto-mechanical effects of MNSs are more prone to induce cell apoptosis, whereas those of the MNCs favor instead cell necrosis. Overall, this work enhances the current understanding of the dependences existing between the magneto-mechanical therapeutic effects of magnetic nanocomposites with different geometries and associated cell death pathways, paving the way for novel functionalization routes which could enable significantly enhanced cures and biomedical tools. STATEMENT OF SIGNIFICANCE.
Collapse
|
188
|
Gao C, Kwong CHT, Wang Q, Kam H, Xie B, Lee SMY, Chen G, Wang R. Conjugation of Macrophage-Mimetic Microalgae and Liposome for Antitumor Sonodynamic Immunotherapy via Hypoxia Alleviation and Autophagy Inhibition. ACS NANO 2023; 17:4034-4049. [PMID: 36739531 DOI: 10.1021/acsnano.3c00041] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sonodynamic therapy (SDT) is a noninvasive technique for local antitumor treatment; however, its clinical application is often limited by the low tumor accumulation of SDT agents, tumor's hypoxic microenvironment, and cytoprotective effects of autophagy. To address these issues, herein we developed surface-engineered chlorella (Chl, a green algae) as a targeted drug carrier and sustainable oxygen supplier (via photosynthesis) for significantly improved SDT via hypoxia alleviation as well as autophagy inhibition of chloroquine phosphate. In this design, the macrophage membrane was coated onto Chl to form macrophage-mimetic Chl (MChl) to increase its biocompatibility and targeted tumor accumulation driven by the inflammatory-homing effects of macrophage membranes. In addition, the membrane coating on Chl allowed lipid insertion to yield β-cyclodextrin (β-CD) modified MChl (CD-MChl). Subsequently, supramolecular conjugates of MChl-NP were constructed via host-guest interactions between CD-MChl and adamantane (ADA)-modified liposome (ADA-NP), and the anchored liposome went with CD-MChl hand-in-hand to the tumor tissues for co-delivery of Chl, hematoporphyrin, and chloroquine phosphate (loaded in ADA-NP). The synergistic therapy achieved via local oxygenation, SDT, and autophagy inhibition maximally improved the therapeutic efficacy of MChl-CQ-HP-NP against melanoma. Tumor rechallenging results revealed that the changes of tumor microenvironment including hypoxia alleviation, SDT induced immunogenic cell death, and autophagy inhibition collectively induced a strong antitumor immune response and memory.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Cheryl H T Kwong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Qingfu Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Beibei Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Guosong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
189
|
Wang Y, Gong F, Han Z, Lei H, Zhou Y, Cheng S, Yang X, Wang T, Wang L, Yang N, Liu Z, Cheng L. Oxygen-Deficient Molybdenum Oxide Nanosensitizers for Ultrasound-Enhanced Cancer Metalloimmunotherapy. Angew Chem Int Ed Engl 2023; 62:e202215467. [PMID: 36591974 DOI: 10.1002/anie.202215467] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Oxygen-deficient molybdenum oxide (MoOX ) nanomaterials are prepared as novel nanosensitizers and TME-stimulants for ultrasound (US)-enhanced cancer metalloimmunotherapy. After PEGylation, MoOX -PEG exhibits efficient capability for US-triggered reactive oxygen species (ROS) generation and glutathione (GSH) depletion. Under US irradiation, MoOX -PEG generates a massive amount of ROS to induce cancer cell damage and immunogenic cell death (ICD), which can effectively suppress tumor growth. More importantly, MoOX -PEG itself further stimulates the maturation of dendritic cells (DCs) and triggeres the activation of the cGAS-STING pathway to enhance the immunological effect. Due to the robust ICD induced by SDT and efficient DC maturation stimulated by MoOX -PEG, the combination treatment of MoOX -triggered SDT and aCTLA-4 further amplifies antitumor therapy, inhibits cancer metastases, and elicits robust immune responses to effectively defeat abscopal tumors.
Collapse
Affiliation(s)
- Yuanjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhihui Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yangkai Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Shuning Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xiaoyuan Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Tianyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Li Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
190
|
Wen D, Li K, Deng R, Feng J, Zhang H. Defect-Rich Glassy IrTe 2 with Dual Enzyme-Mimic Activities for Sono-Photosynergistic-Enhanced Oncotherapy. J Am Chem Soc 2023; 145:3952-3960. [PMID: 36757875 DOI: 10.1021/jacs.2c09967] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The complexity, diversity, and heterogeneity of malignant tumors pose a formidable challenge for antitumor therapy. To achieve the goal of significantly enhancing the antitumor effect, nanomedicine-based synergistic therapy is one of the important strategies. Herein, we innovatively report a defect-rich glassy IrTe2 (G-IrTe2) with weak Ir-Te bond strength for synergistic sonodynamic therapy (SDT), chemodynamic therapy (CDT), and mild photothermal therapy (PTT). G-IrTe2 sonosensitizer under ultrasound (US) stimuli exhibits excellent reactive oxygen species (ROS) production performance. Besides, catalase (CAT)-like activity of G-IrTe2 can provide abundant oxygen to enhance the SDT effect. Then, the theoretical calculation verifies that US stimuli can easily make the irregular Ir-Te bond to be broken in amorphous IrTe2 and free electrons will be released to combine with the oxygen and further form singlet oxygen (1O2). Meanwhile, G-IrTe2 with peroxidase (POD)-like activity can also catalyze endogenous H2O2 to produce more ROS for chemodynamic therapy (CDT), which is conducive to better tumor ablation. Furthermore, the ROS produced by sono-/chemodynamic processes can cause mitochondrial dysfunction and further give rise to heat shock protein (HSP) downregulated expression, maximizing the efficiency of mild PTT. Therefore, such glassy IrTe2 with rich defect could be significantly involved in synergistic oncotherapy and then effectively achieve outstanding antitumor efficacy. This study provides a new research idea for expanding the application of inorganic glassy nanomaterials in promoting the therapeutic effect of tumors.
Collapse
Affiliation(s)
- Ding Wen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
191
|
Yang XY, Lu YF, Xu JX, Du YZ, Yu RS. Recent Advances in Well-Designed Therapeutic Nanosystems for the Pancreatic Ductal Adenocarcinoma Treatment Dilemma. Molecules 2023; 28:molecules28031506. [PMID: 36771172 PMCID: PMC9920782 DOI: 10.3390/molecules28031506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with an extremely poor prognosis and low survival rate. Due to its inconspicuous symptoms, PDAC is difficult to diagnose early. Most patients are diagnosed in the middle and late stages, losing the opportunity for surgery. Chemotherapy is the main treatment in clinical practice and improves the survival of patients to some extent. However, the improved prognosis is associated with higher side effects, and the overall prognosis is far from satisfactory. In addition to resistance to chemotherapy, PDAC is significantly resistant to targeted therapy and immunotherapy. The failure of multiple treatment modalities indicates great dilemmas in treating PDAC, including high molecular heterogeneity, high drug resistance, an immunosuppressive microenvironment, and a dense matrix. Nanomedicine shows great potential to overcome the therapeutic barriers of PDAC. Through the careful design and rational modification of nanomaterials, multifunctional intelligent nanosystems can be obtained. These nanosystems can adapt to the environment's needs and compensate for conventional treatments' shortcomings. This review is focused on recent advances in the use of well-designed nanosystems in different therapeutic modalities to overcome the PDAC treatment dilemma, including a variety of novel therapeutic modalities. Finally, these nanosystems' bottlenecks in treating PDAC and the prospect of future clinical translation are briefly discussed.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Yuan-Fei Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Jian-Xia Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou 310005, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence: (Y.-Z.D.); (R.-S.Y.); Tel.: +86-571-88208435 (Y.-Z.D.); +86-571-87783925 (R.-S.Y.)
| | - Ri-Sheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
- Correspondence: (Y.-Z.D.); (R.-S.Y.); Tel.: +86-571-88208435 (Y.-Z.D.); +86-571-87783925 (R.-S.Y.)
| |
Collapse
|
192
|
A robust Au@Cu 2-xS nanoreactor assembled by silk fibroin for enhanced intratumoral glucose depletion and redox dyshomeostasis. Biomaterials 2023; 293:121970. [PMID: 36549040 DOI: 10.1016/j.biomaterials.2022.121970] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Intracellular redox dyshomeostasis promoted by tumor microenvironment (TME) modulation has become an appealing therapeutic target for cancer management. Herein, a dual plasmonic Au/SF@Cu2-xS nanoreactor (abbreviation as ASC) is elaborately developed by covalent immobilization of sulfur defective Cu2-xS nanodots onto the surface of silk fibroin (SF)-capped Au nanoparticles. Tumor hypoxia can be effectively alleviated by ASC-mediated local oxygenation, owing to the newfound catalase-mimic activity of Cu2-xS. The semiconductor of Cu2-xS with narrow bandgap energy of 2.54 eV enables a more rapid dissociation of electron-hole (e-/h+) pair for a promoted US-triggered singlet oxygen (1O2) generation, in the presence of Au as electron scavenger. Moreover, Cu2-xS is devote to Fenton-like reaction to catalyze H2O2 into ·OH under mild acidity and simultaneously deplete glutathione to aggravate intracellular oxidative stress. In another aspect, Au nanoparticles with glucose oxidase-mimic activity consumes intrinsic glucose, which contributes to a higher degree of oxidative damage and energy exhaustion of cancer cells. Importantly, such tumor starvation and 1O2 yield can be enhanced by Cu2-xS-catalyzed O2 self-replenishment in H2O2-rich TME. ASC-initiated M1 macrophage activation and therapy-triggered immunogenetic cell death (ICD) favors the systematic tumor elimination by eliciting antitumor immunity. This study undoubtedly enriches the rational design of SF-based nanocatalysts for medical utilizations.
Collapse
|
193
|
Zhang S, Xia S, Chen L, Chen Y, Zhou J. Covalent Organic Framework Nanobowls as Activatable Nanosensitizers for Tumor-Specific and Ferroptosis-Augmented Sonodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206009. [PMID: 36594611 PMCID: PMC9951320 DOI: 10.1002/advs.202206009] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/21/2022] [Indexed: 05/15/2023]
Abstract
Covalent organic frameworks (COFs) have attracted increasing attention for biomedical applications. COFs-based nanosensitizers with uniform nanoscale morphology and tumor-specific curative effects are in high demand; however, their synthesis is yet challenging. In this study, distinct COF nanobowls are synthesized in a controlled manner and engineered as activatable nanosensitizers with tumor-specific sonodynamic activity. High crystallinity ensures an ordered porous structure of COF nanobowls for the efficient loading of the small-molecule sonosensitizer rose bengal (RB). To circumvent non-specific damage to normal tissues, the sonosensitization effect is specifically inhibited by the in situ growth of manganese oxide (MnOx ) on RB-loaded COFs. Upon reaction with tumor-overexpressed glutathione (GSH), the "gatekeeper" MnOx is rapidly decomposed to recover the reactive oxygen species (ROS) generation capability of the COF nanosensitizers under ultrasound irradiation. Increased intracellular ROS stress and GSH consumption concomitantly induce ferroptosis to improve sonodynamic efficacy. Additionally, the unconventional bowl-shaped morphology renders the nanosensitizers with enhanced tumor accumulation and retention. The combination of tumor-specific sonodynamic therapy and ferroptosis achieves high efficacy in killing cancer cells and inhibiting tumor growth. This study paves the way for the development of COF nanosensitizers with unconventional morphologies for biomedicine, offering a paradigm to realize activatable and ferroptosis-augmented sonodynamic tumor therapy.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Ultrasound Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Shujun Xia
- Department of Ultrasound Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Liang Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Jianqiao Zhou
- Department of Ultrasound Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| |
Collapse
|
194
|
Zhang T, Zheng Q, Xie C, Fan G, Wang Y, Wu Y, Fu Y, Huang J, Craig DQM, Cai X, Li X. Integration of Silica Nanorattles with Manganese-Doped In 2S 3/InOOH to Enable Ultrasound-Mediated Tumor Theranostics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4883-4894. [PMID: 36662514 DOI: 10.1021/acsami.2c18095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a result of their radiation-free nature and deep-penetration ability, tumor theranostics mediated by ultrasound have become increasingly recognized as a modality with high potential for translation into clinical cancer treatment. The effective integration of ultrasound imaging and sonodynamic therapy (SDT) into one nanoplatform remains an enormous challenge yet to be fully resolved. Here, a novel theranostic system, consisting of rattle-type SiO2 (r-SiO2) loaded with Mn-doped In2S3/InOOH (SMISO), was designed and synthesized to enable an improved ultrasound imaging-guided therapy. With Mn-doped In2S3/InOOH (MISO) and a heterojunction structure, this novel sonosensitizer facilitates the generation of reactive oxygen species (ROS) for SDT. By coupling interfaces between the shell and core in rattle-type SiO2, multiple reflections/scattering are generated, while MISO has high acoustic impedance. By integrating r-SiO2 and MISO, the SMISO composite nanoparticles (NPs) increase the acoustic reflection and provide enhanced contrast for ultrasound imaging. Through the effective accumulation in tumors, which was monitored by B-mode ultrasound imaging in vivo, SMISO composite NPs effectively inhibited tumor growth without adverse side effects under ultrasound irradiation treatment. This work therefore provides a new approach to integrate a novel gas-free ultrasound contrast agent and a semiconductor sonosensitizer for cancer theranostics.
Collapse
Affiliation(s)
- Tian Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Qiang Zheng
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 215123, P. R. China
| | - Congkun Xie
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Gonglin Fan
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 215123, P. R. China
| | - Yifan Wang
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 215123, P. R. China
| | - Yongjun Wu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Yike Fu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, P. R. China
| | - Jie Huang
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Duncan Q M Craig
- University College London School of Pharmacy, London WC1N 1AX, U.K
| | - Xiujun Cai
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 215123, P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, P. R. China
| |
Collapse
|
195
|
Pu Y, Wu W, Xiang H, Chen Y, Xu H. CRISPR/Cas9-based genome editing for multimodal synergistic cancer nanotherapy. NANO TODAY 2023; 48:101734. [DOI: 10.1016/j.nantod.2022.101734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
196
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
197
|
Liu Q, Zhao Y, Zhou H, Chen C. Ferroptosis: challenges and opportunities for nanomaterials in cancer therapy. Regen Biomater 2023; 10:rbad004. [PMID: 36817975 PMCID: PMC9926950 DOI: 10.1093/rb/rbad004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/31/2022] [Indexed: 01/22/2023] Open
Abstract
Ferroptosis, a completely new form of regulated cell death, is mainly caused by an imbalance between oxidative damage and reductive protection and has shown great anti-cancer potential. However, existing small-molecule ferroptosis inducers have various limitations, such as poor water solubility, drug resistance and low targeting ability, hindering their clinical applications. Nanotechnology provides new opportunities for ferroptosis-driven tumor therapy. Especially, stimuli-responsive nanomaterials stand out among others and have been widely researched because of their unique spatiotemporal control advantages. Therefore, it's necessary to summarize the application of those stimuli-responsive nanomaterials in ferroptosis. Here, we describe the physiological feature of ferroptosis and illustrate the current challenges to induce ferroptosis for cancer therapy. Then, nanomaterials that induce ferroptosis are classified and elaborated according to the external and internal stimuli. Finally, the future perspectives in the field are proposed. We hope this review facilitates paving the way for the design of intelligent nano-ferroptosis inducers.
Collapse
Affiliation(s)
- Qiaolin Liu
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| |
Collapse
|
198
|
Chen S, Zhu P, Mao L, Wu W, Lin H, Xu D, Lu X, Shi J. Piezocatalytic Medicine: An Emerging Frontier using Piezoelectric Materials for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2208256. [PMID: 36634150 DOI: 10.1002/adma.202208256] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Emerging piezocatalysts have demonstrated their remarkable application potential in diverse medical fields. In addition to their ultrahigh catalytic activities, their inherent and unique charge-carrier-releasing properties can be used to initiate various redox catalytic reactions, displaying bright prospects for future medical applications. Triggered by mechanical energy, piezocatalytic materials can release electrons/holes, catalyze redox reactions of substrates, or intervene in biological processes to promote the production of effector molecules for medical purposes, such as decontamination, sterilization, and therapy. Such a medical application of piezocatalysis is termed as piezocatalytic medicine (PCM) herein. To pioneer novel medical technologies, especially therapeutic modalities, this review provides an overview of the state-of-the-art research progress in piezocatalytic medicine. First, the principle of piezocatalysis and the preparation methodologies of piezoelectric materials are introduced. Then, a comprehensive summary of the medical applications of piezocatalytic materials in tumor treatment, antisepsis, organic degradation, tissue repair and regeneration, and biosensing is provided. Finally, the main challenges and future perspectives in piezocatalytic medicine are discussed and proposed, expecting to fuel the development of this emerging scientific discipline.
Collapse
Affiliation(s)
- Si Chen
- Shanghai Tenth People's Hospital, Clinical Center For Brain And Spinal Cord Research, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Piao Zhu
- Shanghai Tenth People's Hospital, Clinical Center For Brain And Spinal Cord Research, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Lijie Mao
- Shanghai Tenth People's Hospital, Clinical Center For Brain And Spinal Cord Research, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Wencheng Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Deliang Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Xiangyu Lu
- Shanghai Tenth People's Hospital, Clinical Center For Brain And Spinal Cord Research, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Jianlin Shi
- Shanghai Tenth People's Hospital, Clinical Center For Brain And Spinal Cord Research, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| |
Collapse
|
199
|
Huang L, Nie T, Jiang L, Chen Y, Zhou Y, Cai X, Zheng Y, Wang L, Wu J, Ying T. Acidity-Biodegradable Iridium-Coordinated Nanosheets for Amplified Ferroptotic Cell Death Through Multiple Regulatory Pathways. Adv Healthc Mater 2023; 12:e2202562. [PMID: 36610060 DOI: 10.1002/adhm.202202562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/15/2022] [Indexed: 01/09/2023]
Abstract
Ferroptosis-based treatment strategies display the potential to suppress some malignant tumors with intrinsic apoptosis resistance. However, current related cancer treatments are still hampered by insufficient intracellular reactive oxygen species (ROS) levels and Fe2+ contents, posing considerable challenges for their clinical translation. Herein, an intracellular acid-biodegradable iridium-coordinated nanosheets (Ir-Hemin) with sonodynamic therapy (SDT) properties to effectively induce ferroptosis in tumor cells through multiple regulatory pathways are proposed. Under ultrasound (US) irradiation, Ir-Hemin nanosheets act as nanosonosensitizers to effectively generate ROS, subsequently causing the accumulation of lipid peroxides (LPO) and inducing ferroptotic cell death. Furthermore, these Ir-Hemin nanosheets decompose quickly to release hemin and Ir(IV), which deplete intracellular glutathione (GSH) to deactivate the enzyme glutathione peroxidase 4 (GPX4) and initiate the ferroptosis pathway. Specifically, the released hemin enables heme oxygenase 1 (HO-1) upregulation for endogenous ferrous ion supplementation, which compensates for the toxicity concerns brought about by the large uptake of exogenous iron. Surprisingly, Ir-Hemin nanosheets exhibit high tumor accumulation and trigger effective ferroptosis for tumor therapy. These Ir-Hemin nanosheets display pronounced synergistic anticancer efficacy under US stimulation both in vitro and in vivo, providing a strong rationale for the application of ferroptosis in cancer treatment.
Collapse
Affiliation(s)
- Lili Huang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.,Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Tongtong Nie
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Lixian Jiang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Ying Chen
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yixuan Zhou
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.,Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.,Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Longchen Wang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.,Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Jianrong Wu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.,Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.,Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| |
Collapse
|
200
|
Qin Y, Geng X, Sun Y, Zhao Y, Chai W, Wang X, Wang P. Ultrasound nanotheranostics: Toward precision medicine. J Control Release 2023; 353:105-124. [PMID: 36400289 DOI: 10.1016/j.jconrel.2022.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022]
Abstract
Ultrasound (US) is a mechanical wave that can penetrate biological tissues and trigger complex bioeffects. The mechanisms of US in different diagnosis and treatment are different, and the functional application of commercial US is also expanding. In particular, recent developments in nanotechnology have led to a wider use of US in precision medicine. In this review, we focus on US in combination with versatile micro and nanoparticles (NPs)/nanovesicles for tumor theranostics. We first introduce US-assisted drug delivery as a stimulus-responsive approach that spatiotemporally regulates the deposit of nanomedicines in target tissues. Multiple functionalized NPs and their US-regulated drug-release curves are analyzed in detail. Moreover, as a typical representative of US therapy, sonodynamic antitumor strategy is attracting researchers' attention. The collaborative efficiency and mechanisms of US and various nano-sensitizers such as nano-porphyrins and organic/inorganic nanosized sensitizers are outlined in this paper. A series of physicochemical processes during ultrasonic cavitation and NPs activation are also discussed. Finally, the new applications of US and diagnostic NPs in tumor-monitoring and image-guided combined therapy are summarized. Diagnostic NPs contain substances with imaging properties that enhance US contrast and photoacoustic imaging. The development of such high-resolution, low-background US-based imaging methods has contributed to modern precision medicine. It is expected that the integration of non-invasive US and nanotechnology will lead to significant breakthroughs in future clinical applications.
Collapse
Affiliation(s)
- Yang Qin
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaorui Geng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yitong Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Wenyu Chai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|