151
|
Ouyang J, Xie A, Zhou J, Liu R, Wang L, Liu H, Kong N, Tao W. Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem Soc Rev 2022; 51:4996-5041. [PMID: 35616098 DOI: 10.1039/d1cs01148k] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traditional treatments such as chemotherapy and surgery usually cause severe side effects and excruciating pain. The emergence of nanomedicines and minimally invasive therapies (MITs) has brought hope to patients with malignant diseases. Especially, minimally invasive nanomedicines (MINs), which combine the advantages of nanomedicines and MITs, can effectively target pathological cells/tissues/organs to improve the bioavailability of drugs, minimize side effects and achieve painless treatment with a small incision or no incision, thereby acquiring good therapeutic effects. In this review, we provide a comprehensive review of the research status and challenges of MINs, which generally refers to the medical applications of nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Additionally, we also discuss their combined application in various fields including cancers, cardiovascular diseases, tissue engineering, neuro-functional diseases, and infectious diseases. The prospects, and potential bench-to-bedside translation of MINs are also presented in this review. We expect that this review can inspire the broad interest for a wide range of readers working in the fields of interdisciplinary subjects including (but not limited to) chemistry, nanomedicine, bioengineering, nanotechnology, materials science, pharmacology, and biomedicine.
Collapse
Affiliation(s)
- Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Angel Xie
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Runcong Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong 519000, China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haijun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
152
|
Chen Y, He P, Jana D, Wang D, Wang M, Yu P, Zhu W, Zhao Y. Glutathione-Depleting Organic Metal Adjuvants for Effective NIR-II Photothermal Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201706. [PMID: 35357041 DOI: 10.1002/adma.202201706] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Although photothermal immunotherapy (PTI) is a compelling strategy for tumor therapy, the development of promising photothermal agents to overcome the insufficient immunogenicity of tumor cells and the poor immune response encountered in PTI is still challenging. Herein, commercial small-molecule-based organic metal adjuvants (OMAs) are presented, with second near-infrared photoacoustic and photothermal properties as well as the ability to perturb redox homeostasis to potentiate immunogenicity and immune responsiveness. OMAs, assembled from charge-transfer complexes and characterized by a broad substrate scope, high accessibility, and flexibly tuned optical properties, demonstrate strong phototherapeutic and adjuvant abilities via the depletion of glutathione and cysteine, and subsequently elicit systemic immunity by evoking immunogenic cell death, promoting dendritic cell maturation, and increasing T cell infiltration. Furthermore, programmed cell death protein 1 antibody can be employed to synergize with OMAs to suppress tumor immune evasion and ultimately improve the treatment outcomes. This study unlocks new paradigms to provide a versatile OMA-based scaffold for future practical applications.
Collapse
Affiliation(s)
- Yun Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Peiying He
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Deblin Jana
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Menghao Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
153
|
Wu Y, Wang Z, Shen J, Yan W, Xiang S, Liu H, Huang W. The role of m6A methylation in osteosarcoma biological processes and its potential clinical value. Hum Genomics 2022; 16:12. [PMID: 35436972 PMCID: PMC9017037 DOI: 10.1186/s40246-022-00384-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/23/2022] [Indexed: 12/28/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and young adults and has a poor prognosis. Recent developments in the field of high-throughput sequencing technology, particularly in methylated RNA immunoprecipitation sequencing (MeRIP-seq), have led to renewed interest in RNA methylation. Among the various RNA modifications, N6-methyladenosine (m6A) modifications are the most common. Emerging evidence suggests that m6A methylation can affect the complexity of cancer progression by regulating biological functions related to cancer. In this review, we will shed light on recent findings regarding the biological function of m6A methylation in OS and discuss future research directions and potential clinical applications of RNA methyltransferases in OS.
Collapse
Affiliation(s)
- Yanjiao Wu
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.,Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhiyun Wang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Jianlin Shen
- The Precision Medicine Institute, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wei Yan
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Shurong Xiang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huan Liu
- Department of Orthopaedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Wenhua Huang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China. .,Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Southern Medical University, Guangzhou, China. .,Guangdong Innovation Platform for Translation of 3D Printing Application, Southern Medical University, Guangzhou, China.
| |
Collapse
|
154
|
Peng Q, Qian Z, Gao H, Zhang K. Recent Advances in Transition-Metal Based Nanomaterials for Noninvasive Oncology Thermal Ablation and Imaging Diagnosis. Front Chem 2022; 10:899321. [PMID: 35494651 PMCID: PMC9047733 DOI: 10.3389/fchem.2022.899321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 12/26/2022] Open
Abstract
With the developments of nanobiotechnology and nanomedicine, non-invasive thermal ablation with fewer side effects than traditional tumor treatment methods has received extensive attention in tumor treatment. Non-invasive thermal ablation has the advantages of non-invasiveness and fewer side effects compared with traditional treatment methods. However, the clinical efficiency and biological safety are low, which limits their clinical application. Transition-metal based nanomaterials as contrast agents have aroused increasing interest due to its unique optical properties, low toxicity, and high potentials in tumor diagnosis. Transition-metal based nanomaterials have high conversion efficiency of converting light energy into heat energy, good near-infrared absorption characteristics, which also can targetedly deliver those loaded drugs to tumor tissue, thereby improving the therapeutic effect and reducing the damage to the surrounding normal tissues and organs. This article mainly reviews the synthesis of transition-metal based nanomaterials in recent years, and discussed their applications in tumor thermal ablation and diagnosis, hopefully guiding the development of new transition metal-based nanomaterials in enhancing thermal ablation.
Collapse
Affiliation(s)
- Qiuxia Peng
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Zhangbo Qian
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Huali Gao
- Orthopedic Surgery Department, Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Huali Gao, ; Kun Zhang,
| | - Kun Zhang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Huali Gao, ; Kun Zhang,
| |
Collapse
|
155
|
Yue J, Mei Q, Wang P, Miao P, Dong WF, Li L. Light-triggered multifunctional nanoplatform for efficient cancer photo-immunotherapy. J Nanobiotechnology 2022; 20:181. [PMID: 35392911 PMCID: PMC8991811 DOI: 10.1186/s12951-022-01388-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/19/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer immunotherapy is limited by the immune escape of tumor cells and adverse effects. Photo-immunotherapy, the combination of immunotherapy and phototherapy (such as photodynamic therapy (PDT) and photothermal therapy (PTT)), can improve the effectiveness of immunotherapy in cancer treatment. Here, we first explored mesoporous hexagonal core–shell zinc porphyrin-silica nanoparticles (MPSNs), which are composed of a zinc porphyrin core and a mesoporous silica shell, and exhibit high laser-triggered photodynamic and photothermal activity, as well as outstanding drug loading capacity. In other words, MPSNs can be used not only as excellent photosensitizers for photo-immunotherapy, but also as an ideal drug carrier to achieve more efficient synergy. After loading with R837 (imiquimod, a toll-like receptor-7 agonist), MPSNs@R837 will elicit high-efficiency immunogenic cell death via PDT and PTT, and promote dendritic cell maturation after the PH-responsive release of R837, thereby, inducing tumor-specific immune responses. When combined with a programmed death ligand-1 checkpoint blockade, the photo-immunotherapy system markedly restrains primary tumors and metastatic tumors with negligible systemic toxicity. Therefore, the therapeutic strategy of integrating PTT, PDT and checkpoint blockade, shows great potential for suppressing cancer metastasis.
Collapse
Affiliation(s)
- Juan Yue
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Qian Mei
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Panyong Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Peng Miao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| |
Collapse
|
156
|
Bacteria as Nanoparticle Carriers for Immunotherapy in Oncology. Pharmaceutics 2022; 14:pharmaceutics14040784. [PMID: 35456618 PMCID: PMC9027800 DOI: 10.3390/pharmaceutics14040784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/05/2023] Open
Abstract
The use of nanocarriers to deliver antitumor agents to solid tumors must overcome biological barriers in order to provide effective clinical responses. Once within the tumor, a nanocarrier should navigate into a dense extracellular matrix, overcoming intratumoral pressure to push it out of the diseased tissue. In recent years, a paradigm change has been proposed, shifting the target of nanomedicine from the tumoral cells to the immune system, in order to exploit the natural ability of this system to capture and interact with nanometric moieties. Thus, nanocarriers have been engineered to interact with immune cells, with the aim of triggering specific antitumor responses. The use of bacteria as nanoparticle carriers has been proposed as a valuable strategy to improve both the accumulation of nanomedicines in solid tumors and their penetration into the malignancy. These microorganisms are capable of propelling themselves into biological environments and navigating through the tumor, guided by the presence of specific molecules secreted by the diseased tissue. These capacities, in addition to the natural immunogenic nature of bacteria, can be exploited to design more effective immunotherapies that yield potent synergistic effects to induce efficient and selective immune responses that lead to the complete eradication of the tumor.
Collapse
|
157
|
Li X, Geng X, Chen Z, Yuan Z. Recent advances in glioma microenvironment-response nanoplatforms for phototherapy and sonotherapy. Pharmacol Res 2022; 179:106218. [DOI: 10.1016/j.phrs.2022.106218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
|
158
|
Chen J, Tan Q, Yang Z, Jin Y. Engineered extracellular vesicles: potentials in cancer combination therapy. J Nanobiotechnology 2022; 20:132. [PMID: 35292030 PMCID: PMC8922858 DOI: 10.1186/s12951-022-01330-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are a group of secretory vesicles with cell-derived membrane and contents. Due to the cargo delivery capability, EVs can be designed as drug delivery platforms for cancer therapy. Biocompatibility and immune compatibility endow EVs with unique advantages compared with other nanocarriers. With the development of this field, multiple ingenious modification methods have been developed to obtain engineered EVs with desired performance. Application of engineered EVs in cancer therapy has gradually shifted from monotherapy to combinational therapy to fight against heterogeneous cancer cells and complex tumor microenvironment. In addition, the strong plasticity and load capacity of engineered EV make it potential to achieve various combinations of cancer treatment methods. In this review, we summarize the existing schemes of cancer combination therapy realized by engineered EVs, highlight the mechanisms and representative examples of these schemes and provide guidance for the future application of engineered EVs to design more effective cancer combination treatment plans.
Collapse
Affiliation(s)
- Jiangbin Chen
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Zimo Yang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China.
| |
Collapse
|
159
|
Zhou W, He X, Wang J, He S, Xie C, Fan Q, Pu K. Semiconducting Polymer Nanoparticles for Photoactivatable Cancer Immunotherapy and Imaging of Immunoactivation. Biomacromolecules 2022; 23:1490-1504. [PMID: 35286085 DOI: 10.1021/acs.biomac.2c00065] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy that stimulates the body's own immune system to kill cancer cells has emerged as a promising cancer therapeutic method. However, some types of cancer exhibited a low response rate to immunotherapy, and the high risk of immune-related side effects has been aroused during immunotherapy, which greatly restrict its broad applications in cancer therapy. Phototherapy that uses external light to trigger the therapeutic process holds advantages including high selectivity and efficiency, and low side effects. Recently, it has been proven to be able to stimulate immune response in the tumor region by inducing immunogenic cell death (ICD), the process of which was termed photo-immunotherapy, dramatically improving therapeutic specificity over conventional immunotherapy in several aspects. Among numerous optical materials for photo-immunotherapy, semiconducting polymer nanoparticles (SPNs) have gained more and more attention owing to their excellent optical properties and good biocompatibility. In this review, we summarize recent developments of SPNs for immunotherapy and imaging of immunoactivation. Different therapeutic modalities triggered by SPNs including photo-immunotherapy and photo-immunometabolic therapy are first introduced. Then, applications of SPNs for real-time monitoring immunoactivation are discussed. Finally, the conclusion and future perspectives of this research field are given.
Collapse
Affiliation(s)
- Wen Zhou
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xiaowen He
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jinghui Wang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 636921, Singapore
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 636921, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
160
|
Zhou L, Zhang Z, Nice E, Huang C, Zhang W, Tang Y. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol 2022; 15:21. [PMID: 35246220 PMCID: PMC8896306 DOI: 10.1186/s13045-022-01238-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The circadian rhythm is an evolutionarily conserved time-keeping system that comprises a wide variety of processes including sleep-wake cycles, eating-fasting cycles, and activity-rest cycles, coordinating the behavior and physiology of all organs for whole-body homeostasis. Acute disruption of circadian rhythm may lead to transient discomfort, whereas long-term irregular circadian rhythm will result in the dysfunction of the organism, therefore increasing the risks of numerous diseases especially cancers. Indeed, both epidemiological and experimental evidence has demonstrated the intrinsic link between dysregulated circadian rhythm and cancer. Accordingly, a rapidly increasing understanding of the molecular mechanisms of circadian rhythms is opening new options for cancer therapy, possibly by modulating the circadian clock. In this review, we first describe the general regulators of circadian rhythms and their functions on cancer. In addition, we provide insights into the mechanisms underlying how several types of disruption of the circadian rhythm (including sleep-wake, eating-fasting, and activity-rest) can drive cancer progression, which may expand our understanding of cancer development from the clock perspective. Moreover, we also summarize the potential applications of modulating circadian rhythms for cancer treatment, which may provide an optional therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Laboratory of Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
161
|
Tang H, Qu X, Zhang W, Chen X, Zhang S, Xu Y, Yang H, Wang Y, Yang J, Yuan WE, Yue B. Photosensitizer Nanodot Eliciting Immunogenicity for Photo-Immunologic Therapy of Postoperative Methicillin-Resistant Staphylococcus aureus Infection and Secondary Recurrence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107300. [PMID: 34865257 DOI: 10.1002/adma.202107300] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The treatment of postoperative infection caused by multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), has become an intractable clinical challenge owing to its low therapeutic efficacy and high risk of recurrence. Apart from imperfect antibacterial therapies, induction of insufficient immunogenicity, required for the successful clearance of a pathogen, may also contribute to the problem. Herein, an ultra-micro photosensitizer, AgB nanodots, using photothermal therapy, photodynamic therapy, and Ag+ ion sterilization, are utilized to efficiently clear invading MRSA both in vitro and in vivo. AgB nanodots are also found to upregulate host immunogenicity in a murine model and establish immunological memory by promoting the upregulated expression of danger signals that are commonly induced by stress-related responses, including sudden temperature spikes or excess reactive oxygen production. These stimulations boost the antibacterial effects of macrophages, dendritic cells, T cells, or even memory B cells, which is usually defined as infection-related immunogenic cell death. Hence, the proposed AgB nanodot strategy may offer a novel platform for the effective treatment of postoperative infection while providing a systematic immunotherapeutic strategy to combat persistent infections, thereby markedly reducing the incidence of recurrence following recovery from primary infections.
Collapse
Affiliation(s)
- Haozheng Tang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Wenkai Zhang
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuan Chen
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Yang Xu
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hongtao Yang
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH, 43210, USA
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - You Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wei-En Yuan
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| |
Collapse
|
162
|
Li J, Huang D, Cheng R, Figueiredo P, Fontana F, Correia A, Wang S, Liu Z, Kemell M, Torrieri G, Mäkilä EM, Salonen JJ, Hirvonen J, Gao Y, Li J, Luo Z, Santos HA, Xia B. Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weak-Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108012. [PMID: 34877724 DOI: 10.1002/adma.202108012] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/26/2021] [Indexed: 06/13/2023]
Abstract
An alternative strategy of choosing photothermal and weak-immunostimulatory porous silicon@Au nanocomposites as particulate cores to prepare a biomimetic nanovaccine is reported to improve its biosafety and immunotherapeutic efficacy for solid tumors. A quantitative analysis method is used to calculate the loading amount of cancer cell membranes onto porous silicon@Au nanocomposites. Assisted with foreign-body responses, these exogenous nanoparticulate cores with weak immunostimulatory effect can still efficiently deliver cancer cell membranes into dendritic cells to activate them and the downstream antitumor immunity, resulting in no occurrence of solid tumors and the survival of all immunized mice during 55 day observation. In addition, this nanovaccine, as a photothermal therapeutic agent, synergized with additional immunotherapies can significantly inhibit the growth and metastasis of established solid tumors, via the initiation of the antitumor immune responses in the body and the reversion of their immunosuppressive microenvironments. Considering the versatile surface engineering of porous silicon nanoparticles, the strategy developed here is beneficial to construct multifunctional nanovaccines with better biosafety and more diagnosis or therapeutic modalities against the occurrence, recurrence, or metastasis of solid tumors in future clinical practice.
Collapse
Affiliation(s)
- Jiachen Li
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineering and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen/University Medical Center Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Di Huang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Patrícia Figueiredo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Giulia Torrieri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Ermei M Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Jarno J Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Yan Gao
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Jialiang Li
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenyang Luo
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineering and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen/University Medical Center Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Bing Xia
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
163
|
Tahara Y, Mizuno R, Nishimura T, Mukai SA, Wakabayashi R, Kamiya N, Akiyoshi K, Goto M. A solid-in-oil-in-water emulsion: An adjuvant-based immune-carrier enhances vaccine effect. Biomaterials 2022; 282:121385. [DOI: 10.1016/j.biomaterials.2022.121385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/08/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
|
164
|
Lu J, Guo Z, Zheng R, Xie W, Gao X, Gao J, Zhang Y, Xu W, Ye J, Guo X, Tang J, Yu J, Wang L, Xu B, Zhang G, Zhao L. Local Destruction of Tumors for Systemic Immunoresponse: Engineering Antigen-Capturing Nanoparticles as Stimulus-Responsive Immunoadjuvants. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4995-5008. [PMID: 35051331 DOI: 10.1021/acsami.1c21946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immunotherapy has established a new paradigm for cancer treatment and made many breakthroughs in clinical practice. However, the rarity of immune response suggests that additional intervention is necessary. In recent years, it has been reported that local tumor destruction (LTD) can cause cancer cell death and induce an immunologic response. Thus, the combination of immunotherapy and LTD methods will be a promising approach to improve immune efficiency for cancer treatment. Herein, a nanobiotechnology platform to achieve high-precision LTD for systemic cancer immunotherapy has been successfully constructed. Possessing radio-sensitizing and photothermal properties, the engineered immunoadjuvant-loaded nanoplatform, which could precisely induce radiotherapy (RT)/photothermal therapy (PTT) to eliminate local tumor and meanwhile lead to the release of tumor-derived protein antigens (TDPAs), has been facilely fabricated by commercialized SPG membrane emulsification technology. Further on, the TDPAs could be captured and form personal nanovaccines in situ to serve as both reservoirs of antigen and carriers of immunoadjuvant, which can effectively improve the immune response. The investigations suggest that the combination of RT/PTT and improved immunotherapy using adjuvant-encapsulated antigen-capturing nanoparticles holds tremendous promise in cancer treatments.
Collapse
Affiliation(s)
- Jingsong Lu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhenhu Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Powder Metallurgy, Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fujian 350001, China
| | - Wensheng Xie
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaohan Gao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Jianping Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China
| | - Yang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China
| | - Wanling Xu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jielin Ye
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoxiao Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jingwei Tang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jing Yu
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lianyan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fujian 350001, China
| | - Guifeng Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
165
|
Liu Y, Shang W, Liu H, Hui H, Wu J, Zhang W, Gao P, Guo K, Guo Y, Tian J. Biomimetic manganese-eumelanin nanocomposites for combined hyperthermia-immunotherapy against prostate cancer. J Nanobiotechnology 2022; 20:48. [PMID: 35073918 PMCID: PMC8785565 DOI: 10.1186/s12951-022-01248-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Pro-tumoral and immunosuppressive M2-like tumor-associated macrophages (TAMs) contribute to tumor progression, recurrence and distal metastasis. However, current TAMs-modulating therapeutic strategies often encounter challenges including insufficient immune activation, weak antigen presentation ability and unsatisfactory antitumor immune performance. Herein, cyclic RGD peptide functionalized and manganese doped eumelanin-like nanocomposites (RMnMels) are reported for combined hyperthermia-immunotherapy against PC3 prostate cancer. The RMnMels could promote M2-to-M1 macrophage repolarization via scavenging multiple reactive oxygen species and remodeling the immunosuppressive tumor microenvironment. Following near-infrared light irradiation, RMnMels-mediated thermal ablation not only could destroy tumor cells directly, but also elicit the release of damage associated molecular patterns and tumor-associated antigens, provoking robust tumor immunogenicity and strong antitumor immune responses. The results showed that RMnMels could effectively scavenge reactive oxygen species and promote M2-to-M1 macrophage repolarization both in vitro and in vivo. Synergistically enhanced anti-tumor therapeutic efficacy was achieved following single administration of RMnMels plus single round of laser irradiation, evidenced by decreased primary tumor sizes and decreased number of distant liver metastatic nodules. The as-developed RMnMels may represent a simple and high-performance therapeutic nanoplatform for immunomodulation and enhanced antitumor immune responses.
Collapse
|
166
|
Yao J, Zhu C, Peng T, Ma Q, Gao S. Injectable and Temperature-Sensitive Titanium Carbide-Loaded Hydrogel System for Photothermal Therapy of Breast Cancer. Front Bioeng Biotechnol 2022; 9:791891. [PMID: 35004650 PMCID: PMC8733661 DOI: 10.3389/fbioe.2021.791891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
Recently, organic–inorganic hybrid materials have gained much attention as effective photothermal agents for cancer treatment. In this study, Pluronic F127 hydrogel-coated titanium carbide (Ti3C2) nanoparticles were utilized as an injectable photothermal agent. The advantages of these nanoparticles are their green synthesis and excellent photothermal efficiency. In this system, lasers were mainly used to irradiate Ti3C2 nanoparticles to produce a constant high temperature, which damaged cancer cells. The nanoparticles were found to be stable during storage at low temperatures for at least 2 weeks. The Ti3C2 nanoparticles exhibited a shuttle-shaped structure, and the hydrogels presented a loosely meshed structure. In addition, Ti3C2 nanoparticles did not affect the reversible temperature sensitivity of the gel, and the hydrogel did not affect the photothermal properties of Ti3C2 nanoparticles. The in vitro and in vivo results show that this hydrogel system can effectively inhibit tumor growth upon exposure to near-infrared irradiation with excellent biocompatibility and biosafety. The photothermal agent-embedded hydrogel is a promising photothermal therapeutic strategy for cancer treatment by enhancing the retention in vivo and elevating the local temperature in tumors.
Collapse
Affiliation(s)
- Jun Yao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Chuanda Zhu
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianjiao Peng
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Qiang Ma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
167
|
González-Colsa J, Serrera G, Saiz JM, Ortiz D, González F, Bresme F, Moreno F, Albella P. Gold nanodoughnut as an outstanding nanoheater for photothermal applications. OPTICS EXPRESS 2022; 30:125-137. [PMID: 35201187 DOI: 10.1364/oe.446637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 05/18/2023]
Abstract
Photoinduced hyperthermia is a cancer therapy technique that induces death to cancerous cells via heat generated by plasmonic nanoparticles. While previous studies have shown that some nanoparticles can be effective at killing cancer cells under certain conditions, there is still a necessity (or the need) to improve its heating efficiency. In this work, we perform a detailed theoretical study comparing the thermoplasmonic response of the most effective nanoparticle geometries up to now with a doughnut-shaped nanoparticle. We numerically demonstrate that the latter exhibits a superior tunable photothermal response in practical illumination conditions (unpolarized light). Furthermore, we show that nanoparticle heating in fluidic environments, i.e., nanoparticles undergoing Brownian rotations, strongly depends on the particle orientation with respect to the illumination source. We conclude that nanodoughnuts are the best nanoheaters in our set of structures, with an average temperature increment 40% higher than the second best nanoheater (nanodisk). Furthermore, nanodoughnuts feature a weak dependence on orientation, being therefore ideal candidates for photothermal therapy applications. Finally, we present a designing guide, covering a wide range of toroid designs, which can help on its experimental implementation.
Collapse
|
168
|
Qu A, Xu L, Xu C, Kuang H. Chiral nanomaterials for biosensing, bioimaging, and disease therapies. Chem Commun (Camb) 2022; 58:12782-12802. [DOI: 10.1039/d2cc04420j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral plasmonic nanomaterials for biosensing, bioimaging and disease therapy.
Collapse
Affiliation(s)
- Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| |
Collapse
|
169
|
Zhao Y, Liu X, Liu X, Yu J, Bai X, Wu X, Guo X, Liu Z, Liu X. Combination of phototherapy with immune checkpoint blockade: Theory and practice in cancer. Front Immunol 2022; 13:955920. [PMID: 36119019 PMCID: PMC9478587 DOI: 10.3389/fimmu.2022.955920] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/19/2022] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapy has evolved as a revolutionized therapeutic modality to eradicate tumor cells by releasing the brake of the antitumor immune response. However, only a subset of patients could benefit from ICB treatment currently. Phototherapy usually includes photothermal therapy (PTT) and photodynamic therapy (PDT). PTT exerts a local therapeutic effect by using photothermal agents to generate heat upon laser irradiation. PDT utilizes irradiated photosensitizers with a laser to produce reactive oxygen species to kill the target cells. Both PTT and PDT can induce immunogenic cell death in tumors to activate antigen-presenting cells and promote T cell infiltration. Therefore, combining ICB treatment with PTT/PDT can enhance the antitumor immune response and prevent tumor metastases and recurrence. In this review, we summarized the mechanism of phototherapy in cancer immunotherapy and discussed the recent advances in the development of phototherapy combined with ICB therapy to treat malignant tumors. Moreover, we also outlined the significant progress of phototherapy combined with targeted therapy or chemotherapy to improve ICB in preclinical and clinical studies. Finally, we analyzed the current challenges of this novel combination treatment regimen. We believe that the next-generation technology breakthrough in cancer treatment may come from this combinational win-win strategy of photoimmunotherapy.
Collapse
Affiliation(s)
- Yujie Zhao
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Head, Neck and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Bai
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Wu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Guo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowei Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
170
|
Yan B, Liu C, Wang S, Li H, Jiao J, Lee WSV, Zhang S, Hou Y, Hou Y, Ma X, Fan H, Lv Y, Liu X. Magnetic hyperthermia induces effective and genuine immunogenic tumor cell death with respect to exogenous heating. J Mater Chem B 2022; 10:5364-5374. [DOI: 10.1039/d2tb01004f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study systematically verified that magnetic hyperthermia (MH) with intracellular heating can induce genuine immunogenic tumor cell death for effective antitumor therapy, while exogenous heating fails to elicit this effect.
Collapse
Affiliation(s)
- Bin Yan
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, Shaanxi 710069, China
| | - Chen Liu
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, Shaanxi 710069, China
| | - Siyao Wang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, Shaanxi 710069, China
| | - Hugang Li
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, Shaanxi 710069, China
| | - Ju Jiao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Wee Siang Vincent Lee
- Department of Materials Science and Engineering, National University of Singapore, 117573, Singapore
| | - Song Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Xiaowei Ma
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Haiming Fan
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, Shaanxi 710069, China
| | - Yi Lv
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Xiaoli Liu
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, Shaanxi 710069, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| |
Collapse
|
171
|
He S, Liu J, Zhang C, Wang J, Pu K. Semiconducting Polymer Nano-regulators with Cascading Activation for Photodynamic Cancer Immunotherapy. Angew Chem Int Ed Engl 2021; 61:e202116669. [PMID: 34967097 DOI: 10.1002/anie.202116669] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/09/2022]
Abstract
Combination photoimmunotherapy holds promise for tumor suppression; however, smart phototherapeutic agents that only activate their immunotherapeutic action in tumor have been rarely developed, which have the potential advantage of reduced side effect. Herein, we report a semiconducting polymer nano-regulator (SPN T ) with cascading activation for combinational photodynamic immunotherapy of cancer. SPN T comprises an immunoregulator (M-Trp: 1-methyltryptophan ) conjugating to the side chain of semiconducting polymer backbone using an apoptotic biomarker-cleavable linker. Under near-infrared (NIR) laser irradiation, SPN T produces singlet oxygen ( 1 O 2 ) to cause immunogenic apoptosis . Concurrently, the upregulation of apoptotic biomarker triggers the specific cleavage of M-Trp from SPN T , leading to specific intratumoral immunotherapeutic activation. Released M-Trp inhibits indoleamine 2,3-dioxygenase (IDO) activity, and thus decreases regulatory T cells (Tregs) formation and drives cytotoxic T lymphocytes (CTLs) infiltration. SPN T -mediated combination photodynamic immunotherapy thus reprograms the tumor immune microenvironment (TIME), resulting in efficient suppression of both primary and distant tumors, and inhibition of lung metastasis.
Collapse
Affiliation(s)
- Shasha He
- Nanyang Technological University, School of Chemical and Biomedical Engineering, SINGAPORE
| | - Jing Liu
- South China University of Technology, School of Bioscience and Bioengineering, CHINA
| | - Chi Zhang
- Nanyang Technological University, School of Chemical and Biomedical Engineering, SINGAPORE
| | - Jun Wang
- South China University of Technology, School of Bioscience and Bioengineering, CHINA
| | - Kanyi Pu
- Nanyang Technological University, School of Chemical and Biomedical Engieering, 70 Nanyang Drive, 637457, Singapore, SINGAPORE
| |
Collapse
|
172
|
He S, Liu J, Zhang C, Wang J, Pu K. Semiconducting Polymer Nano‐regulators with Cascading Activation for Photodynamic Cancer Immunotherapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202116669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shasha He
- Nanyang Technological University School of Chemical and Biomedical Engineering SINGAPORE
| | - Jing Liu
- South China University of Technology School of Bioscience and Bioengineering CHINA
| | - Chi Zhang
- Nanyang Technological University School of Chemical and Biomedical Engineering SINGAPORE
| | - Jun Wang
- South China University of Technology School of Bioscience and Bioengineering CHINA
| | - Kanyi Pu
- Nanyang Technological University School of Chemical and Biomedical Engieering 70 Nanyang Drive 637457 Singapore SINGAPORE
| |
Collapse
|
173
|
Shen Y, Zhang W, Li G, Ning P, Li Z, Chen H, Wei X, Pan X, Qin Y, He B, Yu Z, Cheng Y. Adaptive Control of Nanomotor Swarms for Magnetic-Field-Programmed Cancer Cell Destruction. ACS NANO 2021; 15:20020-20031. [PMID: 34807565 DOI: 10.1021/acsnano.1c07615] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetic nanomotors (MNMs), powered by a magnetic field, are ideal platforms to achieve versatile biomedical applications in a collective and spatiotemporal fashion. Although the programmable swarm of MNMs that mimics the highly ordered behaviors of living creatures has been extensively studied at the microscale, it is of vital importance to manipulate MNM swarms at the nanoscale for on-demand tasks at the cellular level. In this work, a Cy5-tagged caspase-3-specific peptide-modified MNM is designed, and the adaptive control behaviors of MNM swarms are revealed in lysosomes to induce the cancer cell apoptosis under a rotating magnetic field (RMF). A magneto-programmed vortex is predicted to occur with swarms under RMF by the finite element method model and verified in vitro. According to the dynamic model and numerical simulation, the critical rotating frequency under which MNMs are out of step is strongly correlated to their assembling and swarming properties. The adaptivity of swarms maximizes the synchronous rotation to achieve an optimal energy conversion rate. The frequency-adapted controllability of MNM swarms for cancer cell apoptosis is observed in real time in vitro and in vivo. This work provides theoretical and experimental insights to adaptively control MNM swarms for cancer treatment.
Collapse
Affiliation(s)
- Yajing Shen
- Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai 200120, China
| | - Wei Zhang
- College of Electronics and Information Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Gang Li
- College of Electronics and Information Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Peng Ning
- Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai 200120, China
| | - Zhenguang Li
- Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai 200120, China
| | - Haotian Chen
- Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai 200120, China
| | - Xueyan Wei
- Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai 200120, China
| | - Xin Pan
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 1800 Yuntai Road, Shanghai 200120, China
| | - Yao Qin
- Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai 200120, China
| | - Bin He
- College of Electronics and Information Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zuoren Yu
- Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai 200120, China
| | - Yu Cheng
- Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai 200120, China
| |
Collapse
|
174
|
Huang H, Shao L, Chen Y, Tang L, Liu T, Li J, Zhu H. Synergistic strategy with hyperthermia therapy based immunotherapy and engineered exosomes−liposomes targeted chemotherapy prevents tumor recurrence and metastasis in advanced breast cancer. Bioeng Transl Med 2021; 7:e10284. [PMID: 35600651 PMCID: PMC9115690 DOI: 10.1002/btm2.10284] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Advanced breast cancer with recurrent and distal organ metastasis is aggressive and incurable. The current existing treatment strategies for advanced breast cancer are difficult to achieve synergistic treatment of recurrent tumors and distant metastasis, resulting in poor clinical outcomes. Herein, a synergistic therapy strategy composed of biomimetic tumor‐derived exosomes (TEX)‐Liposome‐paclitaxel (PTX) with lung homing properties and gold nanorods (GNR)‐PEG, was designed, respectively. GNR‐PEG, with well biocompatibility, cured recurrent tumors effectively by thermal ablation under the in situ NIR irradiation. Meanwhile, GNR‐mediated thermal ablation activated the adaptive antitumor immune response, significantly increased the level of CD8+ T cells in lungs and the concentration of serum cytokines (tumor necrosis factor‐α, interlekin‐6, and interferon‐γ). Subsequently, TEX‐Liposome‐PTX preferentially accumulated in lung tissues due to autologous tumor‐derived TEX with inherent specific affinity to lung, resulting in a better therapeutic effect on lung metastasis tumors with the assistance of adaptive immunotherapy triggered by GNR in vivo. The enhanced therapeutic efficacy in advanced breast cancer was a combination of thermal ablation, adaptive antitumor immunotherapy, and targeted PTX chemotherapy. Hence, the synergistic strategy based on GNR and TEX‐Liposome provides selectivity to clinical treatment of advanced breast cancer with recurrent and metastasis.
Collapse
Affiliation(s)
- Haiqin Huang
- Department of Pharmaceutics School of Pharmacy, Nantong University Nantong China
| | - Lanlan Shao
- Department of Pharmaceutics School of Pharmacy, Nantong University Nantong China
| | - Yan Chen
- Department of Pharmaceutics School of Pharmacy, Nantong University Nantong China
| | - Lan Tang
- Department of Pharmaceutics School of Pharmacy, Nantong University Nantong China
| | - Tianqing Liu
- NICM Health Research Institute Western Sydney University Westmead New South Wales Australia
| | - Junxu Li
- Department of Pharmaceutics School of Pharmacy, Nantong University Nantong China
| | - Hongyan Zhu
- Department of Pharmaceutics School of Pharmacy, Nantong University Nantong China
| |
Collapse
|
175
|
Hu Z, Wei Q, Zhang H, Tang W, Kou Y, Sun Y, Dai Z, Zheng X. Advances in FePt-involved nano-system design and application for bioeffect and biosafety. J Mater Chem B 2021; 10:339-357. [PMID: 34951441 DOI: 10.1039/d1tb02221k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The rapid development and wide application of nanomaterial-involved theranostic agents have drawn surging attention for improving the living standard of humankind and healthcare conditions. In this review, recent developments in the design, synthesis, biocompatibility evaluation and potential nanomedicine applications of FePt-involved nano-systems are summarized, especially for cancer theranostic and biological molecule detection. The in vivo multi-model imaging capability is discussed in detail, including magnetic resonance imaging and computed tomography. Furthermore, we highlight the significant achievements of various FePt-involved nanotherapeutics for cancer treatment, such as drug delivery, chemodynamic therapy, photodynamic therapy, radiotherapy and immunotherapy. In addition, a series of FePt-involved nanocomposites are also applied for biological molecule detection, such as H2O2, glucose and naked-eye detection of cancer cells. Ultimately, we also summarize the challenges and prospects of FePt-involved nano-systems in nanocatalytic medicine. This review is expected to give a general pattern for the development of FePt-involved nano-systems in the field of nanocatalytic medicine and analytical determination.
Collapse
Affiliation(s)
- Zunfu Hu
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China. .,School of Materials Science and Engineering, Linyi University, Linyi 276000, P. R. China
| | - Qiulian Wei
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China. .,School of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266510, P. R. China
| | - Huimin Zhang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China.
| | - Weina Tang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China.
| | - Yunkai Kou
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China.
| | - Yunqiang Sun
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China.
| | - Zhichao Dai
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China.
| | - Xiuwen Zheng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi, China.
| |
Collapse
|
176
|
Chen Q, Zhang L, Li L, Tan M, Liu W, Liu S, Xie Z, Zhang W, Wang Z, Cao Y, Shang T, Ran H. Cancer cell membrane-coated nanoparticles for bimodal imaging-guided photothermal therapy and docetaxel-enhanced immunotherapy against cancer. J Nanobiotechnology 2021; 19:449. [PMID: 34952587 PMCID: PMC8710014 DOI: 10.1186/s12951-021-01202-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mono-therapeutic modality has limitations in combating metastatic lesions with complications. Although emerging immunotherapy exhibits preliminary success, solid tumors are usually immunosuppressive, leading to ineffective antitumor immune responses and immunotherapeutic resistance. The rational combination of several therapeutic modalities may potentially become a new therapeutic strategy to effectively combat cancer. RESULTS Poly lactic-co-glycolic acid (PLGA, 50 mg) nanospheres were constructed with photothermal transduction agents (PTAs)-Prussian blue (PB, 2.98 mg) encapsulated in the core and chemotherapeutic docetaxel (DTX, 4.18 mg)/ immune adjuvant-imiquimod (R837, 1.57 mg) loaded in the shell. Tumor cell membranes were further coated outside PLGA nanospheres (designated "M@P-PDR"), which acted as "Nano-targeted cells" to actively accumulate in tumor sites, and were guided/monitored by photoacoustic (PA)/ magnetic resonance (MR) imaging. Upon laser irradiation, photothermal effects were triggered. Combined with DTX, PTT induced in situ tumor eradication. Assisted by the immune adjuvant R837, the maturation rate of DCs increased by 4.34-fold compared with that of the control. In addition, DTX polarized M2-phenotype tumor-associated macrophages (TAMs) to M1-phenotype, relieving the immunosuppressive TME. The proportion of M2-TAMs decreased from 68.57% to 32.80%, and the proportion of M1-TAMs increased from 37.02% to 70.81%. Integrating the above processes, the infiltration of cytotoxic T lymphocytes (CTLs) increased from 17.33% (control) to 35.5%. Primary tumors and metastasis were significantly inhibited when treated with "Nano-targeted cells"-based cocktail therapy. CONCLUSION "Nano-targeted cells"-based therapeutic cocktail therapy is a promising approach to promote tumor regression and counter metastasis/recurrence.
Collapse
Affiliation(s)
- Qiaoqi Chen
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Liang Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.,Department of Ultrasound, The First Affiliated Hospital, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Lin Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Mixiao Tan
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Weiwei Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Shuling Liu
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Zhuoyan Xie
- Chongqing General Hospital, University of Chinese Academy of Sciences, No.114 Longshan Road, Yubei District, Chongqing, 401121, People's Republic of China
| | - Wei Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Tingting Shang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
177
|
Hu W, Zhen W, Zhang M, Wang W, Jia X, An S, Wang Y, Guo Z, Jiang X. Development of Nickel Selenide@polydopamine Nanocomposites for Magnetic Resonance Imaging Guided NIR-II Photothermal Therapy. Adv Healthc Mater 2021; 10:e2101542. [PMID: 34643341 DOI: 10.1002/adhm.202101542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/04/2021] [Indexed: 12/17/2022]
Abstract
The penetration depth of near-infrared laser has greatly restricted the development of most photothermal agents. Recently, photothermal agents in the second near-infrared (NIR-II) window have drawn great attention as they can overcome above barrier. Herein, a novel "all in one" NIR-II responsive nanoplatform (nickel selenide @polydopamine nanocomposites, NiSe@PDA NCs) based on in situ coating the polydopamine (PDA) on the surface of biomineralized nickel selenide nanoparticles (NiSe NPs) for dual-model imaging-guided photothermal therapy is reported. Under the illumination of NIR-II laser (1064 nm), the photothermal conversion efficiency of NiSe@PDA NCs can reach 48.4%, which is higher than that of single NiSe NPs due to the enhanced molar extinction coefficient. In addition, because of the paramagnetic effect of NiSe NPs, the constructed NiSe@PDA NCs can be acted as T1 contrast agent for magnetic resonance imaging (MRI). Most importantly, the MRI contrast effect is enhanced with the coating of PDA layer due to the loose structure of PDA. Ultimately, both in vitro and in vivo experiments demonstrate that the developed NCs can achieve efficient MRI-guided photothermal therapy for treating malignant tumor. Therefore, the designed NiSe@PDA NCs with excellent features show great potential for clinical MRI-guided cancer therapy.
Collapse
Affiliation(s)
- Wenxue Hu
- Shenyang University of Chemical Technology Shenyang Liaoning 110142 China
| | - Wenyao Zhen
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Mengchao Zhang
- The Department of Radiology China‐Japan Union Hospital of Jilin University Changchun Jilin 130022 China
| | - Wei Wang
- The Department of Radiology China‐Japan Union Hospital of Jilin University Changchun Jilin 130022 China
| | - Xiaodan Jia
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Shangjie An
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Yue Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Zhuo Guo
- Shenyang University of Chemical Technology Shenyang Liaoning 110142 China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
178
|
Huang H, Yuan G, Xu Y, Gao Y, Mao Q, Zhang Y, Bai L, Li W, Wu A, Hu W, Pan Y, Zhou G. Photoacoustic and magnetic resonance imaging-based gene and photothermal therapy using mesoporous nanoagents. Bioact Mater 2021; 9:157-167. [PMID: 34820563 PMCID: PMC8586268 DOI: 10.1016/j.bioactmat.2021.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022] Open
Abstract
The integration of photothermal therapy (PTT) with gene therapy (GT) in a single nanoscale platform demonstrates great potential in cancer therapy. Porous iron oxide nanoagents (PIONs) are widely used as magnetic nanoagents in the drug delivery field and also serve as a photothermal nanoagent for photothermal therapy. However, the therapeutic efficacy of PIONs-mediated GT has not been studied. The long noncoding RNA (lncRNA) CRYBG3 (LNC CRYBG3), a lncRNA induced by heavy ion irradiation in lung cancer cells, has been reported to directly bind to globular actin (G-actin) and cause degradation of cytoskeleton and blocking of cytokinesis, thus indicating its potential for use in GT by simulating the effect of heavy ion irradiation and functioning as an antitumor drug. In the present study, we investigated the possibility of combining PIONs-mediated PTT and LNC CRYBG3-mediated GT to destroy non-small cell lung cancer (NSCLC) cells both in vitro and in vivo. The combination therapy showed a high cancer cell killing efficacy, and the cure rate was better than that achieved using PTT or GT alone. Moreover, as a type of magnetic nanoagent, PIONs can be used for magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) both in vitro and in vivo. These findings indicate that the new combination therapy has high potential for cancer treatment. LNC CRYBG3 induced by heavy ion irradiation can cause cytoskeleton degradation and function as an antitumor drug. pcDNA3.1-LNC CRYBG3 delivered by PIONs can escape from lysosomes to facilitate plasmid release when exposed to NIR. The combination of PIONs-mediated PTT and LNC CRYBG3-mediated GT presents both diagnosis and treatment potential.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Guotao Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yuan Gao
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, 215123, China
| | - Qiulian Mao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Lu Bai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Weijie Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Anqing Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
179
|
Yan T, Yang K, Chen C, Zhou Z, Shen P, Jia Y, Xue Y, Zhang Z, Shen X, Han X. Synergistic photothermal cancer immunotherapy by Cas9 ribonucleoprotein-based copper sulfide nanotherapeutic platform targeting PTPN2. Biomaterials 2021; 279:121233. [PMID: 34749073 DOI: 10.1016/j.biomaterials.2021.121233] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Photothermal therapy (PTT) is a promising strategy for the treatment of advanced malignant neoplasm. However, the anti-tumor efficacy by PTT alone is insufficient to control tumor growth and metastasis. Here, we report a multifunctional nanotherapeutic system exerting a combined PTT and immunotherapy to synergistically enhance the therapeutic effect on melanoma. In particular, we selected the semiconductor nanomaterial copper sulfide (CuS), which served not only as a near-infrared (NIR) light-triggered photothermal converter for tumor hyperthermia but as a basic carrier to modify Cas9 ribonucleoprotein targeting PTPN2 on its surface. Efficient PTPN2 depletion was observed after the treatment of CuS-RNP@PEI nanoparticles, which caused the accumulation of intratumoral infiltrating CD8 T lymphocytes in tumor-bearing mice and upregulated the expression levels of IFN-ᵧ and TNF-α in tumor tissue, thus sensitizing tumors to immunotherapy. In addition, the effect worked synergistically with tumor ablation and immunogenic cell death (ICD) induced by PTT to amplify anti-tumor efficacy. Taken together, this exogenously controlled method provides a simple and effective treatment option for advanced malignant neoplasm.
Collapse
Affiliation(s)
- Tao Yan
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kaiyong Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chao Chen
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhiruo Zhou
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Peiliang Shen
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Jia
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Xue
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenyu Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xu Shen
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xin Han
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
180
|
Wan G, Chen X, Wang H, Hou S, Wang Q, Cheng Y, Chen Q, Lv Y, Chen H, Zhang Q. Gene augmented nuclear-targeting sonodynamic therapy via Nrf2 pathway-based redox balance adjustment boosts peptide-based anti-PD-L1 therapy on colorectal cancer. J Nanobiotechnology 2021; 19:347. [PMID: 34715867 PMCID: PMC8555306 DOI: 10.1186/s12951-021-01094-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
Background Colorectal cancer is known to be resistant to immune checkpoint blockade (ICB) therapy. Sonodynamic therapy (SDT) has been reported to improve the efficacy of immunotherapy by inducing immunogenic cell death (ICD) of cancer. However, the SDT efficacy is extremely limited by Nrf2-based natural redox balance regulation pathway in cancer cells in response to the increased contents of reactive oxygen species (ROS). Nuclear-targeting strategy has shown unique advantages in tumor therapy by directly destroying the DNA. Thus it can be seen that Nrf2-siRNA augmented nuclear-targeting SDT could boost ICB therapy against colorectal cancer. Results The nuclear-targeting delivery system TIR@siRNA (TIR was the abbreviation of assembled TAT-IR780) with great gene carrier capacity and smaller diameter (< 60 nm) was designed to achieve the gene augmented nuclear-targeting SDT facilitating the anti-PD-L1 (programmed cell death-ligand-1) therapy against colorectal cancer. In CT26 cells, TIR@siRNA successfully delivered IR780 (the fluorescent dye used as sonosensitizer) into cell nucleus and Nrf2-siRNA into cytoplasm. Under US (utrasound) irradiation, TIR@siRNA notably increased the cytotoxicity and apoptosis-inducing activity of SDT through down-regulating the Nrf2, directly damaging the DNA, activating mitochondrial apoptotic pathway while remarkably inducing ICD of CT26 cells. In CT26 tumor-bearing mice, TIR@siRNA mediated gene enhanced nuclear-targeting SDT greatly inhibited tumor growth, noticeably increased the T cell infiltration and boosted DPPA-1 peptide-based anti-PD-L1 therapy to ablate the primary CT26 tumors and suppress the intestinal metastases. Conclusions All results demonstrate that TIR@siRNA under US irradiation can efficiently inhibit the tumor progression toward colorectal CT26 cancer in vitro and in vivo by its mediated gene augmented nuclear-targeting sonodynamic therapy. Through fully relieving the immunosuppressive microenvironment of colorectal cancer by this treatment, this nanoplatform provides a new synergistic strategy for enhancing the anti-PD-L1 therapy to ablate colorectal cancer and inhibit its metastasis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01094-x.
Collapse
Affiliation(s)
- Guoyun Wan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, 453003, Xinxiang, China.
| | - Xuheng Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, 453003, Xinxiang, China
| | - Haijiao Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, 453003, Xinxiang, China
| | - Shenglei Hou
- Institute of Biomedical Engineering, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 518020, Shenzhen, China.,Post-doctoral Scientific Research Station of Basic Medicine, Jinan Unviersity, 510632, Guangzhou, China
| | - Qian Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, 453003, Xinxiang, China
| | - Yuanyuan Cheng
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, 300070, Tianjin, China
| | - Qian Chen
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, 300070, Tianjin, China
| | - Yingge Lv
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, 453003, Xinxiang, China
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, 453003, Xinxiang, China.
| | - Qiqing Zhang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, 453003, Xinxiang, China. .,Institute of Biomedical Engineering, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 518020, Shenzhen, China. .,Post-doctoral Scientific Research Station of Basic Medicine, Jinan Unviersity, 510632, Guangzhou, China.
| |
Collapse
|
181
|
Yang Z, Fu X, Ma D, Wang Y, Peng L, Shi J, Sun J, Gan X, Deng Y, Yang W. Growth Factor-Decorated Ti 3 C 2 MXene/MoS 2 2D Bio-Heterojunctions with Quad-Channel Photonic Disinfection for Effective Regeneration of Bacteria-Invaded Cutaneous Tissue. SMALL 2021; 17:e2103993. [PMID: 34713567 DOI: 10.1002/smll.202103993] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Indexed: 02/05/2023]
Abstract
Phototherapy has recently emerged as a competent alternative for combating bacterial infection without antibiotic-resistance risk. However, owing to the bacterial endogenous antioxidative glutathione (GSH), the exogenous reactive oxygen species (ROS) generated by phototherapy can hardly behave desired antibacterial effect. To address the daunting issue, a quad-channel synergistic antibacterial nano-platform of Ti3 C2 MXene/MoS2 (MM) 2D bio-heterojunctions (2D bio-HJs) are devised and fabricated, which possess photothermal, photodynamic, peroxidase-like (POD-like), and glutathione oxidase-like properties. Under near-infrared (NIR) laser exposure, the 2D bio-HJs both yield localized heating and raise extracellular ROS level, leading to bacterial inactivation. Synchronously, Mo4+ ions can easily invade into ruptured bacterial membrane, arouse intracellular ROS, and deplete intracellular GSH. Squeezed between the "ROS hurricane" from both internal and external sides, the bacteria are hugely slaughtered. After being further loaded with fibroblast growth factor-21 (FGF21), the 2D bio-HJs exhibit benign cytocompatibility and boost cell migration in vitro. Notably, the in vivo evaluations employing a mouse-infected wound model demonstrate the excellent photonic disinfection towards bacterial infection and accelerated wound healing. Overall, this work provides a powerful nano-platform for the effective regeneration of bacteria-invaded cutaneous tissue using 2D bio-HJs.
Collapse
Affiliation(s)
- Zhaopu Yang
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinliang Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Daichuan Ma
- Analytical & Testing Center, Sichuan University, Chengdu, 610065, China
| | - Yulin Wang
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Liming Peng
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiacheng Shi
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiyu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.,Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Weizhong Yang
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
182
|
Sun Y, Liu S, Gao Y, Du Y, Cai H, Zhang J, Wang Z, Yang X, Hao L, Yan F. Decitabine-Loaded Gold Nanocages for Photothermal Cancer Therapy via DNA Hypermethylation Reversal. ACS APPLIED NANO MATERIALS 2021; 4:10556-10564. [DOI: 10.1021/acsanm.1c02064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Affiliation(s)
- Yan Sun
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Songcai Liu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yuan Gao
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yangyang Du
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongqiao Cai
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Jian Zhang
- Changchun Institute of Biological Products Co Ltd, 1616 Chuangxin Road, Changchun 130000, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Xi Yang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
183
|
Sun J, Xing F, Braun J, Traub F, Rommens PM, Xiang Z, Ritz U. Progress of Phototherapy Applications in the Treatment of Bone Cancer. Int J Mol Sci 2021; 22:ijms222111354. [PMID: 34768789 PMCID: PMC8584114 DOI: 10.3390/ijms222111354] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Bone cancer including primary bone cancer and metastatic bone cancer, remains a challenge claiming millions of lives and affecting the life quality of survivors. Conventional treatments of bone cancer include wide surgical resection, radiotherapy, and chemotherapy. However, some bone cancer cells may remain or recur in the local area after resection, some are highly resistant to chemotherapy, and some are insensitive to radiotherapy. Phototherapy (PT) including photodynamic therapy (PDT) and photothermal therapy (PTT), is a clinically approved, minimally invasive, and highly selective treatment, and has been widely reported for cancer therapy. Under the irradiation of light of a specific wavelength, the photosensitizer (PS) in PDT can cause the increase of intracellular ROS and the photothermal agent (PTA) in PTT can induce photothermal conversion, leading to the tumoricidal effects. In this review, the progress of PT applications in the treatment of bone cancer has been outlined and summarized, and some envisioned challenges and future perspectives have been mentioned. This review provides the current state of the art regarding PDT and PTT in bone cancer and inspiration for future studies on PT.
Collapse
Affiliation(s)
- Jiachen Sun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Joy Braun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Frank Traub
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Pol Maria Rommens
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
- Correspondence: (Z.X.); (U.R.)
| | - Ulrike Ritz
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Correspondence: (Z.X.); (U.R.)
| |
Collapse
|
184
|
Carrese B, Cavallini C, Sanità G, Armanetti P, Silvestri B, Calì G, Pota G, Luciani G, Menichetti L, Lamberti A. Controlled Release of Doxorubicin for Targeted Chemo-Photothermal Therapy in Breast Cancer HS578T Cells Using Albumin Modified Hybrid Nanocarriers. Int J Mol Sci 2021; 22:ijms222011228. [PMID: 34681890 PMCID: PMC8538307 DOI: 10.3390/ijms222011228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
Hybrid nanomaterials have attracted research interest owing to their intriguing properties, which may offer new diagnostic options with triggering features, able to realize a new kind of tunable nanotherapeutics. Hybrid silica/melanin nanoparticles (NPs) containing silver seeds (Me-laSil_Ag-HSA NPs) disclosed relevant photoacoustic contrast for molecular imaging. In this study we explored therapeutic function in the same nanoplatform. For this purpose, MelaSil_Ag-HSA were loaded with doxorubicin (DOX) (MelaSil_Ag-HSA@DOX) and tested to assess the efficiency of drug delivery combined with concurrent photothermal treatment. The excellent photothermal properties allowed enhanced cytotoxic activity at significantly lower doses than neat chemotherapeutic treatment. The results revealed that MelaSil_Ag-HSA@DOX is a promising platform for an integrated photothermal (PT) chemotherapy approach, reducing the efficacy concentration of the DOX and, thus, potentially limiting the several adverse side effects of the drug in in vivo treatments.
Collapse
Affiliation(s)
- Barbara Carrese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Chiara Cavallini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (C.C.); (P.A.)
| | - Gennaro Sanità
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Naples, Italy;
| | - Paolo Armanetti
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (C.C.); (P.A.)
| | - Brigida Silvestri
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy; (B.S.); (G.P.); (G.L.)
| | - Gaetano Calì
- Institute of Endocrinology and Experimental Oncology, National Research Council, 80131 Naples, Italy;
| | - Giulio Pota
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy; (B.S.); (G.P.); (G.L.)
| | - Giuseppina Luciani
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy; (B.S.); (G.P.); (G.L.)
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (C.C.); (P.A.)
- Correspondence: (L.M.); (A.L.)
| | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
- Correspondence: (L.M.); (A.L.)
| |
Collapse
|
185
|
Yang X, Gao L, Wei Y, Tan B, Wu Y, Yi C, Liao J. Photothermal hydrogel platform for prevention of post-surgical tumor recurrence and improving breast reconstruction. J Nanobiotechnology 2021; 19:307. [PMID: 34620160 PMCID: PMC8499550 DOI: 10.1186/s12951-021-01041-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
Background As one of the leading threats for health among women worldwide, breast cancer has high morbidity and mortality. Surgical resection is the major clinical intervention for primary breast tumor, nevertheless high local recurrence risk and breast tissue defect remain two main clinical dilemmas, seriously affecting survival and quality of life of patients. Experimental We developed a thermoresponsive and injectable hybrid hydrogel platform (IR820/Mgel) by integration of co-loaded porous microspheres (MPs) and IR820 for preventing postoperative recurrence of breast cancer via photothermal therapy and promoting subsequent breast reconstruction. Results Our results suggested that IR820/Mgel could quickly heated to more than 50.0 ℃ under NIR irradiation, enabling killing effect on 4T1 cells in vitro and prevention effect on post-surgical tumor recurrence in vivo. In addition, the hydrogel platform was promising for its minimal invasion and capability of filling irregularly shaped defects after surgery, and the encapsulated MPs could help to increase the strength of gel to realize a long-term in situ function in vivo, and promoted the attachment and anchorage property of normal breast cells and adipose stem cells. Conclusions This photothermal hydrogel platform provides a practice paradigm for preventing locally recurrence of breast cancer and a potential option for reconstruction of breast defects. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01041-w.
Collapse
Affiliation(s)
- Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ling Gao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.,Department of Health Ward, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, 510095, China
| | - Yuanfeng Wei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bowen Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
186
|
Yang J, Du H, Chai Z, Ling Z, Li BQ, Mei X. Targeted Nanoscale 3D Thermal Imaging of Tumor Cell Surface with Functionalized Quantum Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102807. [PMID: 34390313 DOI: 10.1002/smll.202102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Measuring the changes in tumor cell surface temperature can provide insights into cellular metabolism and pathological features, which is significant for targeted chemotherapy and hyperthermic therapy. However, conventional micro-nano scale methods are invasive and can only measure the temperature of cells across a single plane, which excludes specific organelles. In this study, fluorescence quantum dots (QDs) are functionalized with the membrane transport protein transferrin (Tf) as a thermo-sensor specific for tumor cell membrane. The covalent conjugation is optimized to maintain the relative fluorescence intensity of the Tf-QDs to >90%. In addition, the Tf-QDs undergo changes in the fluorescence spectra as a function of temperature, underscoring its thermo-sensor function. Double helix point spread function imaging optical path is designed to locate the probe at nanoscale, and 3D thermal imaging technology is proposed to measure the local temperature distribution and direction of heat flux on the tumor cell surface. This novel targeted nanoscale 3D thermometry method can be a highly promising tool for measuring the local and global temperature distribution across intracellular organelles.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hanliang Du
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenhao Chai
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zheng Ling
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ben Q Li
- Department of Mechanical Engineering, College of Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48128, USA
| | - Xuesong Mei
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
187
|
Dutta S. Immunotherapy of tumors by tailored nano-zeolitic imidazolate framework protected biopharmaceuticals. Biomater Sci 2021; 9:6391-6402. [PMID: 34582540 DOI: 10.1039/d1bm01161h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In cancer immunotherapy, antibodies have acquired rapidly increasing attention due to their sustained immune effect by target specific delivery without any adverse effects. Among many recent strategies, controlled delivery of monoclonal antibodies, check point inhibitor storage and tumor-specific targeted delivery have enabled biodegradable immunotherapeutic delivery via translation of tailored nano-zeolitic imidazolate frameworks (ZIFs) with encapsulated biopharmaceuticals. In addition, a robust antitumor immunity was developed by anti-programmed death ligand-1 (anti-PD-L1) antibody delivery by ZIF-8 with polyethylene glycol (PEG) protection by forming a multiple immunoregulatory system. The unique biorecognition capability of antibodies, encapsulated in ZIFs, was recognized by using growth on different substrates, such as bioconjugates on gold nanorods, to transform them into plasmonic nanobiosensors with sensitivity of the refractive index profile of surface plasmons to track the conjugating antibody. Herein, we have discussed the mechanistic window of antibody delivery-based immunotherapy via the encapsulation of antibodies within ZIFs as an emerging tool for protecting biopharmaceuticals from the complex cellular microenvironment and hyperthermia to enable an antitumor immune response. To fully achieve the potential of antibodies upon ZIF encapsulation, more endeavors should be undertaken in the biodegradable engineering of ZIF-surfaces via forming cellular or polymeric layers to gain higher in vivo circulation time without inhibiting endocytosis by tumor cells. The possible future prognosis for achieving ZIF-protected biocompatible and biodegradable immunotherapeutic antibody delivery systems of therapeutic significance is discussed.
Collapse
Affiliation(s)
- Saikat Dutta
- Biological & Molecular Science Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, India 201303.
| |
Collapse
|
188
|
Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation. Cancers (Basel) 2021; 13:cancers13184583. [PMID: 34572810 PMCID: PMC8465027 DOI: 10.3390/cancers13184583] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Magnetic hyperthermia therapy is an alternative treatment for cancer that complements traditional therapies and that has shown great promise in recent years. In this review, we assess the current applications of this therapy in order to understand why its translation from the laboratory to the clinic has been less smooth than was anticipated, identifying the possible bottlenecks and proposing solutions to the problems encountered. Abstract Hyperthermia has emerged as a promising alternative to conventional cancer therapies and in fact, traditional hyperthermia is now commonly used in combination with chemotherapy or surgery during cancer treatment. Nevertheless, non-specific application of hyperthermia generates various undesirable side-effects, such that nano-magnetic hyperthermia has arisen a possible solution to this problem. This technique to induce hyperthermia is based on the intrinsic capacity of magnetic nanoparticles to accumulate in a given target area and to respond to alternating magnetic fields (AMFs) by releasing heat, based on different principles of physics. Unfortunately, the clinical implementation of nano-magnetic hyperthermia has not been fluid and few clinical trials have been carried out. In this review, we want to demonstrate the need for more systematic and basic research in this area, as many of the sub-cellular and molecular mechanisms associated with this approach remain unclear. As such, we shall consider here the biological effects that occur and why this theoretically well-designed nano-system fails in physiological conditions. Moreover, we will offer some guidelines that may help establish successful strategies through the rational design of magnetic nanoparticles for magnetic hyperthermia.
Collapse
|
189
|
Zhu M, Yang M, Zhang J, Yin Y, Fan X, Zhang Y, Qin S, Zhang H, Yu F. Immunogenic Cell Death Induction by Ionizing Radiation. Front Immunol 2021; 12:705361. [PMID: 34489957 PMCID: PMC8417736 DOI: 10.3389/fimmu.2021.705361] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Immunogenic cell death (ICD) is a form of regulated cell death (RCD) induced by various stresses and produces antitumor immunity via damage-associated molecular patterns (DAMPs) release or exposure, mainly including high mobility group box 1 (HMGB1), calreticulin (CRT), adenosine triphosphate (ATP), and heat shock proteins (HSPs). Emerging evidence has suggested that ionizing radiation (IR) can induce ICD, and the dose, type, and fractionation of irradiation influence the induction of ICD. At present, IR-induced ICD is mainly verified in vitro in mice and there is few clinical evidence about it. To boost the induction of ICD by IR, some strategies have shown synergy with IR to enhance antitumor immune response, such as hyperthermia, nanoparticles, and chemotherapy. In this review, we focus on the molecular mechanisms of ICD, ICD-promoting factors associated with irradiation, the clinical evidence of ICD, and immunogenic forms of cell death. Finally, we summarize various methods of improving ICD induced by IR.
Collapse
Affiliation(s)
- Mengqin Zhu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yuzhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Shanshan Qin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
190
|
Bui TL, Ho NT, Ho XVTT, Ngo DN, Lim SH, Son SJ, Noh SM, Joo SW. Plasmonic nanorod array for effective photothermal therapy in hyperthermia. Chem Commun (Camb) 2021; 57:8961-8964. [PMID: 34486587 DOI: 10.1039/d1cc03047g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Optical properties of anisotropic gold nanorod arrays inside anodic aluminium oxide substrates enhance the longitudinal absorption intensities and the hyperthermia cancer cell killing at 42.1 °C under photothermal laser exposures at 671 nm.
Collapse
Affiliation(s)
- Thanh Lam Bui
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, Republic of Korea.
| | - Ngoc Thanh Ho
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, Republic of Korea.
| | - Xuan Vuong Thi Thanh Ho
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, Republic of Korea.
| | - Dinh Nghi Ngo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, Republic of Korea.
| | - Soon Hyuk Lim
- Department of Chemistry, Gachon University, Seongnam 13120, Republic of Korea.
| | - Sang Jun Son
- Department of Chemistry, Gachon University, Seongnam 13120, Republic of Korea.
| | - Seung Man Noh
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 681-310, Republic of Korea.
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, Republic of Korea.
| |
Collapse
|
191
|
Zhang WX, Hao YN, Gao YR, Shu Y, Wang JH. Mutual Benefit between Cu(II) and Polydopamine for Improving Photothermal-Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38127-38137. [PMID: 34347422 DOI: 10.1021/acsami.1c12199] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Combination therapy has attracted extensive interest in alleviating the shortcomings of monotherapy and enhancing the treatment efficacy. In this work, hollow mesoporous silica nanoparticles (HMSNs) play the role of nanocarriers in the delivery of Cu(II)-doped polydopamine (PDA), termed as HMSNs@PDA-Cu, for synergistic therapy. PDA acts as a traditional photothermal agent to realize photothermal treatment (PTT). Chemodynamic therapy (CDT) is realized by the reaction of Cu(II) with intracellular glutathione (GSH), and subsequently, the generated Cu(I) reacts with H2O2 to produce toxic hydroxyl radical (•OH) through a Fenton-like reaction. The photothermal performance of PDA is improved after its coordination with Cu(II). On the other hand, PDA exhibits superoxide dismutase (SOD)-mimicking activity. PDA converts O2•- to H2O2 and improves the production of H2O2, which promotes the therapeutic effect of CDT. Moreover, the high temperature caused by PTT further enhances the yield of •OH for CDT. This nanotheranostic platform perfectly applied to the tumor depletion of mice, presenting great potential for cancer metastasis therapy in vitro and in vivo.
Collapse
Affiliation(s)
- Wen-Xin Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Ya-Nan Hao
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yi-Ru Gao
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
192
|
Liu B, Jiao J, Xu W, Zhang M, Cui P, Guo Z, Deng Y, Chen H, Sun W. Highly Efficient Far-Red/NIR-Absorbing Neutral Ir(III) Complex Micelles for Potent Photodynamic/Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100795. [PMID: 34219286 DOI: 10.1002/adma.202100795] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/14/2021] [Indexed: 06/13/2023]
Abstract
A critical issue in photodynamic therapy (PDT) is inadequate reactive oxygen species (ROS) generation in tumors, causing inevitable survival of tumor cells that usually results in tumor recurrence and metastasis. Existing photosensitizers frequently suffer from relatively low light-to-ROS conversion efficiency with far-red/near-infrared (NIR) light excitation due to low-lying excited states that lead to rapid non-radiative decays. Here, a neutral Ir(III) complex bearing distyryl boron dipyrromethene (BODIPY-Ir) is reported to efficiently produce both ROS and hyperthermia upon far-red light activation for potentiating in vivo tumor suppression through micellization of BODIPY-Ir to form "Micelle-Ir". BODIPY-Ir absorbs strongly at 550-750 nm with a band maximum at 685 nm, and possesses a long-lived triplet excited state with sufficient non-radiative decays. Upon micellization, BODIPY-Ir forms J-type aggregates within Micelle-Ir, which boosts both singlet oxygen generation and the photothermal effect through the high molar extinction coefficient and amplification of light-to-ROS/heat conversion, causing severe cell apoptosis. Bifunctional Micelle-Ir that accumulates in tumors completely destroys orthotopic 4T1 breast tumors via synergistic PDT/photothermal therapy (PTT) damage under light irradiation, and enables remarkable suppression of metastatic nodules in the lungs, together without significant dark cytotoxicity. The present study offers an emerging approach to develop far-red/NIR photosensitizers toward potent cancer therapy.
Collapse
Affiliation(s)
- Bingqing Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| | - Jian Jiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Wan Xu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Miya Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Peng Cui
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhengqing Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
193
|
Ding B, Yue J, Zheng P, Ma P, Lin J. Manganese oxide nanomaterials boost cancer immunotherapy. J Mater Chem B 2021; 9:7117-7131. [PMID: 34279012 DOI: 10.1039/d1tb01001h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy, a strategy that leverages the host immune function to fight against cancer, plays an increasingly important role in clinical tumor therapy. In spite of the great success achieved in not only clinical treatment but also basic research, cancer immunotherapy still faces many huge challenges. Manganese oxide nanomaterials (MONs), as ideal tumor microenvironment (TME)-responsive biomaterials, are able to dramatically elicit anti-tumor immune responses in multiple ways, indicating great prospects for immunotherapy. In this review, on the basis of different mechanisms to boost immunotherapy, major highlighted topics are presented, covering adjusting an immunosuppressive TME by generating O2 (like O2-sensitized photodynamic therapy (PDT), programmed cell death ligand-1 (PD-L1) expression downregulation, reprogramming tumor-associated macrophages (TAMs), and restraining tumor angiogenesis and lactic acid exhaustion), inducing immunogenic cell death (ICD), photothermal therapy (PTT) induction, activating the stimulator of interferon gene (STING) pathway and immunoadjuvants for nanovaccines. We hope that this review will provide holistic understanding about MONs and their application in cancer immunotherapy, and thus pave the way to the translation from bench to bedside in the future.
Collapse
Affiliation(s)
- Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Jun Yue
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Pan Zheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. and Institute of Frontier and Interdisciplinarity Science and Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
194
|
Hannon G, Tansi FL, Hilger I, Prina‐Mello A. The Effects of Localized Heat on the Hallmarks of Cancer. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging Group Trinity Translational Medicine Institute Dublin 8 Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute Trinity College Dublin Dublin 8 Ireland
| | - Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital—Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital—Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Adriele Prina‐Mello
- Nanomedicine and Molecular Imaging Group Trinity Translational Medicine Institute Dublin 8 Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute Trinity College Dublin Dublin 8 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute Trinity College Dublin Dublin 2 Ireland
| |
Collapse
|
195
|
Ceelen W, Demuytere J, de Hingh I. Hyperthermic Intraperitoneal Chemotherapy: A Critical Review. Cancers (Basel) 2021; 13:cancers13133114. [PMID: 34206563 PMCID: PMC8268659 DOI: 10.3390/cancers13133114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Patients with cancer of the digestive system or ovarian cancer are at risk of developing peritoneal metastases (PM). In some patients with PM, surgery followed by intraperitoneal (IP) chemotherapy has emerged as a valid treatment option. The addition of hyperthermia is thought to further enhance the efficacy of IP chemotherapy. However, the results of recent clinical trials in large bowel cancer have put into question the use of hyperthermic intraperitoneal chemotherapy (HIPEC). Here, we review the rationale and current results of HIPEC for PM and propose a roadmap to further progress. Abstract With increasing awareness amongst physicians and improved radiological imaging techniques, the peritoneal cavity is increasingly recognized as an important metastatic site in various malignancies. Prognosis of these patients is usually poor as traditional treatment including surgical resection or systemic treatment is relatively ineffective. Intraperitoneal delivery of chemotherapeutic agents is thought to be an attractive alternative as this results in high tumor tissue concentrations with limited systemic exposure. The addition of hyperthermia aims to potentiate the anti-tumor effects of chemotherapy, resulting in the concept of heated intraperitoneal chemotherapy (HIPEC) for the treatment of peritoneal metastases as it was developed about 3 decades ago. With increasing experience, HIPEC has become a safe and accepted treatment offered in many centers around the world. However, standardization of the technique has been poor and results from clinical trials have been equivocal. As a result, the true value of HIPEC in the treatment of peritoneal metastases remains a matter of debate. The current review aims to provide a critical overview of the theoretical concept and preclinical and clinical study results, to outline areas of persisting uncertainty, and to propose a framework to better define the role of HIPEC in the treatment of peritoneal malignancies.
Collapse
Affiliation(s)
- Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, 9000 Ghent, Belgium;
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-9332-6251
| | - Jesse Demuytere
- Department of GI Surgery, Ghent University Hospital, 9000 Ghent, Belgium;
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Ignace de Hingh
- Department of Surgery, Catharina Cancer Institute, PO Box 1350, 5602 ZA Eindhoven, The Netherlands;
- GROW—School for Oncology and Developmental Biology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
196
|
Zada S, Lu H, Yang F, Zhang Y, Cheng Y, Tang S, Wei W, Qiao Y, Fu P, Dong H, Zhang X. V 2C Nanosheets as Dual-Functional Antibacterial Agents. ACS APPLIED BIO MATERIALS 2021; 4:4215-4223. [PMID: 35006834 DOI: 10.1021/acsabm.1c00008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antibiotic-resistant bacterial strains have been continuously increasing and becoming a supreme threat to public health globally. The nanoparticle-based photothermal treatment has emerged as a powerful tool to combat toxic bacteria. Photothermal agents (PTAs) with cost-effective and high photothermal conversion efficiency are highly desirable. Herein, we unite the green process for delamination of V2AlC to produce a high yield mass of two-dimensional (2D) V2C nanosheets (NSs) by using algae extracts and demonstrate their high antibacterial efficiency. The resultant V2C NSs present decent structural reliability and intrinsic antibacterial ability. Powerful near-infrared (NIR) absorption and extraordinary photothermal conversion proficiency make it a good PTA for the photothermal treatment of bacteria. The antibacterial efficiency evaluation indicated that V2C NSs could effectively kill both Gram-positive S. aureus and Gram-negative E. coli. About 99.5% of both types of bacteria could be killed with low-dose of V2C NSs suspension (40 μg/mL) with 5 min NIR irradiation due to the intrinsic antibacterial ability and photothermal effect of V2C NSs, which is much higher than previous reports on Ta4C3, Ti3C2, MoSe2, and Nb2C. This work expands the application of MXene V2C NSs for rapid bacteria-killing and would gain promising attention for applications in the sterilization industry.
Collapse
Affiliation(s)
- Shah Zada
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Huiting Lu
- School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Fan Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yiyi Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yaru Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Songsong Tang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Wei Wei
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yuchun Qiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University 58 Renmin Avenue, Meilan District Haikou, Hainan 570228, China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
- Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
- Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|