151
|
Abstract
Several episodic neurological diseases, including familial hemiplegic migraine (FHM) and different types of epilepsy, are caused by mutations in ion channels, and hence classified as channelopathies. The classification of FHM as a channelopathy has introduced a new perspective in headache research and has strengthened the idea of migraine as a disorder of neural excitability. Here we review recent studies of the functional consequences of mutations in the CACNA1A and SCNA1A genes (encoding the pore-forming subunit of Ca(V)2.1 and Na(V)1.1 channels) and the ATPA1A2 gene (encoding the alpha(2) subunit of the Na(+)/K(+) pump), responsible for FHM1, FHM3, and FHM2, respectively. These studies show that: (1) FHM1 mutations produce gain-of-function of the Ca(V)2.1 channel and, as a consequence, increased glutamate release at cortical synapses and facilitation of induction and propagation of cortical spreading depression (CSD); (2) FHM2 mutations produce loss-of-function of the alpha(2) Na(+)/K(+)-ATPase; and (3) the FHM3 mutation accelerates recovery from fast inactivation of Na(V)1.5 channels. These findings are consistent with the hypothesis that FHM mutations share the ability to render the brain more susceptible to CSD, by causing excessive synaptic glutamate release (FHM1) or decreased removal of K(+) and glutamate from the synaptic cleft (FHM2) or excessive extracellular K(+) (FHM3).
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
152
|
Van Den Maagdenberg AMJM, Terwindt GM, Haan J, Frants RR, Ferrari MD. Genetics of headaches. HANDBOOK OF CLINICAL NEUROLOGY 2010; 97:85-97. [PMID: 20816412 DOI: 10.1016/s0072-9752(10)97006-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Insight into the molecular mechanisms involved in primary headaches is important to identify drug targets for improving treatment of patients, but essentially lacking. Genetic research is increasingly successful in pinpointing these mechanisms. Most progress has been made for Familial Hemiplegic Migraine, a rare subtype of migraine with aura. Three genes (CACNA1A, ATP1A2 and SCN1A) have been identified that all encode ion transporters. Cellular and transgenic mouse studies suggest that neuronal hyperexcitability and increased susceptibility to cortical spreading depression, the correlate of migraine aura, are important molecular mechanisms in migraine. Investigating monogenic diseases in which migraine is a prominent feature such as CADASIL, which is caused by mutations in the NOTCH3 gene, can help understanding the pathology of migraine. Candidate gene association studies and linkage studies in the common forms of migraine were less successful. Except for the MTHFR gene no gene variant has been identified yet. Convincingly demonstrated genetic findings in other primary headaches such as cluster headache and tension-type headache are even rarer. However, with current technical possibilities of massive genotyping and international efforts to collect large well-phenotyped patient cohorts, the first gene variants for various primary headache types are likely to be discovered in the coming decade.
Collapse
|
153
|
Debiais S, Hommet C, Bonnaud I, Barthez MA, Rimbaux S, Riant F, Autret A. The FHM1 Mutation S218L: A Severe Clinical Phenotype? A Case Report and Review of the Literature. Cephalalgia 2009; 29:1337-9. [DOI: 10.1111/j.1468-2982.2009.01884.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Familial hemiplegic migraine (FHM) is a rare autosomal dominant subtype of migraine with aura that is characterized by motor weakness during attacks. FHM1 is associated with mutations in the CACNA1A gene located on chromosome 19. We report a severe, prolonged HM attack in a young pregnant patient who had the S218L FHM1. This CACNA1A mutation has been associated with HM, delayed cerebral oedema and coma following minor head trauma. The case history we report suggests a specific, severe phenotype and the co-occurrence of HM and epilepsy related to the S218L FHM1 mutation.
Collapse
Affiliation(s)
| | - C Hommet
- Inserm U 930, Université François Rabelais, Tours
- Regional Memory Centre, CHRU Tours
| | | | | | | | - F Riant
- AP-HP, Laboratoire de Génétique, Groupe hospitalier Lariboisière, Fernand Widal, Groupement hospitalier-universitaire Nord, Paris, France
| | | |
Collapse
|
154
|
Gladstone J. From psychoneurosis to ICHD-2: an overview of the state of the art in post-traumatic headache. Headache 2009; 49:1097-111. [PMID: 19583599 DOI: 10.1111/j.1526-4610.2009.01461.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Post-traumatic headache (PTH) is an important public health issue - head injuries are common, headache is the most common sequelae of head injuries, and PTH can be particularly disabling. Fortunately, for most individuals with PTH, the headache gradually dissipates over a period of several days, weeks, or months either spontaneously or aided by non-pharmacologic and/or pharmacologic management. Regrettably, for a minority of head-injured individuals, the PTH is intractable and disabling despite aggressive and comprehensive treatment. Unfortunately, there are many prejudices against individuals with PTH. Frequently, the presence or absence of litigation and/or the mechanism of head injury (sports-related trauma, slip-and-fall injury, motor vehicle accident, or military service-related injury) biases physicians' views on the legitimacy of the patient's PTH. Accordingly, this review attempts to summarize the state of the art of our understanding of PTH. This clinical review highlights: (a) views on PTH throughout the last few centuries, (b) the ICHD-2 classification of PTH, (c) the epidemiology of head injuries and PTH, (d) the clinical characteristics of PTH, (e) PTH related postconcussive symptoms, (f) pathophysiology of PTH, (g) evaluation of PTH, and (h) management of PTH.
Collapse
Affiliation(s)
- Jonathan Gladstone
- Gladstone Headache Clinic, Cleveland Clinic Canada, 1333 Sheppard Ave. E, Suite 122, Toronto, Ontario M2J 1V1, Canada
| |
Collapse
|
155
|
Teive HAG, Munhoz RP. Fulminant idiopathic intracranial hypertension in a pediatric patient following a minor head trauma. ARQUIVOS DE NEURO-PSIQUIATRIA 2009; 67:957-958. [PMID: 19838539 DOI: 10.1590/s0004-282x2009000500045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- Hélio A G Teive
- Movement Disorders Unit Neurology Service, Hospital de Clínicas, Federal University f Paraná Curitiba, PR.
| | | |
Collapse
|
156
|
Cleves C, Parikh S, Rothner AD, Tepper SJ. Link between confusional migraine, hemiplegic migraine and episodic ataxia type 2: Hypothesis, family genealogy, gene typing and classification. Cephalalgia 2009; 30:740-3. [DOI: 10.1111/j.1468-2982.2009.01958.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An association between hemiplegic migraine (HM) and episodic ataxia type 2 (EA2) has been described; both disorders are linked to mutations in the CACNA1A gene. Although confusion occurs in 21% of patients with HM, we found only one case in the literature of confusional episodes associated with ataxia without hemiplegia. These findings raise the possibility of confusional episodes being part of both the HM and EA2 phenotype. However, a patient with episodic ataxia, confusional spells and CACNA1A gene mutations has not been identified. We describe four individuals, spanning three generations of a family, with episodic ataxia without hemiplegia and confusion, in association with a CACNA1A mutation. We follow with a description of the relationship between the CACNA1A mutations and the three syndromes, suggesting a potential need for a new classification in which the conditions can be subsumed.
Collapse
Affiliation(s)
- C Cleves
- Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - S Parikh
- Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - AD Rothner
- Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - SJ Tepper
- Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
157
|
Abstract
Over the past two decades, the management of sport-related concussion has been the topic of increased attention in the scientific literature and in the popular media. Despite a proliferation of competing guidelines for concussion management, the widespread use of neuropsychological "baseline" testing designed to monitor postinjury recovery, and several prospective controlled studies of the natural history of concussion, there has been virtually no attempt to quantify the risks associated with sport-related concussion or to determine whether these risks are modifiable via management strategies. Using American football as a model, the short- and long-term risks of sport-related concussion are reviewed. It is concluded that serious short-term consequences of sport-related concussion are extremely rare and unlikely to be significantly modified via management strategies that rely on baseline testing. Other less serious short-term adverse outcomes are also quite rare, transient, and not likely to be altered by specific management guidelines. The long-term consequences of multiple sport-related head trauma remain unclear but are potentially of greater public health concern and should be the focus of increased research. Based on available evidence, there is little rationale for the use of rigid strategies or guidelines in the place of individual clinical decision-making in the management of these injuries.
Collapse
|
158
|
de Vries B, Frants RR, Ferrari MD, van den Maagdenberg AMJM. Molecular genetics of migraine. Hum Genet 2009; 126:115-32. [PMID: 19455354 DOI: 10.1007/s00439-009-0684-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/07/2009] [Indexed: 12/11/2022]
Abstract
Migraine is an episodic neurovascular disorder that is clinically divided into two main subtypes that are based on the absence or presence of an aura: migraine without aura (MO) and migraine with aura (MA). Current molecular genetic insight into the pathophysiology of migraine predominantly comes from studies of a rare monogenic subtype of migraine with aura called familial hemiplegic migraine (FHM). Three FHM genes have been identified, which all encode ion transporters, suggesting that disturbances in ion and neurotransmitter balances in the brain are responsible for this migraine type, and possibly the common forms of migraine. Cellular and animal models expressing FHM mutations hint toward neuronal hyperexcitability as the likely underlying disease mechanism. Additional molecular insight into the pathophysiology of migraine may come from other monogenic syndromes (for instance cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, which is caused by NOTCH3 mutations), in which migraine is prominent. Investigating patients with common forms of migraine has had limited successes. Except for 5',10'-methylenetetrahydrolate reductase, an enzyme in folate metabolism, the large majority of reported genetic associations with candidate migraine genes have not been convincingly replicated. Genetic linkage studies using migraine subtypes as an end diagnosis did not yield gene variants thus far. Clinical heterogeneity in migraine diagnosis may have hampered the identification of such variants. Therefore, the recent introduction of more refined methods of phenotyping, such as latent-class analysis and trait component analysis, may be certainly helpful. Combining the new phenotyping methods with genome-wide association studies may be a successful strategy toward identification of migraine susceptibility genes. Likely the identification of reliable biomarkers for migraine diagnosing will make these efforts even more successful.
Collapse
Affiliation(s)
- Boukje de Vries
- Department of Human Genetics, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | |
Collapse
|
159
|
Castro MJ, Stam AH, Lemos C, de Vries B, Vanmolkot KRJ, Barros J, Terwindt GM, Frants RR, Sequeiros J, Ferrari MD, Pereira-Monteiro JM, van den Maagdenberg AMJM. First mutation in the voltage-gated Nav1.1 subunit gene SCN1A with co-occurring familial hemiplegic migraine and epilepsy. Cephalalgia 2009; 29:308-13. [PMID: 19220312 DOI: 10.1111/j.1468-2982.2008.01721.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Almost all mutations in the SCN1A gene, encoding the alpha(1) subunit of neuronal voltage-gated Na(V)1.1 sodium channels, are associated with severe childhood epilepsy. Recently, two mutations were identified in patients with pure familial hemiplegic migraine (FHM). Here, we identified a novel SCN1A L263V mutation in a Portuguese family with partly co-segregating hemiplegic migraine and epilepsy. The L263V mutation segregated in five FHM patients, three of whom also had epileptic attacks, occurring independently from their hemiplegic migraine attacks. L263V is the first SCN1A mutation associated with FHM and co-occurring epilepsy in multiple mutation carriers, and is the clearest molecular link between migraine and epilepsy thus far. The results extend the clinical spectrum associated with SCN1A mutations and further strengthen the molecular evidence that FHM and epilepsy share, at least in part, similar molecular pathways.
Collapse
Affiliation(s)
- M-J Castro
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Hart AR, Trinick R, Connolly DJ, Mordekar SR. Profound encephalopathy with complete recovery in three children with familial hemiplegic migraine. J Paediatr Child Health 2009; 45:154-7. [PMID: 19317760 DOI: 10.1111/j.1440-1754.2009.01465.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We describe three cousins who presented with agitation, dysphasia and/or coma, and developed hemiplegia following initial onset of symptoms. Two cases followed minor head injuries, two were pyrexial and two were associated with neutrophilia. Two cases required ventilatory support on the intensive care unit. Magnetic resonance imaging in all three cases showed cortical swelling, and one had evidence of restricted water diffusion on diffusion-weighted imaging, suggestive of ischaemia/infarction. A complete family history at the time of presentation would have led to an earlier diagnosis of profound encephalopathy in familial hemiplegic migraine, which would have enabled better prognostication of their clinical course and caused less distress for the families.
Collapse
Affiliation(s)
- Anthony R Hart
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | | | | | | |
Collapse
|
161
|
Eikermann-Haerter K, Dileköz E, Kudo C, Savitz SI, Waeber C, Baum MJ, Ferrari MD, van den Maagdenberg AM, Moskowitz MA, Ayata C. Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J Clin Invest 2009; 119:99-109. [PMID: 19104150 PMCID: PMC2613474 DOI: 10.1172/jci36059] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 10/08/2008] [Indexed: 11/17/2022] Open
Abstract
Familial hemiplegic migraine type 1 (FHM1) is an autosomal dominant subtype of migraine with aura that is associated with hemiparesis. As with other types of migraine, it affects women more frequently than men. FHM1 is caused by mutations in the CACNA1A gene, which encodes the alpha1A subunit of Cav2.1 channels; the R192Q mutation in CACNA1A causes a mild form of FHM1, whereas the S218L mutation causes a severe, often lethal phenotype. Spreading depression (SD), a slowly propagating neuronal and glial cell depolarization that leads to depression of neuronal activity, is the most likely cause of migraine aura. Here, we have shown that transgenic mice expressing R192Q or S218L FHM1 mutations have increased SD frequency and propagation speed; enhanced corticostriatal propagation; and, similar to the human FHM1 phenotype, more severe and prolonged post-SD neurological deficits. The susceptibility to SD and neurological deficits is affected by allele dosage and is higher in S218L than R192Q mutants. Further, female S218L and R192Q mutant mice were more susceptible to SD and neurological deficits than males. This sex difference was abrogated by ovariectomy and senescence and was partially restored by estrogen replacement, implicating ovarian hormones in the observed sex differences in humans with FHM1. These findings demonstrate that genetic and hormonal factors modulate susceptibility to SD and neurological deficits in FHM1 mutant mice, providing a potential mechanism for the phenotypic diversity of human migraine and aura.
Collapse
Affiliation(s)
- Katharina Eikermann-Haerter
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Ergin Dileköz
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Chiho Kudo
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Sean I. Savitz
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Christian Waeber
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Michael J. Baum
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Michel D. Ferrari
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Arn M.J.M. van den Maagdenberg
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Michael A. Moskowitz
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Cenk Ayata
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| |
Collapse
|
162
|
Abstract
Migraine is an episodic headache disorder affecting as many as 10% of people worldwide. Familial hemiplegic migraine (FHM) is an autosomal dominant subtype of severe migraine accompanied by visual disturbances known as aura. Migrainous aura is caused by cortical spreading depression (CSD) - a slowly advancing wave of tissue depolarization in the cortex. More than half of FHM cases are caused by mutations in the CACNA1A gene, which encodes a neuronal Cav2.1 Ca2+ channel, resulting in increased Ca2+ flow into dendrites and excessive release of the excitatory neurotransmitter glutamate. In this issue of the JCI, Eikermann-Haerter et al. show that transgenic mice with FHM-associated mutations in Cacna1a have increased susceptibility to CSD compared with wild-type animals, likely due to augmentation of excitatory neurotransmission (see the related article beginning on page 99). Additional as-yet-undefined channel mutations may similarly render the migraine brain more susceptible to the initiation of CSD, with implications not only for the genesis of migraine but also for the hypoxic injury that accompanies its worst manifestation, complicated migraine.
Collapse
Affiliation(s)
- Takahiro Takano
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
163
|
Abstract
Migraine with aura (MA) and migraine without aura (MO) are primary headaches prevalent in the general population that carry a substantial familial liability. Based on the model of migraine as a complex disease, a multifactorial type of inheritance has been suggested, but familial hemiplegic migraine (FHM), classified as a subtype of MA, shows an autosomal dominant transmission pattern and is due to mutations in three genes encoding for neural channel subunits. These FHM mutations, however, account for a minority of the FHM families and are not usually found in sporadic HM or in the typical migraines MA/MO. This implies that the genetic predisposition to the typical migraines may be different and that FHM could be better classified as a type of syndromic migraine rather than a MA subtype. Linkage and genome-wide scans have disclosed several chromosomal liability loci in selected families with MA/MO. It is likely that typical migraine genes will be discovered in the future. Epigenetic mechanisms, especially those acting in the early stages of neural development, are here proposed to be involved in the genetics of the typical migraines, especially if the typical migraines are modeled as evolutionarily conserved behaviors (sickness behavior) enacted out of a genetic repertoire.
Collapse
Affiliation(s)
- Pasquale Montagna
- Department of Neurological Sciences, University of Bologna Medical School, Via U. Foscolo 7, 40123 Bologna, Italy.
| |
Collapse
|
164
|
Abstract
PURPOSE OF REVIEW Over the past 30 years, animal models of migraine have led to the identification of novel drug targets and drug treatments as well as helped to clarify a mechanism for abortive and prophylactic drugs. Animal models have also provided translational knowledge and a framework to think about the impact of hormones, genes, and environmental factors on migraine pathophysiology. Although most acknowledge that these animal models have significant shortcomings, promising new drugs are now being developed and brought to the clinic using these preclinical models. Hence, it is timely to provide a short overview examining the ways in which animal models inform us about underlying migraine mechanisms. RECENT FINDINGS First generation migraine models mainly focused on events within pain-generating intracranial tissues, for example, the dura mater and large vessels, as well as their downstream consequences within brain. Upstream events such as cortical spreading depression have also been modeled recently and provide insight into mechanisms of migraine prophylaxis. Mouse mutants expressing human migraine mutations have been genetically engineered to provide an understanding of familial hemiplegic migraine and possibly, by extrapolation, may reflect on the pathophysiology of more common migraine subtypes. SUMMARY Animal models of migraine reflect distinct facets of this clinically heterogeneous disorder and contribute to a better understanding of its pathophysiology and pharmacology.
Collapse
|
165
|
Weiss N, Sandoval A, Felix R, Van den Maagdenberg A, De Waard M. The S218L familial hemiplegic migraine mutation promotes deinhibition of Ca(v)2.1 calcium channels during direct G-protein regulation. Pflugers Arch 2008; 457:315-26. [PMID: 18581134 DOI: 10.1007/s00424-008-0541-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 05/20/2008] [Accepted: 06/03/2008] [Indexed: 12/01/2022]
Abstract
Familial hemiplegic migraine type 1 (FHM-1) is caused by mutations in CACNA1A, the gene encoding for the Ca(v)2.1 subunit of voltage-gated calcium channels. Although various studies attempted to determine biophysical consequences of these mutations on channel activity, it remains unclear exactly how mutations can produce a FHM-1 phenotype. A lower activation threshold of mutated channels resulting in increased channel activity has been proposed. However, hyperactivity may also be caused by a reduction of the inhibitory pathway carried by G-protein-coupled-receptor activation. The aim of this study is to determine functional consequences of the FHM-1 S218L mutation on direct G-protein regulation of Ca(v)2.1 channels. In HEK 293 cells, DAMGO activation of human mu-opioid receptors induced a 55% Ba(2+) current inhibition through both wild-type and S218L mutant Ca(v)2.1 channels. In contrast, this mutation considerably accelerates the kinetic of current deinhibition following channel activation by 1.7- to 2.3-fold depending on membrane potential values. Taken together, these data suggest that the S218L mutation does not affect G-protein association onto the channel in the closed state but promotes its dissociation from the activated channel, thereby decreasing the inhibitory G-protein pathway. Similar results were obtained with the R192Q FHM-1 mutation, although of lesser amplitude, which seems in line with the less severe associated clinical phenotype in patients. Functional consequences of FHM-1 mutations appear thus as the consequence of the alteration of both intrinsic biophysical properties and of the main inhibitory G-protein pathway of Ca(v)2.1 channels. The present study furthers molecular insight in the physiopathology of FHM-1.
Collapse
Affiliation(s)
- Norbert Weiss
- INSERM U836, Site Santé la Tronche, BP 170, 38042, Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
166
|
Fernandez DM, Hand CK, Sweeney BJ, Parfrey NA. A novel ATP1A2 gene mutation in an Irish familial hemiplegic migraine kindred. Headache 2008; 48:101-8. [PMID: 18184292 DOI: 10.1111/j.1526-4610.2007.00848.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE We studied a large Irish Caucasian pedigree with familial hemiplegic migraine (FHM) with the aim of finding the causative gene mutation. BACKGROUND FHM is a rare autosomal-dominant subtype of migraine with aura, which is linked to 4 loci on chromosomes 19p13, 1q23, 2q24, and 1q31. The mutations responsible for hemiplegic migraine have been described in the CACNA1A gene (chromosome 19p13), ATP1A2 gene (chromosome 1q23), and SCN1A gene (chromosome 2q24). METHODS We performed linkage analyses in this family for chromosome 1q23 and performed mutation analysis of the ATP1A2 gene. RESULTS Linkage to the FHM2 locus on chromosome 1 was demonstrated. Mutation screening of the ATP1A2 gene revealed a G to C substitution in exon 22 resulting in a novel protein variant, D999H, which co-segregates with FHM within this pedigree and is absent in 50 unaffected individuals. This residue is also highly conserved across species. CONCLUSIONS We propose that D999H is a novel FHM ATP1A2 mutation.
Collapse
|
167
|
Stam AH, Vanmolkot KRJ, Kremer HPH, Gärtner J, Brown J, Leshinsky-Silver E, Gilad R, Kors EE, Frankhuizen WS, Ginjaar HB, Haan J, Frants RR, Ferrari MD, van den Maagdenberg AMJM, Terwindt GM. CACNA1A R1347Q: a frequent recurrent mutation in hemiplegic migraine. Clin Genet 2008; 74:481-5. [PMID: 18400034 DOI: 10.1111/j.1399-0004.2008.00996.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Of the 18 missense mutations in the CACNA1A gene, which are associated with familial hemiplegic migraine type 1 (FHM1), only mutations S218L, R583Q and T666M were identified in more than two independent families. Including the four novel families presented here, of which two represent de novo cases, the R1347Q mutation has now been identified in six families. A genotype-phenotype comparison of R1347Q mutation carriers revealed a wide clinical spectrum ranging from (trauma triggered) hemiplegic migraine with and without ataxia, loss of consciousness and epilepsy. R1347Q is the third most frequent mutation in hemiplegic migraine patients and should therefore be screened with priority for confirmation of clinical diagnosis. This study clearly demonstrates that the availability of multiple families better reflects the full clinical spectrum associated with FHM1 mutations.
Collapse
Affiliation(s)
- A H Stam
- Department of Neurology and Clinical Genetic, Erasmus Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Freilinger T, Bohe M, Wegener B, Müller-Myhsok B, Dichgans M, Knoblauch H. Expansion of the Phenotypic Spectrum of the CACNA1A T666M Mutation: A Family with Familial Hemiplegic Migraine Type 1, Cerebellar Atrophy and Mental Retardation. Cephalalgia 2008; 28:403-7. [DOI: 10.1111/j.1468-2982.2008.01540.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- T Freilinger
- Department of Neurology, Ludwig-Maximilians-Universität München, Klinikum Großhadern, Munich
| | - M Bohe
- Vivantes Klinikum am Urban, Department of Psychiatry and Psychotherapy, Berlin
| | - B Wegener
- Vivantes Klinikum am Urban, Department of Psychiatry and Psychotherapy, Berlin
| | | | - M Dichgans
- Department of Neurology, Ludwig-Maximilians-Universität München, Klinikum Großhadern, Munich
| | - H Knoblauch
- Vivantes Klinikum am Urban, Department of Psychiatry and Psychotherapy, Berlin
| |
Collapse
|
169
|
Chan YC, Burgunder JM, Wilder-Smith E, Chew SE, Lam-Mok-Sing KMJ, Sharma V, Ong BKC. Electroencephalographic changes and seizures in familial hemiplegic migraine patients with the CACNA1A gene S218L mutation. J Clin Neurosci 2008; 15:891-4. [PMID: 18313928 DOI: 10.1016/j.jocn.2007.01.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 01/18/2007] [Indexed: 11/30/2022]
Abstract
The S218L CACNA1A mutation has been previously described in two families with familial hemiplegic migraine. We present three siblings with the mutation with the novel association of childhood seizures, and highlight the dynamic changes seen on electroencephalography during hemiplegic migraine attacks. Depressed activity contralateral to the hemiparesis was seen on electroencephalography during acute hemiplegic migraine attacks, which may be due to changes to calcium channels caused by the S218L mutation. Both parents were asymptomatic and did not carry the S218L mutation in their blood. This suggests the presence of mosaicism in the transmitting parent.
Collapse
Affiliation(s)
- Yee-Cheun Chan
- Division of Neurology, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore.
| | | | | | | | | | | | | |
Collapse
|
170
|
Ducros A. Migraine hémiplégique familiale et sporadique. Rev Neurol (Paris) 2008; 164:216-24. [DOI: 10.1016/j.neurol.2007.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
|
171
|
Abstract
Hemiplegic migraine (HM) is characterized by motor weakness and at least one other aura symptom or sign that is fully reversible within 24 hours. While prolonged neurological impairment lasting weeks has been observed, persistent attack-related neurological deficits have not been described. This case illustrates the potential for permanent neurological deficits to occur as a sequelae of HM in the absence of infarction, and highlights potentially important pathophysiological and treatment implications.
Collapse
Affiliation(s)
- David Dodick
- Mayo Clinic, Scottsdale-Neurology, Scottsdale, AZ 85259, USA
| | | |
Collapse
|
172
|
Barrett CF, van den Maagdenberg AM, Frants RR, Ferrari MD. Chapter 3 Familial Hemiplegic Migraine. ADVANCES IN GENETICS 2008; 63:57-83. [DOI: 10.1016/s0065-2660(08)01003-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
173
|
Kirkwood MW, Yeates KO, Taylor HG, Randolph C, McCrea M, Anderson VA. Management of pediatric mild traumatic brain injury: a neuropsychological review from injury through recovery. Clin Neuropsychol 2007; 22:769-800. [PMID: 17896204 PMCID: PMC2847840 DOI: 10.1080/13854040701543700] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Little scientific attention has been aimed at the non-acute clinical care of pediatric mild TBI. We propose a clinical management model focused on both evaluation and intervention from the time of injury through recovery. Intervention strategies are outlined using a framework encompassing four relevant domains: the individual youth, family, school, and athletics. Clinical management has primary value in its potential to speed recovery, minimize distress during the recovery process, and reduce the number of individuals who subjectively experience longer lasting postconcussive problems. With proper management, most children and adolescents sustaining an uncomplicated mild TBI can be expected to recover fully.
Collapse
Affiliation(s)
- Michael W Kirkwood
- Department of Physical Medicine, University of Colorado at Denver and Health Sciences Center and The Children's Hospital, Denver, CO, USA.
| | | | | | | | | | | |
Collapse
|
174
|
Abstract
Although family and twin studies show that there is a genetic component to migraine, no genes predisposing to common forms of the disorder have been identified. The most encouraging findings have emerged from the identification of genes causing rare mendelian traits that phenotypically resemble migraine. These studies have pointed migraine research towards ion-transport genes; however, there is no direct evidence of the involvement of these genes in common forms of migraine. Family-based linkage studies have identified several chromosomal regions linked to common forms of migraine, but there is little consistency between studies. The modest success in the identification of contributing gene variants has stimulated research into more effective strategies. These include new phenotyping methods for genetic studies and new study designs-such as case-control and whole-genome association studies-to identify common variants contributing to the trait.
Collapse
|
175
|
van den Maagdenberg AMJM, Haan J, Terwindt GM, Ferrari MD. Migraine: gene mutations and functional consequences. Curr Opin Neurol 2007; 20:299-305. [PMID: 17495624 DOI: 10.1097/wco.0b013e3281338d1f] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Genetic and functional studies of mutations in familial hemiplegic migraine reveal a major role for disturbed ion transport. Gene identification in common, multifactorial migraine remains challenging. RECENT FINDINGS Several new mutations have been identified in FHM1, FHM2 and FHM3 genes. Functional consequences of familial hemiplegic migraine mutations point to an important role for cortical spreading depression in migraine pathophysiology. New genetic approaches have been tested in common migraine - novel chromosomal loci - but no gene variants have been identified. SUMMARY Identification and analysis of gene mutations in familial hemiplegic migraine revealed a major role for disturbed ion transport in this disorder. Cellular and transgenic mouse models of familial hemiplegic migraine genes suggest that increased potassium and glutamate play a role in the pathophysiology of the disorder. Despite progress, no genes have been discovered for common migraine.
Collapse
|
176
|
Abstract
Clinical and pathophysiological evidences connect migraine and the cerebellum. Literature on documented cerebellar abnormalities in migraine, however, is relatively sparse. Cerebellar involvement may be observed in 4 types of migraines: in the widespread migraine with aura (MWA) and migraine without aura (MWoA) forms; in particular subtypes of migraine such as basilar-type migraine (BTM); and in the genetically driven autosomal dominant familial hemiplegic migraine (FHM) forms. Cerebellar dysfunction in migraineurs varies largely in severity, and may be subclinical. Purkinje cells express calcium channels that are related to the pathophysiology of both inherited forms of migraine and primary ataxias, mostly spinal cerebellar ataxia type 6 (SCA-6) and episodic ataxia type 2 (EA-2). Genetically driven ion channels dysfunction leads to hyperexcitability in the brain and cerebellum, possibly facilitating spreading depression waves in both locations. This review focuses on the cerebellar involvement in migraine, the relevant ataxias and their association with this primary headache, and discusses some of the pathophysiological processes putatively underlying these diseases.
Collapse
Affiliation(s)
- Maurice Vincent
- Hospital Universitário Clementino Fraga Filho, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | | |
Collapse
|
177
|
Kinney HC, Armstrong DL, Chadwick AE, Crandall LA, Hilbert C, Belliveau RA, Kupsky WJ, Krous HF. Sudden death in toddlers associated with developmental abnormalities of the hippocampus: a report of five cases. Pediatr Dev Pathol 2007; 10:208-23. [PMID: 17535090 DOI: 10.2350/06-08-0144.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 11/27/2006] [Indexed: 12/24/2022]
Abstract
Sudden unexplained death in childhood (SUDC) is the sudden death of a child older than 1 year of age that remains unexplained after review of the clinical history, circumstances of death, and autopsy with appropriate ancillary testing. We report here 5 cases of SUDC in toddlers that we believe define a new entity associated with hippocampal anomalies at autopsy. All of the toddlers died unexpectedly during the night, apparently during sleep. Within 48 hours before death, 2 toddlers had fever, 3 had a minor upper respiratory tract infection, and 3 experienced minor head trauma. There was a history of febrile seizures in 2 (40%) and a family history of febrile seizures in 2 (40%). Hippocampal findings included external asymmetry and 2 or more microdysgenetic features. The incidence of certain microdysgenetic features was substantially increased in the temporal lobes of these 5 cases compared with the temporal lobes of 39 (control) toddlers with the causes of death established at autopsy (P < 0.01). We propose that these 5 cases define a potential subset of SUDC whose sudden death is caused by an unwitnessed seizure arising during sleep in the anomalous hippocampus and producing cardiopulmonary arrest. Precipitating factors may be fever, infection, and/or minor head trauma. Suggested risk factors are a history of febrile seizures and/or a family history of febrile seizures. Future studies are needed to confirm these initial findings and to define the putative links between sudden death, hippocampal anomalies, and febrile seizures in toddlers.
Collapse
Affiliation(s)
- Hannah C Kinney
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Abstract
Familial hemiplegic migraine (FHM) is a rare and genetically heterogeneous autosomal dominant subtype of migraine with aura. Mutations in the genes CACNA1A and SCNA1A, encoding the pore-forming alpha(1) subunits of the neuronal voltage-gated Ca2+ channels Ca(V)2.1 and Na+ channels Na(V)1.1, are responsible for FHM1 and FHM3, respectively, whereas mutations in ATP1A2, encoding the alpha2 subunit of the Na+, K+ adenosinetriphosphatase (ATPase), are responsible for FHM2. This review discusses the functional studies of two FHM1 knockin mice and of several FHM mutants in heterologous expression systems (12 FHM1, 8 FHM2, and 1 FHM3). These studies show the following: (1) FHM1 mutations produce gain-of-function of the Ca(V)2.1 channel and, as a consequence, increased Ca(V)2.1-dependent neurotransmitter release from cortical neurons and facilitation of in vivo induction and propagation of cortical spreading depression (CSD: the phenomenon underlying migraine aura); (2) FHM2 mutations produce loss-of-function of the alpha2 Na+,K+-ATPase; and (3) the FHM3 mutation accelerates recovery from fast inactivation of Na(V)1.5 (and presumably Na(V)1.1) channels. These findings are consistent with the hypothesis that FHM mutations share the ability of rendering the brain more susceptible to CSD by causing either excessive synaptic glutamate release (FHM1) or decreased removal of K+ and glutamate from the synaptic cleft (FHM2) or excessive extracellular K+ (FHM3). The FHM data support a key role of CSD in migraine pathogenesis and point to cortical hyperexcitability as the basis for vulnerability to CSD and to migraine attacks. Hence, they support novel therapeutic strategies that consider CSD and cortical hyperexcitability as key targets for preventive migraine treatment.
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy.
| |
Collapse
|
179
|
Weiss N, Tournier-Lasserve E, De Waard M. [Role of P/Q calcium channel in familial hemiplegic migraine]. Med Sci (Paris) 2007; 23:53-63. [PMID: 17212932 DOI: 10.1051/medsci/200723153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Voltage-dependent calcium channels constitute one of the main pathways of calcium entry into neurons. They are the principal actors of synaptic transmission by controlling the release of neurotransmitters. They also contribute to numerous other cell functions, such as gene expression or synaptogenesis. These channels, by their essential cell functions, are at the origin of numerous channelopathies resulting from mutations of the genes encoding their different subunits. Familial Hemiplegic Migraine (FHM) represents one such example of these channelopathies. In this human disease, genetic studies have demonstrated the implication of the CACNA1A gene in a type 1 form of FHM. This gene encodes for the Ca(v)2.1 subunit of P/Q calcium channels and is the target of numerous mutations affecting the properties of channel activity. The question on how discrete mutations of this gene are able to alter the activity of the channel and contribute to the physiopathology of FHM remains an open question. The functional characterization of mutated channels in various heterologous expression systems, as well as in vivo in an animal model, provides a molecular scheme of the physiopathology of FHM in which neurons, astrocytes and blood circulation act in concert.
Collapse
Affiliation(s)
- Norbert Weiss
- Inserm U607, Laboratoire Canaux calciques, fonctions et pathologies, 17 rue des Martyrs, Bâtiment C3, 38054 Grenoble Cedex 09, France
| | | | | |
Collapse
|
180
|
Jordan BD. Genetic influences on outcome following traumatic brain injury. Neurochem Res 2007; 32:905-15. [PMID: 17342413 DOI: 10.1007/s11064-006-9251-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 12/05/2006] [Indexed: 02/02/2023]
Abstract
Several genes have been implicated as influencing the outcome following traumatic brain injury (TBI). Currently the most extensively studied gene has been APOE. APOE can influence overall and rehabilitation outcome, coma recovery, risk of posttraumatic seizures, as well as cognitive and behavioral functions following TBI. Pathologically, APOE is associated with increased amyloid deposition, amyloid angiopathy, larger intracranial hematomas and more severe contusional injury. The proposed mechanism by which APOE affects the clinicopathological consequences of TBI is multifactorial and includes amyloid deposition, disruption of cytoskeletal stability, cholinergic dysfunction, oxidative stress, neuroprotection and central nervous system plasticity in response to injury. Other putative genes have been less extensively studied and require replication of the clinical findings. The COMT and DRD2 genes may influence dopamine dependent cognitive processes such as executive/frontal lobe functions. Inflammation which is a prominent component in the pathophysiological cascade initiated by TBI, is in part is mediated by the interleukin genes, while apoptosis that occurs as a consequence of TBI may be modulated by polymorphisms of the p53 gene. The ACE gene may affect TBI outcome via mechanisms of cerebral blood flow and/or autoregulation and the CACNA1A gene may exert an influence via the calcium channel and its effect on delayed cerebral edema. Although several potential genes that may influence outcome following TBI have been identified, future investigations are needed to validate these genetic studies and identify new genes that might influence outcome following TBI.
Collapse
Affiliation(s)
- Barry D Jordan
- Brain Injury Program, Burke Rehabilitation Hospital, 785 Mamaroneck Avenue, White Plains, NY 10605, USA.
| |
Collapse
|
181
|
Todorov B, van de Ven RCG, Kaja S, Broos LAM, Verbeek SJ, Plomp JJ, Ferrari MD, Frants RR, van den Maagdenberg AMJM. Conditional inactivation of the Cacna1a gene in transgenic mice. Genesis 2007; 44:589-94. [PMID: 17146767 DOI: 10.1002/dvg.20255] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ca(v)2.1 (P/Q-type) voltage-gated calcium channels play an important role in neurotransmitter release at many brain synapses and at the neuromuscular junction. Mutations in the CACNA1A gene, encoding the pore forming alpha(1) subunit of Ca(v)2.1 channels, are associated with a wide spectrum of neurological disorders. Here we generated mice with a conditional, floxed, Cacna1a allele without any overt phenotype. Deletion of the floxed Cacna1a allele resulted in ataxia, dystonia, and lethality during the fourth week, a severe phenotype similar to conventional Ca(v)2.1 knockout mice. Although neurotransmitter release at the neuromuscular junction was not affected in the conditional mice, homozygous deletion of the floxed allele caused an ablation of Ca(v)2.1 channel-mediated neurotransmission that was accompanied by a compensatory upregulation of Ca(v)2.3 (R-type) channels at this synapse. Pharmacological inhibition of Ca(v)2.1 channels is possible, but the contributing cell-types and time windows relevant to the different Ca(v)2.1-related neurological disorders can only be reliably determined using Cacna1a conditional mice.
Collapse
Affiliation(s)
- Boyan Todorov
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Iizuka T, Sakai F, Ide T, Miyakawa S, Sato M, Yoshii S. Regional cerebral blood flow and cerebrovascular reactivity during chronic stage of stroke-like episodes in MELAS -- implication of neurovascular cellular mechanism. J Neurol Sci 2007; 257:126-38. [PMID: 17316689 DOI: 10.1016/j.jns.2007.01.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Ischemic vascular hypothesis as a causative role in the pathogenesis of stroke-like episodes in MELAS remains to be debated. METHODS This study consisted of two parts. Part 1 is a clinicoradiological study during acute stage of 18 consecutive stroke-like episodes in six patients with MELAS. Part 2 is a SPECT study to assess the regional cerebrovascular reactivity (rCVR) to acetazolamide during chronic stage in five patients with MELAS. RESULTS Headache and epileptic seizure were the most common presenting symptoms. Unique features of acute stroke-like lesions included progressive spread of cortical lesions with vasogenic edema, focal periodic epileptiform discharges, focal hyperperfusion, and cortical laminar necrosis during subacute stage. During chronic stage, SPECT showed hypoperfusion in non-affected occipital cortex in three patients as well as in previously affected regions in four. The rCVR was preserved in three patients, focally impaired in one, and extensively impaired in one, but relatively preserved in the occipital cortex in all patients. CONCLUSIONS Stroke-like episodes could be non-ischemic neurovascular events initiated by neuronal hyperexcitability. Once neuronal hyperexcitability develops in a focal brain region, epileptic activities depolarize adjacent neurons, leading to a propagation of epileptic activities into the surrounding cortex, and resulting in energy imbalance. The mechanisms for neuronal hyperexcitability remain to be elucidated.
Collapse
Affiliation(s)
- Takahiro Iizuka
- Department of Neurology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa, 228-8555, Japan.
| | | | | | | | | | | |
Collapse
|
183
|
Barnes PD, Krasnokutsky M. Imaging of the central nervous system in suspected or alleged nonaccidental injury, including the mimics. Top Magn Reson Imaging 2007; 18:53-74. [PMID: 17607143 DOI: 10.1097/rmr.0b013e3180d0a455] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Because of the widely acknowledged controversy in nonaccidental injury, the radiologist involved in such cases must be thoroughly familiar with the imaging, clinical, surgical, pathological, biomechanical, and forensic literature from all perspectives and with the principles of evidence-based medicine. Children with suspected nonaccidental injury versus accidental injury must not only receive protective evaluation but also require a timely and complete clinical and imaging workup to evaluate pattern of injury and timing issues and to consider the mimics of abuse. All imaging findings must be correlated with clinical findings (including current and past medical record) and with laboratory and pathological findings (eg, surgical, autopsy). The medical and imaging evidence, particularly when there is only central nervous system injury, cannot reliably diagnose intentional injury. Only the child protection investigation may provide the basis for inflicted injury in the context of supportive medical, imaging, biomechanical, or pathological findings.
Collapse
|
184
|
Abstract
Biomarkers are physical signs or laboratory measurements that occur in association with a pathological process and have putative diagnostic and/or prognostic utility. In migraine, clinical, radiological, and biochemical biomarkers might be helpful to improve diagnosis, get insight in pathophysiology, and facilitate treatment choices. Genetic biomarkers are defined as genetic variations (mutations or polymorphisms) that can predict disease susceptibility, disease outcome, or treatment response. As yet, only a few genetic biomarkers for migraine are available. Mutations in 3 different genes responsible for familial hemiplegic migraine, a monogenetic subtype of migraine with aura, and the MTHFR C677T polymorphism in common forms of migraine are clear examples. Many positive findings from linkage studies and association studies in common forms of migraine have not been replicated, and are therefore of less clinical use. In this review, we will discuss genetic biomarkers in migraine.
Collapse
Affiliation(s)
- Boukje De Vries
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
185
|
Haan J, Kors EE, Vanmolkot KRJ, van den Maagdenberg AMJM, Frants RR, Ferrari MD. Migraine genetics: an update. Curr Pain Headache Rep 2006; 9:213-20. [PMID: 15907261 DOI: 10.1007/s11916-005-0065-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A growing interest in genetic research in migraine has resulted in the identification of several chromosomal regions that are involved in migraine. However, the identification of mutations in the genes for familial hemiplegic migraine (FHM) forms the only true molecular genetic knowledge of migraine thus far. The increased number of mutations in the FHM1 (CACNA1A) and the FHM2 (ATP1A2) genes allow studying the relationship between genetic findings in both genes and the clinical features in patients. A wide spectrum of symptoms is seen in patients. Additional cerebellar ataxia and (childhood) epilepsy can occur in FHM1 and FHM2. Functional studies show a dysfunction in ion transport as the key factor in the pathophysiology of (familial hemiplegic) migraine that predict an increased susceptibility to cortical spreading depression--the underlying mechanism of migraine aura.
Collapse
Affiliation(s)
- J Haan
- Department of Neurology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, The Netherlands. E-mail:
| | | | | | | | | | | |
Collapse
|
186
|
Ducros A. Hemiplegic Migraine: Clinical Features, Links with Basilar-type Migraine, Current and Future Treatment. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1743-5013.2006.00037.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
187
|
McKeown L, Robinson P, Jones OT. Molecular basis of inherited calcium channelopathies: role of mutations in pore-forming subunits. Acta Pharmacol Sin 2006; 27:799-812. [PMID: 16787562 DOI: 10.1111/j.1745-7254.2006.00394.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The pore-forming alpha subunits of voltage-gated calcium channels contain the essential biophysical machinery that underlies calcium influx in response to cell depolarization. In combination with requisite auxiliary subunits, these pore subunits form calcium channel complexes that are pivotal to the physiology and pharmacology of diverse cells ranging from sperm to neurons. Not surprisingly, mutations in the pore subunits generate diverse pathologies, termed channelopathies, that range from failures in excitation-contraction coupling to night blindness. Over the last decade, major insights into the mechanisms of pathogenesis have been derived from animals showing spontaneous or induced mutations. In parallel, there has been considerable growth in our understanding of the workings of voltage-gated ion channels from a structure-function, regulation and cell biology perspective. Here we document our current understanding of the mutations underlying channelopathies involving the voltage-gated calcium channel alpha subunits in humans and other species.
Collapse
Affiliation(s)
- Lynn McKeown
- Faculty of Life Sciences, the University of Manchester, Manchester, UK
| | | | | |
Collapse
|
188
|
de Theije-Kors E, Haan J. Hemiplegic and Basilar-type Migraine: Epidemiology, Genetics, and Mechanisms. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1743-5013.2006.00036.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
189
|
Razvi SSM, Bone I. Single gene disorders causing ischaemic stroke. J Neurol 2006; 253:685-700. [PMID: 16807686 DOI: 10.1007/s00415-006-0048-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 08/04/2005] [Accepted: 09/23/2005] [Indexed: 10/24/2022]
Abstract
Stroke is the third most common cause of death and the leading cause of long-term neurological disability in the world. Conventional vascular risk factors for stroke contribute approximately to only forty to fifty percent of stroke risk. Genetic factors may therefore contribute to a significant proportion of stroke and may be polygenic, monogenic or multi-factorial. Monogenic (single gene) disorders may potentially account for approximately one percent of all ischaemic stroke. Monogenic stroke disorders include conditions such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) and hereditary endotheliopathy, retinopathy, nephropathy and stroke (HERNS). In addition, other monogenic conditions such as sickle cell and Fabry disease also lead to stroke. These monogenic disorders cause either small vessel or large vessel stroke (or a combination of both) and serve as useful models for understanding and studying conventional stroke and cerebrovascular disease and its accompaniments such as vascular dementia.
Collapse
Affiliation(s)
- Saif S M Razvi
- Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TF, UK
| | | |
Collapse
|
190
|
Kirchmann M, Thomsen LL, Olesen J. The CACNA1A and ATP1A2 genes are not involved in dominantly inherited migraine with aura. Am J Med Genet B Neuropsychiatr Genet 2006; 141B:250-6. [PMID: 16508934 DOI: 10.1002/ajmg.b.30277] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epidemiological studies indicate that migraine with typical aura (MA) has a major genetic component but the genes for MA have not been identified. However, the autosomal dominantly inherited familial hemiplegic migraine (FHM) is often caused by mutations in the CACNA1A or ATP1A2 genes. The aim of the study was to investigate if the CACNA1A or ATP1A2 genes are involved in MA with an apparently autosomal dominant mode of inheritance. From a clinic population diagnosed by a trained physician we recruited 34 extended families (comprising 174 MA patients) with an apparently autosomal dominant mode of inheritance of MA. We performed a linkage analysis of 161 of 174 MA patients and 79 unaffected relatives using a framework marker set of 44 markers for chromosome 1 and 22 markers for chromosome 19. Linkage analysis was made with a non-parametric or autosomal dominant parametric model, either allowing for heterogeneity or not, using an affected only analysis. We identified no linkage to CACNA1A and ATP1A2 loci on chromosome 19 or 1, respectively. Additionally, at least two patients from each family and 92 healthy, unrelated controls were selected for a sequence analysis. We sequenced the 48 exons of CACNA1A and the 23 exons of ATP1A2, including promoter and flanking intron sequences. No polymorphism was identified in the CACNA1A or ATP1A2 genes with a strong correlation to MA. Our study shows that the CACNA1A or ATP1A2 genes are probably not involved in MA. To identify the genes involved in the common forms of migraine, future genetic studies should focus on MA and migraine without aura (MO) and not FHM.
Collapse
Affiliation(s)
- Malene Kirchmann
- Department of Neurology, Danish Headache Center, Glostrup Hospital, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
191
|
Curtain RP, Smith RL, Ovcaric M, Griffiths LR. Minor head trauma-induced sporadic hemiplegic migraine coma. Pediatr Neurol 2006; 34:329-32. [PMID: 16638514 DOI: 10.1016/j.pediatrneurol.2005.08.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 06/28/2005] [Accepted: 08/30/2005] [Indexed: 10/24/2022]
Abstract
Familial hemiplegic migraine is a severe, rare subtype of migraine. Gene mutations on chromosome 19 have been identified in the calcium channel, voltage-dependent, P/Q type, alpha-1A subunit gene (chromosome 19p13) for familial hemiplegic migraine. Recently a gene mutation (Serine-218-Leucine) for a dramatic syndrome associated with familial hemiplegic migraine, commonly named "migraine coma", has implicated exon 5 of this gene. The occurrence of trivial head trauma, in such familial hemiplegic migraine patients, may also be complicated by severe, sometimes even fatal, cerebral edema and coma occurring after a lucid interval. Sporadic hemiplegic migraine shares a similar spectrum of clinical presentation and genetic heterogeneity. The case report presented in this article implicates the involvement of the Serine-218-Leucine mutation in the extremely rare disorder of minor head trauma-induced migraine coma. We conclude that the Serine-218-Leucine mutation in the calcium channel, voltage-dependent, P/Q type, alpha-1A subunit gene is involved in sporadic hemiplegic migraine, delayed cerebral edema and coma after minor head trauma.
Collapse
Affiliation(s)
- Robert P Curtain
- Genomics Research Centre, School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | | | | | | |
Collapse
|
192
|
Dreier JP, Jurkat-Rott K, Petzold GC, Tomkins O, Klingebiel R, Kopp UA, Lehmann-Horn F, Friedman A, Dichgans M. Opening of the blood-brain barrier preceding cortical edema in a severe attack of FHM type II. Neurology 2006; 64:2145-7. [PMID: 15985592 DOI: 10.1212/01.wnl.0000176298.63840.99] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The authors report a patient with familial hemiplegic migraine type II who developed a long-lasting attack including fever, right-sided hemiplegia, aphasia, and coma. Quantitative analysis of early gadolinium-enhanced MRI revealed a mild but significant left-hemispheric blood-brain barrier (BBB) opening limited to the cortex and preceding cortical edema. The findings suggest that the delayed cortical edema was vasogenic in the severe migraine aura variant of this ATP1A2 mutation carrier.
Collapse
Affiliation(s)
- J P Dreier
- Department of Neurology, Charité University Medicine, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Vanmolkot KRJ, Stroink H, Koenderink JB, Kors EE, van den Heuvel JJMW, van den Boogerd EH, Stam AH, Haan J, De Vries BBA, Terwindt GM, Frants RR, Ferrari MD, van den Maagdenberg AMJM. Severe episodic neurological deficits and permanent mental retardation in a child with a novel FHM2ATP1A2mutation. Ann Neurol 2006; 59:310-4. [PMID: 16437583 DOI: 10.1002/ana.20760] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Attacks of familial hemiplegic migraine (FHM) are usually associated with transient, completely reversible symptoms. Here, we studied the ATP1A2 FHM2 gene in a young girl with episodes of both very severe and transient neurological symptoms that were triggered by mild head trauma as well as permanent mental retardation. Her family members suffered from hemiplegic and confusional migraine attacks. METHODS Mutation analysis of the ATP1A2 gene was performed by direct sequencing of all exons and flanking intronic regions, using genomic DNA of the proband. Functional consequences of the mutation were analyzed by cellular survival assays. RESULTS We identified a novel G615R ATP1A2 mutation in the proband and several of her family members. Functional analysis of mutant Na,K-ATPase in cellular survival assays showed a complete loss-of-function effect. INTERPRETATION Permanent mental retardation in children may be caused by ATP1A2 mutations.
Collapse
Affiliation(s)
- K R J Vanmolkot
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Takahashi T, Arai N, Shimamura M, Suzuki Y, Yamashita S, Iwamoto H, Inayama Y, Kameda Y, Kuroiwa Y. Autopsy case of acute encephalopathy linked to familial hemiplegic migraine with cerebellar atrophy and mental retardation. Neuropathology 2005; 25:228-34. [PMID: 16193840 DOI: 10.1111/j.1440-1789.2005.00604.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 19-year-old female patient, who had exhibited esotropia, mild cerebellar ataxia, mild mental retardation, and cerebellar atrophy on magnetic resonance images at the age of 15, developed signs of acute encephalopathy, and thereafter died of disseminated intravascular coagulation on the day of her admission. Both her mother and sister suffered from attacks of hemiplegic migraine, mild mental retardation, and cerebellar ataxia. Neuropathological examinations revealed acute changes in the widespread cerebral cortex, chronic degenerative changes in the anterior lobe of the cerebellar vermis, axonal spheroids in the Goll's nucleus, pseudo-calcinosis in the globus pallidus, and glial bundles in the cranial nerves. The most fascinating features were changes of Purkinje cells, such as cactuses (asteroid bodies, dendritic expansions), somatic sprouts, and torpedoes. These changes may be characteristic of familial hemiplegic migraine with cerebellar atrophy, as well as the other metabolic diseases, such as Menkes' kinky hair disease, infantile (Tay-Sachs type) amaurotic idiocy, organic mercury intoxication, and mitochondrial encephalopathy, of which cases often exhibit such pathological changes of Purkinje cells. Therefore, familial hemiplegic migraine may share some metabolic abnormalities with the diseases mentioned above.
Collapse
Affiliation(s)
- Tatsuya Takahashi
- Department of Neurology, Yokohama City Kowan Hospital, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Hoda JC, Zaghetto F, Koschak A, Striessnig J. Congenital stationary night blindness type 2 mutations S229P, G369D, L1068P, and W1440X alter channel gating or functional expression of Ca(v)1.4 L-type Ca2+ channels. J Neurosci 2005; 25:252-9. [PMID: 15634789 PMCID: PMC6725195 DOI: 10.1523/jneurosci.3054-04.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in the CACNA1F gene (voltage-dependent L-type calcium channel alpha1F subunit) encoding retinal Ca(v)1.4 L-type Ca2+ channels cause X-linked recessive congenital stationary night blindness type 2 (CSNB2). Many of them are predicted to yield nonfunctional channels. Complete loss of Ca(v)1.4 function is therefore regarded as a pathogenetic mechanism for the impaired signaling from photoreceptors to second-order retinal neurons. We investigated the functional consequences of CSNB2 missense mutations S229P, G369D, and L1068P and the C-terminal truncation mutant W1440X. After expression in Xenopus laevis oocytes or human embryonic kidney tsA-201 cells, inward Ca2+ current (I(Ca)) and inward Ba2+ current (I(Ba)) could be recorded from mutations G369D and L1068P. G369D shifted the half-maximal voltage for channel activation (V(0.5,act)) significantly to more negative potentials (>11 mV), slowed inactivation, and removed Ca2+-dependent inactivation. The L1068P mutant yielded currents only in the presence of the channel activator BayK8644. Currents (I(Ba)) inactivated faster than wild type (WT) and recovered more slowly from inactivation (I(Ba) and I(Ca)). No channel activity could be measured for mutants S229P and W1440X after oocyte expression. No W1440X alpha1 protein was detected after expression in tsA-201 cells, whereas S229P (as well as G369D and L1068P) alpha1 subunits were expressed at levels indistinguishable from WT (n = 3). Our data provide unequivocal evidence that CSNB2 missense mutations can induce severe changes in Ca(v)1.4 function, which may decrease (L1068P and S229P) or even increase (G369D) channel activity. The lower activation range of G369D can explain the reduced dynamic range of photoreceptor signaling. Moreover, we demonstrate that loss of channel function of one (L1068P) CSNB2 mutation can be rescued by a Ca2+ channel activator.
Collapse
Affiliation(s)
- Jean-Charles Hoda
- Abteilung Pharmakologie und Toxikologie, Institut für Pharmazie, Universität Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
196
|
Tottene A, Pivotto F, Fellin T, Cesetti T, van den Maagdenberg AMJM, Pietrobon D. Specific Kinetic Alterations of Human CaV2.1 Calcium Channels Produced by Mutation S218L Causing Familial Hemiplegic Migraine and Delayed Cerebral Edema and Coma after Minor Head Trauma. J Biol Chem 2005; 280:17678-86. [PMID: 15743764 DOI: 10.1074/jbc.m501110200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutation S218L in the Ca(V)2.1 alpha(1) subunit of P/Q-type Ca(2+) channels produces a severe clinical phenotype in which typical attacks of familial hemiplegic migraine (FHM) triggered by minor head trauma are followed, after a lucid interval, by deep (even fatal) coma and long lasting severe cerebral edema. We investigated the functional consequences of this mutation on human Ca(V)2.1 channels expressed in human embryonic kidney 293 cells and in neurons from Ca(V)2.1 alpha(1)(-/-) mice by combining single channel and whole cell patch clamp recordings. Mutation S218L produced a shift to lower voltages of the single channel activation curve and a consequent increase of both single channel and whole cell Ba(2+) influx in both neurons and human embryonic kidney 293 cells. Compared with the other FHM-1 mutants, the S218L shows one of the largest gains of function, especially for small depolarizations, which are insufficient to open the wild-type channel. S218L channels open at voltages close to the resting potential of many neurons. Moreover, the S218L mutation has unique effects on the kinetics of inactivation of the channel because it introduces a large component of current that inactivates very slowly, and it increases the rate of recovery from inactivation. During long depolarizations at voltages that are attained during cortical spreading depression, the extent of inactivation of the S218L channel is considerably smaller than that of the wild-type channel. We discuss how the unique combination of a particularly slow inactivation during cortical spreading depression and a particularly low threshold of channel activation might lead to delayed severe cerebral edema and coma after minor head trauma.
Collapse
Affiliation(s)
- Angelita Tottene
- Department of Biomedical Sciences, University of Padova, CNR Institute of Neuroscience, Viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
197
|
McCrory P, Johnston K, Meeuwisse W, Aubry M, Cantu R, Dvorak J, Graf-Baumann T, Kelly J, Lovell M, Schamasch P. Summary and agreement statement of the second international conference on concussion in sport, prague 2004. PHYSICIAN SPORTSMED 2005; 33:29-44. [PMID: 20086357 DOI: 10.3810/psm.2005.04.76] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In November 2001, the First International Symposium on Concussion in Sport was held in Vienna, Austria. This meeting was organized by the International Ice Hockey Federation (IIHF) in partnership with the Federation Internationale de Football (FIFA) and the International Olympic Committee (IOC) Medical Commission. As part of the resulting mandate for the future, the need for leadership and updates was identified. To meet that mandate, the Second International Symposium on Concussion in Sport was organized by the same group and held in Prague, Czech Republic, in November 2004.
Collapse
Affiliation(s)
- Paul McCrory
- Center for Health, Exercise and Sports Medicine, University of Melbourne, Victoria, 3916, AU.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Bloom GA, Horton AS, McCrory P, Johnston KM. Sport psychology and concussion: new impacts to explore. Br J Sports Med 2005; 38:519-21. [PMID: 15388529 PMCID: PMC1724928 DOI: 10.1136/bjsm.2004.011999] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
199
|
|
200
|
McCrory P, Johnston K, Meeuwisse W, Aubry M, Cantu R, Dvorak J, Graf-Baumann T, Kelly J, Lovell M, Schamasch P. Summary and agreement statement of the 2nd International Conference on Concussion in Sport, Prague 2004. Clin J Sport Med 2005; 15:48-55. [PMID: 15782046 DOI: 10.1097/01.jsm.0000159931.77191.29] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Paul McCrory
- Center for Health, Exercise and Sports Medicine and The Brain Research Institute, University of Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|