151
|
Mechanisms of TDP-43 Proteinopathy Onset and Propagation. Int J Mol Sci 2021; 22:ijms22116004. [PMID: 34199367 PMCID: PMC8199531 DOI: 10.3390/ijms22116004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 01/21/2023] Open
Abstract
TDP-43 is an RNA-binding protein that has been robustly linked to the pathogenesis of a number of neurodegenerative disorders, including amyotrophic lateral sclerosis and frontotemporal dementia. While mutations in the TARDBP gene that codes for the protein have been identified as causing disease in a small subset of patients, TDP-43 proteinopathy is present in the majority of cases regardless of mutation status. This raises key questions regarding the mechanisms by which TDP-43 proteinopathy arises and spreads throughout the central nervous system. Numerous studies have explored the role of a variety of cellular functions on the disease process, and nucleocytoplasmic transport, protein homeostasis, RNA interactions and cellular stress have all risen to the forefront as possible contributors to the initiation of TDP-43 pathogenesis. There is also a small but growing body of evidence suggesting that aggregation-prone TDP-43 can recruit physiological TDP-43, and be transmitted intercellularly, providing a mechanism whereby small-scale proteinopathy spreads from cell to cell, reflecting the spread of clinical symptoms observed in patients. This review will discuss the potential role of the aforementioned cellular functions in TDP-43 pathogenesis, and explore how aberrant pathology may spread, and result in a feed-forward cascade effect, leading to robust TDP-43 proteinopathy and disease.
Collapse
|
152
|
Wiedner HJ, Giudice J. It's not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat Struct Mol Biol 2021; 28:465-473. [PMID: 34099940 PMCID: PMC8787349 DOI: 10.1038/s41594-021-00601-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
Biomolecular condensates that form via phase separation are increasingly regarded as coordinators of cellular reactions that regulate a wide variety of biological phenomena. Mounting evidence suggests that multiple steps of the RNA life cycle are organized within RNA-binding protein-rich condensates. In this Review, we discuss recent insights into the influence of phase separation on RNA biology, which has implications for basic cell biology, the pathogenesis of human diseases and the development of novel therapies.
Collapse
Affiliation(s)
- Hannah J Wiedner
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- McAllister Heart Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
153
|
Chua JP, De Calbiac H, Kabashi E, Barmada SJ. Autophagy and ALS: mechanistic insights and therapeutic implications. Autophagy 2021; 18:254-282. [PMID: 34057020 PMCID: PMC8942428 DOI: 10.1080/15548627.2021.1926656] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mechanisms of protein homeostasis are crucial for overseeing the clearance of misfolded and toxic proteins over the lifetime of an organism, thereby ensuring the health of neurons and other cells of the central nervous system. The highly conserved pathway of autophagy is particularly necessary for preventing and counteracting pathogenic insults that may lead to neurodegeneration. In line with this, mutations in genes that encode essential autophagy factors result in impaired autophagy and lead to neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS). However, the mechanistic details underlying the neuroprotective role of autophagy, neuronal resistance to autophagy induction, and the neuron-specific effects of autophagy-impairing mutations remain incompletely defined. Further, the manner and extent to which non-cell autonomous effects of autophagy dysfunction contribute to ALS pathogenesis are not fully understood. Here, we review the current understanding of the interplay between autophagy and ALS pathogenesis by providing an overview of critical steps in the autophagy pathway, with special focus on pivotal factors impaired by ALS-causing mutations, their physiologic effects on autophagy in disease models, and the cell type-specific mechanisms regulating autophagy in non-neuronal cells which, when impaired, can contribute to neurodegeneration. This review thereby provides a framework not only to guide further investigations of neuronal autophagy but also to refine therapeutic strategies for ALS and related neurodegenerative diseases.Abbreviations: ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CHMP2B: charged multivesicular body protein 2B; DPR: dipeptide repeat; FTD: frontotemporal dementia; iPSC: induced pluripotent stem cell; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PINK1: PTEN induced kinase 1; RNP: ribonuclear protein; sALS: sporadic ALS; SPHK1: sphingosine kinase 1; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK-binding kinase 1; TFEB: transcription factor EB; ULK: unc-51 like autophagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; VCP: valosin containing protein.
Collapse
Affiliation(s)
- Jason P Chua
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Hortense De Calbiac
- Recherche translationnelle sur les maladies neurologiques, Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Edor Kabashi
- Recherche translationnelle sur les maladies neurologiques, Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
154
|
Mitsuzawa S, Suzuki N, Akiyama T, Ishikawa M, Sone T, Kawada J, Funayama R, Shirota M, Mitsuhashi H, Morimoto S, Ikeda K, Shijo T, Ohno A, Nakamura N, Ono H, Ono R, Osana S, Nakagawa T, Nishiyama A, Izumi R, Kaneda S, Ikeuchi Y, Nakayama K, Fujii T, Warita H, Okano H, Aoki M. Reduced PHOX2B stability causes axonal growth impairment in motor neurons with TARDBP mutations. Stem Cell Reports 2021; 16:1527-1541. [PMID: 34048688 PMCID: PMC8190591 DOI: 10.1016/j.stemcr.2021.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/22/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset incurable motor neuron (MN) disease. The reasons for selective MN vulnerability in ALS are unknown. Axonal pathology is among the earliest signs of ALS. We searched for novel modulatory genes in human MN axon shortening affected by TARDBP mutations. In transcriptome analysis of RNA present in the axon compartment of human-derived induced pluripotent stem cell (iPSC)-derived MNs, PHOX2B (paired-like homeobox protein 2B) showed lower expression in TARDBP mutant axons, which was consistent with axon qPCR and in situ hybridization. PHOX2B mRNA stability was reduced in TARDBP mutant MNs. Furthermore, PHOX2B knockdown reduced neurite length in human MNs. Finally, phox2b knockdown in zebrafish induced short spinal axons and impaired escape response. PHOX2B is known to be highly express in other types of neurons maintained after ALS progression. Collectively, TARDBP mutations induced loss of axonal resilience, which is an important ALS-related phenotype mediated by PHOX2B downregulation. Human iPSCs were established from a familial ALS with the TARDBP p.G376D mutation PHOX2B mRNA was identified to be decreased in TARDBP mutant MNs by RNA sequencing PHOX2B mRNA bind to TDP-43 and its stability was reduced in TARDBP mutant MNs PHOX2B knockdown reduced neurite length and impaired motor functions in vivo/vitro
Collapse
Affiliation(s)
- Shio Mitsuzawa
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takefumi Sone
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jiro Kawada
- Jiksak Bioengineering Inc. 7-7 Shinkawasaki, Saiwai-ku, Kawasaki 212-0032, Japan; Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroaki Mitsuhashi
- Department of Applied Biochemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Tomomi Shijo
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Akiyuki Ohno
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Naoko Nakamura
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hiroya Ono
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Risako Ono
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Doori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Shohei Kaneda
- Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; Department of Mechanical Systems Engineering, Faculty of Engineering, Kogakuin University, 1-24-2 Nishishinjuku, Shinjuku-ku, Tokyo, 163-8677, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; Institute for AI and Beyond, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Teruo Fujii
- Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| |
Collapse
|
155
|
Human Endogenous Retrovirus as Therapeutic Targets in Neurologic Disease. Pharmaceuticals (Basel) 2021; 14:ph14060495. [PMID: 34073730 PMCID: PMC8225122 DOI: 10.3390/ph14060495] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/16/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are ancient retroviral DNA sequences established into germline. They contain regulatory elements and encoded proteins few of which may provide benefits to hosts when co-opted as cellular genes. Their tight regulation is mainly achieved by epigenetic mechanisms, which can be altered by environmental factors, e.g., viral infections, leading to HERV activation. The aberrant expression of HERVs associates with neurological diseases, such as multiple sclerosis (MS) or amyotrophic lateral sclerosis (ALS), inflammatory processes and neurodegeneration. This review summarizes the recent advances on the epigenetic mechanisms controlling HERV expression and the pathogenic effects triggered by HERV de-repression. This article ends by describing new, promising therapies, targeting HERV elements, one of which, temelimab, has completed phase II trials with encouraging results in treating MS. The information gathered here may turn helpful in the design of new strategies to unveil epigenetic failures behind HERV-triggered diseases, opening new possibilities for druggable targets and/or for extending the use of temelimab to treat other associated diseases.
Collapse
|
156
|
Hunter S, Hokkanen SRK, Keage HAD, Fleming J, Minett T, Polvikoski T, Allinson K, Brayne C. TDP-43 Related Neuropathologies and Phosphorylation State: Associations with Age and Clinical Dementia in the Cambridge City over-75s Cohort. J Alzheimers Dis 2021; 75:337-350. [PMID: 32280087 DOI: 10.3233/jad-191093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathologies associated with the Tar-DNA binding protein 43 KDa (TDP-43) are associated with neurodegenerative diseases and aging. Phosphorylation of cellular proteins is a well-accepted mechanism of biological control and can be associated with disease pathways. Phosphorylation state associated with TDP-43 associated pathology has not been investigated with respect to dementia status in a population representative sample. TDP-43 immunohistochemistry directed toward phosphorylated (TDP-43P) and unphosphorylated (TDP-43U) was assessed in sections of hippocampus and temporal cortex from 222 brains donated to the population representative Cambridge City over-75s Cohort. Relationships between dementia status and age at death for TDP-43 immunoreactive pathologies by phosphorylation state were investigated. TDP-43 pathologies are common in the oldest old in the population and often do not conform to MacKenzie classification. Increasing age is associated with glial (TDP-43P) and neuronal inclusions (TDP-43P and TDP-43U), neurites, and granulovacuolar degeneration (GVD). Dementia status is associated with GVD and glial (TDP-43 P) and neural inclusions (TDP-43 P and U). Dementia severity was associated with glial (TDP-43P) and neuronal inclusions (TDP-43U and TDP-43P), GVD, and neurites. The associations between dementia severity and both glial cytoplasmic inclusions and GVD were independent from other pathologies and TDP-43 neuronal cytoplasmic inclusions. TDP-43 pathology contributes to dementia status and progression in a variety of ways in different phosphorylation states involving both neurons and glia, independently from age and from classic Alzheimer-related pathologies. TDP-43 pathologies as cytoplasmic inclusions in neurons or glia or as GVD contribute independently to dementia.
Collapse
Affiliation(s)
- Sally Hunter
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Suvi R K Hokkanen
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Hannah A D Keage
- Cognitive Ageing and Impairment Neurosciences, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, Australia
| | - Jane Fleming
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Thais Minett
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, UK.,Department of Radiology, University of Cambridge, Cambridge, UK
| | - Tuomo Polvikoski
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Kieren Allinson
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Carol Brayne
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
157
|
Porta S, Xu Y, Lehr T, Zhang B, Meymand E, Olufemi M, Stieber A, Lee EB, Trojanowski JQ, Lee VMY. Distinct brain-derived TDP-43 strains from FTLD-TDP subtypes induce diverse morphological TDP-43 aggregates and spreading patterns in vitro and in vivo. Neuropathol Appl Neurobiol 2021; 47:1033-1049. [PMID: 33971027 DOI: 10.1111/nan.12732] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/30/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022]
Abstract
AIM The heterogeneity in the distribution and morphological features of TAR DNA-binding protein-43 (TDP-43) pathology in the brains of frontotemporal lobar degeneration (FTLD-TDP) patients and their different clinical manifestations suggest that distinct pathological TDP-43 strains could play a role in this heterogeneity between different FTLD-TDP subtypes (A-E). Our aim was to evaluate the existence of distinct TDP-43 strains in the brains of different FTLD-TDP subtypes and characterise their specific seeding properties in vitro and in vivo. METHODS AND RESULTS We used an inducible stable cell line expressing a mutant cytoplasmic TDP-43 (iGFP-NLSm) to evaluate the seeding properties of distinct pathological TDP-43 strains. Brain-derived TDP-43 protein extracts from FTLD-TDP types A (n = 6) and B (n = 3) cases induced the formation of round/spherical phosphorylated TDP-43 aggregates that morphologically differed from the linear and wavy wisps and bigger heterogeneous filamentous (skein-like) aggregates induced by type E (n = 3) cases. These morphological differences correlated with distinct biochemical banding patterns of sarkosyl-insoluble TDP-43 protein recovered from the transduced cells. Moreover, brain-derived TDP-43 extracts from type E cases showed higher susceptibility to PK digestion of full-length TDP-43 and the most abundant C-terminal fragments that characterise type E extracts. Finally, we showed that intracerebral injections of different TDP-43 strains induced a distinctive morphological and subcellular distribution of TDP-43 pathology and different spreading patterns in the brains of CamKIIa-hTDP-43NLSm Tg mice. CONCLUSIONS We show the existence of distinct TDP-43 strains in the brain of different FTLD-TDP subtypes with distinctive seeding and spreading properties in the brains of experimental animal models.
Collapse
Affiliation(s)
- Sílvia Porta
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Yan Xu
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Tagan Lehr
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Bin Zhang
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily Meymand
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Modupe Olufemi
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Anna Stieber
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
158
|
Tadokoro K, Yamashita T, Shang J, Ohta Y, Nomura E, Morihara R, Omote Y, Takemoto M, Abe K. Switching the Proteolytic System from the Ubiquitin-Proteasome System to Autophagy in the Spinal Cord of an Amyotrophic Lateral Sclerosis Mouse Model. Neuroscience 2021; 466:47-57. [PMID: 33974963 DOI: 10.1016/j.neuroscience.2021.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
The degradation of damaged proteins takes place via two major proteolytic pathways: the ubiquitin-proteasome system (UPS) and autophagy. However, since it is unclear how these two proteolytic pathways contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS), we investigated the switching mechanism from UPS to autophagy by pharmacologically modifying these pathways by treating the spinal cords of female ALS mouse model bearing G93A human SOD1 (G93A mice) with MG132 or 3-methyladenine (3MA). G93A mice exhibited a progressive increase in the amount of ubiquitin and p62 aggregates, BAG3 expression, and LC3-II/LC3-I ratio in both astroglia and motor neurons. Treatment with MG132 or 3MA significantly increased the clinical hanging wire score and exacerbated α-motor neuron loss at 18 weeks in G93A mice, and increased the amount of ubiquitin, p62 aggregates, and BAG3 expression. This study's results demonstrate that the molecular switch from UPS to autophagy occurred not only in motor neurons but also in astroglia at the end stage (18 weeks) when the autophagic flux was impaired in G93A mice. This finding suggests that the defense system was disrupted against aggregate-prone protein production in ALS.
Collapse
Affiliation(s)
- Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan
| | - Jingwei Shang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan
| | - Emi Nomura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan
| | - Yoshio Omote
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| |
Collapse
|
159
|
Harley J, Clarke BE, Patani R. The Interplay of RNA Binding Proteins, Oxidative Stress and Mitochondrial Dysfunction in ALS. Antioxidants (Basel) 2021; 10:antiox10040552. [PMID: 33918215 PMCID: PMC8066094 DOI: 10.3390/antiox10040552] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
RNA binding proteins fulfil a wide number of roles in gene expression. Multiple mechanisms of RNA binding protein dysregulation have been implicated in the pathomechanisms of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Oxidative stress and mitochondrial dysfunction also play important roles in these diseases. In this review, we highlight the mechanistic interplay between RNA binding protein dysregulation, oxidative stress and mitochondrial dysfunction in ALS. We also discuss different potential therapeutic strategies targeting these pathways.
Collapse
Affiliation(s)
- Jasmine Harley
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Benjamin E. Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Correspondence: (B.E.C.); (R.P.)
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- National Hospital for Neurology and Neurosurgery, University College London NHS, London WC1N 3BG, UK
- Correspondence: (B.E.C.); (R.P.)
| |
Collapse
|
160
|
Amador MDM, Muratet F, Teyssou E, Boillée S, Millecamps S. New advances in Amyotrophic Lateral Sclerosis genetics: Towards gene therapy opportunities for familial and young cases. Rev Neurol (Paris) 2021; 177:524-535. [PMID: 33810837 DOI: 10.1016/j.neurol.2021.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 10/21/2022]
Abstract
Due to novel gene therapy opportunities, genetic screening is no longer restricted to familial cases of ALS (FALS) cases but also aplies to the sporadic populations (SALS). Screening of four main genes (C9orf72, SOD1, TARDBP and FUS) identified the causes in 15% of Amyotrophic Lateral Sclerosis (ALS) patients (two third of the familial cases and 8% of the sporadic ones) but their respective contribution to ALS phenotype varies according the age of disease onset. The genetic overlap between ALS and other diseases is expanding and includes frontotemporal dementia, Paget's Disease of Bone, myopathy for adult cases, HSP and CMT for young cases highlighing the importance of retrieving the exhaustive familial history for each indivdual with ALS. Incomplete disease penetrance, diversity of the possible phenotypes, as well as the lack of confidence concerning the pathogenicity of most identified variants and/or possible oligogenic inheritance are burdens of ALS genetic counseling to be delivered to patients and at risk individuals. The multitude of rare ALS genetic causes identifed seems to converge to similar cellular pathways leading to inapropriate response to stress emphacising new potential therapeutic options for the disease.
Collapse
Affiliation(s)
- M-D-M Amador
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, UPMC Univ Paris 6 UMRS1127, 75013 Paris, France; Département de Neurologie, Assistance Publique Hôpitaux de Paris (APHP), Centre de référence SLA Île de France, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France.
| | - F Muratet
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, UPMC Univ Paris 6 UMRS1127, 75013 Paris, France.
| | - E Teyssou
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, UPMC Univ Paris 6 UMRS1127, 75013 Paris, France.
| | - S Boillée
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, UPMC Univ Paris 6 UMRS1127, 75013 Paris, France.
| | - S Millecamps
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, UPMC Univ Paris 6 UMRS1127, 75013 Paris, France.
| |
Collapse
|
161
|
Stimulation of mTOR-independent autophagy and mitophagy by rilmenidine exacerbates the phenotype of transgenic TDP-43 mice. Neurobiol Dis 2021; 154:105359. [PMID: 33798740 DOI: 10.1016/j.nbd.2021.105359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/12/2021] [Accepted: 03/27/2021] [Indexed: 11/23/2022] Open
Abstract
Autophagy, which mediates the delivery of cytoplasmic substrates to the lysosome for degradation, is essential for maintaining proper cell homeostasis in physiology, ageing, and disease. There is increasing evidence that autophagy is defective in neurodegenerative disorders, including motor neurons affected in amyotrophic lateral sclerosis (ALS). Restoring impaired autophagy in motor neurons may therefore represent a rational approach for ALS. Here, we demonstrate autophagy impairment in spinal cords of mice expressing mutant TDP-43Q331K or co-expressing TDP-43WTxQ331K transgenes. The clinically approved anti-hypertensive drug rilmenidine was used to stimulate mTOR-independent autophagy in double transgenic TDP-43WTxQ331K mice to alleviate impaired autophagy. Although rilmenidine treatment induced robust autophagy in spinal cords, this exacerbated the phenotype of TDP-43WTxQ331K mice, shown by truncated lifespan, accelerated motor neuron loss, and pronounced nuclear TDP-43 clearance. Importantly, rilmenidine significantly promoted mitophagy in spinal cords TDP-43WTxQ331K mice, evidenced by reduced mitochondrial markers and load in spinal motor neurons. These results suggest that autophagy induction accelerates the phenotype of this TDP-43 mouse model of ALS, most likely through excessive mitochondrial clearance in motor neurons. These findings also emphasise the importance of balancing autophagy stimulation with the potential negative consequences of hyperactive mitophagy in ALS and other neurodegenerative diseases.
Collapse
|
162
|
Traiffort E, Morisset-Lopez S, Moussaed M, Zahaf A. Defective Oligodendroglial Lineage and Demyelination in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22073426. [PMID: 33810425 PMCID: PMC8036314 DOI: 10.3390/ijms22073426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 01/23/2023] Open
Abstract
Motor neurons and their axons reaching the skeletal muscle have long been considered as the best characterized targets of the degenerative process observed in amyotrophic lateral sclerosis (ALS). However, the involvement of glial cells was also more recently reported. Although oligodendrocytes have been underestimated for a longer time than other cells, they are presently considered as critically involved in axonal injury and also conversely constitute a target for the toxic effects of the degenerative neurons. In the present review, we highlight the recent advances regarding oligodendroglial cell involvement in the pathogenesis of ALS. First, we present the oligodendroglial cells, the process of myelination, and the tight relationship between axons and myelin. The histological abnormalities observed in ALS and animal models of the disease are described, including myelin defects and oligodendroglial accumulation of pathological protein aggregates. Then, we present data that establish the existence of dysfunctional and degenerating oligodendroglial cells, the chain of events resulting in oligodendrocyte degeneration, and the most recent molecular mechanisms supporting oligodendrocyte death and dysfunction. Finally, we review the arguments in support of the primary versus secondary involvement of oligodendrocytes in the disease and discuss the therapeutic perspectives related to oligodendrocyte implication in ALS pathogenesis.
Collapse
Affiliation(s)
- Elisabeth Traiffort
- Diseases and Hormones of the Nervous System U1195 INSERM, Paris Saclay University, 80 Rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France;
- Correspondence:
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans University, INSERM, rue Charles Sadron, CEDEX 02, 45071 Orleans, France; (S.M.-L.); (M.M.)
| | - Mireille Moussaed
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans University, INSERM, rue Charles Sadron, CEDEX 02, 45071 Orleans, France; (S.M.-L.); (M.M.)
| | - Amina Zahaf
- Diseases and Hormones of the Nervous System U1195 INSERM, Paris Saclay University, 80 Rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France;
| |
Collapse
|
163
|
Asakawa K, Handa H, Kawakami K. Illuminating ALS Motor Neurons With Optogenetics in Zebrafish. Front Cell Dev Biol 2021; 9:640414. [PMID: 33816488 PMCID: PMC8012537 DOI: 10.3389/fcell.2021.640414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by progressive degeneration of motor neurons in the brain and spinal cord. Spinal motor neurons align along the spinal cord length within the vertebral column, and extend long axons to connect with skeletal muscles covering the body surface. Due to this anatomy, spinal motor neurons are among the most difficult cells to observe in vivo. Larval zebrafish have transparent bodies that allow non-invasive visualization of whole cells of single spinal motor neurons, from somas to the neuromuscular synapses. This unique feature, combined with its amenability to genome editing, pharmacology, and optogenetics, enables functional analyses of ALS-associated proteins in the spinal motor neurons in vivo with subcellular resolution. Here, we review the zebrafish skeletal neuromuscular system and the optical methods used to study it. We then introduce a recently developed optogenetic zebrafish ALS model that uses light illumination to control oligomerization, phase transition and aggregation of the ALS-associated DNA/RNA-binding protein called TDP-43. Finally, we will discuss how this disease-in-a-fish ALS model can help solve key questions about ALS pathogenesis and lead to new ALS therapeutics.
Collapse
Affiliation(s)
- Kazuhide Asakawa
- Department of Chemical Biology, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, Tokyo, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan.,Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| |
Collapse
|
164
|
Capitini C, Fani G, Vivoli Vega M, Penco A, Canale C, Cabrita LD, Calamai M, Christodoulou J, Relini A, Chiti F. Full-length TDP-43 and its C-terminal domain form filaments in vitro having non-amyloid properties. Amyloid 2021; 28:56-65. [PMID: 33026249 PMCID: PMC7613275 DOI: 10.1080/13506129.2020.1826425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Such inclusions have variably been described as amorphous aggregates or more structured deposits having amyloid properties. Here we have purified full-length TDP-43 (FL TDP-43) and its C-terminal domain (Ct TDP-43) to investigate the morphological, structural and tinctorial features of aggregates formed in vitro by them at pH 7.4 and 37 °C. AFM images indicate that both protein variants show a tendency to form filaments. Moreover, we show that both FL TDP-43 and Ct TDP-43 filaments possess a largely disordered secondary structure, as ascertained by far-UV circular dichroism and Fourier transform infra-red spectroscopy, do not bind Congo red and induce a very weak increase of thioflavin T fluorescence, indicating the absence of a clear amyloid-like signature.
Collapse
Affiliation(s)
- Claudia Capitini
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy
| | - Giulia Fani
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Mirella Vivoli Vega
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Amanda Penco
- Department of Physics, University of Genoa, Genoa, Italy
| | - Claudio Canale
- Department of Physics, University of Genoa, Genoa, Italy
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, UCL and Birkbeck College London, London, UK
| | - Martino Calamai
- European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
| | - John Christodoulou
- Institute of Structural and Molecular Biology, UCL and Birkbeck College London, London, UK
| | | | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
165
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 403] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
166
|
Laos V, Bishop D, Ganguly P, Schonfeld G, Trapp E, Cantrell KL, Buratto SK, Shea JE, Bowers MT. Catalytic Cross Talk between Key Peptide Fragments That Couple Alzheimer's Disease with Amyotrophic Lateral Sclerosis. J Am Chem Soc 2021; 143:3494-3502. [PMID: 33621087 DOI: 10.1021/jacs.0c12729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein aggregation is a common feature in prominent neurodegenerative diseases, usually thought to be due to the assembly of a single peptide or protein. Recent studies have challenged this notion and suggested several proteins may be involved in promoting and amplifying disease. For example, the TDP-43 protein associated with Amyotrophic Lateral Sclerosis has been found in the brain along with Aβ assemblies associated with Alzheimer's disease, and those patients that show the presence of TDP-43 are 10 times more likely to demonstrate cognitive impairment compared to TDP-43-negative Alzheimer's patients. Here we examine the interactions between the amyloidogenic core of TDP-43, TDP-43307-319, and a neurotoxic physiologically observed fragment of Aβ, Aβ25-35. Utilizing ion mobility mass spectrometry in concert with atomic force microscopy and molecular dynamics simulations, we investigate which oligomers are involved in seeding aggregation across these two different protein systems and gain insight into which structures initiate and result from these interactions. Studies were conducted by mixing Aβ25-35 with the toxic wild type TDP-43307-319 peptide and with the nontoxic synthetic TDP-43307-319 mutant, G314V. Our findings identify a strong catalytic effect of TDP-43307-319 WT monomer in the acceleration of Aβ25-35 aggregation to its toxic cylindrin and β barrel forms. This observation is unprecedented in both its speed and specificity. Interestingly, the nontoxic G314V mutant of TDP-43307-319 and dimers or higher order oligomers of WT TDP-43307-319 do not promote aggregation of Aβ25-35 but rather dissociate preformed toxic higher order oligomers of Aβ25-35. Reasons for these very different behaviors are reported.
Collapse
Affiliation(s)
- Veronica Laos
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Dezmond Bishop
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Pritam Ganguly
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Grace Schonfeld
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Ellen Trapp
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Kristi Lazar Cantrell
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Steven K Buratto
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Joan-Emma Shea
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Michael T Bowers
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
167
|
Ryan ÉB, Yan J, Miller N, Dayanidhi S, Ma YC, Deng HX, Siddique T. Early death of ALS-linked CHCHD10-R15L transgenic mice with central nervous system, skeletal muscle, and cardiac pathology. iScience 2021; 24:102061. [PMID: 33659869 PMCID: PMC7890413 DOI: 10.1016/j.isci.2021.102061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/27/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Mutations in coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) have been identified in patients suffering from various degenerative diseases including mitochondrial myopathy, spinal muscular atrophy Jokela type, frontotemporal dementia, and/or amyotrophic lateral sclerosis (ALS). The pathogenic mechanism underlying CHCHD10-linked divergent disorders remains largely unknown. Here we show that transgenic mice overexpressing an ALS-linked CHCHD10 p.R15L mutation leads to an abbreviated lifespan compared with CHCHD10-WT transgenic mice. The occurrence and severity of the phenotype correlates to transgene copy number. Central nervous system (CNS), skeletal muscle, and cardiac pathology is apparent in CHCHD10-R15L transgenic mice. Despite the pathology, CHCHD10-R15L transgenic mice perform comparably to control mice in motor behavioral tasks until very close to death. Although paralysis is not observed, these models provide insight into the pleiotropic nature of CHCHD10 and suggest a contribution of CNS, skeletal muscle, and cardiac pathology to CHCHD10 p.R15L-ALS pathogenesis.
Collapse
Affiliation(s)
- Éanna B. Ryan
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
| | - Jianhua Yan
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Nimrod Miller
- Ann and Robert H. Lurie Children's Hospital of Chicago and Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLab and Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yongchao C. Ma
- Ann and Robert H. Lurie Children's Hospital of Chicago and Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Han-Xiang Deng
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Teepu Siddique
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
168
|
Genç B, Gautam M, Gözütok Ö, Dervishi I, Sanchez S, Goshu GM, Koçak N, Xie E, Silverman RB, Özdinler PH. Improving mitochondria and ER stability helps eliminate upper motor neuron degeneration that occurs due to mSOD1 toxicity and TDP-43 pathology. Clin Transl Med 2021; 11:e336. [PMID: 33634973 PMCID: PMC7898037 DOI: 10.1002/ctm2.336] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Upper motor neurons (UMNs) are a key component of motor neuron circuitry. Their degeneration is a hallmark for diseases, such as hereditary spastic paraplegia (HSP), primary lateral sclerosis (PLS), and amyotrophic lateral sclerosis (ALS). Currently there are no preclinical assays investigating cellular responses of UMNs to compound treatment, even for diseases of the UMNs. The basis of UMN vulnerability is not fully understood, and no compound has yet been identified to improve the health of diseased UMNs: two major roadblocks for building effective treatment strategies. METHODS Novel UMN reporter models, in which UMNs that are diseased because of misfolded superoxide dismutase protein (mSOD1) toxicity and TDP-43 pathology are labeled with eGFP expression, allow direct assessment of UMN response to compound treatment. Electron microscopy reveals very precise aspects of endoplasmic reticulum (ER) and mitochondrial damage. Administration of NU-9, a compound initially identified based on its ability to reduce mSOD1 toxicity, has profound impact on improving the health and stability of UMNs, as identified by detailed cellular and ultrastructural analyses. RESULTS Problems with mitochondria and ER are conserved in diseased UMNs among different species. NU-9 has drug-like pharmacokinetic properties. It lacks toxicity and crosses the blood brain barrier. NU-9 improves the structural integrity of mitochondria and ER, reduces levels of mSOD1, stabilizes degenerating UMN apical dendrites, improves motor behavior measured by the hanging wire test, and eliminates ongoing degeneration of UMNs that become diseased both because of mSOD1 toxicity and TDP-43 pathology, two distinct and important overarching causes of motor neuron degeneration. CONCLUSIONS Mechanism-focused and cell-based drug discovery approaches not only addressed key cellular defects responsible for UMN loss, but also identified NU-9, the first compound to improve the health of diseased UMNs, neurons that degenerate in ALS, HSP, PLS, and ALS/FTLD patients.
Collapse
Affiliation(s)
- Barış Genç
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Mukesh Gautam
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Öge Gözütok
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Ina Dervishi
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Santana Sanchez
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Gashaw M. Goshu
- Department of ChemistryNorthwestern UniversityEvanstonIllinoisUSA
| | - Nuran Koçak
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Edward Xie
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Richard B. Silverman
- Department of ChemistryNorthwestern UniversityEvanstonIllinoisUSA
- Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental TherapeuticsNorthwestern UniversityEvanstonIllinoisUSA
- Department of Pharmacology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIL60208
| | - P. Hande Özdinler
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental TherapeuticsNorthwestern UniversityEvanstonIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIL60208
- Mesulam Center for Cognitive Neurology and Alzheimer's DiseaseNorthwestern University, Feinberg School of MedicineChicagoIL60611
- Les Turner ALS CenterNorthwestern University, Feinberg School of MedicineChicagoIL60611
| |
Collapse
|
169
|
Buratti E. Trends in Understanding the Pathological Roles of TDP-43 and FUS Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:243-267. [PMID: 33433879 DOI: 10.1007/978-3-030-51140-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following the discovery of TDP-43 and FUS involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), the major challenge in the field has been to understand their physiological functions, both in normal and disease conditions. The hope is that this knowledge will improve our understanding of disease and lead to the development of effective therapeutic options. Initially, the focus has been directed at characterizing the role of these proteins in the control of RNA metabolism, because the main function of TDP-43 and FUS is to bind coding and noncoding RNAs to regulate their life cycle within cells. As a result, we now have an in-depth picture of the alterations that occur in RNA metabolism following their aggregation in various ALS/FTLD models and, to a somewhat lesser extent, in patients' brains. In parallel, progress has been made with regard to understanding how aggregation of these proteins occurs in neurons, how it can spread in different brain regions, and how these changes affect various metabolic cellular pathways to result in neuronal death. The aim of this chapter will be to provide a general overview of the trending topics in TDP-43 and FUS investigations and to highlight what might represent the most promising avenues of research in the years to come.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
170
|
Nielsen AK, Folke J, Owczarek S, Svenstrup K, Winge K, Pakkenberg B, Aznar S, Brudek T. TDP-43-specific Autoantibody Decline in Patients With Amyotrophic Lateral Sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/2/e937. [PMID: 33361387 PMCID: PMC7768943 DOI: 10.1212/nxi.0000000000000937] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/16/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We hypothesize alterations in the quality and quantity of anti-43-kDa TAR DNA-binding protein (TDP-43) naturally occurring autoantibodies (NAbs) in patients with amyotrophic lateral sclerosis (ALS); therefore, we assessed relative binding properties of anti-TDP-43 NAbs composite in plasma from patients with ALS in comparison with healthy individuals. METHODS ELISA competition assay was used to explore the apparent avidity/affinity of anti-TDP-43 NAbs in plasma from 51 normal controls and 30 patients with ALS. Furthermore, the relative levels of anti-TDP-43 NAbs within the immunoglobulin (Ig) classes of IgG (isotype IgG1-4) and IgMs were measured using classical indirect ELISA. The occurring results were hereafter correlated with the measures of disease duration and disease progression. RESULTS High-avidity/affinity anti-TDP-43 NAbs levels were significantly reduced in plasma samples from patients with ALS. In addition, a significant decrease in relative levels of anti-TDP-43 IgG3 and IgM NAbs and a significant increase in anti-TDP-43 IgG4 NAbs were observed in ALS plasma vs controls. Furthermore, a decrease in global IgM and an increase in IgG4 levels were observed in ALS. These aberrations of humoral immunity correlated with disease duration, but did not correlate with ALS Functional Rating Scale-Revised scores. CONCLUSIONS Our results may suggest TDP-43-specific immune aberrations in patients with ALS. The skewed immune profiles observed in patients with ALS could indicate a deficiency in the clearance capacity and/or blocking of TDP-43 transmission and propagation. The decrease in levels of high affinity/avidity anti-TDP-43 NAbs and IgMs correlates with disease progression and may be disease predictors.
Collapse
Affiliation(s)
- Anne Kallehauge Nielsen
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Jonas Folke
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Sylwia Owczarek
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Kirsten Svenstrup
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Kristian Winge
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Bente Pakkenberg
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Susana Aznar
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Tomasz Brudek
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark.
| |
Collapse
|
171
|
Evidence that corticofugal propagation of ALS pathology is not mediated by prion-like mechanism. Prog Neurobiol 2020; 200:101972. [PMID: 33309802 DOI: 10.1016/j.pneurobio.2020.101972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/27/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) arises from the combined degeneration of motor neurons (MN) and corticospinal neurons (CSN). Recent clinical and pathological studies suggest that ALS might start in the motor cortex and spread along the corticofugal axonal projections (including the CSN), either via altered cortical excitability and activity or via prion-like propagation of misfolded proteins. Using mouse genetics, we recently provided the first experimental arguments in favour of the corticofugal hypothesis, but the mechanism of propagation remained an open question. To gain insight into this matter, we tested here the possibility that the toxicity of the corticofugal projection neurons (CFuPN) to their targets could be mediated by their cell autonomous-expression of an ALS causing transgene and possible diffusion of toxic misfolded proteins to their spinal targets. We generated a Crym-CreERT2 mouse line to ablate the SOD1G37R transgene selectively in CFuPN. This was sufficient to fully rescue the CSN and to limit spasticity, but had no effect on the burden of misfolded SOD1 protein in the spinal cord, MN survival, disease onset and progression. The data thus indicate that in ALS corticofugal propagation is likely not mediated by prion-like mechanisms, but could possibly rather rely on cortical hyperexcitability.
Collapse
|
172
|
Savage AL, Lopez AI, Iacoangeli A, Bubb VJ, Smith B, Troakes C, Alahmady N, Koks S, Schumann GG, Al-Chalabi A, Quinn JP. Frequency and methylation status of selected retrotransposition competent L1 loci in amyotrophic lateral sclerosis. Mol Brain 2020; 13:154. [PMID: 33187550 PMCID: PMC7666467 DOI: 10.1186/s13041-020-00694-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Long interspersed element-1 (LINE-1/L1) is the only autonomous transposable element in the human genome that currently mobilises in both germline and somatic tissues. Recent studies have identified correlations between altered retrotransposon expression and the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) in a subset of patients. The risk of an individual developing ALS is dependent on an interaction of genetic variants and subsequent modifiers during life. These modifiers could include environmental factors, which can lead to epigenetic and genomic changes, such as somatic mutations, occurring in the neuronal cells that degenerate as the disease develops. There are more than 1 million L1 copies in the human genome today, but only 80-100 L1 loci in the reference genome are considered to be retrotransposition-competent (RC) and an even smaller number of these RC-L1s loci are highly active. We hypothesise that RC-L1s could affect normal cellular function through their mutagenic potential conferred by their ability to retrotranspose in neuronal cells and through DNA damage caused by the endonuclease activity of the L1-encoded ORF2 protein. To investigate whether either an increase in the genomic burden of RC-L1s or epigenetic changes to RC-L1s altering their expression, could play a role in disease development, we chose a set of seven well characterised genomic RC-L1 loci that were reported earlier to be highly active in a cellular L1 retrotransposition reporter assay or serve as major source elements for germline and/or somatic retrotransposition events. Analysis of the insertion allele frequency of five polymorphic RC-L1s, out of the set of seven, for their presence or absence, did not identify an increased number individually or when combined in individuals with the disease. However, we did identify reduced levels of methylation of RC-L1s in the motor cortex of those individuals with both familial and sporadic ALS compared to control brains. The changes to the regulation of the loci encompassing these RC-L1s demonstrated tissue specificity and could be related to the disease process.
Collapse
Affiliation(s)
- Abigail L Savage
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ana Illera Lopez
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Alfredo Iacoangeli
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Department of Biostatistics and Health Informatics, King's College London, London, UK
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Bradley Smith
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Nada Alahmady
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Department of Biology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
173
|
Franklin JP, Azzouz M, Shaw PJ. SOD1-targeting therapies for neurodegenerative diseases: a review of current findings and future potential. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1835638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- John P. Franklin
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
174
|
Morello G, Salomone S, D’Agata V, Conforti FL, Cavallaro S. From Multi-Omics Approaches to Precision Medicine in Amyotrophic Lateral Sclerosis. Front Neurosci 2020; 14:577755. [PMID: 33192262 PMCID: PMC7661549 DOI: 10.3389/fnins.2020.577755] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disorder, caused by the degeneration of upper and lower motor neurons for which there is no truly effective cure. The lack of successful treatments can be well explained by the complex and heterogeneous nature of ALS, with patients displaying widely distinct clinical features and progression patterns, and distinct molecular mechanisms underlying the phenotypic heterogeneity. Thus, stratifying ALS patients into consistent and clinically relevant subgroups can be of great value for the development of new precision diagnostics and targeted therapeutics for ALS patients. In the last years, the use and integration of high-throughput "omics" approaches have dramatically changed our thinking about ALS, improving our understanding of the complex molecular architecture of ALS, distinguishing distinct patient subtypes and providing a rational foundation for the discovery of biomarkers and new individualized treatments. In this review, we discuss the most significant contributions of omics technologies in unraveling the biological heterogeneity of ALS, highlighting how these approaches are revealing diagnostic, prognostic and therapeutic targets for future personalized interventions.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Research and Biomedical Innovation (IRIB), Italian National Research Council (CNR), Catania, Italy
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Velia D’Agata
- Human Anatomy and Histology, University of Catania, Catania, Italy
| | | | - Sebastiano Cavallaro
- Institute for Research and Biomedical Innovation (IRIB), Italian National Research Council (CNR), Catania, Italy
| |
Collapse
|
175
|
Jo M, Lee S, Jeon YM, Kim S, Kwon Y, Kim HJ. The role of TDP-43 propagation in neurodegenerative diseases: integrating insights from clinical and experimental studies. Exp Mol Med 2020; 52:1652-1662. [PMID: 33051572 PMCID: PMC8080625 DOI: 10.1038/s12276-020-00513-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a highly conserved nuclear RNA/DNA-binding protein involved in the regulation of RNA processing. The accumulation of TDP-43 aggregates in the central nervous system is a common feature of many neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), and limbic predominant age-related TDP-43 encephalopathy (LATE). Accumulating evidence suggests that prion-like spreading of aberrant protein aggregates composed of tau, amyloid-β, and α-synuclein is involved in the progression of neurodegenerative diseases such as AD and PD. Similar to those of prion-like proteins, pathological aggregates of TDP-43 can be transferred from cell-to-cell in a seed-dependent and self-templating manner. Here, we review clinical and experimental studies supporting the prion-like spreading of misfolded TDP-43 and discuss the molecular mechanisms underlying the propagation of these pathological aggregated proteins. The idea that misfolded TDP-43 spreads in a prion-like manner between cells may guide novel therapeutic strategies for TDP-43-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Seyeon Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea.,Department of Brain & Cognitive Sciences, DGIST, Daegu, 42988, South Korea
| | - Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea.,Department of Brain & Cognitive Sciences, DGIST, Daegu, 42988, South Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea.
| |
Collapse
|
176
|
Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, Louis C, Low RRJ, Moecking J, De Nardo D, Balka KR, Calleja DJ, Moghaddas F, Ni E, McLean CA, Samson AL, Tyebji S, Tonkin CJ, Bye CR, Turner BJ, Pepin G, Gantier MP, Rogers KL, McArthur K, Crouch PJ, Masters SL. TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS. Cell 2020; 183:636-649.e18. [PMID: 33031745 PMCID: PMC7599077 DOI: 10.1016/j.cell.2020.09.020] [Citation(s) in RCA: 500] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 07/21/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
Cytoplasmic accumulation of TDP-43 is a disease hallmark for many cases of amyotrophic lateral sclerosis (ALS), associated with a neuroinflammatory cytokine profile related to upregulation of nuclear factor κB (NF-κB) and type I interferon (IFN) pathways. Here we show that this inflammation is driven by the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) when TDP-43 invades mitochondria and releases DNA via the permeability transition pore. Pharmacologic inhibition or genetic deletion of cGAS and its downstream signaling partner STING prevents upregulation of NF-κB and type I IFN induced by TDP-43 in induced pluripotent stem cell (iPSC)-derived motor neurons and in TDP-43 mutant mice. Finally, we document elevated levels of the specific cGAS signaling metabolite cGAMP in spinal cord samples from patients, which may be a biomarker of mtDNA release and cGAS/STING activation in ALS. Our results identify mtDNA release and cGAS/STING activation as critical determinants of TDP-43-associated pathology and demonstrate the potential for targeting this pathway in ALS. TDP-43 enters mitochondria, triggers mtDNA release via the mPTP TDP-43-induced cytosolic mtDNA accumulation activates the cGAS/STING pathway Evidence of cytoplasmic mtDNA was found in ALS patient cells and disease models Blocking STING prevents inflammation and neurodegeneration in vitro and in vivo
Collapse
Affiliation(s)
- Chien-Hsiung Yu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sophia Davidson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Cassandra R Harapas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - James B Hilton
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC 3010, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael J Mlodzianoski
- Centre for Dynamic Imaging, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pawat Laohamonthonkul
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ronnie Ren Jie Low
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jonas Moecking
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Katherine R Balka
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Dale J Calleja
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Fiona Moghaddas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Immunology and Allergy, The Royal Melbourne Hospital, Parkville, VIC 3052, Australia
| | - Erya Ni
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Catriona A McLean
- Anatomical Pathology, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Andre L Samson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shiraz Tyebji
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Christopher J Tonkin
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Christopher R Bye
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Genevieve Pepin
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Kelly L Rogers
- Centre for Dynamic Imaging, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kate McArthur
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Peter J Crouch
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC 3010, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Immunology Laboratory, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong 510623, China.
| |
Collapse
|
177
|
Burg T, Bichara C, Scekic‐Zahirovic J, Fischer M, Stuart‐Lopez G, Brunet A, Lefebvre F, Cordero‐Erausquin M, Rouaux C. Absence of Subcerebral Projection Neurons Is Beneficial in a Mouse Model of Amyotrophic Lateral Sclerosis. Ann Neurol 2020; 88:688-702. [PMID: 32588450 PMCID: PMC7540428 DOI: 10.1002/ana.25833] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Recent studies carried out on amyotrophic lateral sclerosis patients suggest that the disease might initiate in the motor cortex and spread to its targets along the corticofugal tracts. In this study, we aimed to test the corticofugal hypothesis of amyotrophic lateral sclerosis experimentally. METHODS Sod1G86R and Fezf2 knockout mouse lines were crossed to generate a model that expresses a mutant of the murine Sod1 gene ubiquitously, a condition sufficient to induce progressive motor symptoms and premature death, but genetically lacks corticospinal neurons and other subcerebral projection neurons, one of the main populations of corticofugal neurons. Disease onset and survival were recorded, and weight and motor behavior were followed longitudinally. Hyper-reflexia and spasticity were monitored using electromyographic recordings. Neurodegeneration and gliosis were assessed by histological techniques. RESULTS Absence of subcerebral projection neurons delayed disease onset, reduced weight loss and motor impairment, and increased survival without modifying disease duration. Absence of corticospinal neurons also limited presymptomatic hyper-reflexia, a typical component of the upper motoneuron syndrome. INTERPRETATION Major corticofugal tracts are crucial to the onset and progression of amyotrophic lateral sclerosis. In the context of the disease, subcerebral projection neurons might carry detrimental signals to their downstream targets. In its entirety, this study provides the first experimental arguments in favor of the corticofugal hypothesis of amyotrophic lateral sclerosis. ANN NEUROL 2020;88:688-702.
Collapse
Affiliation(s)
- Thibaut Burg
- Inserm UMR_S 1118, Mécanismes centraux et périphériques de la neurodégénérescence, Faculté de MédecineUniversité de StrasbourgStrasbourgFrance
| | - Charlotte Bichara
- UPR 3212, Institut des neurosciences cellulaires et intégratives, UPR 3212 CNRSUniversité de StrasbourgStrasbourgFrance
| | - Jelena Scekic‐Zahirovic
- Inserm UMR_S 1118, Mécanismes centraux et périphériques de la neurodégénérescence, Faculté de MédecineUniversité de StrasbourgStrasbourgFrance
| | - Mathieu Fischer
- Inserm UMR_S 1118, Mécanismes centraux et périphériques de la neurodégénérescence, Faculté de MédecineUniversité de StrasbourgStrasbourgFrance
| | - Geoffrey Stuart‐Lopez
- Inserm UMR_S 1118, Mécanismes centraux et périphériques de la neurodégénérescence, Faculté de MédecineUniversité de StrasbourgStrasbourgFrance
| | - Aurore Brunet
- Inserm UMR_S 1118, Mécanismes centraux et périphériques de la neurodégénérescence, Faculté de MédecineUniversité de StrasbourgStrasbourgFrance
| | - François Lefebvre
- GMRC, service de santé publiqueHôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Matilde Cordero‐Erausquin
- UPR 3212, Institut des neurosciences cellulaires et intégratives, UPR 3212 CNRSUniversité de StrasbourgStrasbourgFrance
| | - Caroline Rouaux
- Inserm UMR_S 1118, Mécanismes centraux et périphériques de la neurodégénérescence, Faculté de MédecineUniversité de StrasbourgStrasbourgFrance
| |
Collapse
|
178
|
Dominguez S, Varfolomeev E, Brendza R, Stark K, Tea J, Imperio J, Ngu H, Earr T, Foreman O, Webster JD, Easton A, Vucic D, Bingol B. Genetic inactivation of RIP1 kinase does not ameliorate disease in a mouse model of ALS. Cell Death Differ 2020; 28:915-931. [PMID: 32994544 DOI: 10.1038/s41418-020-00625-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022] Open
Abstract
RIP1 kinase is proposed to play a critical role in driving necroptosis and inflammation in neurodegenerative disorders, including Amyotrophic Lateral Sclerosis (ALS). Preclinical studies indicated that while pharmacological inhibition of RIP1 kinase can ameliorate axonal pathology and delay disease onset in the mutant SOD1 transgenic (SOD1-Tg) mice, genetic blockade of necroptosis does not provide benefit in this mouse model. To clarify the role of RIP1 kinase activity in driving pathology in SOD1-Tg mice, we crossed SOD1-Tgs to RIP1 kinase-dead knock-in mice, and measured disease progression using functional and histopathological endpoints. Genetic inactivation of the RIP1 kinase activity in the SOD1-Tgs did not benefit the declining muscle strength or nerve function, motor neuron degeneration or neuroinflammation. In addition, we did not find evidence of phosphorylated RIP1 accumulation in the spinal cords of ALS patients. On the other hand, genetic inactivation of RIP1 kinase activity ameliorated the depletion of the neurotransmitter dopamine in a toxin model of dopaminergic neurodegeneration. These findings indicate that RIP1 kinase activity is dispensable for disease pathogenesis in the SOD1-Tg mice while inhibition of kinase activity may provide benefit in acute injury models.
Collapse
Affiliation(s)
- Sara Dominguez
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Eugene Varfolomeev
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Robert Brendza
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Kim Stark
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Joy Tea
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Jose Imperio
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Hai Ngu
- Department of Pathology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Timothy Earr
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Oded Foreman
- Department of Pathology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Amy Easton
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Baris Bingol
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
179
|
Proteostasis Disturbances and Inflammation in Neurodegenerative Diseases. Cells 2020; 9:cells9102183. [PMID: 32998318 PMCID: PMC7601929 DOI: 10.3390/cells9102183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis) disturbances and inflammation are evident in normal aging and some age-related neurodegenerative diseases. While the proteostasis network maintains the integrity of intracellular and extracellular functional proteins, inflammation is a biological response to harmful stimuli. Cellular stress conditions can cause protein damage, thus exacerbating protein misfolding and leading to an eventual overload of the degradation system. The regulation of proteostasis network is particularly important in postmitotic neurons due to their limited regenerative capacity. Therefore, maintaining balanced protein synthesis, handling unfolding, refolding, and degrading misfolded proteins are essential to preserve all cellular functions in the central nervous sysytem. Failing proteostasis may trigger inflammatory responses in glial cells, and the consequent release of inflammatory mediators may lead to disturbances in proteostasis. Here, we review the mechanisms of proteostasis and inflammatory response, emphasizing their role in the pathological hallmarks of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Furthermore, we discuss the interplay between proteostatic stress and excessive immune response that activates inflammation and leads to dysfunctional proteostasis.
Collapse
|
180
|
Zamudio F, Loon AR, Smeltzer S, Benyamine K, Navalpur Shanmugam NK, Stewart NJF, Lee DC, Nash K, Selenica MLB. TDP-43 mediated blood-brain barrier permeability and leukocyte infiltration promote neurodegeneration in a low-grade systemic inflammation mouse model. J Neuroinflammation 2020; 17:283. [PMID: 32979923 PMCID: PMC7519496 DOI: 10.1186/s12974-020-01952-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuronal cytoplasmic inclusions containing TAR DNA-binding protein 43 (TDP-43) are a neuropathological feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's Disease (AD). Emerging evidence also indicates that systemic inflammation may be a contributor to the pathology progression of these neurodegenerative diseases. METHODS To investigate the role of systemic inflammation in the progression of neuronal TDP-43 pathology, AAV9 particles driven by the UCHL1 promoter were delivered to the frontal cortex of wild-type aged mice via intracranial injections to overexpress TDP-43 or green fluorescent protein (GFP) in corticospinal motor neurons. Animals were then subjected to a low-dose (500 μg/kg) intraperitoneal E. coli lipopolysaccharide (LPS) administration challenge for 2 weeks to mimic a chronically altered low-grade systemic inflammatory state. Mice were then subjected to neurobehavioral studies, followed by biochemical and immunohistochemical analyses of the brain tissue. RESULTS In the present study, we report that elevated neuronal TDP-43 levels induced microglial and astrocytic activation in the cortex of injected mice followed by increased RANTES signaling. Moreover, overexpression of TDP-43 exerted abundant mouse immunoglobulin G (IgG), CD3, and CD4+ T cell infiltration as well as endothelial and pericyte activation suggesting increased blood-brain barrier permeability. The BBB permeability in TDP-43 overexpressing brains yielded the frontal cortex vulnerable to the systemic inflammatory response following LPS treatment, leading to marked neutrophil infiltration, neuronal loss, reduced synaptosome-associated protein 25 (SNAP-25) levels, and behavioral impairments in the radial arm water maze (RAWM) task. CONCLUSIONS These results reveal a novel role for TDP-43 in BBB permeability and leukocyte recruitment, indicating complex intermolecular interactions between an altered systemic inflammatory state and pathologically prone TDP-43 protein to promote disease progression.
Collapse
Affiliation(s)
- Frank Zamudio
- Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33613 USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Charlestown, MA 02129 USA
| | - Anjanet R. Loon
- Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33613 USA
| | - Shayna Smeltzer
- Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33613 USA
| | - Khawla Benyamine
- Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33613 USA
| | | | - Nicholas J. F. Stewart
- Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33613 USA
| | - Daniel C. Lee
- Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33613 USA
- Sanders-Brown Center on Aging, Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY USA
| | - Kevin Nash
- Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
| | - Maj-Linda B. Selenica
- Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33613 USA
- Sanders-Brown Center on Aging, Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY USA
| |
Collapse
|
181
|
Rojas P, Ramírez AI, Fernández-Albarral JA, López-Cuenca I, Salobrar-García E, Cadena M, Elvira-Hurtado L, Salazar JJ, de Hoz R, Ramírez JM. Amyotrophic Lateral Sclerosis: A Neurodegenerative Motor Neuron Disease With Ocular Involvement. Front Neurosci 2020; 14:566858. [PMID: 33071739 PMCID: PMC7544921 DOI: 10.3389/fnins.2020.566858] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that causes degeneration of the lower and upper motor neurons and is the most prevalent motor neuron disease. This disease is characterized by muscle weakness, stiffness, and hyperreflexia. Patients survive for a short period from the onset of the disease. Most cases are sporadic, with only 10% of the cases being genetic. Many genes are now known to be involved in familial ALS cases, including some of the sporadic cases. It has also been observed that, in addition to genetic factors, there are numerous molecular mechanisms involved in these pathologies, such as excitotoxicity, mitochondrial disorders, alterations in axonal transport, oxidative stress, accumulation of misfolded proteins, and neuroinflammation. This pathology affects the motor neurons, the spinal cord, the cerebellum, and the brain, but recently, it has been shown that it also affects the visual system. This impact occurs not only at the level of the oculomotor system but also at the retinal level, which is why the retina is being proposed as a possible biomarker of this pathology. The current review discusses the main aspects mentioned above related to ALS, such as the main genes involved, the most important molecular mechanisms that affect this pathology, its ocular involvement, and the possible usefulness of the retina as a biomarker.
Collapse
Affiliation(s)
- Pilar Rojas
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.,Hospital General Universitario Gregorio Marañón, Instituto Oftálmico de Madrid, Madrid, Spain
| | - Ana I Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.,OFTARED, ISCIII, Madrid, Spain.,Departamento de Inmunología Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - José A Fernández-Albarral
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.,OFTARED, ISCIII, Madrid, Spain.,Departamento de Inmunología Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Cadena
- Hospital General Universitario Gregorio Marañón, Instituto Oftálmico de Madrid, Madrid, Spain
| | - Lorena Elvira-Hurtado
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan J Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.,OFTARED, ISCIII, Madrid, Spain.,Departamento de Inmunología Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.,OFTARED, ISCIII, Madrid, Spain.,Departamento de Inmunología Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - José M Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.,OFTARED, ISCIII, Madrid, Spain.,Departamento de Inmunología Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
182
|
Floare ML, Allen SP. Why TDP-43? Why Not? Mechanisms of Metabolic Dysfunction in Amyotrophic Lateral Sclerosis. Neurosci Insights 2020; 15:2633105520957302. [PMID: 32995749 PMCID: PMC7503004 DOI: 10.1177/2633105520957302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder for which there is no effective curative treatment available and minimal palliative care. Mutations in the gene encoding the TAR DNA-binding protein 43 (TDP-43) are a well-recognized genetic cause of ALS, and an imbalance in energy homeostasis correlates closely to disease susceptibility and progression. Considering previous research supporting a plethora of downstream cellular impairments originating in the histopathological signature of TDP-43, and the solid evidence around metabolic dysfunction in ALS, a causal association between TDP-43 pathology and metabolic dysfunction cannot be ruled out. Here we discuss how TDP-43 contributes on a molecular level to these impairments in energy homeostasis, and whether the protein's pathological effects on cellular metabolism differ from those of other genetic risk factors associated with ALS such as superoxide dismutase 1 (SOD1), chromosome 9 open reading frame 72 (C9orf72) and fused in sarcoma (FUS).
Collapse
Affiliation(s)
- Mara-Luciana Floare
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Scott P. Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
183
|
Häkkinen S, Chu SA, Lee SE. Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 145:105063. [PMID: 32890771 DOI: 10.1016/j.nbd.2020.105063] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) have a strong clinical, genetic and pathological overlap. This review focuses on the current understanding of structural, functional and molecular neuroimaging signatures of genetic FTD and ALS. We overview quantitative neuroimaging studies on the most common genes associated with FTD (MAPT, GRN), ALS (SOD1), and both (C9orf72), and summarize visual observations of images reported in the rarer genes (CHMP2B, TARDBP, FUS, OPTN, VCP, UBQLN2, SQSTM1, TREM2, CHCHD10, TBK1).
Collapse
Affiliation(s)
- Suvi Häkkinen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie A Chu
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
184
|
Wang Y, Patani R. Novel therapeutic targets for amyotrophic lateral sclerosis: ribonucleoproteins and cellular autonomy. Expert Opin Ther Targets 2020; 24:971-984. [PMID: 32746659 DOI: 10.1080/14728222.2020.1805734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a devastating disease with a lifetime risk of approximately 1:400. It is incurable and invariably fatal. Average survival is between 3 and 5 years and patients become increasingly paralyzed, losing the ability to speak, eat, and breathe. Therapies in development either (i) target specific familial forms of ALS (comprising a minority of around 10% of cases) or ii) emanate from (over)reliance on animal models or non-human/non-neuronal cell models. There is a desperate and unmet clinical need for effective treatments. Deciphering the primacy and relative contributions of defective protein homeostasis and RNA metabolism in ALS across different model systems will facilitate the identification of putative therapeutic targets. AREAS COVERED This review examines the putative common primary molecular events that lead to ALS pathogenesis. We focus on deregulated RNA metabolism, protein mislocalization/pathological aggregation and the role of glia in ALS-related motor neuron degeneration. Finally, we describe promising targets for therapeutic evaluation. EXPERT OPINION Moving forward, an effective strategy could be achieved by a poly-therapeutic approach which targets both deregulated RNA metabolism and protein dyshomeostasis in the relevant cell types, at the appropriate phase of disease.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London , London, UK.,Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute , London, UK
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London , London, UK.,Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute , London, UK
| |
Collapse
|
185
|
Le Gall L, Anakor E, Connolly O, Vijayakumar UG, Duddy WJ, Duguez S. Molecular and Cellular Mechanisms Affected in ALS. J Pers Med 2020; 10:E101. [PMID: 32854276 PMCID: PMC7564998 DOI: 10.3390/jpm10030101] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a terminal late-onset condition characterized by the loss of upper and lower motor neurons. Mutations in more than 30 genes are associated to the disease, but these explain only ~20% of cases. The molecular functions of these genes implicate a wide range of cellular processes in ALS pathology, a cohesive understanding of which may provide clues to common molecular mechanisms across both familial (inherited) and sporadic cases and could be key to the development of effective therapeutic approaches. Here, the different pathways that have been investigated in ALS are summarized, discussing in detail: mitochondrial dysfunction, oxidative stress, axonal transport dysregulation, glutamate excitotoxicity, endosomal and vesicular transport impairment, impaired protein homeostasis, and aberrant RNA metabolism. This review considers the mechanistic roles of ALS-associated genes in pathology, viewed through the prism of shared molecular pathways.
Collapse
Affiliation(s)
- Laura Le Gall
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
| | - Ekene Anakor
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| | - Owen Connolly
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| | - Udaya Geetha Vijayakumar
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| | - William J. Duddy
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| | - Stephanie Duguez
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; (L.L.G.); (E.A.); (O.C.); (U.G.V.); (W.J.D.)
| |
Collapse
|
186
|
Vasques JF, Mendez-Otero R, Gubert F. Modeling ALS using iPSCs: is it possible to reproduce the phenotypic variations observed in patients in vitro? Regen Med 2020; 15:1919-1933. [PMID: 32795164 DOI: 10.2217/rme-2020-0067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease that leads to progressive degeneration of motoneurons. Mutations in the C9ORF72, SOD1, TARDBP and FUS genes, among others, have been associated with ALS. Although motoneuron degeneration is the common outcome of ALS, different pathological mechanisms seem to be involved in this process, depending on the genotypic background of the patient. The advent of induced pluripotent stem cell (iPSC) technology enabled the development of patient-specific cell lines, from which it is possible to generate different cell types and search for phenotypic alterations. In this review, we summarize the pathophysiological markers detected in cells differentiated from iPSCs of ALS patients. In a translational perspective, iPSCs from ALS patients could be useful for drug screening, through stratifying patients according to their genetic background.
Collapse
Affiliation(s)
- Juliana Ferreira Vasques
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa
| | - Fernanda Gubert
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa.,Instituto de Ciências Biomédicas, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
187
|
Suk TR, Rousseaux MWC. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol Neurodegener 2020; 15:45. [PMID: 32799899 PMCID: PMC7429473 DOI: 10.1186/s13024-020-00397-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Since its discovery as a primary component in cytoplasmic aggregates in post-mortem tissue of patients with Amyotrophic Lateral Sclerosis (ALS), TAR DNA Binding Protein 43 kDa (TDP-43) has remained a central focus to understand the disease. TDP-43 links both familial and sporadic forms of ALS as mutations are causative for disease and cytoplasmic aggregates are a hallmark of nearly all cases, regardless of TDP-43 mutational status. Research has focused on the formation and consequences of cytosolic protein aggregates as drivers of ALS pathology through both gain- and loss-of-function mechanisms. Not only does aggregation sequester the normal function of TDP-43, but these aggregates also actively block normal cellular processes inevitably leading to cellular demise in a short time span. Although there may be some benefit to therapeutically targeting TDP-43 aggregation, this step may be too late in disease development to have substantial therapeutic benefit. However, TDP-43 pathology appears to be tightly linked with its mislocalization from the nucleus to the cytoplasm, making it difficult to decouple the consequences of nuclear-to-cytoplasmic mislocalization from protein aggregation. Studies focusing on the effects of TDP-43 mislocalization have demonstrated both gain- and loss-of-function consequences including altered splicing regulation, over responsiveness to cellular stressors, increases in DNA damage, and transcriptome-wide changes. Additionally, mutations in TARDBP confer a baseline increase in cytoplasmic TDP-43 thus suggesting that small changes in the subcellular localization of TDP-43 could in fact drive early pathology. In this review, we bring forth the theme of protein mislocalization as a key mechanism underlying ALS, by highlighting the importance of maintaining subcellular proteostasis along with the gain- and loss-of-functional consequences when TDP-43 localization is dysregulated. Additional research, focusing on early events in TDP-43 pathogenesis (i.e. to the protein mislocalization stage) will provide insight into disease mechanisms, therapeutic targets, and novel biomarkers for ALS.
Collapse
Affiliation(s)
- Terry R. Suk
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Maxime W. C. Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| |
Collapse
|
188
|
Da Ros M, Deol HK, Savard A, Guo H, Meiering EM, Gibbings D. Wild-type and mutant SOD1 localizes to RNA-rich structures in cells and mice but does not bind RNA. J Neurochem 2020; 156:524-538. [PMID: 32683701 DOI: 10.1111/jnc.15126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/08/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
Many of the genes whose mutation causes Amyotrophic Lateral Sclerosis (ALS) are RNA-binding proteins which localize to stress granules, while others impact the assembly, stability, and elimination of stress granules. This has led to the hypothesis that alterations in the dynamics of stress granules and RNA biology cause ALS. Genetic mutations in Superoxide Dismutase 1 (SOD1) also cause ALS. Evidence demonstrates that SOD1 harboring ALS-linked mutations is recruited to stress granules, induces changes in alternative splicing, and could be an RNA-binding protein. Whether SOD1 inclusions contain RNA in disease models and whether SOD1 directly binds RNA remains uncertain. We applied methods including cross-linking immunoprecipitation and in vitro gel shift assays to detect binding of SOD1 to RNA in vitro, in cells with and without stress granules, and in mice expressing human SOD1 G93A. We find that SOD1 localizes to RNA-rich structures including stress granules, and SOD1 inclusions in mice contain mRNA. However, we find no evidence that SOD1 directly binds RNA. This suggests that SOD1 may impact stress granules, alternative splicing and RNA biology without binding directly to RNA.
Collapse
Affiliation(s)
- Matteo Da Ros
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Eric Poulin Centre for Neuromuscular Disease, Ottawa, ON, Canada
| | - Harmeen K Deol
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| | - Alexandre Savard
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Eric Poulin Centre for Neuromuscular Disease, Ottawa, ON, Canada
| | - Huishan Guo
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Eric Poulin Centre for Neuromuscular Disease, Ottawa, ON, Canada
| | | | - Derrick Gibbings
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Eric Poulin Centre for Neuromuscular Disease, Ottawa, ON, Canada
| |
Collapse
|
189
|
Feneberg E, Turner MR, Ansorge O, Talbot K. Amyotrophic lateral sclerosis with a heterozygous D91A SOD1 variant and classical ALS-TDP neuropathology. Neurology 2020; 95:595-596. [DOI: 10.1212/wnl.0000000000010587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/15/2020] [Indexed: 11/15/2022] Open
|
190
|
Mackenzie IRA, Briemberg H. TDP-43 pathology in primary lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:52-58. [PMID: 32657153 DOI: 10.1080/21678421.2020.1790607] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Primary lateral sclerosis (PLS) is a controversial form of motor neuron disease (MND), with uncertainty whether it represents a distinct clinico-pathological entity or is simply a variant of classical amyotrophic lateral sclerosis (ALS). Neuropathological studies provide an opportunity to investigate these issues; however, there have been very few published descriptions of postmortem findings in clinically defined PLS, using modern techniques. Here, we report the neuropathological features of seven cases of PLS with age at onset ranging from 47 to 73 years and disease duration from 3.5 to 35 years. All cases showed chronic degeneration of the primary motor cortex and/or the corticospinal tracts with preservation of lower motor neurons (LMN). All five cases, in which motor cortex was available, had TDP-43 immunoreactive (TDP-ir) cortical pathology. In all seven cases, TDP-ir inclusions were also present in LMN; however, these were always rare, averaging less than one inclusion per tissue section. The finding of TDP-ir pathology in all our cases suggests that PLS and ALS are closely related conditions. Importantly however, the extremely minor involvement of LMN, even after very long disease duration in some cases, suggests that PLS is a distinct form of MND in which LMN are spared or protected.
Collapse
Affiliation(s)
- Ian R A Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada, and
| | - Hannah Briemberg
- Division of Neurology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
191
|
McGurk L, Rifai OM, Bonini NM. TDP-43, a protein central to amyotrophic lateral sclerosis, is destabilized by tankyrase-1 and -2. J Cell Sci 2020; 133:jcs245811. [PMID: 32409565 PMCID: PMC7328137 DOI: 10.1242/jcs.245811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
In >95% of cases of amyotrophic lateral sclerosis (ALS) and ∼45% of frontotemporal degeneration (FTD), the RNA/DNA-binding protein TDP-43 is cleared from the nucleus and abnormally accumulates in the cytoplasm of affected brain cells. Although the cellular triggers of disease pathology remain enigmatic, mounting evidence implicates the poly(ADP-ribose) polymerases (PARPs) in TDP-43 neurotoxicity. Here we show that inhibition of the PARP enzymes tankyrase 1 and tankyrase 2 (referred to as Tnks-1/2) protect primary rodent neurons from TDP-43-associated neurotoxicity. We demonstrate that Tnks-1/2 interacts with TDP-43 via a newly defined tankyrase-binding domain. Upon investigating the functional effect, we find that interaction with Tnks-1/2 inhibits the ubiquitination and proteasomal turnover of TDP-43, leading to its stabilization. We further show that proteasomal turnover of TDP-43 occurs preferentially in the nucleus; our data indicate that Tnks-1/2 stabilizes TDP-43 by promoting cytoplasmic accumulation, which sequesters the protein from nuclear proteasome degradation. Thus, Tnks-1/2 activity modulates TDP-43 and is a potential therapeutic target in diseases associated with TDP-43, such as ALS and FTD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Leeanne McGurk
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Olivia M Rifai
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
192
|
Human salivary Raman fingerprint as biomarker for the diagnosis of Amyotrophic Lateral Sclerosis. Sci Rep 2020; 10:10175. [PMID: 32576912 PMCID: PMC7311476 DOI: 10.1038/s41598-020-67138-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease leading to progressive and irreversible muscle atrophy. The diagnosis of ALS is time-consuming and complex, with the clinical and neurophysiological evaluation accompanied by monitoring of progression and a long procedure for the discrimination of similar neurodegenerative diseases. The delayed diagnosis strongly slows the potential development of adequate therapies and the time frame for a prompt intervention. The discovery of new biomarkers could improve the disease diagnosis, as well as the therapeutic and rehabilitative effectiveness and monitoring of the pathological progression. In this work saliva collected from 19 patients with ALS, 10 affected by Parkinson’s disease, 10 affected by Alzheimer’s disease and 10 healthy subjects, was analysed using Raman spectroscopy, optimizing the parameters for detailed and reproducible spectra. The statistical multivariate analysis of the data revealed a significant difference between the groups, allowing the discrimination of the disease onset. Correlation of Raman data revealed a direct relationship with paraclinical scores, identifying multifactorial biochemical modifications related to the pathology. The proposed approach showed a promising accuracy in ALS onset discrimination, using a fast and sensitive procedure that can make more efficient the diagnostic procedure and the monitoring of therapeutic and rehabilitative processes in ALS.
Collapse
|
193
|
Geser F, Fellner L, Haybaeck J, Wenning GK. Development of neurodegeneration in amyotrophic lateral sclerosis: from up or down? J Neural Transm (Vienna) 2020; 127:1097-1105. [PMID: 32500222 DOI: 10.1007/s00702-020-02213-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease associated with neurodegeneration and intracellular pathological 43-kDa transactive response sequence DNA-binding protein (TDP-43) positive inclusions. The various clinical symptoms, such as motor disorders and cognitive impairment, reflect the degeneration of certain areas of the nervous system. Since the discovery of the significance of pathological TDP-43 for human disease including ALS, there has been an increasing number of studies reporting on the distribution and severity of neurodegeneration. These have rekindled the old debate about whether the first or second motor neuron is the primary site of degeneration in ALS. To shed light on this question, the following is a review of the relevant neuropathological studies.
Collapse
Affiliation(s)
- F Geser
- Department of Neurology, Hegau-Bodensee-Klinikum Singen, Virchowstr. 10, 78224, Singen (Hohentwiel), Germany.
| | - L Fellner
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - J Haybaeck
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neuropathology, Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - G K Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
194
|
Xue YC, Ng CS, Xiang P, Liu H, Zhang K, Mohamud Y, Luo H. Dysregulation of RNA-Binding Proteins in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2020; 13:78. [PMID: 32547363 PMCID: PMC7273501 DOI: 10.3389/fnmol.2020.00078] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Genetic analyses of patients with amyotrophic lateral sclerosis (ALS) have revealed a strong association between mutations in genes encoding many RNA-binding proteins (RBPs), including TARDBP, FUS, hnRNPA1, hnRNPA2B1, MATR3, ATXN2, TAF15, TIA-1, and EWSR1, and disease onset/progression. RBPs are a group of evolutionally conserved proteins that participate in multiple steps of RNA metabolism, including splicing, polyadenylation, mRNA stability, localization, and translation. Dysregulation of RBPs, as a consequence of gene mutations, impaired nucleocytoplasmic trafficking, posttranslational modification (PTM), aggregation, and sequestration by abnormal RNA foci, has been shown to be involved in neurodegeneration and the development of ALS. While the exact mechanism by which dysregulated RBPs contribute to ALS remains elusive, emerging evidence supports the notion that both a loss of function and/or a gain of toxic function of these ALS-linked RBPs play a significant role in disease pathogenesis through facilitating abnormal protein interaction, causing aberrant RNA metabolism, and by disturbing ribonucleoprotein granule dynamics and phase transition. In this review article, we summarize the current knowledge on the molecular mechanism by which RBPs are dysregulated and the influence of defective RBPs on cellular homeostasis during the development of ALS. The strategies of ongoing clinical trials targeting RBPs and/or relevant processes are also discussed in the present review.
Collapse
Affiliation(s)
- Yuan Chao Xue
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chen Seng Ng
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pinhao Xiang
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Huitao Liu
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kevin Zhang
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yasir Mohamud
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Honglin Luo
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
195
|
Barp A, Gerardi F, Lizio A, Sansone VA, Lunetta C. Emerging Drugs for the Treatment of Amyotrophic Lateral Sclerosis: A Focus on Recent Phase 2 Trials. Expert Opin Emerg Drugs 2020; 25:145-164. [PMID: 32456491 DOI: 10.1080/14728214.2020.1769067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease involving both upper and lower motor neurons and resulting in increasing disability and death 3-5 years after onset of symptoms. Over 40 large clinical trials for ALS have been negative, except for Riluzole that offers a modest survival benefit, and Edaravone that modestly reduces disease progression in patients with specific characteristics. Thus, the discovery of efficient disease modifying therapy is an urgent need. AREAS COVERED Although the cause of ALS remains unclear, many studies have demonstrated that neuroinflammation, proteinopathies, glutamate-induced excitotoxicity, microglial activation, oxidative stress, and mitochondrial dysfunction may play a key role in the pathogenesis. This review highlights recent discoveries relating to these diverse mechanisms and their implications for the development of therapy. Ongoing phase 2 clinical trials aimed to interfere with these pathophysiological mechanisms are discussed. EXPERT OPINION This review describes the challenges that the discovery of an efficient drug therapy faces and how these issues may be addressed. With the continuous advances coming from basic research, we provided possible suggestions that may be considered to improve performance of clinical trials and turn ALS research into a 'fertile ground' for drug development for this devastating disease.
Collapse
Affiliation(s)
- Andrea Barp
- NEuroMuscular Omnicentre, Fondazione Serena Onlus , Milan, Italy.,Dept. Biomedical Sciences of Health, University of Milan , Milan, Italy
| | | | - Andrea Lizio
- NEuroMuscular Omnicentre, Fondazione Serena Onlus , Milan, Italy
| | - Valeria Ada Sansone
- NEuroMuscular Omnicentre, Fondazione Serena Onlus , Milan, Italy.,Dept. Biomedical Sciences of Health, University of Milan , Milan, Italy
| | | |
Collapse
|
196
|
Siciliano G, Chico L, Lo Gerfo A, Simoncini C, Schirinzi E, Ricci G. Exercise-Related Oxidative Stress as Mechanism to Fight Physical Dysfunction in Neuromuscular Disorders. Front Physiol 2020; 11:451. [PMID: 32508674 PMCID: PMC7251329 DOI: 10.3389/fphys.2020.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular diseases (NMDs) are a group of often severely disabling disorders characterized by dysfunction in one of the main constituents of the motor unit, the cardinal anatomic-functional structure behind force and movement production. Irrespective of the different pathogenic mechanisms specifically underlying these disease conditions genetically determined or acquired, and the related molecular pathways involved in doing that, oxidative stress has often been shown to play a relevant role within the chain of events that induce or at least modulate the clinical manifestations of these disorders. Due to such a putative relevance of the imbalance of redox status occurring in contractile machinery and/or its neural drive in NMDs, physical exercise appears as one of the most important conditions able to positively interfere along an ideal axis, going from a deranged metabolic cell homeostasis in motor unit components to the reduced motor performance profile exhibited by the patient in everyday life. If so, it comes out that it would be important to identify a proper training program, suitable for load and type of exercise that is able to improve motor performance in adaptation and response to such a homeostatic imbalance. This review therefore analyzes the role of different exercise trainings on oxidative stress mechanisms, both in healthy and in NMDs, also including preclinical studies, to elucidate at which extent these can be useful to counteract muscle impairment associated to the disease, with the final aim of improving physical functions and quality of life of NMD patients.
Collapse
Affiliation(s)
- Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Lucia Chico
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Annalisa Lo Gerfo
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Costanza Simoncini
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Erika Schirinzi
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| |
Collapse
|
197
|
Ishiguro A, Kimura N, Noma T, Shimo-Kon R, Ishihama A, Kon T. Molecular dissection of ALS-linked TDP-43 - involvement of the Gly-rich domain in interaction with G-quadruplex mRNA. FEBS Lett 2020; 594:2254-2265. [PMID: 32337711 DOI: 10.1002/1873-3468.13800] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
TDP-43 is the major pathogenic protein of amyotrophic lateral sclerosis (ALS). Previously, we identified that TDP-43 interacts with G-quadruplex (G4)-containing RNA and is involved in their long-distance transport in neurons. For the molecular dissection of the TDP-43 and G4-RNA interaction, we analyzed it here in vitro and in cultured cells using a set of 10 mutant TDP-43 proteins from familial and sporadic ALS patients as well as using the TDP-43 C-terminal Gly-rich domain alone. Our results altogether indicate the involvement of the Gly-rich region of TDP-43 in the initial recognition and binding of G4-RNA, which then induces tight binding of TDP-43 with target RNAs, supposedly in conjunction with its RNA recognition motifs.
Collapse
Affiliation(s)
- Akira Ishiguro
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| | - Nobuyuki Kimura
- Section of Cell Biology and Pathology, Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Noma
- Department of Biological Science, Graduate School of Science, and Faculty of Science Osaka University, Toyonaka, Japan
| | - Rieko Shimo-Kon
- Department of Biological Science, Graduate School of Science, and Faculty of Science Osaka University, Toyonaka, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| | - Takahide Kon
- Department of Biological Science, Graduate School of Science, and Faculty of Science Osaka University, Toyonaka, Japan
| |
Collapse
|
198
|
Chernoff YO, Grizel AV, Rubel AA, Zelinsky AA, Chandramowlishwaran P, Chernova TA. Application of yeast to studying amyloid and prion diseases. ADVANCES IN GENETICS 2020; 105:293-380. [PMID: 32560789 PMCID: PMC7527210 DOI: 10.1016/bs.adgen.2020.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies.
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States; Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia.
| | - Anastasia V Grizel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew A Zelinsky
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
199
|
Pecoraro V, Mandrioli J, Carone C, Chiò A, Traynor BJ, Trenti T. The NGS technology for the identification of genes associated with the ALS. A systematic review. Eur J Clin Invest 2020; 50:e13228. [PMID: 32293029 PMCID: PMC9008463 DOI: 10.1111/eci.13228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/05/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND More than 30 causative genes have been identified in familial and sporadic amyotrophic lateral sclerosis (ALS). The next-generation sequencing (NGS) is a powerful and groundbreaking tool to identify disease-associated variants. Despite documented advantages of NGS, its diagnostic reliability needs to be addressed in order to use this technology for specific routine diagnosis. MATERIAL AND METHODS Literature database was explored to identify studies comparing NGS and Sanger sequencing for the detection of variants causing ALS. We collected data about patients' characteristics, disease type and duration, NGS and Sanger properties. RESULTS More than 200 bibliographic references were identified, of which only 14 studies matching our inclusion criteria. Only 2 out of 14 studies compared results of NGS analysis with the Sanger sequencing. Twelve studies screened causative genes associated to ALS using NGS technologies and confirmed the identified variants with Sanger sequencing. Overall, data about more 2,000 patients were analysed. The number of genes that were investigated in each study ranged from 1 to 32, the most frequent being FUS, OPTN, SETX and VCP. NGS identified already known mutations in 21 genes, and new or rare variants in 27 genes. CONCLUSIONS NGS seems to be a promising tool for the diagnosis of ALS in routine clinical practice. Its advantages are represented by an increased speed and a lowest sequencing cost, but patients' counselling could be problematic due to the discovery of frequent variants of unknown significance.
Collapse
Affiliation(s)
- Valentina Pecoraro
- Laboratory of Toxycology and Advanced Diagnostics, Department of Laboratory Medicine and Pathology, Ospedale Civile S. Agostino Estense, Modena, Italy
| | - Jessica Mandrioli
- Department of Neuroscience, Ospedale Civile S. Agostino Estense, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Chiara Carone
- Laboratory of Toxycology and Advanced Diagnostics, Department of Laboratory Medicine and Pathology, Ospedale Civile S. Agostino Estense, Modena, Italy
| | - Adriano Chiò
- Department of Neuroscience, ALS Center "Rita Levi Montalcini", University of Torino, Torino, Italy.,The Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Torino, Italy.,The Neuroscience Institute of Torino, Torino, Italy
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Tommaso Trenti
- Laboratory of Toxycology and Advanced Diagnostics, Department of Laboratory Medicine and Pathology, Ospedale Civile S. Agostino Estense, Modena, Italy
| |
Collapse
|
200
|
Christoforidou E, Joilin G, Hafezparast M. Potential of activated microglia as a source of dysregulated extracellular microRNAs contributing to neurodegeneration in amyotrophic lateral sclerosis. J Neuroinflammation 2020; 17:135. [PMID: 32345319 PMCID: PMC7187511 DOI: 10.1186/s12974-020-01822-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron degeneration in adults, and several mechanisms underlying the disease pathology have been proposed. It has been shown that glia communicate with other cells by releasing extracellular vesicles containing proteins and nucleic acids, including microRNAs (miRNAs), which play a role in the post-transcriptional regulation of gene expression. Dysregulation of miRNAs is commonly observed in ALS patients, together with inflammation and an altered microglial phenotype. However, the role of miRNA-containing vesicles in microglia-to-neuron communication in the context of ALS has not been explored in depth. This review summarises the evidence for the presence of inflammation, pro-inflammatory microglia and dysregulated miRNAs in ALS, then explores how microglia may potentially be responsible for this miRNA dysregulation. The possibility of pro-inflammatory ALS microglia releasing miRNAs which may then enter neuronal cells to contribute to degeneration is also explored. Based on the literature reviewed here, microglia are a likely source of dysregulated miRNAs and potential mediators of neurodegenerative processes. Therefore, dysregulated miRNAs may be promising candidates for the development of therapeutic strategies.
Collapse
Affiliation(s)
| | - Greig Joilin
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Majid Hafezparast
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| |
Collapse
|