151
|
Bischof M, Lorenzi M, Lee J, Druyts E, Balijepalli C, Dabbous O. Matching-adjusted indirect treatment comparison of onasemnogene abeparvovec and nusinersen for the treatment of symptomatic patients with spinal muscular atrophy type 1. Curr Med Res Opin 2021; 37:1719-1730. [PMID: 34236007 DOI: 10.1080/03007995.2021.1947216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Onasemnogene abeparvovec, a one-time intravenous gene replacement therapy, and nusinersen, an antisense oligonucleotide that requires ongoing intrathecal administration, have been evaluated as treatments for spinal muscular atrophy (SMA) type 1 in separate Phase III trials, but no head-to-head comparison studies have been conducted. Onasemnogene abeparvovec was compared with nusinersen using a matching-adjusted indirect comparison (MAIC) to estimate the treatment effect of onasemnogene abeparvovec relative to nusinersen for the treatment of symptomatic patients with SMA type 1 for up to 24 months of follow-up. METHODS In the absence of studies for both onasemnogene abeparvovec and nusinersen with a common comparator, a Bayesian naïve indirect treatment comparison (ITC) and MAIC between onasemnogene abeparvovec and nusinersen were conducted to compare efficacy and safety of onasemnogene abeparvovec with nusinersen. Outcomes of interest were event-free survival (EFS), overall survival (OS), and motor milestone achievements (independent sitting and independent walking). Relative treatment effects were expressed as relative risk (RR) and risk difference. RESULTS Pooled and weighted patient-level data illustrated a favorable effect toward onasemnogene abeparvovec, suggesting longer EFS for patients compared with nusinersen (HR of onasemnogene abeparvovec vs. nusinersen: 0.19 [95% CI: 0.07-0.54; 99% CI: 0.05-0.74]). At 24 months of follow-up, patients receiving onasemnogene abeparvovec were statistically significantly more likely to achieve the motor milestone of sitting independently compared with patients treated with nusinersen. Although statistically significant differences were not observed at 6 to 18 months between treatment options, the likelihood of sitting independently at 12 and 18 months numerically favored onasemnogene abeparvovec. A numerically greater likelihood of walking by 18 and 24 months was also observed for patients treated with onasemnogene abeparvovec compared with nusinersen. Onasemnogene abeparvovec therapy was also associated with a favorable (but statistically nonsignificant) outcome for OS and may be associated with prolonged survival compared with nusinersen (HR of onasemnogene abeparvovec vs. nusinersen: 0.35 [95% CI: 0.09-1.32; 99% CI: 0.06-2.01]). Bayesian naïve ITC results were similar to the MAIC analysis for EFS, OS, and motor milestone achievements. Small sample size limited covariate matching to baseline CHOP INTEND and nutritional support requirement, leading to wider CIs and statistically inconclusive outcomes for some of the results. CONCLUSIONS Despite limitations of the current MAIC analysis (mainly a small sample size for statistical testing, even for the pooled onasemnogene abeparvovec trials, and potential differences in prognostic and predictive factors between studies), the relative treatment effects in EFS, OS, and motor milestone achievement indicate that onasemnogene abeparvovec may offer continued benefit compared with nusinersen through 24 months of follow-up.
Collapse
Affiliation(s)
| | | | - Jennifer Lee
- Decision Resources Group, Manchester, United Kingdom
| | - Eric Druyts
- Pharmalytics Group, Vancouver, British Columbia, Canada
| | | | - Omar Dabbous
- Global Geneconomics and Outcomes Research, Novartis Gene Therapies, Inc, Bannockburn, IL, USA
| |
Collapse
|
152
|
Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 2021; 20:832-841. [PMID: 34536405 DOI: 10.1016/s1474-4422(21)00251-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Spinal muscular atrophy is a rare, autosomal recessive, neuromuscular disease caused by biallelic loss of the survival motor neuron 1 (SMN1) gene, resulting in motor neuron dysfunction. In this STR1VE-EU study, we aimed to evaluate the safety and efficacy of onasemnogene abeparvovec gene replacement therapy in infants with spinal muscular atrophy type 1, using broader eligibility criteria than those used in STR1VE-US. METHODS STR1VE-EU was a multicentre, single-arm, single-dose, open-label phase 3 trial done at nine sites (hospitals and universities) in Italy (n=4), the UK (n=2), Belgium (n=2), and France (n=1). We enrolled patients younger than 6 months (180 days) with spinal muscular atrophy type 1 and the common biallelic pathogenic SMN1 exon 7-8 deletion or point mutations, and one or two copies of SMN2. Patients received a one-time intravenous infusion of onasemnogene abeparvovec (1·1 × 1014 vector genomes [vg]/kg). The outpatient follow-up consisted of assessments once per week starting at day 7 post-infusion for 4 weeks and then once per month until the end of the study (at age 18 months or early termination). The primary outcome was independent sitting for at least 10 s, as defined by the WHO Multicentre Growth Reference Study, at any visit up to the 18 months of age study visit, measured in the intention-to-treat population. Efficacy was compared with the Pediatric Neuromuscular Clinical Research (PNCR) natural history cohort. This trial is registered with ClinicalTrials.gov, NCT03461289 (completed). FINDINGS From Aug 16, 2018, to Sept 11, 2020, 41 patients with spinal muscular atrophy were assessed for eligibility. The median age at onasemnogene abeparvovec dosing was 4·1 months (IQR 3·0-5·2). 32 (97%) of 33 patients completed the study and were included in the ITT population (one patient was excluded despite completing the study because of dosing at 181 days). 14 (44%, 97·5% CI 26-100) of 32 patients achieved the primary endpoint of functional independent sitting for at least 10 s at any visit up to the 18 months of age study visit (vs 0 of 23 untreated patients in the PNCR cohort; p<0·0001). 31 (97%, 95% CI 91-100) of 32 patients in the ITT population survived free from permanent ventilatory support at 14 months compared with six (26%, 8-44) of 23 patients in the PNCR natural history cohort (p<0·0001). 32 (97%) of 33 patients had at least one adverse event and six (18%) had adverse events that were considered serious and related to onasemnogene abeparvovec. The most common adverse events were pyrexia (22 [67%] of 33), upper respiratory infection (11 [33%]), and increased alanine aminotransferase (nine [27%]). One death, unrelated to the study drug, occurred from hypoxic-ischaemic brain damage because of a respiratory tract infection during the study. INTERPRETATION STR1VE-EU showed efficacy of onasemnogene abeparvovec in infants with symptomatic spinal muscular atrophy type 1. No new safety signals were identified, but further studies are needed to show long-term safety. The benefit-risk profile of onasemnogene abeparvovec seems favourable for this patient population, including those with severe disease at baseline. FUNDING Novartis Gene Therapies.
Collapse
|
153
|
Duong T, Wolford C, McDermott MP, Macpherson CE, Pasternak A, Glanzman AM, Martens WB, Kichula E, Darras BT, De Vivo DC, Zolkipli-Cunningham Z, Finkel RS, Zeineh M, Wintermark M, Sampson J, Hagerman KA, Young SD, Day JW. Nusinersen Treatment in Adults With Spinal Muscular Atrophy. Neurol Clin Pract 2021; 11:e317-e327. [PMID: 34476123 PMCID: PMC8382360 DOI: 10.1212/cpj.0000000000001033] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Objective To determine changes in motor and respiratory function after treatment with nusinersen in adults with spinal muscular atrophy (SMA) during the first two years of commercial availability in the USA. Methods Data were collected prospectively on adult (age >17 years at treatment initiation) SMA participants in the Pediatric Neuromuscular Clinical Research (PNCR) Network. Baseline assessments of SMA outcomes including the Expanded Hammersmith Functional Rating Scale (HFMSE), Revised Upper Limb Module (RULM), and 6-Minute Walk Test (6MWT) occurred <5 months before treatment, and post-treatment assessments were made up to 24 months after nusinersen initation. Patient-reported experiences, safety laboratory tests and adverse events were monitored. The mean annual rate of change over time was determined for outcome measures using linear mixed effects models. Results Forty-two adult SMA participants (mean age: 34 years, range 17-66) receiving nusinersen for a mean of 12.5 months (range 3-24 months) were assessed. Several motor and respiratory measures showed improvement distinct from the progressive decline typically seen in untreated adults. Participants also reported qualitative improvements including muscle strength, stamina, breathing and bulbar related outcomes. All participants tolerated nusinersen with normal surveillance labs and no significant adverse events. Conclusions Trends of improvement emerged in functional motor, patient-reported, and respiratory measures, suggesting nusinersen may be efficacious in adults with SMA. Larger well-controlled studies and additional outcome measures are needed to firmly establish the efficacy of nusinersen in adults with SMA. Classification of Evidence This study provides Class IV evidence regarding nusinersen tolerability and efficacy based on reported side effects and pulmonary and physical therapy assessments in an adult SMA cohort.
Collapse
Affiliation(s)
- Tina Duong
- Departments of Neurology (TD, CW, SDY, KAH, JS, JWD), Rehabilitation (CEM), and Radiology (MZ, MW), Stanford University School of Medicine, Palo Alto, CA; Departments of Biostatistics and Computational Biology (MPM), and Neurology (MPM and WBM), University of Rochester Medical Center, NY; Department of Neurology (AP,BTD), Boston Children's Hospital, MA; Department of Neurology (DCD), Columbia University, New York; Department of Neurology (AMG EAK, ZZ) Children's Hospital of Philadelphia, PA; and Department of Pediatrics (RSF) Nemours Children's Hospital, Orlando, FL
| | - Connie Wolford
- Departments of Neurology (TD, CW, SDY, KAH, JS, JWD), Rehabilitation (CEM), and Radiology (MZ, MW), Stanford University School of Medicine, Palo Alto, CA; Departments of Biostatistics and Computational Biology (MPM), and Neurology (MPM and WBM), University of Rochester Medical Center, NY; Department of Neurology (AP,BTD), Boston Children's Hospital, MA; Department of Neurology (DCD), Columbia University, New York; Department of Neurology (AMG EAK, ZZ) Children's Hospital of Philadelphia, PA; and Department of Pediatrics (RSF) Nemours Children's Hospital, Orlando, FL
| | - Michael P McDermott
- Departments of Neurology (TD, CW, SDY, KAH, JS, JWD), Rehabilitation (CEM), and Radiology (MZ, MW), Stanford University School of Medicine, Palo Alto, CA; Departments of Biostatistics and Computational Biology (MPM), and Neurology (MPM and WBM), University of Rochester Medical Center, NY; Department of Neurology (AP,BTD), Boston Children's Hospital, MA; Department of Neurology (DCD), Columbia University, New York; Department of Neurology (AMG EAK, ZZ) Children's Hospital of Philadelphia, PA; and Department of Pediatrics (RSF) Nemours Children's Hospital, Orlando, FL
| | - Chelsea E Macpherson
- Departments of Neurology (TD, CW, SDY, KAH, JS, JWD), Rehabilitation (CEM), and Radiology (MZ, MW), Stanford University School of Medicine, Palo Alto, CA; Departments of Biostatistics and Computational Biology (MPM), and Neurology (MPM and WBM), University of Rochester Medical Center, NY; Department of Neurology (AP,BTD), Boston Children's Hospital, MA; Department of Neurology (DCD), Columbia University, New York; Department of Neurology (AMG EAK, ZZ) Children's Hospital of Philadelphia, PA; and Department of Pediatrics (RSF) Nemours Children's Hospital, Orlando, FL
| | - Amy Pasternak
- Departments of Neurology (TD, CW, SDY, KAH, JS, JWD), Rehabilitation (CEM), and Radiology (MZ, MW), Stanford University School of Medicine, Palo Alto, CA; Departments of Biostatistics and Computational Biology (MPM), and Neurology (MPM and WBM), University of Rochester Medical Center, NY; Department of Neurology (AP,BTD), Boston Children's Hospital, MA; Department of Neurology (DCD), Columbia University, New York; Department of Neurology (AMG EAK, ZZ) Children's Hospital of Philadelphia, PA; and Department of Pediatrics (RSF) Nemours Children's Hospital, Orlando, FL
| | - Allan M Glanzman
- Departments of Neurology (TD, CW, SDY, KAH, JS, JWD), Rehabilitation (CEM), and Radiology (MZ, MW), Stanford University School of Medicine, Palo Alto, CA; Departments of Biostatistics and Computational Biology (MPM), and Neurology (MPM and WBM), University of Rochester Medical Center, NY; Department of Neurology (AP,BTD), Boston Children's Hospital, MA; Department of Neurology (DCD), Columbia University, New York; Department of Neurology (AMG EAK, ZZ) Children's Hospital of Philadelphia, PA; and Department of Pediatrics (RSF) Nemours Children's Hospital, Orlando, FL
| | - William B Martens
- Departments of Neurology (TD, CW, SDY, KAH, JS, JWD), Rehabilitation (CEM), and Radiology (MZ, MW), Stanford University School of Medicine, Palo Alto, CA; Departments of Biostatistics and Computational Biology (MPM), and Neurology (MPM and WBM), University of Rochester Medical Center, NY; Department of Neurology (AP,BTD), Boston Children's Hospital, MA; Department of Neurology (DCD), Columbia University, New York; Department of Neurology (AMG EAK, ZZ) Children's Hospital of Philadelphia, PA; and Department of Pediatrics (RSF) Nemours Children's Hospital, Orlando, FL
| | - Elizabeth Kichula
- Departments of Neurology (TD, CW, SDY, KAH, JS, JWD), Rehabilitation (CEM), and Radiology (MZ, MW), Stanford University School of Medicine, Palo Alto, CA; Departments of Biostatistics and Computational Biology (MPM), and Neurology (MPM and WBM), University of Rochester Medical Center, NY; Department of Neurology (AP,BTD), Boston Children's Hospital, MA; Department of Neurology (DCD), Columbia University, New York; Department of Neurology (AMG EAK, ZZ) Children's Hospital of Philadelphia, PA; and Department of Pediatrics (RSF) Nemours Children's Hospital, Orlando, FL
| | - Basil T Darras
- Departments of Neurology (TD, CW, SDY, KAH, JS, JWD), Rehabilitation (CEM), and Radiology (MZ, MW), Stanford University School of Medicine, Palo Alto, CA; Departments of Biostatistics and Computational Biology (MPM), and Neurology (MPM and WBM), University of Rochester Medical Center, NY; Department of Neurology (AP,BTD), Boston Children's Hospital, MA; Department of Neurology (DCD), Columbia University, New York; Department of Neurology (AMG EAK, ZZ) Children's Hospital of Philadelphia, PA; and Department of Pediatrics (RSF) Nemours Children's Hospital, Orlando, FL
| | - Darryl C De Vivo
- Departments of Neurology (TD, CW, SDY, KAH, JS, JWD), Rehabilitation (CEM), and Radiology (MZ, MW), Stanford University School of Medicine, Palo Alto, CA; Departments of Biostatistics and Computational Biology (MPM), and Neurology (MPM and WBM), University of Rochester Medical Center, NY; Department of Neurology (AP,BTD), Boston Children's Hospital, MA; Department of Neurology (DCD), Columbia University, New York; Department of Neurology (AMG EAK, ZZ) Children's Hospital of Philadelphia, PA; and Department of Pediatrics (RSF) Nemours Children's Hospital, Orlando, FL
| | - Zarazuela Zolkipli-Cunningham
- Departments of Neurology (TD, CW, SDY, KAH, JS, JWD), Rehabilitation (CEM), and Radiology (MZ, MW), Stanford University School of Medicine, Palo Alto, CA; Departments of Biostatistics and Computational Biology (MPM), and Neurology (MPM and WBM), University of Rochester Medical Center, NY; Department of Neurology (AP,BTD), Boston Children's Hospital, MA; Department of Neurology (DCD), Columbia University, New York; Department of Neurology (AMG EAK, ZZ) Children's Hospital of Philadelphia, PA; and Department of Pediatrics (RSF) Nemours Children's Hospital, Orlando, FL
| | - Richard S Finkel
- Departments of Neurology (TD, CW, SDY, KAH, JS, JWD), Rehabilitation (CEM), and Radiology (MZ, MW), Stanford University School of Medicine, Palo Alto, CA; Departments of Biostatistics and Computational Biology (MPM), and Neurology (MPM and WBM), University of Rochester Medical Center, NY; Department of Neurology (AP,BTD), Boston Children's Hospital, MA; Department of Neurology (DCD), Columbia University, New York; Department of Neurology (AMG EAK, ZZ) Children's Hospital of Philadelphia, PA; and Department of Pediatrics (RSF) Nemours Children's Hospital, Orlando, FL
| | - Michael Zeineh
- Departments of Neurology (TD, CW, SDY, KAH, JS, JWD), Rehabilitation (CEM), and Radiology (MZ, MW), Stanford University School of Medicine, Palo Alto, CA; Departments of Biostatistics and Computational Biology (MPM), and Neurology (MPM and WBM), University of Rochester Medical Center, NY; Department of Neurology (AP,BTD), Boston Children's Hospital, MA; Department of Neurology (DCD), Columbia University, New York; Department of Neurology (AMG EAK, ZZ) Children's Hospital of Philadelphia, PA; and Department of Pediatrics (RSF) Nemours Children's Hospital, Orlando, FL
| | - Max Wintermark
- Departments of Neurology (TD, CW, SDY, KAH, JS, JWD), Rehabilitation (CEM), and Radiology (MZ, MW), Stanford University School of Medicine, Palo Alto, CA; Departments of Biostatistics and Computational Biology (MPM), and Neurology (MPM and WBM), University of Rochester Medical Center, NY; Department of Neurology (AP,BTD), Boston Children's Hospital, MA; Department of Neurology (DCD), Columbia University, New York; Department of Neurology (AMG EAK, ZZ) Children's Hospital of Philadelphia, PA; and Department of Pediatrics (RSF) Nemours Children's Hospital, Orlando, FL
| | - Jacinda Sampson
- Departments of Neurology (TD, CW, SDY, KAH, JS, JWD), Rehabilitation (CEM), and Radiology (MZ, MW), Stanford University School of Medicine, Palo Alto, CA; Departments of Biostatistics and Computational Biology (MPM), and Neurology (MPM and WBM), University of Rochester Medical Center, NY; Department of Neurology (AP,BTD), Boston Children's Hospital, MA; Department of Neurology (DCD), Columbia University, New York; Department of Neurology (AMG EAK, ZZ) Children's Hospital of Philadelphia, PA; and Department of Pediatrics (RSF) Nemours Children's Hospital, Orlando, FL
| | - Katharine A Hagerman
- Departments of Neurology (TD, CW, SDY, KAH, JS, JWD), Rehabilitation (CEM), and Radiology (MZ, MW), Stanford University School of Medicine, Palo Alto, CA; Departments of Biostatistics and Computational Biology (MPM), and Neurology (MPM and WBM), University of Rochester Medical Center, NY; Department of Neurology (AP,BTD), Boston Children's Hospital, MA; Department of Neurology (DCD), Columbia University, New York; Department of Neurology (AMG EAK, ZZ) Children's Hospital of Philadelphia, PA; and Department of Pediatrics (RSF) Nemours Children's Hospital, Orlando, FL
| | - Sally Dunaway Young
- Departments of Neurology (TD, CW, SDY, KAH, JS, JWD), Rehabilitation (CEM), and Radiology (MZ, MW), Stanford University School of Medicine, Palo Alto, CA; Departments of Biostatistics and Computational Biology (MPM), and Neurology (MPM and WBM), University of Rochester Medical Center, NY; Department of Neurology (AP,BTD), Boston Children's Hospital, MA; Department of Neurology (DCD), Columbia University, New York; Department of Neurology (AMG EAK, ZZ) Children's Hospital of Philadelphia, PA; and Department of Pediatrics (RSF) Nemours Children's Hospital, Orlando, FL
| | - John W Day
- Departments of Neurology (TD, CW, SDY, KAH, JS, JWD), Rehabilitation (CEM), and Radiology (MZ, MW), Stanford University School of Medicine, Palo Alto, CA; Departments of Biostatistics and Computational Biology (MPM), and Neurology (MPM and WBM), University of Rochester Medical Center, NY; Department of Neurology (AP,BTD), Boston Children's Hospital, MA; Department of Neurology (DCD), Columbia University, New York; Department of Neurology (AMG EAK, ZZ) Children's Hospital of Philadelphia, PA; and Department of Pediatrics (RSF) Nemours Children's Hospital, Orlando, FL
| |
Collapse
|
154
|
Arnold WD, Severyn S, Zhao S, Kline D, Linsenmayer M, Kelly K, Tellez M, Bartlett A, Heintzman S, Reynolds J, Sterling G, Weaver T, Rajneesh K, Burghes AHM, Kolb SJ, Elsheikh B. Persistent neuromuscular junction transmission defects in adults with spinal muscular atrophy treated with nusinersen. BMJ Neurol Open 2021; 3:e000164. [PMID: 34466806 PMCID: PMC8362737 DOI: 10.1136/bmjno-2021-000164] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Spinal muscular atrophy (SMA) is a motor neuron disease caused by low levels of survival motor neuron (SMN) protein. Prior work in models and patients has demonstrated electrophysiological and morphological defects at the neuromuscular junction (NMJ). Therapeutic development has resulted in clinically available therapies to increase SMN protein levels in patients and improve muscle function. Here we aimed to investigate the effect of SMN restoration (via nusinersen) on NMJ transmission in adults with SMA. Methods Participants undergoing nusinersen treatment underwent 3 Hz repetitive nerve stimulation (RNS) of the spinal accessory nerve to assess compound muscle action potential amplitude decrement. Maximum voluntary isometric contraction (MVICT), Revised Upper Limb Module (RULM), and 6 min walk test (6MWT) were assessed for correlations with decrement. Results Data from 13 ambulatory (7 men/6 women, mean age 40±11 years) and 11 non-ambulatory (3 men/8 women, mean age 38±12 years) participants were analysed. Cross-sectional analyses of RNS decrement were similar at 14 months of nusinersen (−14.2%±11.5%, n=17) vs baseline (−11.9%±8.3%, n=15) (unpaired t-test, p=0.5202). Longitudinal comparison of decrement in eight participants showed no change at 14 months (−13.9%±6.7%) vs baseline (−16.9%±13.4%) (paired t-test, p=0.5863). Decrement showed strong correlations with measures of MVICT, RULM and 6MWT but not age or disease duration. Conclusion Adults with SMA had significant NMJ transmission defects that were not corrected with 14 months of nusinersen treatment. NMJ defects were negatively associated with physical function, and thus may represent a promising target for additive or combinatorial treatments.
Collapse
Affiliation(s)
- W David Arnold
- Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Steven Severyn
- Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Songzhu Zhao
- Biomedical Informatics and Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA
| | - David Kline
- Biomedical Informatics and Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA
| | - Matthew Linsenmayer
- Assistive Technology Department, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kristina Kelly
- Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Marco Tellez
- Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Amy Bartlett
- Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sarah Heintzman
- Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jerry Reynolds
- Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Gary Sterling
- Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Tristan Weaver
- Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kiran Rajneesh
- Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, USA
| | - Stephen J Kolb
- Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, USA
| | - Bakri Elsheikh
- Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
155
|
Klotz J, Tesi Rocha C, Dunaway Young S, Duong T, Buu M, Sampson J, Day JW. Advances in the Therapy of Spinal Muscular Atrophy. J Pediatr 2021; 236:13-20.e1. [PMID: 34197889 DOI: 10.1016/j.jpeds.2021.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/25/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Jenna Klotz
- Stanford University School of Medicine, Palo Alto, CA.
| | | | | | - Tina Duong
- Stanford University School of Medicine, Palo Alto, CA
| | - MyMy Buu
- Stanford University School of Medicine, Palo Alto, CA
| | | | - John W Day
- Stanford University School of Medicine, Palo Alto, CA
| |
Collapse
|
156
|
Milella G, Introna A, D'Errico E, Fraddosio A, Scaglione G, Morea A, Ucci M, Ruggieri M, Mastrapasqua M, Megna M, Puntillo F, Simone IL. Cerebrospinal Fluid and Clinical Profiles in Adult Type 2-3 Spinal Muscular Atrophy Patients Treated with Nusinersen: An 18-Month Single-Centre Experience. Clin Drug Investig 2021; 41:775-784. [PMID: 34389971 PMCID: PMC8390404 DOI: 10.1007/s40261-021-01071-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Nusinersen was approved as the first disease-modifying therapy in spinal muscular atrophy (SMA). Our aim was to analyse therapy-related changes in cerebrospinal fluid (CSF) and serum parameters of adult type 2-3 SMA and to correlate biochemical data with motor functional status. METHODS Nine adult SMA type 2-3 patients and ten control subjects without neurodegenerative diseases were included in our single-centre study. Cross-sectional analysis of CSF routine parameters, CSF neurofilament light chain, CSF Tau, CSF phospho-Tau and serum creatinine was performed between SMA patients at baseline (T0) and control subjects. The above-mentioned fluid parameters were longitudinally analysed in the SMA cohort after loading dose (T1) and after four maintenance doses (T2, T3, T4, T5). Hammersmith Functional Motor Scale Expanded (HFMSE), Revised Upper Limb Module (RULM) and the 6-minute walking test (6MWT) were used to evaluate motor outcomes. RESULTS Improvements in HFMSE, RULM and 6MWT were observed only after the loading dose of nusinersen. No significant differences in routine CSF parameters and CSF markers of neurodegeneration were found between SMA patients and control subjects. Serum creatinine levels were significantly lower in SMA patients than in control subjects. CSF/serum albumin ratio (Qalb) significantly increased from T0 to each time point, without any further increase after the maintenance doses. Persistent systemic oligoclonal bands (OCBs) were found in five patients from baseline. Three more patients developed persistent systemic OCBs from T1; one patient showed intrathecal OCBSs from baseline to T5. Markers of neurodegeneration did not change during the follow-up and did not correlate with motor scores at baseline and at each timepoint. Serum creatinine levels significantly correlated with HFMSE and RULM at each time point. CONCLUSIONS The increase of the Qalb values and the development of systemic OCBs in some SMA patients could be due to repeated lumbar puncture and to the immunogenic effect of nusinersen. On the other hand, the presence of OCBs in serum and/or CSF at baseline should be further investigated. Furthermore, biomarkers of neurodegeneration did not play a prognostic role in our cohort of adult SMA patients.
Collapse
Affiliation(s)
- Giammarco Milella
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Alessandro Introna
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Eustachio D'Errico
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Angela Fraddosio
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gaspare Scaglione
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Antonella Morea
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Maria Ucci
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Maddalena Ruggieri
- Neurophysiopathology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Mariangela Mastrapasqua
- Neurophysiopathology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Marisa Megna
- Physical Medicine and Rehabilitation Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Filomena Puntillo
- Anesthesia, Intensive Care, and Pain Unit, Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Isabella Laura Simone
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
157
|
Chen KA, Widger J, Teng A, Fitzgerald DA, D'Silva A, Farrar M. Real-world respiratory and bulbar comorbidities of SMA type 1 children treated with nusinersen: 2-Year single centre Australian experience. Paediatr Respir Rev 2021; 39:54-60. [PMID: 33129670 DOI: 10.1016/j.prrv.2020.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 01/19/2023]
Abstract
AIM To describe the respiratory and nutritional supportive care and hospitalisations required in the real-world scenario in children with SMA type 1 treated with nusinersen. METHODS Single-centre observational cohort study of children with SMA1 commencing nusinersen from November 2016 to September 2018. Motor, respiratory and nutritional clinical characteristics and management are described from initiation of nusinersen for a minimum of two years. RESULTS Nine children (5 females, 4 males), median age 10.7 months (range 2.7-181.2) commenced treatment with nusinersen and outcomes were assessed over a total of 270.5 patient months and 209 hospital admissions. Supportive care in newly-diagnosed patients (n = 7) included gastrostomy insertion (n = 4) and commencement of noninvasive ventilation (n = 4) at an average of 8.3 and 4.5 months after diagnosis, respectively. The annualised hospitalisation rate was 9.3/patient/year, average length of stay (LOS) of 3.3 days (SD = 5.6). Children with two SMN2 copies required more gastrostomies (p < 0.05) and had more frequent admissions (p < 0.05). Number of total admissions halved from the first to the second year of treatment in all patients (p < 0.005). INTERPRETATION Children with treated SMA1 experienced considerable respiratory and bulbar comorbidities, necessitating substantial respiratory and nutritional supportive care. Proactive respiratory and nutritional surveillance and management is essential in SMA1 patients treated with nusinersen.
Collapse
Affiliation(s)
- Kerrie-Anne Chen
- School of Women's and Children's Health, UNSW Medicine, UNSW Sydney, Australia
| | - John Widger
- School of Women's and Children's Health, UNSW Medicine, UNSW Sydney, Australia; Sydney Children's Hospital, Randwick, Australia
| | - Arthur Teng
- School of Women's and Children's Health, UNSW Medicine, UNSW Sydney, Australia; Sydney Children's Hospital, Randwick, Australia
| | | | - Arlene D'Silva
- School of Women's and Children's Health, UNSW Medicine, UNSW Sydney, Australia
| | - Michelle Farrar
- School of Women's and Children's Health, UNSW Medicine, UNSW Sydney, Australia; Sydney Children's Hospital, Randwick, Australia.
| |
Collapse
|
158
|
Gallagher GW, Nowacek D, Gutgsell O, Callaghan BC. Comparison of the United Kingdom and United States approaches to approval of new neuromuscular therapies. Muscle Nerve 2021; 64:641-650. [PMID: 34448221 DOI: 10.1002/mus.27380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 01/08/2023]
Abstract
Many novel therapies are now available for rare neuromuscular conditions that were previously untreatable. Hereditary transthyretin amyloidosis and spinal muscular atrophy are two examples of diseases with new medications that have transformed our field. The United States and the United Kingdom have taken disparate approaches to the approval and coverage of medications, despite both providing incentives to develop therapies targeting rare diseases. The US requires less evidence for approval when compared with medications for common diseases and does not have a mechanism to ensure or even encourage cost-effectiveness. The Institute of Clinical and Economic Review provides in-depth cost-effectiveness analyses in the US, but does not have the authority to negotiate drug costs. In contrast, the UK has maintained a similar scientific threshold for approval of all therapies, while requiring negotiation with National Institute for Health and Care Excellence to ensure that medications are cost-effective for rare diseases. These differences have led to approval of medications for rare diseases in the US that have less evidence than required for common diseases. Importantly, these medications have not been approved in the UK. Even when medications meet traditional scientific thresholds, they uniformly arrive with high list prices in the US, whereas they are available at cost-effective prices in the UK. The main downsides to the UK approach are that cost-effective medications are often available months later than in the US, and some medications remain unavailable.
Collapse
|
159
|
Lesman D, Rodriguez Y, Rajakumar D, Wein N. U7 snRNA, a Small RNA with a Big Impact in Gene Therapy. Hum Gene Ther 2021; 32:1317-1329. [PMID: 34139889 DOI: 10.1089/hum.2021.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The uridine-rich 7 (U7) small nuclear RNA (snRNA) is a component of a small nuclear ribonucleoprotein (snRNP) complex. U7 snRNA naturally contains an antisense sequence that identifies histone premessenger RNAs (pre-mRNAs) and is involved in their 3' end processing. By altering this antisense sequence, researchers have turned U7 snRNA into a versatile tool for targeting pre-mRNAs and modifying splicing. Encapsulating a modified U7 snRNA into a viral vector such as adeno-associated virus (also referred as vectorized exon skipping/inclusion, or VES/VEI) enables the delivery of this highly efficacious splicing modulator into a range of cell lines, primary cells, and tissues. In addition, and in contrast to antisense oligonucleotides, viral delivery of U7 snRNA enables long-term expression of antisense sequences in the nucleus as part of a stable snRNP complex. As a result, VES/VEI has emerged as a promising therapeutic platform for treating a large variety of human diseases caused by errors in pre-mRNA splicing or its regulation. Here we provide an overview of U7 snRNA's natural function and its applications in gene therapy.
Collapse
Affiliation(s)
- Daniel Lesman
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Yacidzohara Rodriguez
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Dhanarajan Rajakumar
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Nicolas Wein
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatric, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
160
|
Clinical outcome assessments in Duchenne muscular dystrophy and spinal muscular atrophy: past, present and future. Neuromuscul Disord 2021; 31:1028-1037. [PMID: 34412961 DOI: 10.1016/j.nmd.2021.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/23/2022]
Abstract
Scores and scales used in pediatric motor development for neuromuscular disorders have evolved greatly since the beginning of their development. In this review we provide a brief history of scales used in pediatric patients with neuromuscular disorders and an update regarding the advancement of the scales commonly used in patients with spinal muscular atrophy and Duchenne muscular dystrophy. We focus on the collaborative effort that has led to the development of outcomes and speak to the possible future of Clinical Outcome Assessments.
Collapse
|
161
|
Pigatto AV, Kao TJ, Mueller JL, Baker CD, DeBoer EM, Kupfer O. Electrical impedance tomography detects changes in ventilation after airway clearance in spinal muscular atrophy type I. Respir Physiol Neurobiol 2021; 294:103773. [PMID: 34400355 DOI: 10.1016/j.resp.2021.103773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/06/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022]
Abstract
The effect of mechanical insufflation-exsufflation (MIE) for airway clearance in patients with spinal muscular atrophy type I (SMA-I) on the distribution of ventilation in the lung is unknown, as is the duration of its beneficial effects. A pilot study to investigate the feasibility of using three dimensional (3-D) electrical impedance tomography (EIT) images to estimate lung volumes pre- and post-MIE for assessing the effectiveness of mechanical insufflation-exsufflation (MIE) was conducted in 6 pediatric patients with SMA-I in the neuromuscular clinic at Children's Hospital Colorado. EIT data were collected before, during, and after the MIE procedure on two rows of 16 electrodes placed around the chest. Lung volumes were computed from the images and compared before, during, and after the MIE procedure to assess the ability of EIT to estimate changes in lung volume during insufflation and exsufflation. Images of pulsatile pulmonary perfusion were computed in subjects able to perform breath-holding. In four of the six subjects, lung volumes during tidal breathing increased after MIE (average change from pre to post MIE was 58.8±55.1 mL). The time-dependent plots of lung volume computed from the EIT data clearly show when the MIE device insufflates and exsufflates air and the rest periods between mechanical coughs. Images of pulmonary pulsatile perfusion were computed from data collected during breathing pauses. The results suggest that EIT holds promise for estimating lung volumes and ventilation/perfusion mismatch, both of which are useful for assessing the effectiveness of MIE in clearing mucus plugs.
Collapse
Affiliation(s)
- Andre Viera Pigatto
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Tzu-Jen Kao
- GE Research, Niskayuna, NY 12309, United States
| | - Jennifer L Mueller
- School of Biomedical Engineering and Department of Mathematics, Colorado State University, Fort Collins, CO 80523, United States.
| | - Christopher D Baker
- Department of Pediatrics, Section of Pulmonary Medicine, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Emily M DeBoer
- Department of Pediatrics, Section of Pulmonary Medicine, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Oren Kupfer
- Department of Pediatrics, Section of Pulmonary Medicine, University of Colorado School of Medicine, Aurora, CO 80045, United States
| |
Collapse
|
162
|
Sagittal Plane Deformities in Children with SMA2 following Posterior Spinal Instrumentation. CHILDREN-BASEL 2021; 8:children8080703. [PMID: 34438594 PMCID: PMC8394982 DOI: 10.3390/children8080703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022]
Abstract
This is a retrospective radiographic review to assess post-operative sagittal plane deformities in patients with Spinal Muscular Atrophy type 2 that had been treated with posterior spinal instrumentation. Thirty-two patients with a history of either spinal fusion (N = 20) or growing rods (N = 12) were identified with an average of 7.6 (2.1-16.6) years post-operative follow-up. Forty percent (13/32) of the patients were identified as having obvious "tucked chin" (N = 4), "tipped trunk" (N = 9), or both (N = 3). Sacral incidence was the only parameter that was statistically significant change between pre-operative or immediate post-operative measurements (66.9° vs. 55.2° p = 0.03). However, at final follow-up, the post-operative thoracic kyphosis had decreased over time in those that developed a subsequent sagittal deformity (24.2°) whereas it increased in those that did not (44.7°, p = 0.008). This decrease in thoracic kyphosis throughout the instrumented levels, resulted in a greater lordotic imbalance (30.4° vs. 5.6°, p = 0.001) throughout the instrumented levels in the group that developed the subsequent cervical or pelvic sagittal deformities. In conclusion, sagittal plane deformities commonly develop outside the instrumented levels in children with SMA type 2 following posterior spinal instrumentation and may be the result of lordotic imbalance that occurs through continued anterior growth following posterior instrumentation.
Collapse
|
163
|
Pino MG, Rich KA, Kolb SJ. Update on Biomarkers in Spinal Muscular Atrophy. Biomark Insights 2021; 16:11772719211035643. [PMID: 34421296 PMCID: PMC8371741 DOI: 10.1177/11772719211035643] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
The availability of disease modifying therapies for spinal muscular atrophy (SMA) has created an urgent need to identify clinically meaningful biomarkers. Biomarkers present a means to measure and evaluate neurological disease across time. Changes in biomarkers provide insight into disease progression and may reveal biologic, physiologic, or pharmacologic phenomena occurring prior to clinical detection. Efforts to identify biomarkers for SMA, a genetic motor neuron disease characterized by motor neuron degeneration and weakness, have culminated in a number of putative molecular and physiologic markers that evaluate biological media (eg, blood and cerebrospinal fluid [CSF]) or nervous system function. Such biomarkers include SMN2 copy number, SMN mRNA and protein levels, neurofilament proteins (NFs), plasma protein analytes, creatine kinase (CK) and creatinine (Crn), and various electrophysiology and imaging measures. SMN2 copy number inversely correlates with disease severity and is the best predictor of clinical outcome in untreated individuals. SMN mRNA and protein are commonly measured in the blood or CSF of patients receiving SMA therapies, particularly those aimed at increasing SMN protein expression, and provide insight into current disease state. NFs have proven to be robust prognostic, disease progression, and pharmacodynamic markers for SMA infants undergoing treatment, but less so for adolescents and adults. Select plasma proteins are altered in SMA individuals and may track response to therapy. CK and Crn from blood correlate with motor function and disease severity status and are useful for predicting which individuals will respond to therapy. Electrophysiology measures comprise the most reliable means for monitoring motor function throughout disease course and are sensitive enough to detect neuromuscular changes before overt clinical manifestation, making them robust predictive and pharmacodynamic biomarkers. Finally, magnetic resonance imaging and muscle ultrasonography are non-invasive techniques for studying muscle structure and physiology and are useful diagnostic tools, but cannot reliably track disease progression. Importantly, biomarkers can provide information about the underlying mechanisms of disease as well as reveal subclinical disease progression, allowing for more appropriate timing and dosing of therapy for individuals with SMA. Recent therapeutic advancements in SMA have shown promising results, though there is still a great need to identify and understand the impact of biomarkers in modulating disease onset and progression.
Collapse
Affiliation(s)
- Megan G Pino
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Kelly A Rich
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Stephen J Kolb
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
- Department of Biological Chemistry and
Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH,
USA
| |
Collapse
|
164
|
Lee T, Tokunaga S, Taniguchi N, Fujino T, Saito M, Shimomura H, Takeshima Y. Views of the General Population on Newborn Screening for Spinal Muscular Atrophy in Japan. CHILDREN 2021; 8:children8080694. [PMID: 34438585 PMCID: PMC8391323 DOI: 10.3390/children8080694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/31/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023]
Abstract
Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder that results in progressive muscle atrophy and weakness. As new therapies for SMA have been developed, newborn screening for SMA can lead to early diagnosis and treatment. The objective of this study was to gather the general population’s view on screening of SMA in newborns in Japan. A questionnaire survey was conducted on two general population groups in Japan. A total of 269 valid responses were obtained. In the general population, about half of the participants had no knowledge about SMA, and more than 90% did not know about new therapies for SMA. Conversely, more than 95% of the general population agreed with screening newborns for SMA because they believed that early diagnosis was important, and treatments were available. This study revealed that the general population in Japan mostly agreed with screening for SMA in newborns even though they did not know much about SMA. Newborn screening for SMA is promising, but it is in very early stages. Therefore, SMA newborn screening should be performed with sufficient preparation and consideration in order to have a positive impact on SMA patients and their families.
Collapse
|
165
|
Darras BT, Masson R, Mazurkiewicz-Bełdzińska M, Rose K, Xiong H, Zanoteli E, Baranello G, Bruno C, Vlodavets D, Wang Y, El-Khairi M, Gerber M, Gorni K, Khwaja O, Kletzl H, Scalco RS, Fontoura P, Servais L. Risdiplam-Treated Infants with Type 1 Spinal Muscular Atrophy versus Historical Controls. N Engl J Med 2021; 385:427-435. [PMID: 34320287 DOI: 10.1056/nejmoa2102047] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Type 1 spinal muscular atrophy (SMA) is a progressive neuromuscular disease characterized by an onset at 6 months of age or younger, an inability to sit without support, and deficient levels of survival of motor neuron (SMN) protein. Risdiplam is an orally administered small molecule that modifies SMN2 pre-messenger RNA splicing and increases levels of functional SMN protein in blood. METHODS We conducted an open-label study of risdiplam in infants with type 1 SMA who were 1 to 7 months of age at enrollment. Part 1 of the study (published previously) determined the dose to be used in part 2 (reported here), which assessed the efficacy and safety of daily risdiplam as compared with no treatment in historical controls. The primary end point was the ability to sit without support for at least 5 seconds after 12 months of treatment. Key secondary end points were a score of 40 or higher on the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP-INTEND; range, 0 to 64, with higher scores indicating better motor function), an increase of at least 4 points from baseline in the CHOP-INTEND score, a motor-milestone response as measured by Section 2 of the Hammersmith Infant Neurological Examination (HINE-2), and survival without permanent ventilation. For the secondary end points, comparisons were made with the upper boundary of 90% confidence intervals for natural-history data from 40 infants with type 1 SMA. RESULTS A total of 41 infants were enrolled. After 12 months of treatment, 12 infants (29%) were able to sit without support for at least 5 seconds, a milestone not attained in this disorder. The percentages of infants in whom the key secondary end points were met as compared with the upper boundary of confidence intervals from historical controls were 56% as compared with 17% for a CHOP-INTEND score of 40 or higher, 90% as compared with 17% for an increase of at least 4 points from baseline in the CHOP-INTEND score, 78% as compared with 12% for a HINE-2 motor-milestone response, and 85% as compared with 42% for survival without permanent ventilation (P<0.001 for all comparisons). The most common serious adverse events were pneumonia, bronchiolitis, hypotonia, and respiratory failure. CONCLUSIONS In this study involving infants with type 1 SMA, risdiplam resulted in higher percentages of infants who met motor milestones and who showed improvements in motor function than the percentages observed in historical cohorts. Longer and larger trials are required to determine the long-term safety and efficacy of risdiplam in infants with type 1 SMA. (Funded by F. Hoffmann-La Roche; FIREFISH ClinicalTrials.gov number, NCT02913482.).
Collapse
Affiliation(s)
- Basil T Darras
- From the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (R.M., G.B.), and the Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa (C.B.) - both in Italy; the Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland (M.M.-B.); the Paediatric Gait Analysis Service of New South Wales, the Children's Hospital at Westmead and the University of Sydney, Sydney (K.R.); the Department of Pediatrics, Peking University First Hospital, Beijing (H.X.), and Children's Hospital of Fudan University, Shanghai (Y.W.) - both in China; the Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (E.Z.); the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, the Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; Russian Children Neuromuscular Center, Veltischev Clinical Pediatric Research Institute, Pirogov Russian National Research Medical University, Moscow (D.V.); Pharma Development, Safety (M.G.), Product Development Medical Affairs - Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K.) - both in Basel, Switzerland; the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, the Department of Pediatrics, University Hospital Liege, University of Liege, Liege, Belgium (L.S.); and I-Motion, Institut de Myologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris (L.S.)
| | - Riccardo Masson
- From the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (R.M., G.B.), and the Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa (C.B.) - both in Italy; the Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland (M.M.-B.); the Paediatric Gait Analysis Service of New South Wales, the Children's Hospital at Westmead and the University of Sydney, Sydney (K.R.); the Department of Pediatrics, Peking University First Hospital, Beijing (H.X.), and Children's Hospital of Fudan University, Shanghai (Y.W.) - both in China; the Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (E.Z.); the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, the Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; Russian Children Neuromuscular Center, Veltischev Clinical Pediatric Research Institute, Pirogov Russian National Research Medical University, Moscow (D.V.); Pharma Development, Safety (M.G.), Product Development Medical Affairs - Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K.) - both in Basel, Switzerland; the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, the Department of Pediatrics, University Hospital Liege, University of Liege, Liege, Belgium (L.S.); and I-Motion, Institut de Myologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris (L.S.)
| | - Maria Mazurkiewicz-Bełdzińska
- From the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (R.M., G.B.), and the Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa (C.B.) - both in Italy; the Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland (M.M.-B.); the Paediatric Gait Analysis Service of New South Wales, the Children's Hospital at Westmead and the University of Sydney, Sydney (K.R.); the Department of Pediatrics, Peking University First Hospital, Beijing (H.X.), and Children's Hospital of Fudan University, Shanghai (Y.W.) - both in China; the Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (E.Z.); the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, the Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; Russian Children Neuromuscular Center, Veltischev Clinical Pediatric Research Institute, Pirogov Russian National Research Medical University, Moscow (D.V.); Pharma Development, Safety (M.G.), Product Development Medical Affairs - Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K.) - both in Basel, Switzerland; the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, the Department of Pediatrics, University Hospital Liege, University of Liege, Liege, Belgium (L.S.); and I-Motion, Institut de Myologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris (L.S.)
| | - Kristy Rose
- From the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (R.M., G.B.), and the Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa (C.B.) - both in Italy; the Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland (M.M.-B.); the Paediatric Gait Analysis Service of New South Wales, the Children's Hospital at Westmead and the University of Sydney, Sydney (K.R.); the Department of Pediatrics, Peking University First Hospital, Beijing (H.X.), and Children's Hospital of Fudan University, Shanghai (Y.W.) - both in China; the Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (E.Z.); the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, the Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; Russian Children Neuromuscular Center, Veltischev Clinical Pediatric Research Institute, Pirogov Russian National Research Medical University, Moscow (D.V.); Pharma Development, Safety (M.G.), Product Development Medical Affairs - Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K.) - both in Basel, Switzerland; the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, the Department of Pediatrics, University Hospital Liege, University of Liege, Liege, Belgium (L.S.); and I-Motion, Institut de Myologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris (L.S.)
| | - Hui Xiong
- From the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (R.M., G.B.), and the Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa (C.B.) - both in Italy; the Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland (M.M.-B.); the Paediatric Gait Analysis Service of New South Wales, the Children's Hospital at Westmead and the University of Sydney, Sydney (K.R.); the Department of Pediatrics, Peking University First Hospital, Beijing (H.X.), and Children's Hospital of Fudan University, Shanghai (Y.W.) - both in China; the Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (E.Z.); the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, the Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; Russian Children Neuromuscular Center, Veltischev Clinical Pediatric Research Institute, Pirogov Russian National Research Medical University, Moscow (D.V.); Pharma Development, Safety (M.G.), Product Development Medical Affairs - Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K.) - both in Basel, Switzerland; the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, the Department of Pediatrics, University Hospital Liege, University of Liege, Liege, Belgium (L.S.); and I-Motion, Institut de Myologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris (L.S.)
| | - Edmar Zanoteli
- From the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (R.M., G.B.), and the Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa (C.B.) - both in Italy; the Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland (M.M.-B.); the Paediatric Gait Analysis Service of New South Wales, the Children's Hospital at Westmead and the University of Sydney, Sydney (K.R.); the Department of Pediatrics, Peking University First Hospital, Beijing (H.X.), and Children's Hospital of Fudan University, Shanghai (Y.W.) - both in China; the Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (E.Z.); the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, the Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; Russian Children Neuromuscular Center, Veltischev Clinical Pediatric Research Institute, Pirogov Russian National Research Medical University, Moscow (D.V.); Pharma Development, Safety (M.G.), Product Development Medical Affairs - Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K.) - both in Basel, Switzerland; the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, the Department of Pediatrics, University Hospital Liege, University of Liege, Liege, Belgium (L.S.); and I-Motion, Institut de Myologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris (L.S.)
| | - Giovanni Baranello
- From the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (R.M., G.B.), and the Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa (C.B.) - both in Italy; the Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland (M.M.-B.); the Paediatric Gait Analysis Service of New South Wales, the Children's Hospital at Westmead and the University of Sydney, Sydney (K.R.); the Department of Pediatrics, Peking University First Hospital, Beijing (H.X.), and Children's Hospital of Fudan University, Shanghai (Y.W.) - both in China; the Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (E.Z.); the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, the Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; Russian Children Neuromuscular Center, Veltischev Clinical Pediatric Research Institute, Pirogov Russian National Research Medical University, Moscow (D.V.); Pharma Development, Safety (M.G.), Product Development Medical Affairs - Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K.) - both in Basel, Switzerland; the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, the Department of Pediatrics, University Hospital Liege, University of Liege, Liege, Belgium (L.S.); and I-Motion, Institut de Myologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris (L.S.)
| | - Claudio Bruno
- From the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (R.M., G.B.), and the Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa (C.B.) - both in Italy; the Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland (M.M.-B.); the Paediatric Gait Analysis Service of New South Wales, the Children's Hospital at Westmead and the University of Sydney, Sydney (K.R.); the Department of Pediatrics, Peking University First Hospital, Beijing (H.X.), and Children's Hospital of Fudan University, Shanghai (Y.W.) - both in China; the Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (E.Z.); the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, the Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; Russian Children Neuromuscular Center, Veltischev Clinical Pediatric Research Institute, Pirogov Russian National Research Medical University, Moscow (D.V.); Pharma Development, Safety (M.G.), Product Development Medical Affairs - Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K.) - both in Basel, Switzerland; the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, the Department of Pediatrics, University Hospital Liege, University of Liege, Liege, Belgium (L.S.); and I-Motion, Institut de Myologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris (L.S.)
| | - Dmitry Vlodavets
- From the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (R.M., G.B.), and the Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa (C.B.) - both in Italy; the Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland (M.M.-B.); the Paediatric Gait Analysis Service of New South Wales, the Children's Hospital at Westmead and the University of Sydney, Sydney (K.R.); the Department of Pediatrics, Peking University First Hospital, Beijing (H.X.), and Children's Hospital of Fudan University, Shanghai (Y.W.) - both in China; the Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (E.Z.); the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, the Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; Russian Children Neuromuscular Center, Veltischev Clinical Pediatric Research Institute, Pirogov Russian National Research Medical University, Moscow (D.V.); Pharma Development, Safety (M.G.), Product Development Medical Affairs - Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K.) - both in Basel, Switzerland; the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, the Department of Pediatrics, University Hospital Liege, University of Liege, Liege, Belgium (L.S.); and I-Motion, Institut de Myologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris (L.S.)
| | - Yi Wang
- From the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (R.M., G.B.), and the Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa (C.B.) - both in Italy; the Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland (M.M.-B.); the Paediatric Gait Analysis Service of New South Wales, the Children's Hospital at Westmead and the University of Sydney, Sydney (K.R.); the Department of Pediatrics, Peking University First Hospital, Beijing (H.X.), and Children's Hospital of Fudan University, Shanghai (Y.W.) - both in China; the Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (E.Z.); the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, the Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; Russian Children Neuromuscular Center, Veltischev Clinical Pediatric Research Institute, Pirogov Russian National Research Medical University, Moscow (D.V.); Pharma Development, Safety (M.G.), Product Development Medical Affairs - Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K.) - both in Basel, Switzerland; the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, the Department of Pediatrics, University Hospital Liege, University of Liege, Liege, Belgium (L.S.); and I-Motion, Institut de Myologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris (L.S.)
| | - Muna El-Khairi
- From the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (R.M., G.B.), and the Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa (C.B.) - both in Italy; the Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland (M.M.-B.); the Paediatric Gait Analysis Service of New South Wales, the Children's Hospital at Westmead and the University of Sydney, Sydney (K.R.); the Department of Pediatrics, Peking University First Hospital, Beijing (H.X.), and Children's Hospital of Fudan University, Shanghai (Y.W.) - both in China; the Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (E.Z.); the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, the Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; Russian Children Neuromuscular Center, Veltischev Clinical Pediatric Research Institute, Pirogov Russian National Research Medical University, Moscow (D.V.); Pharma Development, Safety (M.G.), Product Development Medical Affairs - Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K.) - both in Basel, Switzerland; the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, the Department of Pediatrics, University Hospital Liege, University of Liege, Liege, Belgium (L.S.); and I-Motion, Institut de Myologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris (L.S.)
| | - Marianne Gerber
- From the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (R.M., G.B.), and the Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa (C.B.) - both in Italy; the Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland (M.M.-B.); the Paediatric Gait Analysis Service of New South Wales, the Children's Hospital at Westmead and the University of Sydney, Sydney (K.R.); the Department of Pediatrics, Peking University First Hospital, Beijing (H.X.), and Children's Hospital of Fudan University, Shanghai (Y.W.) - both in China; the Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (E.Z.); the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, the Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; Russian Children Neuromuscular Center, Veltischev Clinical Pediatric Research Institute, Pirogov Russian National Research Medical University, Moscow (D.V.); Pharma Development, Safety (M.G.), Product Development Medical Affairs - Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K.) - both in Basel, Switzerland; the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, the Department of Pediatrics, University Hospital Liege, University of Liege, Liege, Belgium (L.S.); and I-Motion, Institut de Myologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris (L.S.)
| | - Ksenija Gorni
- From the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (R.M., G.B.), and the Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa (C.B.) - both in Italy; the Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland (M.M.-B.); the Paediatric Gait Analysis Service of New South Wales, the Children's Hospital at Westmead and the University of Sydney, Sydney (K.R.); the Department of Pediatrics, Peking University First Hospital, Beijing (H.X.), and Children's Hospital of Fudan University, Shanghai (Y.W.) - both in China; the Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (E.Z.); the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, the Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; Russian Children Neuromuscular Center, Veltischev Clinical Pediatric Research Institute, Pirogov Russian National Research Medical University, Moscow (D.V.); Pharma Development, Safety (M.G.), Product Development Medical Affairs - Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K.) - both in Basel, Switzerland; the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, the Department of Pediatrics, University Hospital Liege, University of Liege, Liege, Belgium (L.S.); and I-Motion, Institut de Myologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris (L.S.)
| | - Omar Khwaja
- From the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (R.M., G.B.), and the Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa (C.B.) - both in Italy; the Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland (M.M.-B.); the Paediatric Gait Analysis Service of New South Wales, the Children's Hospital at Westmead and the University of Sydney, Sydney (K.R.); the Department of Pediatrics, Peking University First Hospital, Beijing (H.X.), and Children's Hospital of Fudan University, Shanghai (Y.W.) - both in China; the Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (E.Z.); the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, the Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; Russian Children Neuromuscular Center, Veltischev Clinical Pediatric Research Institute, Pirogov Russian National Research Medical University, Moscow (D.V.); Pharma Development, Safety (M.G.), Product Development Medical Affairs - Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K.) - both in Basel, Switzerland; the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, the Department of Pediatrics, University Hospital Liege, University of Liege, Liege, Belgium (L.S.); and I-Motion, Institut de Myologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris (L.S.)
| | - Heidemarie Kletzl
- From the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (R.M., G.B.), and the Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa (C.B.) - both in Italy; the Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland (M.M.-B.); the Paediatric Gait Analysis Service of New South Wales, the Children's Hospital at Westmead and the University of Sydney, Sydney (K.R.); the Department of Pediatrics, Peking University First Hospital, Beijing (H.X.), and Children's Hospital of Fudan University, Shanghai (Y.W.) - both in China; the Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (E.Z.); the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, the Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; Russian Children Neuromuscular Center, Veltischev Clinical Pediatric Research Institute, Pirogov Russian National Research Medical University, Moscow (D.V.); Pharma Development, Safety (M.G.), Product Development Medical Affairs - Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K.) - both in Basel, Switzerland; the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, the Department of Pediatrics, University Hospital Liege, University of Liege, Liege, Belgium (L.S.); and I-Motion, Institut de Myologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris (L.S.)
| | - Renata S Scalco
- From the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (R.M., G.B.), and the Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa (C.B.) - both in Italy; the Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland (M.M.-B.); the Paediatric Gait Analysis Service of New South Wales, the Children's Hospital at Westmead and the University of Sydney, Sydney (K.R.); the Department of Pediatrics, Peking University First Hospital, Beijing (H.X.), and Children's Hospital of Fudan University, Shanghai (Y.W.) - both in China; the Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (E.Z.); the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, the Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; Russian Children Neuromuscular Center, Veltischev Clinical Pediatric Research Institute, Pirogov Russian National Research Medical University, Moscow (D.V.); Pharma Development, Safety (M.G.), Product Development Medical Affairs - Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K.) - both in Basel, Switzerland; the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, the Department of Pediatrics, University Hospital Liege, University of Liege, Liege, Belgium (L.S.); and I-Motion, Institut de Myologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris (L.S.)
| | - Paulo Fontoura
- From the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (R.M., G.B.), and the Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa (C.B.) - both in Italy; the Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland (M.M.-B.); the Paediatric Gait Analysis Service of New South Wales, the Children's Hospital at Westmead and the University of Sydney, Sydney (K.R.); the Department of Pediatrics, Peking University First Hospital, Beijing (H.X.), and Children's Hospital of Fudan University, Shanghai (Y.W.) - both in China; the Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (E.Z.); the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, the Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; Russian Children Neuromuscular Center, Veltischev Clinical Pediatric Research Institute, Pirogov Russian National Research Medical University, Moscow (D.V.); Pharma Development, Safety (M.G.), Product Development Medical Affairs - Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K.) - both in Basel, Switzerland; the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, the Department of Pediatrics, University Hospital Liege, University of Liege, Liege, Belgium (L.S.); and I-Motion, Institut de Myologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris (L.S.)
| | - Laurent Servais
- From the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (R.M., G.B.), and the Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa (C.B.) - both in Italy; the Department of Developmental Neurology, Medical University of Gdańsk, Gdańsk, Poland (M.M.-B.); the Paediatric Gait Analysis Service of New South Wales, the Children's Hospital at Westmead and the University of Sydney, Sydney (K.R.); the Department of Pediatrics, Peking University First Hospital, Beijing (H.X.), and Children's Hospital of Fudan University, Shanghai (Y.W.) - both in China; the Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo (E.Z.); the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Foundation Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, the Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; Russian Children Neuromuscular Center, Veltischev Clinical Pediatric Research Institute, Pirogov Russian National Research Medical University, Moscow (D.V.); Pharma Development, Safety (M.G.), Product Development Medical Affairs - Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K.) - both in Basel, Switzerland; the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, the Department of Pediatrics, University Hospital Liege, University of Liege, Liege, Belgium (L.S.); and I-Motion, Institut de Myologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris (L.S.)
| |
Collapse
|
166
|
Kong L, Valdivia DO, Simon CM, Hassinan CW, Delestrée N, Ramos DM, Park JH, Pilato CM, Xu X, Crowder M, Grzyb CC, King ZA, Petrillo M, Swoboda KJ, Davis C, Lutz CM, Stephan AH, Zhao X, Weetall M, Naryshkin NA, Crawford TO, Mentis GZ, Sumner CJ. Impaired prenatal motor axon development necessitates early therapeutic intervention in severe SMA. Sci Transl Med 2021; 13:13/578/eabb6871. [PMID: 33504650 DOI: 10.1126/scitranslmed.abb6871] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
Abstract
Gene replacement and pre-mRNA splicing modifier therapies represent breakthrough gene targeting treatments for the neuromuscular disease spinal muscular atrophy (SMA), but mechanisms underlying variable efficacy of treatment are incompletely understood. Our examination of severe infantile onset human SMA tissues obtained at expedited autopsy revealed persistence of developmentally immature motor neuron axons, many of which are actively degenerating. We identified similar features in a mouse model of severe SMA, in which impaired radial growth and Schwann cell ensheathment of motor axons began during embryogenesis and resulted in reduced acquisition of myelinated axons that impeded motor axon function neonatally. Axons that failed to ensheath degenerated rapidly postnatally, specifically releasing neurofilament light chain protein into the blood. Genetic restoration of survival motor neuron protein (SMN) expression in mouse motor neurons, but not in Schwann cells or muscle, improved SMA motor axon development and maintenance. Treatment with small-molecule SMN2 splice modifiers beginning immediately after birth in mice increased radial growth of the already myelinated axons, but in utero treatment was required to restore axonal growth and associated maturation, prevent subsequent neonatal axon degeneration, and enhance motor axon function. Together, these data reveal a cellular basis for the fulminant neonatal worsening of patients with infantile onset SMA and identify a temporal window for more effective treatment. These findings suggest that minimizing treatment delay is critical to achieve optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Lingling Kong
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David O Valdivia
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christian M Simon
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Cera W Hassinan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicolas Delestrée
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Daniel M Ramos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jae Hong Park
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Celeste M Pilato
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xixi Xu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Melissa Crowder
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chloe C Grzyb
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zachary A King
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Kathryn J Swoboda
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Crystal Davis
- Genetic Resource Science, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Cathleen M Lutz
- Genetic Resource Science, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Alexander H Stephan
- F. Hoffmann-La Roche Ltd., pRED, Pharma & Early Development, Roche Innovation Center Basel, Basel CH-4070, Switzerland
| | - Xin Zhao
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Marla Weetall
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | | | - Thomas O Crawford
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.,Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
167
|
Landfeldt E, Pechmann A, McMillan HJ, Lochmüller H, Sejersen T. Costs of Illness of Spinal Muscular Atrophy: A Systematic Review. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2021; 19:501-520. [PMID: 33576939 PMCID: PMC8270802 DOI: 10.1007/s40258-020-00624-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 05/07/2023]
Abstract
OBJECTIVES The objective of our study was to conduct a systematic literature review of estimates of costs of illness of spinal muscular atrophy (SMA). METHODS We searched MEDLINE (through PubMed), CINAHL, Embase, Web of Science, National Health Service Economic Evaluation Database, and the National Health Service Health Technology Assessment Database for studies published from inception up until 31 August, 2020, reporting direct medical, direct non-medical, and/or indirect costs of any phenotype of SMA. Two reviewers independently screened records for eligibility, extracted the data, and assessed studies for risk of bias using the Newcastle-Ottawa Scale. Costs were adjusted and converted to 2018 US dollars. RESULTS The search identified 14 studies from eight countries (Australia, France, Germany, Italy, Spain, Sweden, the UK, and the USA). The mean per-patient annual direct medical cost of illness was estimated at between $3320 (SMA type III, Italy) and $324,410 (SMA type I, USA), mean per-patient annual direct non-medical cost between $25,880 (SMA types I-III, Spain) and $136,800 (SMA type I, Sweden), and mean per-patient annual indirect cost between $9440 (SMA type I, Germany) and $74,910 (SMA type II, Australia). Most studies exhibited a risk of bias. CONCLUSIONS The current body of evidence of costs of illness of SMA is relatively scarce and characterized by considerable variability across geographical settings and disease phenotypes. Our review provides data pertaining to the economic impact of SMA, which is of particular relevance in light of emerging treatments and ongoing research in this field, and underscores the substantial unmet medical need in this patient population.
Collapse
Affiliation(s)
- Erik Landfeldt
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska Vägen 37A, 171 76, Stockholm, Sweden.
| | - Astrid Pechmann
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Centre-University of Freiburg, Freiburg, Germany
| | - Hugh J McMillan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Centre-University of Freiburg, Freiburg, Germany
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Thomas Sejersen
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska Vägen 37A, 171 76, Stockholm, Sweden
- Karolinska University Hospital, Astrid Lindgren Children's Hospital, Stockholm, Sweden
| |
Collapse
|
168
|
McMillan HJ, Kernohan KD, Yeh E, Amburgey K, Boyd J, Campbell C, Dowling JJ, Gonorazky H, Marcadier J, Tarnopolsky MA, Vajsar J, MacKenzie A, Chakraborty P. Newborn Screening for Spinal Muscular Atrophy: Ontario Testing and Follow-up Recommendations. Can J Neurol Sci 2021; 48:504-511. [PMID: 33059774 DOI: 10.1017/cjn.2020.229] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is characterized by the progressive loss of motor neurons causing muscle atrophy and weakness. Nusinersen, the first effective SMA therapy was approved by Health Canada in June 2017 and has been added to the provincial formulary of all but one Canadian province. Access to this effective therapy has triggered the inclusion of SMA in an increasing number of Newborn Screening (NBS) programs. However, the range of disease-modifying SMN2 gene copy numbers encountered in survival motor neuron 1 (SMN1)-null individuals means that neither screen-positive definition nor resulting treatment decisions can be determined by SMN1 genotype alone. We outline an approach to this challenge, one that specifically addresses the case of SMA newborns with four copies of SMN2. OBJECTIVES To develop a standardized post-referral evaluation pathway for babies with a positive SMA NBS screen result. METHODS An SMA NBS pilot trial in Ontario using first-tier MassARRAY and second-tier multi-ligand probe amplification (MLPA) was launched in January 2020. Prior to this, Ontario pediatric neuromuscular disease and NBS experts met to review the evidence regarding the diagnosis and treatment of children with SMA as it pertained to NBS. A post-referral evaluation algorithm was developed, outlining timelines for patient retrieval and management. CONCLUSIONS Ontario's pilot NBS program has created a standardized path to facilitate early diagnosis of SMA and initiation of treatment. The goal is to provide timely access to those SMA infants in need of therapy to optimize motor function and prolong survival.
Collapse
Affiliation(s)
- Hugh J McMillan
- Children's Hospital of Eastern Ontario Research Institute, Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
- Newborn Screening Ontario, Ottawa, Ontario, Canada
| | - Ed Yeh
- Children's Hospital of Eastern Ontario Research Institute, Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
- Newborn Screening Ontario, Ottawa, Ontario, Canada
| | - Kim Amburgey
- Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Boyd
- Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Craig Campbell
- Children's Hospital Western Ontario, Department of Pediatrics, Epidemiology and Clinical Neurological Sciences, Schulich School of Medicine, University of Western Ontario, London, Ontario, Canada
| | - James J Dowling
- Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Hernan Gonorazky
- Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | | | - Mark A Tarnopolsky
- McMaster Children's Hospital, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Jiri Vajsar
- Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Alex MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Pranesh Chakraborty
- Children's Hospital of Eastern Ontario Research Institute, Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
- Newborn Screening Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
169
|
Xiao L, Chiang J, Amin R. Paradigm shift in the era of disease-modifying therapies for Spinal Muscular Atrophy type 1: respiratory challenges and opportunities. Sleep Med 2021; 86:113-115. [PMID: 34253462 DOI: 10.1016/j.sleep.2021.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Lena Xiao
- Division of Respiratory Medicine, The Hospital for Sick Children, 555 University Ave, Toronto, Ontario, M5G 1X8, Canada; University of Toronto, 27 King's College Circle, Toronto, Ontario, M5S 1A1, Canada.
| | - Jackie Chiang
- Division of Respiratory Medicine, The Hospital for Sick Children, 555 University Ave, Toronto, Ontario, M5G 1X8, Canada; University of Toronto, 27 King's College Circle, Toronto, Ontario, M5S 1A1, Canada.
| | - Reshma Amin
- Division of Respiratory Medicine, The Hospital for Sick Children, 555 University Ave, Toronto, Ontario, M5G 1X8, Canada; University of Toronto, 27 King's College Circle, Toronto, Ontario, M5S 1A1, Canada.
| |
Collapse
|
170
|
Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC, Bishop KM, Foster R, Liu Y, Ramirez-Schrempp D, Schneider E, Bennett CF, Wong J, Farwell W. Treatment of infantile-onset spinal muscular atrophy with nusinersen: final report of a phase 2, open-label, multicentre, dose-escalation study. THE LANCET CHILD & ADOLESCENT HEALTH 2021; 5:491-500. [PMID: 34089650 DOI: 10.1016/s2352-4642(21)00100-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Nusinersen showed a favourable benefit-risk profile in participants with infantile-onset spinal muscular atrophy at the interim analysis of a phase 2 clinical study. We present the study's final analysis, assessing the efficacy and safety of nusinersen over 3 years. METHODS This phase 2, open-label, multicentre, dose-escalation study was done in three university hospital sites in the USA and one in Canada. Infants aged between 3 weeks and 6 months with two or three SMN2 gene copies and infantile-onset spinal muscular atrophy were eligible for inclusion. Eligible participants received multiple intrathecal loading doses of 6 mg equivalent nusinersen (cohort 1) or 12 mg dose equivalent (cohort 2), followed by maintenance doses of 12 mg equivalent nusinersen. The protocol amendment on Jan 25, 2016, changed the primary efficacy endpoint from safety and tolerability to reaching motor milestones, assessed using the Hammersmith Infant Neurological Examination section 2 (HINE-2) at the last study visit, in all participants who successfully completed the loading dose period and day 92 assessment. The statistical analysis plan was amended on Feb 10, 2016, to include additional analyses of the subgroup of participants with two SMN2 copies. Adverse events were assessed in all participants who received at least one dose of study treatment. The study is registered at ClinicalTrials.gov (NCT01839656). FINDINGS Between May 3, 2013, and July 9, 2014, 20 symptomatic participants with infantile-onset spinal muscular atrophy (12 boys and 8 girls; median age at diagnosis 78 days [range 0-154]) were enrolled. Median time on study was 36·2 months (IQR 20·6-41·3). The primary endpoint of an incremental improvement in HINE-2 developmental motor milestones was reached by 12 (63%) of 19 evaluable participants. In the 13 participants with two SMN2 copies treated with 12 mg nusinersen, the HINE-2 motor milestone total score increased steadily from a baseline mean of 1·46 (SD 0·52) to 11·86 (6·18) at day 1135, representing a clinically significant change of 10·43 (6·05). At study closure (Aug 21, 2017), 15 (75%) of 20 participants were alive. 101 serious adverse events were reported in 16 (80%) of 20 participants; all five deaths (one in cohort 1 and four in cohort 2) were likely to be related to spinal muscular atrophy disease progression. INTERPRETATION Our findings are consistent with other trials of nusinersen and show improved survival and attainment of motor milestones over 3 years in patients with infantile-onset spinal muscular atrophy, with a favourable safety profile. FUNDING Biogen and Ionis Pharmaceuticals.
Collapse
Affiliation(s)
- Richard S Finkel
- Nemours Children's Hospital, Orlando, FL, USA; St Jude Children's Research Hospital, Memphis, TN, USA.
| | | | - Jiri Vajsar
- Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - John W Day
- Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Kathie M Bishop
- Ionis Pharmaceuticals, Carlsbad, CA, USA; Locana, San Diego, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Canfield SL. Decoding gene therapy: Current impact and future considerations for health-system and specialty pharmacy practice. Am J Health Syst Pharm 2021; 78:953-961. [PMID: 33677501 DOI: 10.1093/ajhp/zxab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To provide health systems with baseline knowledge on existing and pipeline gene therapy treatments, including considerations that health-system pharmacies and specialty pharmacy programs may reference when evaluating and implementing services around gene therapies. SUMMARY Advancements in research and biotechnology have recently led to the development and launch of the first commercially available gene therapy treatments in the United States. These treatments have the ability to significantly alter and even effectively cure diseases. Alongside these significant advances and clinical benefits, these therapies present unique challenges due to their cost and complexity. Given the large number of additional gene therapy treatments that are currently in late-stage clinical development, stakeholders across the healthcare industry must increasingly adapt and ready themselves to meet these challenges. The diagnosis and treatment of patients with diseases being targeted by gene therapies largely occurs within health systems, and judging by the gene therapy pipeline, this trend is likely to continue. To prepare for these novel treatments, health systems must understand and consider the methods in which gene therapies are developed, procured, reimbursed, administered, and monitored. CONCLUSION The future of health-system pharmacy practice must include comprehensive gene therapy services and stakeholder engagement strategies to ensure patients have access to these life-changing treatments.
Collapse
|
172
|
Li D, McIntosh CS, Mastaglia FL, Wilton SD, Aung-Htut MT. Neurodegenerative diseases: a hotbed for splicing defects and the potential therapies. Transl Neurodegener 2021; 10:16. [PMID: 34016162 PMCID: PMC8136212 DOI: 10.1186/s40035-021-00240-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a fundamental step in eukaryotic gene expression that systematically removes non-coding regions (introns) and ligates coding regions (exons) into a continuous message (mature mRNA). This process is highly regulated and can be highly flexible through a process known as alternative splicing, which allows for several transcripts to arise from a single gene, thereby greatly increasing genetic plasticity and the diversity of proteome. Alternative splicing is particularly prevalent in neuronal cells, where the splicing patterns are continuously changing to maintain cellular homeostasis and promote neurogenesis, migration and synaptic function. The continuous changes in splicing patterns and a high demand on many cis- and trans-splicing factors contribute to the susceptibility of neuronal tissues to splicing defects. The resultant neurodegenerative diseases are a large group of disorders defined by a gradual loss of neurons and a progressive impairment in neuronal function. Several of the most common neurodegenerative diseases involve some form of splicing defect(s), such as Alzheimer's disease, Parkinson's disease and spinal muscular atrophy. Our growing understanding of RNA splicing has led to the explosion of research in the field of splice-switching antisense oligonucleotide therapeutics. Here we review our current understanding of the effects alternative splicing has on neuronal differentiation, neuronal migration, synaptic maturation and regulation, as well as the impact on neurodegenerative diseases. We will also review the current landscape of splice-switching antisense oligonucleotides as a therapeutic strategy for a number of common neurodegenerative disorders.
Collapse
Affiliation(s)
- Dunhui Li
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Craig Stewart McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Frank Louis Mastaglia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Steve Donald Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia. .,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
173
|
Curry M, Cruz R, Belter L, Schroth M, Lenz M, Jarecki J. Awareness screening and referral patterns among pediatricians in the United States related to early clinical features of spinal muscular atrophy (SMA). BMC Pediatr 2021; 21:236. [PMID: 34001052 PMCID: PMC8127310 DOI: 10.1186/s12887-021-02692-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/16/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Spinal Muscular Atrophy (SMA), a leading genetic cause of death in infants, is an autosomal recessive neuromuscular disease characterized by progressive muscle weakness and atrophy. While early diagnosis of SMA is critical to modifying disease progression and improving outcomes, serious diagnostic delays persist. There is a need to improve SMA awareness, screening, and referral patterns. METHODS Two online surveys, developed by Cure SMA for general pediatricians, were distributed by Medscape Education via email (September 2018, n = 300, December 2019, n = 600). The surveys asked about adherence to the American Academy of Pediatrics (AAP) developmental screening and surveillance guidelines, comfort with identification of early signs of neuromuscular disease (NMD), familiarity with SMA, and barriers to timely referral. RESULTS In 2018, 70.3% of survey respondents indicated comfort in identifying early signs of NMD and 67.3% noted familiarity with SMA. 52.7% correctly indicated the need for genetic testing to make a definitive diagnosis of SMA, 74.0% meet or exceed developmental screening recommendations, and 52.0% said they would immediately refer to a specialist. In 2019, with a larger sample, 73.0% adhere to developmental screening guidelines, and awareness of the genetic testing requirement for SMA was significantly lower by 7.7% (p < 0.03). Specialist wait times emerged as a barrier to referral, with 64.2% of respondents citing wait times of 1-6 months. CONCLUSIONS Many pediatricians underutilize developmental screening tools and lack familiarity with diagnostic requirements for SMA. Continuing efforts to expand awareness and remove barriers to timely referral to SMA specialists, including reducing appointment wait times, are needed.
Collapse
Affiliation(s)
- Mary Curry
- Cure SMA, 925 Busse Road, Elk Grove Village, IL, 60007, USA.
| | - Rosángel Cruz
- Cure SMA, 925 Busse Road, Elk Grove Village, IL, 60007, USA
| | - Lisa Belter
- Cure SMA, 925 Busse Road, Elk Grove Village, IL, 60007, USA
| | - Mary Schroth
- Cure SMA, 925 Busse Road, Elk Grove Village, IL, 60007, USA
| | - Megan Lenz
- Cure SMA, 925 Busse Road, Elk Grove Village, IL, 60007, USA
| | - Jill Jarecki
- Cure SMA, 925 Busse Road, Elk Grove Village, IL, 60007, USA
| |
Collapse
|
174
|
Gonski K, Fitzgerald DA. Respiratory outcomes post nusinersen in spinal muscular atrophy type 1. Pediatr Pulmonol 2021; 56:807-808. [PMID: 33316146 DOI: 10.1002/ppul.25209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Kate Gonski
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Dominic A Fitzgerald
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Faculty of Health Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
175
|
Irumudomon OT, Ghosh PS. Electromyography in infants: experience from a pediatric neuromuscular center. Acta Neurol Belg 2021; 122:1195-1200. [PMID: 33891285 DOI: 10.1007/s13760-021-01681-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/13/2021] [Indexed: 11/28/2022]
Abstract
Electromyography plays a pivotal role in diagnosing neuromuscular disorders. The purpose of this study was to investigate the role of electromyography in infants. We performed a retrospective study of the infants who underwent electromyography from 2003 to 2017 and recorded demographic profile, indication, electrodiagnostic findings, and final diagnosis from the follow-up data. 179 studies were completed; electromyography was abnormal in 109 (60.9%) patients. The most common referral indication was hypotonia followed by birth trauma related injuries and rule out neuromuscular disorders. The most common electrodiagnostic diagnosis was localized to muscles followed by plexus and motor neurons. Among the patients with normal electromyography, the most common diagnosis was due to myopathies. Electromyography plays an important role in the workup of neuromuscular disorders in infants though with increased utilization of genetic testing we observed a declining trend in the number of electromyography performed in the latter half the study.
Collapse
Affiliation(s)
| | - Partha S Ghosh
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
176
|
Nicolau S, Waldrop MA, Connolly AM, Mendell JR. Spinal Muscular Atrophy. Semin Pediatr Neurol 2021; 37:100878. [PMID: 33892848 DOI: 10.1016/j.spen.2021.100878] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Spinal muscular atrophy is one of the most common neuromuscular disorders of childhood and has high morbidity and mortality. Three different disease-modifying treatments were introduced in the last 4 years: nusinersen, onasemnogene abeparvovec, and risdiplam. These agents have demonstrated safety and efficacy, but their long-term benefits require further study. Newborn screening programs are enabling earlier diagnosis and treatment and better outcomes, but respiratory care and other supportive measures retain a key role in the management of spinal muscular atrophy. Ongoing efforts seek to optimize gene therapy vectors, explore new therapeutic targets beyond motor neurons, and evaluate the role of combination therapy.
Collapse
Affiliation(s)
- Stefan Nicolau
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH.
| | - Megan A Waldrop
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Departments of Pediatrics and Neurology, Ohio State University, Columbus, OH
| | - Anne M Connolly
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Departments of Pediatrics and Neurology, Ohio State University, Columbus, OH
| | - Jerry R Mendell
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Departments of Pediatrics and Neurology, Ohio State University, Columbus, OH
| |
Collapse
|
177
|
Abreu NJ, Waldrop MA. Overview of gene therapy in spinal muscular atrophy and Duchenne muscular dystrophy. Pediatr Pulmonol 2021; 56:710-720. [PMID: 32886442 DOI: 10.1002/ppul.25055] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
Both 5q-linked spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD) are fatal monogenic neuromuscular disorders caused by loss-of-function mutations. SMA is an autosomal recessive disorder affecting motor neurons that is typically caused by homozygous whole-gene deletions of SMN1. DMD is an X-linked recessive muscle disease most often due to exon deletions, but also duplications and smaller sized variants within the DMD gene. Gene replacement therapy offers the opportunity to correct the underlying genetic defect by the introduction of a functional gene. We review the transformative work from clinical trials to United States Food and Drug Administration approval of onasemnogene abeparvovec-xioi in SMA and its application in clinical practice and the early results of microdystrophin delivery in DMD. We also review the introduction of antisense oligonucleotides to alter pre-messenger RNA splicing to promote exon inclusion (as in nusinersen in SMA) or exclusion (as in eteplirsen in DMD) into neuromuscular therapeutics. There are multiple promising novel genetically mediated therapies on the horizon, which in aggregate point towards a hopeful future for individuals with SMA and DMD.
Collapse
Affiliation(s)
- Nicolas J Abreu
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Megan A Waldrop
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Departments of Pediatrics and Neurology, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
178
|
Baranello G, Gorni K, Daigl M, Kotzeva A, Evans R, Hawkins N, Scott DA, Mahajan A, Muntoni F, Servais L. Prognostic Factors and Treatment-Effect Modifiers in Spinal Muscular Atrophy. Clin Pharmacol Ther 2021; 110:1435-1454. [PMID: 33792051 PMCID: PMC9292571 DOI: 10.1002/cpt.2247] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/21/2021] [Indexed: 12/20/2022]
Abstract
Spinal muscular atrophy (SMA) is a rare, progressive neuromuscular disease characterized by loss of motor neurons and muscle atrophy. Untreated infants with type 1 SMA do not achieve major motor milestones, and death from respiratory failure typically occurs before 2 years of age. Individuals with types 2 and 3 SMA exhibit milder phenotypes and have better functional and survival outcomes. Herein, a systematic literature review was conducted to identify factors that influence the prognosis of types 1, 2, and 3 SMA. In untreated infants with type 1 SMA, absence of symptoms at birth, a later symptom onset, and a higher survival of motor neuron 2 (SMN2) copy number are all associated with increased survival. Disease duration, age at treatment initiation, and, to a lesser extent, baseline function were identified as potential treatment‐modifying factors for survival, emphasizing that early treatment with disease‐modifying therapies (DMT) is essential in type 1 SMA. In patients with types 2 and 3 SMA, factors considered prognostic of changes in motor function were SMN2 copy number, age, and ambulatory status. Individuals aged 6–15 years were particularly vulnerable to developing complications (scoliosis and progressive joint contractures) which negatively influence functional outcomes and may also affect the therapeutic response in patients. Age at the time of treatment initiation emerged as a treatment‐effect modifier on the outcome of DMTs. Factors identified in this review should be considered prior to designing or analyzing studies in an SMA population, conducting population matching, or summarizing results from different studies on the treatments for SMA.
Collapse
Affiliation(s)
- Giovanni Baranello
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Developmental Neurology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | | | | | | | | | | | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,National Institute for Health Research Biomedical Research Centre, University College of London Great Ormond Street Institute of Child Health, Great Ormond Street Hospital National Health Service Trust, London, UK
| | - Laurent Servais
- Division of Child Neurology Reference Center for Neuromuscular Disease, Department of Pediatrics, Centre Hospitalier Régional de Références des Maladies Neuromusculaires, University Hospital Liège & University of La Citadelle, Liège, Belgium.,Department of Paediatrics, Muscular Dystrophy UK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| |
Collapse
|
179
|
Day JW, Finkel RS, Chiriboga CA, Connolly AM, Crawford TO, Darras BT, Iannaccone ST, Kuntz NL, Peña LDM, Shieh PB, Smith EC, Kwon JM, Zaidman CM, Schultz M, Feltner DE, Tauscher-Wisniewski S, Ouyang H, Chand DH, Sproule DM, Macek TA, Mendell JR. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 2021; 20:284-293. [PMID: 33743238 DOI: 10.1016/s1474-4422(21)00001-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/25/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Spinal muscular atrophy type 1 is a motor neuron disorder resulting in death or the need for permanent ventilation by age 2 years. We aimed to evaluate the safety and efficacy of onasemnogene abeparvovec (previously known as AVXS-101), a gene therapy delivering the survival motor neuron gene (SMN), in symptomatic patients (identified through clinical examination) with infantile-onset spinal muscular atrophy. METHODS STR1VE was an open-label, single-arm, single-dose, phase 3 trial done at 12 hospitals and universities in the USA. Eligible patients had to be younger than 6 months and have spinal muscular atrophy with biallelic SMN1 mutations (deletion or point mutations) and one or two copies of SMN2. Patients received a one-time intravenous infusion of onasemnogene abeparvovec (1·1 × 1014 vector genomes per kg) for 30-60 min. During the outpatient follow-up, patients were assessed once per week, beginning at day 7 post-infusion for 4 weeks and then once per month until the end of the study (age 18 months or early termination). Coprimary efficacy outcomes were independent sitting for 30 s or longer (Bayley-III item 26) at the 18 month of age study visit and survival (absence of death or permanent ventilation) at age 14 months. Safety was assessed through evaluation of adverse events, concomitant medication usage, physical examinations, vital sign assessments, cardiac assessments, and laboratory evaluation. Primary efficacy endpoints for the intention-to-treat population were compared with untreated infants aged 6 months or younger (n=23) with spinal muscular atrophy type 1 (biallelic deletion of SMN1 and two copies of SMN2) from the Pediatric Neuromuscular Clinical Research (PNCR) dataset. This trial is registered with ClinicalTrials.gov, NCT03306277 (completed). FINDINGS From Oct 24, 2017, to Nov 12, 2019, 22 patients with spinal muscular atrophy type 1 were eligible and received onasemnogene abeparvovec. 13 (59%, 97·5% CI 36-100) of 22 patients achieved functional independent sitting for 30 s or longer at the 18 month of age study visit (vs 0 of 23 patients in the untreated PNCR cohort; p<0·0001). 20 patients (91%, 79-100]) survived free from permanent ventilation at age 14 months (vs 6 [26%], 8-44; p<0·0001 in the untreated PNCR cohort). All patients who received onasemnogene abeparvovec had at least one adverse event (most common was pyrexia). The most frequently reported serious adverse events were bronchiolitis, pneumonia, respiratory distress, and respiratory syncytial virus bronchiolitis. Three serious adverse events were related or possibly related to the treatment (two patients had elevated hepatic aminotransferases, and one had hydrocephalus). INTERPRETATION Results from this multicentre trial build on findings from the phase 1 START study by showing safety and efficacy of commercial grade onasemnogene abeparvovec. Onasemnogene abeparvovec showed statistical superiority and clinically meaningful responses when compared with observations from the PNCR natural history cohort. The favourable benefit-risk profile shown in this study supports the use of onasemnogene abeparvovec for treatment of symptomatic patients with genetic or clinical characteristics predictive of infantile-onset spinal muscular atrophy type 1. FUNDING Novartis Gene Therapies.
Collapse
Affiliation(s)
- John W Day
- Department of Neurology, Stanford University Medical Center, Palo Alto, CA, USA.
| | - Richard S Finkel
- Department of Pediatrics, Nemours Children's Hospital, Orlando, FL, USA; Center for Experimental Neurotherapeutics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Claudia A Chiriboga
- Division of Pediatric Neurology, Columbia University Medical Center, New York, NY, USA
| | - Anne M Connolly
- Department of Neurology, Nationwide Children's Hospital, Columbus, OH, USA; Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, Ohio State University, Columbus, OH, USA; Department of Neurology, Ohio State University, Columbus, OH, USA
| | - Thomas O Crawford
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Basil T Darras
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Susan T Iannaccone
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nancy L Kuntz
- Division of Neurology, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Loren D M Peña
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH, USA
| | - Perry B Shieh
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Edward C Smith
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Jennifer M Kwon
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Craig M Zaidman
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | - Deepa H Chand
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA; Novartis Gene Therapies, Bannockburn, IL, USA
| | | | | | - Jerry R Mendell
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, Ohio State University, Columbus, OH, USA; Department of Neurology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
180
|
Baranello G, Darras BT, Day JW, Deconinck N, Klein A, Masson R, Mercuri E, Rose K, El-Khairi M, Gerber M, Gorni K, Khwaja O, Kletzl H, Scalco RS, Seabrook T, Fontoura P, Servais L. Risdiplam in Type 1 Spinal Muscular Atrophy. N Engl J Med 2021; 384:915-923. [PMID: 33626251 DOI: 10.1056/nejmoa2009965] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Type 1 spinal muscular atrophy is a rare, progressive neuromuscular disease that is caused by low levels of functional survival of motor neuron (SMN) protein. Risdiplam is an orally administered, small molecule that modifies SMN2 pre-messenger RNA splicing and increases levels of functional SMN protein. METHODS We report the results of part 1 of a two-part, phase 2-3, open-label study of risdiplam in infants 1 to 7 months of age who had type 1 spinal muscular atrophy, which is characterized by the infant not attaining the ability to sit without support. Primary outcomes were safety, pharmacokinetics, pharmacodynamics (including the blood SMN protein concentration), and the selection of the risdiplam dose for part 2 of the study. Exploratory outcomes included the ability to sit without support for at least 5 seconds. RESULTS A total of 21 infants were enrolled. Four infants were in a low-dose cohort and were treated with a final dose at month 12 of 0.08 mg of risdiplam per kilogram of body weight per day, and 17 were in a high-dose cohort and were treated with a final dose at month 12 of 0.2 mg per kilogram per day. The baseline median SMN protein concentrations in blood were 1.31 ng per milliliter in the low-dose cohort and 2.54 ng per milliliter in the high-dose cohort; at 12 months, the median values increased to 3.05 ng per milliliter and 5.66 ng per milliliter, respectively, which represented a median of 3.0 times and 1.9 times the baseline values in the low-dose and high-dose cohorts, respectively. Serious adverse events included pneumonia, respiratory tract infection, and acute respiratory failure. At the time of this publication, 4 infants had died of respiratory complications. Seven infants in the high-dose cohort and no infants in the low-dose cohort were able to sit without support for at least 5 seconds. The higher dose of risdiplam (0.2 mg per kilogram per day) was selected for part 2 of the study. CONCLUSIONS In infants with type 1 spinal muscular atrophy, treatment with oral risdiplam led to an increased expression of functional SMN protein in the blood. (Funded by F. Hoffmann-La Roche; ClinicalTrials.gov number, NCT02913482.).
Collapse
Affiliation(s)
- Giovanni Baranello
- From the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (G.B., R.M.), and the Pediatric Neurology Institution, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome (E.M.); the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Department of Neurology, Stanford University, Palo Alto, CA (J.W.D.); Centre de Référence des Maladies Neuromusculaires, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles, Brussels (N.D.), the Neuromuscular Reference Center, Universitair Ziekenhuis Gent, Ghent (N.D.), and the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege and University of Liege, Liege (L.S.) - all in Belgium; the Division of Pediatric Neurology, University Children's Hospital Basel (A.K.), Pharma Development Safety (M.G.), Product Development Medical Affairs-Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K., T.S.), Basel, and Pediatric Neurology, Inselspital, University of Bern, Bern (A.K.) - both in Switzerland; the Discipline of Physiotherapy, Faculty of Medicine and Health, University of Sydney, Sydney (K.R.); and I-Motion, Hôpital Armand Trousseau, Paris (L.S.)
| | - Basil T Darras
- From the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (G.B., R.M.), and the Pediatric Neurology Institution, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome (E.M.); the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Department of Neurology, Stanford University, Palo Alto, CA (J.W.D.); Centre de Référence des Maladies Neuromusculaires, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles, Brussels (N.D.), the Neuromuscular Reference Center, Universitair Ziekenhuis Gent, Ghent (N.D.), and the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege and University of Liege, Liege (L.S.) - all in Belgium; the Division of Pediatric Neurology, University Children's Hospital Basel (A.K.), Pharma Development Safety (M.G.), Product Development Medical Affairs-Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K., T.S.), Basel, and Pediatric Neurology, Inselspital, University of Bern, Bern (A.K.) - both in Switzerland; the Discipline of Physiotherapy, Faculty of Medicine and Health, University of Sydney, Sydney (K.R.); and I-Motion, Hôpital Armand Trousseau, Paris (L.S.)
| | - John W Day
- From the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (G.B., R.M.), and the Pediatric Neurology Institution, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome (E.M.); the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Department of Neurology, Stanford University, Palo Alto, CA (J.W.D.); Centre de Référence des Maladies Neuromusculaires, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles, Brussels (N.D.), the Neuromuscular Reference Center, Universitair Ziekenhuis Gent, Ghent (N.D.), and the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege and University of Liege, Liege (L.S.) - all in Belgium; the Division of Pediatric Neurology, University Children's Hospital Basel (A.K.), Pharma Development Safety (M.G.), Product Development Medical Affairs-Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K., T.S.), Basel, and Pediatric Neurology, Inselspital, University of Bern, Bern (A.K.) - both in Switzerland; the Discipline of Physiotherapy, Faculty of Medicine and Health, University of Sydney, Sydney (K.R.); and I-Motion, Hôpital Armand Trousseau, Paris (L.S.)
| | - Nicolas Deconinck
- From the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (G.B., R.M.), and the Pediatric Neurology Institution, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome (E.M.); the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Department of Neurology, Stanford University, Palo Alto, CA (J.W.D.); Centre de Référence des Maladies Neuromusculaires, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles, Brussels (N.D.), the Neuromuscular Reference Center, Universitair Ziekenhuis Gent, Ghent (N.D.), and the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege and University of Liege, Liege (L.S.) - all in Belgium; the Division of Pediatric Neurology, University Children's Hospital Basel (A.K.), Pharma Development Safety (M.G.), Product Development Medical Affairs-Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K., T.S.), Basel, and Pediatric Neurology, Inselspital, University of Bern, Bern (A.K.) - both in Switzerland; the Discipline of Physiotherapy, Faculty of Medicine and Health, University of Sydney, Sydney (K.R.); and I-Motion, Hôpital Armand Trousseau, Paris (L.S.)
| | - Andrea Klein
- From the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (G.B., R.M.), and the Pediatric Neurology Institution, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome (E.M.); the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Department of Neurology, Stanford University, Palo Alto, CA (J.W.D.); Centre de Référence des Maladies Neuromusculaires, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles, Brussels (N.D.), the Neuromuscular Reference Center, Universitair Ziekenhuis Gent, Ghent (N.D.), and the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege and University of Liege, Liege (L.S.) - all in Belgium; the Division of Pediatric Neurology, University Children's Hospital Basel (A.K.), Pharma Development Safety (M.G.), Product Development Medical Affairs-Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K., T.S.), Basel, and Pediatric Neurology, Inselspital, University of Bern, Bern (A.K.) - both in Switzerland; the Discipline of Physiotherapy, Faculty of Medicine and Health, University of Sydney, Sydney (K.R.); and I-Motion, Hôpital Armand Trousseau, Paris (L.S.)
| | - Riccardo Masson
- From the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (G.B., R.M.), and the Pediatric Neurology Institution, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome (E.M.); the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Department of Neurology, Stanford University, Palo Alto, CA (J.W.D.); Centre de Référence des Maladies Neuromusculaires, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles, Brussels (N.D.), the Neuromuscular Reference Center, Universitair Ziekenhuis Gent, Ghent (N.D.), and the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege and University of Liege, Liege (L.S.) - all in Belgium; the Division of Pediatric Neurology, University Children's Hospital Basel (A.K.), Pharma Development Safety (M.G.), Product Development Medical Affairs-Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K., T.S.), Basel, and Pediatric Neurology, Inselspital, University of Bern, Bern (A.K.) - both in Switzerland; the Discipline of Physiotherapy, Faculty of Medicine and Health, University of Sydney, Sydney (K.R.); and I-Motion, Hôpital Armand Trousseau, Paris (L.S.)
| | - Eugenio Mercuri
- From the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (G.B., R.M.), and the Pediatric Neurology Institution, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome (E.M.); the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Department of Neurology, Stanford University, Palo Alto, CA (J.W.D.); Centre de Référence des Maladies Neuromusculaires, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles, Brussels (N.D.), the Neuromuscular Reference Center, Universitair Ziekenhuis Gent, Ghent (N.D.), and the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege and University of Liege, Liege (L.S.) - all in Belgium; the Division of Pediatric Neurology, University Children's Hospital Basel (A.K.), Pharma Development Safety (M.G.), Product Development Medical Affairs-Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K., T.S.), Basel, and Pediatric Neurology, Inselspital, University of Bern, Bern (A.K.) - both in Switzerland; the Discipline of Physiotherapy, Faculty of Medicine and Health, University of Sydney, Sydney (K.R.); and I-Motion, Hôpital Armand Trousseau, Paris (L.S.)
| | - Kristy Rose
- From the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (G.B., R.M.), and the Pediatric Neurology Institution, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome (E.M.); the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Department of Neurology, Stanford University, Palo Alto, CA (J.W.D.); Centre de Référence des Maladies Neuromusculaires, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles, Brussels (N.D.), the Neuromuscular Reference Center, Universitair Ziekenhuis Gent, Ghent (N.D.), and the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege and University of Liege, Liege (L.S.) - all in Belgium; the Division of Pediatric Neurology, University Children's Hospital Basel (A.K.), Pharma Development Safety (M.G.), Product Development Medical Affairs-Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K., T.S.), Basel, and Pediatric Neurology, Inselspital, University of Bern, Bern (A.K.) - both in Switzerland; the Discipline of Physiotherapy, Faculty of Medicine and Health, University of Sydney, Sydney (K.R.); and I-Motion, Hôpital Armand Trousseau, Paris (L.S.)
| | - Muna El-Khairi
- From the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (G.B., R.M.), and the Pediatric Neurology Institution, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome (E.M.); the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Department of Neurology, Stanford University, Palo Alto, CA (J.W.D.); Centre de Référence des Maladies Neuromusculaires, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles, Brussels (N.D.), the Neuromuscular Reference Center, Universitair Ziekenhuis Gent, Ghent (N.D.), and the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege and University of Liege, Liege (L.S.) - all in Belgium; the Division of Pediatric Neurology, University Children's Hospital Basel (A.K.), Pharma Development Safety (M.G.), Product Development Medical Affairs-Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K., T.S.), Basel, and Pediatric Neurology, Inselspital, University of Bern, Bern (A.K.) - both in Switzerland; the Discipline of Physiotherapy, Faculty of Medicine and Health, University of Sydney, Sydney (K.R.); and I-Motion, Hôpital Armand Trousseau, Paris (L.S.)
| | - Marianne Gerber
- From the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (G.B., R.M.), and the Pediatric Neurology Institution, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome (E.M.); the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Department of Neurology, Stanford University, Palo Alto, CA (J.W.D.); Centre de Référence des Maladies Neuromusculaires, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles, Brussels (N.D.), the Neuromuscular Reference Center, Universitair Ziekenhuis Gent, Ghent (N.D.), and the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege and University of Liege, Liege (L.S.) - all in Belgium; the Division of Pediatric Neurology, University Children's Hospital Basel (A.K.), Pharma Development Safety (M.G.), Product Development Medical Affairs-Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K., T.S.), Basel, and Pediatric Neurology, Inselspital, University of Bern, Bern (A.K.) - both in Switzerland; the Discipline of Physiotherapy, Faculty of Medicine and Health, University of Sydney, Sydney (K.R.); and I-Motion, Hôpital Armand Trousseau, Paris (L.S.)
| | - Ksenija Gorni
- From the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (G.B., R.M.), and the Pediatric Neurology Institution, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome (E.M.); the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Department of Neurology, Stanford University, Palo Alto, CA (J.W.D.); Centre de Référence des Maladies Neuromusculaires, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles, Brussels (N.D.), the Neuromuscular Reference Center, Universitair Ziekenhuis Gent, Ghent (N.D.), and the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege and University of Liege, Liege (L.S.) - all in Belgium; the Division of Pediatric Neurology, University Children's Hospital Basel (A.K.), Pharma Development Safety (M.G.), Product Development Medical Affairs-Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K., T.S.), Basel, and Pediatric Neurology, Inselspital, University of Bern, Bern (A.K.) - both in Switzerland; the Discipline of Physiotherapy, Faculty of Medicine and Health, University of Sydney, Sydney (K.R.); and I-Motion, Hôpital Armand Trousseau, Paris (L.S.)
| | - Omar Khwaja
- From the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (G.B., R.M.), and the Pediatric Neurology Institution, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome (E.M.); the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Department of Neurology, Stanford University, Palo Alto, CA (J.W.D.); Centre de Référence des Maladies Neuromusculaires, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles, Brussels (N.D.), the Neuromuscular Reference Center, Universitair Ziekenhuis Gent, Ghent (N.D.), and the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege and University of Liege, Liege (L.S.) - all in Belgium; the Division of Pediatric Neurology, University Children's Hospital Basel (A.K.), Pharma Development Safety (M.G.), Product Development Medical Affairs-Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K., T.S.), Basel, and Pediatric Neurology, Inselspital, University of Bern, Bern (A.K.) - both in Switzerland; the Discipline of Physiotherapy, Faculty of Medicine and Health, University of Sydney, Sydney (K.R.); and I-Motion, Hôpital Armand Trousseau, Paris (L.S.)
| | - Heidemarie Kletzl
- From the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (G.B., R.M.), and the Pediatric Neurology Institution, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome (E.M.); the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Department of Neurology, Stanford University, Palo Alto, CA (J.W.D.); Centre de Référence des Maladies Neuromusculaires, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles, Brussels (N.D.), the Neuromuscular Reference Center, Universitair Ziekenhuis Gent, Ghent (N.D.), and the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege and University of Liege, Liege (L.S.) - all in Belgium; the Division of Pediatric Neurology, University Children's Hospital Basel (A.K.), Pharma Development Safety (M.G.), Product Development Medical Affairs-Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K., T.S.), Basel, and Pediatric Neurology, Inselspital, University of Bern, Bern (A.K.) - both in Switzerland; the Discipline of Physiotherapy, Faculty of Medicine and Health, University of Sydney, Sydney (K.R.); and I-Motion, Hôpital Armand Trousseau, Paris (L.S.)
| | - Renata S Scalco
- From the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (G.B., R.M.), and the Pediatric Neurology Institution, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome (E.M.); the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Department of Neurology, Stanford University, Palo Alto, CA (J.W.D.); Centre de Référence des Maladies Neuromusculaires, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles, Brussels (N.D.), the Neuromuscular Reference Center, Universitair Ziekenhuis Gent, Ghent (N.D.), and the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege and University of Liege, Liege (L.S.) - all in Belgium; the Division of Pediatric Neurology, University Children's Hospital Basel (A.K.), Pharma Development Safety (M.G.), Product Development Medical Affairs-Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K., T.S.), Basel, and Pediatric Neurology, Inselspital, University of Bern, Bern (A.K.) - both in Switzerland; the Discipline of Physiotherapy, Faculty of Medicine and Health, University of Sydney, Sydney (K.R.); and I-Motion, Hôpital Armand Trousseau, Paris (L.S.)
| | - Timothy Seabrook
- From the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (G.B., R.M.), and the Pediatric Neurology Institution, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome (E.M.); the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Department of Neurology, Stanford University, Palo Alto, CA (J.W.D.); Centre de Référence des Maladies Neuromusculaires, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles, Brussels (N.D.), the Neuromuscular Reference Center, Universitair Ziekenhuis Gent, Ghent (N.D.), and the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege and University of Liege, Liege (L.S.) - all in Belgium; the Division of Pediatric Neurology, University Children's Hospital Basel (A.K.), Pharma Development Safety (M.G.), Product Development Medical Affairs-Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K., T.S.), Basel, and Pediatric Neurology, Inselspital, University of Bern, Bern (A.K.) - both in Switzerland; the Discipline of Physiotherapy, Faculty of Medicine and Health, University of Sydney, Sydney (K.R.); and I-Motion, Hôpital Armand Trousseau, Paris (L.S.)
| | - Paulo Fontoura
- From the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (G.B., R.M.), and the Pediatric Neurology Institution, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome (E.M.); the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Department of Neurology, Stanford University, Palo Alto, CA (J.W.D.); Centre de Référence des Maladies Neuromusculaires, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles, Brussels (N.D.), the Neuromuscular Reference Center, Universitair Ziekenhuis Gent, Ghent (N.D.), and the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege and University of Liege, Liege (L.S.) - all in Belgium; the Division of Pediatric Neurology, University Children's Hospital Basel (A.K.), Pharma Development Safety (M.G.), Product Development Medical Affairs-Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K., T.S.), Basel, and Pediatric Neurology, Inselspital, University of Bern, Bern (A.K.) - both in Switzerland; the Discipline of Physiotherapy, Faculty of Medicine and Health, University of Sydney, Sydney (K.R.); and I-Motion, Hôpital Armand Trousseau, Paris (L.S.)
| | - Laurent Servais
- From the Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London (G.B.), Roche Products, Welwyn Garden City (M.E.-K.), and the Muscular Dystrophy UK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford (L.S.) - all in the United Kingdom; the Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (G.B., R.M.), and the Pediatric Neurology Institution, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome (E.M.); the Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston (B.T.D.); the Department of Neurology, Stanford University, Palo Alto, CA (J.W.D.); Centre de Référence des Maladies Neuromusculaires, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles, Brussels (N.D.), the Neuromuscular Reference Center, Universitair Ziekenhuis Gent, Ghent (N.D.), and the Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege and University of Liege, Liege (L.S.) - all in Belgium; the Division of Pediatric Neurology, University Children's Hospital Basel (A.K.), Pharma Development Safety (M.G.), Product Development Medical Affairs-Neuroscience and Rare Disease (K.G., P.F.), and Pharma Development Neurology (R.S.S.), F. Hoffmann-La Roche, and Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel (O.K., H.K., T.S.), Basel, and Pediatric Neurology, Inselspital, University of Bern, Bern (A.K.) - both in Switzerland; the Discipline of Physiotherapy, Faculty of Medicine and Health, University of Sydney, Sydney (K.R.); and I-Motion, Hôpital Armand Trousseau, Paris (L.S.)
| |
Collapse
|
181
|
Abstract
Hereditary myelopathies are an important and likely underappreciated component of neurogenetic disease. While previously distinctions have been made by age of onset, the growing power and availability of high-quality neuroimaging and next-generation sequencing are increasingly expanding classical phenotypes and diminishing the utility of age-based classifications. Increasingly, cases of "atypical" disease presentations are challenging past assumptions regarding the age of onset and survival in many disorders and identifying allelic syndromes in others. Despite this, there is poor awareness of the potential for spinal involvement in many diseases that typically affect the brain. Broadly speaking, congenital myelopathies can be neuroanatomically grouped into motor neuron, axonopathy, spinocerebellar, cerebroleukodystrophy, and pan-neuraxis (generally central nervous system predominant with associated axonopathy) disorders.Here, we review hereditary causes of myelopathy, organized by neuroanatomy, and highlight atypical presentations. We discuss findings concerning an underlying genetic etiology for myelopathy, as well as practical, technical, and ethical considerations of diagnostic genetic testing.
Collapse
Affiliation(s)
- Melissa A Walker
- Division of Child Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
182
|
Dean R, Jensen I, Cyr P, Miller B, Maru B, Sproule DM, Feltner DE, Wiesner T, Malone DC, Bischof M, Toro W, Dabbous O. An updated cost-utility model for onasemnogene abeparvovec (Zolgensma®) in spinal muscular atrophy type 1 patients and comparison with evaluation by the Institute for Clinical and Effectiveness Review (ICER). JOURNAL OF MARKET ACCESS & HEALTH POLICY 2021; 9:1889841. [PMID: 33708361 PMCID: PMC7919869 DOI: 10.1080/20016689.2021.1889841] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background: Recent cost-utility analysis (CUA) models for onasemnogene abeparvovec (Zolgensma®, formerly AVXS-101) in spinal muscular atrophy type 1 (SMA1) differ on key assumptions and results. Objective: To compare the manufacturer's proprietary CUA model to the model published by the Institute for Clinical and Economic Review (ICER), and to update the manufacturer's model with long-term follow-up data and some key ICER assumptions. Study design: We updated a recent CUA evaluating value for money in cost per incremental Quality-adjusted Life Year (QALY) of onasemnogene abeparvovec versus nusinersen (Spinraza®) or best supportive care (BSC) in symptomatic SMA1 patients, and compared it to the ICER model. Setting/Perspective: USA/Commercial payer Participants: Children aged <2 years with SMA1. Interventions: Onasemnogene abeparvovec, a single-dose gene replacement therapy, versus nusinersen, an antisense oligonucleotide, versus BSC. Main outcome measure: Incremental-cost effectiveness ratio and value-based price using traditional thresholds for general medicines in the US. Results: Updated survival (undiscounted) predicted by the model was 37.60 years for onasemnogene abeparvovec compared to 12.10 years for nusinersen and 7.27 years for BSC. Updated quality-adjusted survival using ICER's utility scores and discounted at 3% were 13.33, 2.85, and 1.15 discounted QALYs for onasemnogene abeparvovec, nusinersen, and BSC, respectively. Using estimated net prices, the discounted lifetime cost/patient was $3.93 M for onasemnogene abeparvovec, $4.60 M for nusinersen, and $1.96 M for BSC. The incremental cost per QALY gained for onasemnogene abeparvovec was dominant against nusinersen and $161,648 against BSC. These results broadly align with the results of the ICER model, which predicted a cost per QALY gained of $139,000 compared with nusinersen, and $243,000 compared with BSC (assuming a placeholder price of $2 M for onasemnogene abeparvovec), differences in methodology notwithstanding. Exploratory analyses in presymptomatic patients were similar. Conclusion: This updated CUA model is similar to ICER analyses comparing onasemnogene abeparvovec with nusinersen in the symptomatic and presymptomatic SMA populations. At a list price of $2.125 M, onasemnogene abeparvovec is cost-effective compared to nusinersen for SMA1 patients treated before age 2 years. When compared to BSC, cost per QALY of onasemnogene abeparvovec is higher than commonly used thresholds for therapies in the USA ($150,000 per QALY).
Collapse
Affiliation(s)
| | | | - Phil Cyr
- HEOR, Precision Xtract, Boston, MA, USA
| | | | - Benit Maru
- Medical Consulting, SSI Strategy, London, UK
| | | | | | | | - Daniel C. Malone
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Matthias Bischof
- Global HEOR & RWE, Novartis Gene Therapies, Bannockburn, IL, USA
| | - Walter Toro
- Global HEOR & RWE, Novartis Gene Therapies, Bannockburn, IL, USA
| | - Omar Dabbous
- Global HEOR & RWE, Novartis Gene Therapies, Bannockburn, IL, USA
- CONTACT Omar Dabbous Global HEOR & RWE, Novartis Gene Therapies, Bannockburn, IL, USA
| |
Collapse
|
183
|
Gagliardi D, Faravelli I, Meneri M, Saccomanno D, Govoni A, Magri F, Ricci G, Siciliano G, Pietro Comi G, Corti S. Diagnostic and prognostic value of CSF neurofilaments in a cohort of patients with motor neuron disease: A cross-sectional study. J Cell Mol Med 2021; 25:3765-3771. [PMID: 33609080 PMCID: PMC8051694 DOI: 10.1111/jcmm.16240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Motor neuron disease (MND) is a rare group of disorders characterized by degeneration of motor neurons (MNs). The most common form of MND, amyotrophic lateral sclerosis (ALS), is an incurable disease with a variable rate of progression. The search of robust biomarkers able to discriminate among different ALS forms is paramount to properly stratify patients, and to identify those who could most likely benefit from experimental therapies. Phosphorylated‐neurofilament heavy chain (p‐NfH) and neurofilament light chain (NfL) are neuron‐specific components of the cytoskeleton and may represent reliable markers of neuronal injury in neurological disorders. In this study, we described our cohort of ALS patients in order to investigate whether and how cerebrospinal fluid (CSF) p‐NfH and NfL levels may reflect progression rate, MN involvement and the extent of neurodegeneration. CSF p‐NfH and NfL were significantly increased in ALS compared with healthy and disease controls, including patients with other forms of MND, and were higher in patients with more aggressive disease course, reflecting progression rate. We also evaluated neurofilament diagnostic accuracy in our centre, identifying with high sensitivity and 100% specificity cut‐off values of 0.652 ng/mL for CSF p‐NfH (P < .0001) and of 1261 pg/mL for NfL (P < .0001) in discriminating ALS from healthy controls. CSF neurofilaments were significantly correlated with ALS progression rate. Overall, CSF neurofilaments appear to reflect the burden of neurodegeneration in MND and represent reliable diagnostic and prognostic biomarkers in ALS.
Collapse
Affiliation(s)
- Delia Gagliardi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Irene Faravelli
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Megi Meneri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Domenica Saccomanno
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Alessandra Govoni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Neurological Clinics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Magri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Giulia Ricci
- Neurological Clinics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Neurological Clinics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| |
Collapse
|
184
|
MacCannell D, Berger Z, East L, Mercuri E, Kirschner J, Muntoni F, Farrar MA, Peng J, Zhou J, Nestorov I, Farwell W, Finkel RS. Population pharmacokinetics-based recommendations for a single delayed or missed dose of nusinersen. Neuromuscul Disord 2021; 31:310-318. [PMID: 33781694 DOI: 10.1016/j.nmd.2021.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/13/2020] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Nusinersen is an antisense oligonucleotide approved for the treatment of spinal muscular atrophy. The drug is given intrathecally at 12 mg, beginning with 3 loading doses at 2-week intervals, a fourth loading dose 30 days thereafter, and maintenance doses at 4-month intervals. This population pharmacokinetic model was developed to clarify how to maintain targeted nusinersen exposure after an unforeseen one-time delay or missed dose. Simulations demonstrated that the impact of a one-time delay in dosing or a missed dose on median cerebrospinal fluid exposures depended on duration of interruption and the regimen phase in which it occurred. Delays in loading doses delayed reaching the peak trough concentration by approximately the duration of the interruption. Resumption of the regimen as soon as possible resulted in achieving steady state trough concentration upon completion of the loading phase. A short delay (30-90 days) during the maintenance phase led to prolonged lower median cerebrospinal fluid concentration if all subsequent doses were shifted by the same 4-month interval. However, administration of the delayed dose, followed by the subsequent dose as originally scheduled, rapidly restored trough concentration. If a dose must be delayed, patients should return to the original dosing schedule as soon as possible.
Collapse
Affiliation(s)
| | | | | | - Eugenio Mercuri
- Department of Pediatric Neurology, Catholic University, Rome, Italy
| | | | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital and School of Women's and Children's Health, UNSW Medicine, Sydney, New South Wales, Australia
| | - Joanna Peng
- Nuventra Pharma Sciences, Research Triangle Park, NC, USA
| | - Jie Zhou
- Nuventra Pharma Sciences, Research Triangle Park, NC, USA
| | | | | | - Richard S Finkel
- Center for Experimental Neurotherapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
185
|
Cudkowicz M, Chase MK, Coffey CS, Ecklund DJ, Thornell BJ, Lungu C, Mahoney K, Gutmann L, Shefner JM, Staley KJ, Bosch M, Foster E, Long JD, Bayman EO, Torner J, Yankey J, Peters R, Huff T, Conwit RA, Shinnar S, Patch D, Darras BT, Ellis A, Packer RJ, Marder KS, Chiriboga CA, Henchcliffe C, Moran JA, Nikolov B, Factor SA, Seeley C, Greenberg SM, Amato AA, DeGregorio S, Simuni T, Ward T, Kissel JT, Kolb SJ, Bartlett A, Quinn JF, Keith K, Levine SR, Gilles N, Coyle PK, Lamb J, Wolfe GI, Crumlish A, Mejico L, Iqbal MM, Bowen JD, Tongco C, Nabors LB, Bashir K, Benge M, McDonald CM, Henricson EK, Oskarsson B, Dobkin BH, Canamar C, Glauser TA, Woo D, Molloy A, Clark P, Vollmer TL, Stein AJ, Barohn RJ, Dimachkie MM, Le Pichon JB, Benatar MG, Steele J, Wechsler L, Clemens PR, Amity C, Holloway RG, Annis C, Goldberg MP, Andersen M, Iannaccone ST, Smith AG, Singleton JR, Doudova M, Haley EC, Quigg MS, Lowenhaupt S, Malow BA, Adkins K, Clifford DB, Teshome MA, Connolly N. Seven-Year Experience From the National Institute of Neurological Disorders and Stroke-Supported Network for Excellence in Neuroscience Clinical Trials. JAMA Neurol 2021; 77:755-763. [PMID: 32202612 DOI: 10.1001/jamaneurol.2020.0367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance One major advantage of developing large, federally funded networks for clinical research in neurology is the ability to have a trial-ready network that can efficiently conduct scientifically rigorous projects to improve the health of people with neurologic disorders. Observations National Institute of Neurological Disorders and Stroke Network for Excellence in Neuroscience Clinical Trials (NeuroNEXT) was established in 2011 and renewed in 2018 with the goal of being an efficient network to test between 5 and 7 promising new agents in phase II clinical trials. A clinical coordinating center, data coordinating center, and 25 sites were competitively chosen. Common infrastructure was developed to accelerate timelines for clinical trials, including central institutional review board (a first for the National Institute of Neurological Disorders and Stroke), master clinical trial agreements, the use of common data elements, and experienced research sites and coordination centers. During the first 7 years, the network exceeded the goal of conducting 5 to 7 studies, with 9 funded. High interest was evident by receipt of 148 initial applications for potential studies in various neurologic disorders. Across the first 8 studies (the ninth study was funded at end of initial funding period), the central institutional review board approved the initial protocol in a mean (SD) of 59 (21) days, and additional sites were added a mean (SD) of 22 (18) days after submission. The median time from central institutional review board approval to first site activation was 47.5 days (mean, 102.1; range, 1-282) and from first site activation to first participant consent was 27 days (mean, 37.5; range, 0-96). The median time for database readiness was 3.5 months (mean, 4.0; range, 0-8) from funding receipt. In the 4 completed studies, enrollment met or exceeded expectations with 96% overall data accuracy across all sites. Nine peer-reviewed manuscripts were published, and 22 oral presentations or posters and 9 invited presentations were given at regional, national, and international meetings. Conclusions and Relevance NeuroNEXT initiated 8 studies, successfully enrolled participants at or ahead of schedule, collected high-quality data, published primary results in high-impact journals, and provided mentorship, expert statistical, and trial management support to several new investigators. Partnerships were successfully created between government, academia, industry, foundations, and patient advocacy groups. Clinical trial consortia can efficiently and successfully address a range of important neurologic research and therapeutic questions.
Collapse
Affiliation(s)
| | | | | | | | | | - Codrin Lungu
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | | | | | - Jeremy M Shefner
- Barrow Neurological Institute, University of Arizona College of Medicine, Tucson
| | | | | | | | | | | | | | | | | | | | - Robin A Conwit
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | | | - Shlomo Shinnar
- Montefiore Medical Center: Einstein Campus, Bronx, New York
| | - Donna Patch
- Montefiore Medical Center: Einstein Campus, Bronx, New York
| | | | - Audrey Ellis
- Boston Children's Hospital, Boston, Massachusetts
| | | | - Karen S Marder
- Columbia University Irving Medical Center, New York, New York.,Weill Cornell Medical, New York, New York
| | - Claudia A Chiriboga
- Columbia University Irving Medical Center, New York, New York.,Weill Cornell Medical, New York, New York
| | - Claire Henchcliffe
- Columbia University Irving Medical Center, New York, New York.,Weill Cornell Medical, New York, New York
| | - Joyce Ann Moran
- Columbia University Irving Medical Center, New York, New York.,Weill Cornell Medical, New York, New York
| | - Blagovest Nikolov
- Columbia University Irving Medical Center, New York, New York.,Weill Cornell Medical, New York, New York
| | | | - Carole Seeley
- Emory University School of Medicine, Atlanta, Georgia
| | - Steven M Greenberg
- Massachusetts General Hospital, Boston.,Brigham and Women's Hospital, Boston, Massachusetts
| | - Anthony A Amato
- Massachusetts General Hospital, Boston.,Brigham and Women's Hospital, Boston, Massachusetts
| | - Sara DeGregorio
- Massachusetts General Hospital, Boston.,Brigham and Women's Hospital, Boston, Massachusetts
| | - Tanya Simuni
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tina Ward
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John T Kissel
- Ohio State University Wexner Medical Center, Columbus
| | | | - Amy Bartlett
- Ohio State University Wexner Medical Center, Columbus
| | | | | | | | | | - Patricia K Coyle
- Stony Brook University, State University of New York, Stony Brook
| | - Jessica Lamb
- Stony Brook University, State University of New York, Stony Brook
| | - Gil I Wolfe
- University at Buffalo, State University of New York, Buffalo
| | | | - Luis Mejico
- SUNY Upstate Medical University, Syracuse, New York
| | | | | | | | | | | | | | | | | | | | | | | | - Tracy A Glauser
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio
| | - Daniel Woo
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio
| | - Angela Molloy
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio
| | - Peggy Clark
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio
| | | | | | - Richard J Barohn
- Children's Mercy Hospital, University of Kansas, Kansas City, Missouri
| | - Mazen M Dimachkie
- Children's Mercy Hospital, University of Kansas, Kansas City, Missouri
| | | | - Michael G Benatar
- University of Miami Miller School of Medicine, Coral Gables, Florida
| | - Julie Steele
- University of Miami Miller School of Medicine, Coral Gables, Florida
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
In Search of a Cure: The Development of Therapeutics to Alter the Progression of Spinal Muscular Atrophy. Brain Sci 2021; 11:brainsci11020194. [PMID: 33562482 PMCID: PMC7915832 DOI: 10.3390/brainsci11020194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Until the recent development of disease-modifying therapeutics, spinal muscular atrophy (SMA) was considered a devastating neuromuscular disease with a poor prognosis for most affected individuals. Symptoms generally present during early childhood and manifest as muscle weakness and progressive paralysis, severely compromising the affected individual’s quality of life, independence, and lifespan. SMA is most commonly caused by the inheritance of homozygously deleted SMN1 alleles with retention of one or more copies of a paralog gene, SMN2, which inversely correlates with disease severity. The recent advent and use of genetically targeted therapies have transformed SMA into a prototype for monogenic disease treatment in the era of genetic medicine. Many SMA-affected individuals receiving these therapies achieve traditionally unobtainable motor milestones and survival rates as medicines drastically alter the natural progression of this disease. This review discusses historical SMA progression and underlying disease mechanisms, highlights advances made in therapeutic research, clinical trials, and FDA-approved medicines, and discusses possible second-generation and complementary medicines as well as optimal temporal intervention windows in order to optimize motor function and improve quality of life for all SMA-affected individuals.
Collapse
|
187
|
Zappa G, LoMauro A, Baranello G, Cavallo E, Corti P, Mastella C, Costantino MA. Intellectual abilities, language comprehension, speech, and motor function in children with spinal muscular atrophy type 1. J Neurodev Disord 2021; 13:9. [PMID: 33530934 PMCID: PMC7856807 DOI: 10.1186/s11689-021-09355-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/19/2021] [Indexed: 11/18/2022] Open
Abstract
Background Spinal muscular atrophy (SMA) is a chronic, neuromuscular disease characterized by degeneration of spinal cord motor neurons, resulting in progressive muscular atrophy and weakness. SMA1 is the most severe form characterized by significant bulbar, respiratory, and motor dysfunction. SMA1 prevents children from speaking a clearly understandable and fluent language, with their communication being mainly characterized by eye movements, guttural sounds, and anarthria (type 1a); severe dysarthria (type 1b); and nasal voice and dyslalia (type 1c). The aim of this study was to analyze for the first time cognitive functions, language comprehension, and speech in natural history SMA1 children according to age and subtypes, to develop cognitive and language benchmarks that provide outcomes for the clinical medication trials that are changing SMA1 course/trajectory. Methods This is a retrospective study including 22 children with SMA1 (10 affected by subtype 1a-1b: AB and 12 by 1c: C) aged 3–11 years in clinical stable condition with a coded way to communicate “yes” and “no”. Data from the following assessments have been retrieved from patient charts: one-dimensional Raven test (RCPM), to evaluate cognitive development (IQ); ALS Severity Score (ALSSS) to evaluate speech disturbances; Brown Bellugy modified for Italian standards (TCGB) to evaluate language comprehension; and Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP-INTEND) to assess motor functioning. Results SMA 1AB and 1C children were similar in age, with the former characterized by lower CHOP-INTEND scores compared to the latter. All 22 children had collaborated to RCPM and their median IQ was 120 with no difference (p = 0.945) between AB and C. Global median score of the speech domain of the ALSSS was 5; however, it was 2 in AB children, being significantly lower than C (6.5, p < 0.001). TCGB test had been completed by 13 children, with morphosyntactic comprehension being in the normal range (50). Although ALSSS did not correlate with both IQ and TCGB, it had a strong (p < 0.001) correlation with CHOP-INTEND described by an exponential rise to maximum. Conclusions Although speech and motor function were severely compromised, children with SMA1 showed general intelligence and language comprehension in the normal range. Speech impairment was strictly related to global motor impairment.
Collapse
Affiliation(s)
- Grazia Zappa
- SAPRE, Child and Adolescent Neuropsychiatric Service, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Viale Ungheria 29, 20138, Milan, Italy.
| | - Antonella LoMauro
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo Da Vinci, Milan, Italy
| | - Giovanni Baranello
- Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,UO Neurologia dello Sviluppo, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emilia Cavallo
- Child and Adolescent Neuropsychiatric Service, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Priscilla Corti
- SAPRE, Child and Adolescent Neuropsychiatric Service, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Viale Ungheria 29, 20138, Milan, Italy
| | - Chiara Mastella
- SAPRE, Child and Adolescent Neuropsychiatric Service, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Viale Ungheria 29, 20138, Milan, Italy
| | - Maria Antonella Costantino
- Child and Adolescent Neuropsychiatric Service, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
188
|
Dangouloff T, Botty C, Beaudart C, Servais L, Hiligsmann M. Systematic literature review of the economic burden of spinal muscular atrophy and economic evaluations of treatments. Orphanet J Rare Dis 2021; 16:47. [PMID: 33485382 PMCID: PMC7824917 DOI: 10.1186/s13023-021-01695-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Background Spinal muscular atrophy (SMA) is a rare and devastating condition for which new disease-modifying treatments have recently been approved. Given the increasing importance of economic considerations in healthcare decision-making, this review summarizes the studies assessing the cost of SMA and economic evaluations of treatments. A systematic review of the literature in PubMed and Scopus up to 15 September 2020 was conducted according to PRISMA guidelines. Results Nine studies reporting the annual cost of care of patients with SMA and six evaluations of the cost-effectiveness of SMA treatments were identified. The average annual cost of SMA1, the most frequent and severe form in which symptoms appear before the age of 6 months were similar according to the different studies, ranged from $75,047 to $196,429 per year. The yearly costs for the forms of the later-onset form, called SMA2, SMA3, and SMA4, which were usually pooled in estimates of healthcare costs, were more variable, ranging from $27,157 to $82,474. The evaluations of cost-effectiveness of treatment compared nusinersen treatment against standard of care (n = 3), two treatments (nusinersen and onasemnogene abeparvovec) against each other and no drug treatment (n = 1), nusinersen versus onasemnogene abeparvovec (n = 1), and standard of care versus nusinersen with and without newborn screening (n = 1). The incremental cost-effectiveness ratio (ICER) of nusinersen compared to standard of care in SMA1 ranged from $210,095 to $1,150,455 per quality-adjusted life years (QALY) gained and that for onasemnogene abeparvovec ranged from $32,464 to $251,403. For pre-symptomatic patients, the ICER value ranged from $206,409 to $735,519. The ICERs for later-onset forms of SMA (2, 3 and 4) were more diverse ranging from $275,943 to $8,438,049. Conclusion This review confirms the substantial cost burden of standard of care for SMA patients and the high cost-effectiveness ratios of the approved drugs at the current price when delivered in post-symptomatic patients. Since few studies have been conducted so far, there is a need for further prospective and independent economic studies in pre- and post-symptomatic patients.
Collapse
Affiliation(s)
| | | | - Charlotte Beaudart
- Department of Health Services Research, CAPHRI Care and Public Health Research Institute, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Laurent Servais
- University of Liège, Liège, Belgium.,Department of Paediatrics, Neuromuscular Reference Center Disease, Liège, Belgium.,Department of Paediatrics, MDUK Neuromuscular Center, University of Oxford, Oxford, UK
| | - Mickaël Hiligsmann
- Department of Health Services Research, CAPHRI Care and Public Health Research Institute, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
| |
Collapse
|
189
|
de Holanda Mendonça R, Jorge Polido G, Ciro M, Jorge Fontoura Solla D, Conti Reed U, Zanoteli E. Clinical Outcomes in Patients with Spinal Muscular Atrophy Type 1 Treated with Nusinersen. J Neuromuscul Dis 2021; 8:217-224. [PMID: 33459657 DOI: 10.3233/jnd-200533] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BackgroundSpinal muscular atrophy type 1 (SMA1) is a motor neuron disease associated with progressive muscle weakness, ventilatory failure, and reduced survival.Objective:To report the evaluation of the nusinersen, an antisense oligonucleotide, on the motor function of SMA1.MethodsThis was a longitudinal and observational study to assess the outcomes of nusinersen therapy in SMA1 patients using the HINE-2 and CHOP-INTEND scales.ResultsTwenty-one SMA1 patients (52.4% males) were included; the mean age at first symptoms was 2.7 months (SD =±1.5), and the mean disease duration at first dose was 34.1 (SD =±36.0) months. During posttreatment, the mean gain on the CHOP-INTEND was 4.9, 5.9, 6.6, and 14 points after 6, 12, 18, and 24 months, respectively. Starting medication with a disease duration of less than 12 months and/or without invasive ventilation were predictors of response on CHOP-INTEND. Of the patients, 28.6% acquired a motor milestone or gained at least three points on the HINE-2. The daily time for ventilatory support was reduced after treatment in most of the patients with noninvasive ventilation at baseline. No change in the daytime use of ventilation was observed in most of the patients using invasive ventilation at baseline.ConclusionsNusinersen produces improvements in motor and respiratory functions, even in long-term SMA1 patients. However, patients under invasive ventilation at the beginning of the treatment experience little benefit.
Collapse
Affiliation(s)
| | - Graziela Jorge Polido
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Matsui Ciro
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Umbertina Conti Reed
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
190
|
Volpe JJ. Infantile spinal muscular atrophy - the potential for cure of a fatal disease. J Neonatal Perinatal Med 2021; 14:153-157. [PMID: 33459670 PMCID: PMC8075397 DOI: 10.3233/npm-200680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- J J Volpe
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
191
|
McMillan H, Gerber B, Cowling T, Khuu W, Mayer M, Wu J, Maturi B, Klein-Panneton K, Cabalteja C, Lochmüller H. Burden of Spinal Muscular Atrophy (SMA) on Patients and Caregivers in Canada. J Neuromuscul Dis 2021; 8:553-568. [PMID: 33749617 PMCID: PMC8385498 DOI: 10.3233/jnd-200610] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a rare neurodegenerative disease characterized by progressive muscular weakness, which occurs in one in 6,000 to 10,000 live births. The burden of SMA on Canadian patients and caregivers is not known. OBJECTIVE To characterize the burden of SMA in Canada as reported by patients and caregivers, including disease and treatment impacts, indirect costs, and caregiver burden. METHODS Surveys were distributed by Cure SMA Canada and Muscular Dystrophy Canada to individuals with SMA and their caregivers. The online surveys were anonymous and completed between January 28 and February 21, 2020. RESULTS 965 patient and 962 caregiver responses met the eligibility criteria. Patients reported SMA subtypes as: type I (25.0%), type II (41.3%), type III (29.3%). Using the EQ-5D, patients were shown to have impaired quality of life with an average health utility index of 0.49 (SD: 0.26). The median expenditure was $4,500 CAD (IQR: $1,587 - $11,000) for assistive devices; $6,800 CAD (IQR: $3,900-$13,000) on health professional services; and $1,200 CAD (IQR: $600 -$3,100) on SMA-related travel and accommodation in the past 12 months. Caregivers reported needing respite care (45.7%), physiotherapy for an injury from a lift/transfer (45.7%), or other health impacts (63.3%). Caregivers reported changes to personal plans, sleep disturbances, and work adjustments, with a mean Caregiver Strain Index score of 7.5 [SD: 3.3]. CONCLUSION SMA in Canada is associated with a significant burden for patients and their caregivers.
Collapse
Affiliation(s)
- H.J. McMillan
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - B. Gerber
- Medlior Health Outcomes Research Ltd., Calgary, AB, Canada
| | - T. Cowling
- Medlior Health Outcomes Research Ltd., Calgary, AB, Canada
| | - W. Khuu
- Medlior Health Outcomes Research Ltd., Calgary, AB, Canada
| | - M. Mayer
- Medlior Health Outcomes Research Ltd., Calgary, AB, Canada
| | - J.W. Wu
- Hoffmann-La Roche Limited, Mississauga, ON, Canada
| | - B. Maturi
- Hoffmann-La Roche Limited, Mississauga, ON, Canada
| | | | - C. Cabalteja
- Hoffmann-La Roche Limited, Mississauga, ON, Canada
| | - H. Lochmüller
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
192
|
Lavie M, Diamant N, Cahal M, Sadot E, Be'er M, Fattal-Valevski A, Sagi L, Domany KA, Amirav I. Nusinersen for spinal muscular atrophy type 1: Real-world respiratory experience. Pediatr Pulmonol 2021; 56:291-298. [PMID: 33111497 DOI: 10.1002/ppul.25140] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/19/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The emergence of new treatments for spinal muscular atrophy (SMA) is revolutionary, especially for SMA type 1 (SMA1). Data on respiratory outcomes remain sparse and rely mostly on randomized clinical trials. We report our experience of Nusinersen-treated SMA1 patients in real-world settings. METHODS Data from SMA1 patients treated with Nusinersen were prospectively collected between 1/2017 and 1/2020. Respiratory variables included the use of assisted ventilation, the use of mechanical insufflation-exsufflation (MIE), respiratory complications, and death or treatment cessation due to respiratory reasons. RESULTS Twenty SMA1 patients were assessed before and after 2 years of Nusinersen treatment which was initiated at a median age of 13.5 months (range, 1-184). At baseline, 16 patients were using assisted ventilation, eight noninvasive and eight invasive. Twelve patients were using permanent ventilation and four partial ventilation. After 2 years of treatment, there was no change in respiratory support among ventilated patients. All four patients who were free from respiratory support at baseline required the initiation of assisted ventilation during the study period. All 20 patients used MIE after 2 years of treatment. Two patients died from acute respiratory failure and one sustained severe brain injury. Four patients had chronic and/or recurrent atelectasis. CONCLUSION Most of our patients were stable in their need for assisted ventilation and did not worsen as expected in SMA1, nor did they improve as might be hoped. Future studies are needed to determine if earlier treatment with Nusinersen might result in respiratory outcomes superior to those reported in this real-life study.
Collapse
Affiliation(s)
- Moran Lavie
- Pediatric Pulmonology Unit, Dana-Dwek Children's Hospital, Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Diamant
- Pediatric Pulmonology Unit, Dana-Dwek Children's Hospital, Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Cahal
- Pediatric Pulmonology Unit, Dana-Dwek Children's Hospital, Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efraim Sadot
- Pediatric Pulmonology Unit, Dana-Dwek Children's Hospital, Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Intensive Care Unit, Dana-Dwek Children's Hospital, Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moria Be'er
- Pediatric Pulmonology Unit, Dana-Dwek Children's Hospital, Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aviva Fattal-Valevski
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liora Sagi
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Keren A Domany
- Pediatric Pulmonology Unit, Dana-Dwek Children's Hospital, Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Israel Amirav
- Pediatric Pulmonology Unit, Dana-Dwek Children's Hospital, Tel-Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
193
|
Gómez-García de la Banda M, Amaddeo A, Khirani S, Pruvost S, Barnerias C, Dabaj I, Bénézit A, Durigneux J, Carlier RY, Desguerre I, Quijano-Roy S, Fauroux B. Assessment of respiratory muscles and motor function in children with SMA treated by nusinersen. Pediatr Pulmonol 2021; 56:299-306. [PMID: 33118682 DOI: 10.1002/ppul.25142] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Nusinersen is associated with an improvement in motor function in children with spinal muscular atrophy (SMA) but data on respiratory muscles strength are scarce. Respiratory muscles performance and lung function were evaluated in children with SMA 1c and 2 after six injections of nusinersen (M14). Results from patients with SMA2 were compared with data of age-matched historical controls. Motor function tests (MFM and HINE-2) were assessed at baseline and M14 in the treated patients. RESULTS Sixteen children (2 SMA Type 1c and 14 SMA Type 2), mean age 9.4 ± 2.3 years, were included. The data of 14 historical SMA 2 controls (mean age 9.3 ± 1.9 years) were gathered. The strength of the global inspiratory muscles of SMA 2 treated with nusinersen, assessed on maximal static inspiratory pressure, forced vital capacity, and esophageal pressure during a maximal sniff was significantly better compared with historical controls (p < .05). A significant improvement in MFM and HINE-2 was observed in the patients with 16 SMA treated with nusinersen after 14 months as compared with baseline. CONCLUSION In children with SMA Type 2, respiratory muscle performance was significantly better after six injections of nusinersen as compared with age-matched SMA Type 2 historical controls.
Collapse
Affiliation(s)
- Marta Gómez-García de la Banda
- Pediatric Neurology and ICU Department, AP-HP Université Paris Saclay, DMU Santé de l'Enfant et de l'Adolescent, Hôpital Raymond Poincaré, Garches, France.,Centre de Référence des Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Centre Nord- Est- Ile de France, Réseau National des Maladies Neuromusculaires, FILNEMUS, France.,European Reference Center Network (Euro-NMD ERN), Paris, France
| | - Alessandro Amaddeo
- Pediatric Noninvasive Ventilation and Sleep Unit, AP-HP Hôpital Necker Enfants-Malades, Paris, France.,Université de Paris, VIFASOM, Paris, France
| | - Sonia Khirani
- Pediatric Noninvasive Ventilation and Sleep Unit, AP-HP Hôpital Necker Enfants-Malades, Paris, France.,Université de Paris, VIFASOM, Paris, France.,ASV Santé, Gennevilliers, France
| | - Sandrine Pruvost
- Pediatric Neurology and ICU Department, AP-HP Université Paris Saclay, DMU Santé de l'Enfant et de l'Adolescent, Hôpital Raymond Poincaré, Garches, France.,Centre de Référence des Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Centre Nord- Est- Ile de France, Réseau National des Maladies Neuromusculaires, FILNEMUS, France.,European Reference Center Network (Euro-NMD ERN), Paris, France
| | - Christine Barnerias
- Centre de Référence des Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Centre Nord- Est- Ile de France, Réseau National des Maladies Neuromusculaires, FILNEMUS, France.,European Reference Center Network (Euro-NMD ERN), Paris, France.,Pediatric Neurology Department, AP-HP Hôpital Necker Enfants Malades, Paris, France
| | - Ivana Dabaj
- Pediatric Neurology and ICU Department, AP-HP Université Paris Saclay, DMU Santé de l'Enfant et de l'Adolescent, Hôpital Raymond Poincaré, Garches, France.,Centre de Référence des Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Centre Nord- Est- Ile de France, Réseau National des Maladies Neuromusculaires, FILNEMUS, France.,Service de Néonatologie, Réanimation Pédiatrique, Neuropédiatrie et éDucation Fonctionnelle de l'enfant, CHU de Rouen, INSERM U 1245, ED497, Rouen, France
| | - Audrey Bénézit
- Pediatric Neurology and ICU Department, AP-HP Université Paris Saclay, DMU Santé de l'Enfant et de l'Adolescent, Hôpital Raymond Poincaré, Garches, France.,Centre de Référence des Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Centre Nord- Est- Ile de France, Réseau National des Maladies Neuromusculaires, FILNEMUS, France.,European Reference Center Network (Euro-NMD ERN), Paris, France
| | - Julien Durigneux
- Pediatric Neurology Department, Centre de Référence des Maladies Neuromusculaires Atlantique Occitanie Caraïbes (AOC), Centre Hospitalier Universitaire, Angers, France
| | - Robert Y Carlier
- Centre de Référence des Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Centre Nord- Est- Ile de France, Réseau National des Maladies Neuromusculaires, FILNEMUS, France.,European Reference Center Network (Euro-NMD ERN), Paris, France.,Radiology Department, AP-HP Université Paris Saclay, DMU Smart Imaging, Hôpital Raymond Poincaré, Garches, France
| | - Isabelle Desguerre
- Pediatric Neurology and ICU Department, AP-HP Université Paris Saclay, DMU Santé de l'Enfant et de l'Adolescent, Hôpital Raymond Poincaré, Garches, France.,Centre de Référence des Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Centre Nord- Est- Ile de France, Réseau National des Maladies Neuromusculaires, FILNEMUS, France.,European Reference Center Network (Euro-NMD ERN), Paris, France.,Pediatric Neurology Department, AP-HP Hôpital Necker Enfants Malades, Paris, France
| | - Susana Quijano-Roy
- Pediatric Neurology and ICU Department, AP-HP Université Paris Saclay, DMU Santé de l'Enfant et de l'Adolescent, Hôpital Raymond Poincaré, Garches, France.,Centre de Référence des Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Centre Nord- Est- Ile de France, Réseau National des Maladies Neuromusculaires, FILNEMUS, France.,European Reference Center Network (Euro-NMD ERN), Paris, France.,INSERM U1179, Université de Versailles Saint-Quentin (UVSQ), UFR des Sciences de la Santé Simone Vieil, Montigny, France
| | - Brigitte Fauroux
- Pediatric Noninvasive Ventilation and Sleep Unit, AP-HP Hôpital Necker Enfants-Malades, Paris, France.,Université de Paris, VIFASOM, Paris, France
| |
Collapse
|
194
|
Ou SF, Ho CS, Lee WT, Lin KL, Jones CC, Jong YJ. Natural history in spinal muscular atrophy Type I in Taiwanese population: A longitudinal study. Brain Dev 2021; 43:127-134. [PMID: 32878721 DOI: 10.1016/j.braindev.2020.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is caused by a defect in the survival motor neuron 1 (SMN1) gene. The Cooperative Study of the natural history of SMA Type I in Taiwan is a retrospective, longitudinal, observational study that helps in further understanding SMA disease progression in patients who have not received disease-modifying therapeutic interventions. METHODS Case report forms were used to collect demographics; genetic confirmation; SMN2 copy number; treatment patterns; and clinical outcomes including ventilator use, endotracheal tube intubation, tracheostomy, gastrostomy, complications, and survival. RESULTS A total of 111 patients with SMA Type I were identified over the study period (1979-2015). Mean (median) age of onset and age at confirmed diagnosis were 1.3 (0.8) and 4.9 (4.4) months, respectively. SMN1 deletion/mutation was documented in 70 patients and SMN2 copy number in 32 (2 copies, n = 20; 3 copies, n = 12). At 240 months, survival probability for patients born during 1995-2015 versus 1979-1994 was significantly longer (p = 0.0057). Patients with 3 SMN2 copies showed substantially longer 240-month survival versus patients with 2 SMN2 copies. Over the 36-year period, mean (median) age at death was 31.9 (8.8) months. As of December 2015, 95 patients had died, 13 were alive, and 3 were lost to follow-up. The use of supportive measures (tracheostomy and gastrostomy) was associated with improved survival. CONCLUSIONS These data describe the short survival of patients with SMA Type I in Taiwan in the pretreatment era, emphasizing the positive impact of supportive measures on survival.
Collapse
Affiliation(s)
- Shan-Fu Ou
- Department of Pediatrics, Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan
| | - Che-Sheng Ho
- Division of Pediatric Neurology, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Wang-Tso Lee
- Department of Pediatrics, National Taiwan University Hospital, and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Kuang-Lin Lin
- Division of Pediatric Neurology, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Cynthia C Jones
- Department of Epidemiology, Global Analytics and Data Sciences, Biogen, Cambridge, MA, USA
| | - Yuh-Jyh Jong
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Departments of Pediatrics and Laboratory Medicine, and Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| | | |
Collapse
|
195
|
Konersman CG, Ewing E, Yaszay B, Naheedy J, Murphy S, Skalsky A. Nusinersen treatment of older children and adults with spinal muscular atrophy. Neuromuscul Disord 2020; 31:183-193. [PMID: 33608138 DOI: 10.1016/j.nmd.2020.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/01/2020] [Accepted: 12/14/2020] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to determine how effective administration of nusinersen was at improving motor function in older adolescent and adult patients with spinal muscular atrophy, using standardized motor outcome measures. Data were gathered through a retrospective chart review of older spinal muscular atrophy patients (ages 5-58) being treated at Rady Children's Hospital and the University of California, San Diego with nusinersen from April 2017-June 2019. Linear mixed effects analyses found that, for older children and adult patients with SMA 1, 2, and 3, motor scores as measured by the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders for non-sitters improved by 6 points (p = .01) and the Hammersmith Infant Neurological Examination-2 by 2.6% (p = .008) over the 22-month study period. Over the same period, sitters improved on the Revised Upper Limb Module by 4.4 points (p = .02) and on the Hammersmith Functional Motor Scale-Expanded by 3.3% (p = .00005) post treatment with nusinersen. Older spinal muscular atrophy patients (5-58 years) being treated with nusinersen at our institutions are improving. Not only have symptoms stabilized, but their motor function has shown incremental improvements. Based on the results of this study, we suggested that nusinersen is well-tolerated and efficacious when treating older children and adult patients with spinal muscular atrophy 1, 2, and 3.
Collapse
Affiliation(s)
- Chamindra G Konersman
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States.
| | - Emily Ewing
- Division of Pediatric Rehabilitation Medicine, Rady Children's Hospital, San Diego, California, United States
| | - Burt Yaszay
- Department of Orthopedic Surgery, University of California, San Diego, California, United States; Division of Orthopedic Surgery, Rady Children's Hospital, San Diego, California, United States
| | - John Naheedy
- Department of Radiology, Rady Children's Hospital, San Diego, California, United States
| | - Susan Murphy
- Department of Physical Therapy, Rady Children's Hospital, San Diego, California, United States
| | - Andrew Skalsky
- Division of Pediatric Rehabilitation Medicine, Rady Children's Hospital, San Diego, California, United States; Department of Orthopedic Surgery, University of California, San Diego, California, United States
| |
Collapse
|
196
|
The Burden of Spinal Muscular Atrophy on Informal Caregivers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17238989. [PMID: 33276656 PMCID: PMC7730048 DOI: 10.3390/ijerph17238989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
Spinal muscular atrophy (SMA) is one of the most common severe hereditary diseases of infancy and early childhood. The progression of this illness causes a high degree of disability; hence, a significant burden is experienced by individuals with this disease and their families. We analyzed the time taken to care for patients suffering from SMA in European countries and the burden on their informal caregivers. We designed a cross-sectional study recording data from France, Germany, Spain and the United Kingdom. The primary caregivers completed a self-administered questionnaire that included questions about the time of care, The Zarit Burden Interview, type of SMA and socio-demographic characteristics. Multivariate analyses were used to study the associations between the type of SMA, time of care and burden supported by informal caregivers. The caregivers provided 10.0 h (SD = 6.7) per day of care (the principal caregivers provided 6.9 h, SD = 4.6). The informal caregivers of patients with type I SMA had a 36.3 point higher likelihood (p < 0.05) of providing more than 10 h of care per day in comparison with caregivers of patients with type III SMA. The severity of the disease was associated with more time of care and a higher burden on the caregivers.
Collapse
|
197
|
|
198
|
Tiziano FD, Tizzano EF. 25 years of the SMN genes: the Copernican revolution of spinal muscular atrophy. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:336-344. [PMID: 33458589 PMCID: PMC7783429 DOI: 10.36185/2532-1900-037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
The new era of advanced therapies has influenced and changed the views and perspectives of a neuromuscular disease such as spinal muscular atrophy (SMA). Being an autosomal recessive motor neuron disorder, characterized by different degrees of muscle weakness, after 25 years of the discovery of the determinant and modifier genes (SMN1 and SMN2, respectively) three SMN-dependent specific therapies are already approved by FDA (two by EMA), so that worldwide patients are currently under clinical investigation and treatment. This success was the combined effort mainly of patients and families, physician and researchers, advocacy groups and several Institutions together with the support of pharmaceutical companies. Progression trajectories, phenotypes, follow-up and care of the patients are continously evolving. Clinical investigations are currently demonstrating that early diagnosis and intervention are essential for better and more effective response to treatment, consistently improving prognosis. This scenario has created the need for awareness, early diagnosis and even implementation of of newborn screening programs. New views and perspectives of patient and family expectations, genetic counselling and multidisciplinary care: a truly Copernican revolution in neuromuscular and genetic diseases.
Collapse
Affiliation(s)
- Francesco Danilo Tiziano
- Section of Genomic Medicine, Department of Life Science and Public Health, Catholic University of Sacred Heart, Roma, Italy
| | - Eduardo F. Tizzano
- Department of Clinical and Molecular Genetics, Hospital Valle Hebron, Barcelona, Spain
- Medicine Genetics Group, Valle Hebron Research Institute (VHIR), Barcelona, Spain
| |
Collapse
|
199
|
Clinical features of spinal muscular atrophy (SMA) type 3 (Kugelberg-Welander disease). Arch Pediatr 2020; 27:7S23-7S28. [DOI: 10.1016/s0929-693x(20)30273-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
200
|
Petrich J, Marchese D, Jenkins C, Storey M, Blind J. Gene Replacement Therapy: A Primer for the Health-system Pharmacist. J Pharm Pract 2020; 33:846-855. [PMID: 31248331 PMCID: PMC7675776 DOI: 10.1177/0897190019854962] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Comprehensive review of gene replacement therapy with guidance and expert opinion on handling and administration for pharmacists. SUMMARY There are currently ∼2600 gene therapy clinical trials worldwide and 4 Food and Drug Administration (FDA)-approved gene therapy products available in the United States. Gene therapy and its handling are different from other drugs; however, there is a lack of guidance from the National Institutes of Health (NIH), FDA, Centers for Disease Control and Prevention (CDC), World Health Organization (WHO), and professional associations regarding their pharmaceutical application. Although the NIH stratifies the backbone biologicals of viral vectors in gene therapies into risk groups, incomplete information regarding minimization of exposure and reduction of risk exists. In the absence of defined guidance, individual institutions develop their own policies and procedures, which often differ and are often outdated. This review provides expert opinion on the role of pharmacists in institutional preparedness, as well as gene therapy handling and administration. A suggested infrastructural model for gene replacement therapy handling is described, including requisite equipment acquisition and standard operating procedure development. Personnel, patient, and caregiver education and training are discussed. CONCLUSION Pharmacists have a key role in the proper handling and general management of gene replacement therapies, identifying risk level, establishing infrastructure, and developing adequate policies and protocols, particularly in the absence of consensus guidelines for the handling and transport of gene replacement therapies.
Collapse
Affiliation(s)
- John Petrich
- Department of Pharmacy, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | - Chris Jenkins
- Clinical Biosafety Services, LLC, St. Louis, MO, USA
| | - Michael Storey
- Department of Pharmacy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jill Blind
- Department of Pharmacy, Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|