151
|
Abstract
AbstractAs the occurrence of Candida species infections increases, so does resistance against commonly-used antifungal agents. It is therefore necessary to look for new antifungal drugs. This study investigated the antifungal activity of recently isolated, synthesized and characterized antimicrobial α-helical amphipathic peptides (12–18 amino acids long) from the venom of hymenoptera (melectin, lasioglossins I, II, and III, halictines I and II) as well as a whole series of synthetic analogs. The minimal inhibitory concentrations (MICs) against different Candida species (C. albicans, C. krusei, C. glabrata, C. tropicalis and C. parapsilosis) of the natural peptides amounted to 4–20 µM (7–40 mg/l). The most active were the synthetic analog all-D-lasioglossin III and lasioglossin III analog KNWKK-Aib-LGK-Aib-IK-Aib-VK-NH2. As shown using a) colony forming unit determination on agar plates, b) the efflux of the dye from rhodamine 6B-loaded cells, c) propidium iodide and DAPI staining, and d) fluorescently labeled antimicrobial peptide (5(6)-carboxyfluorescein lasioglossin-III), the killing of fungi by the peptides studied occurs within minutes and might be accompanied by a disturbance of all membrane barriers. The peptides represent a promising lead for the development of new, effective antifungal drugs.
Collapse
|
152
|
Won A, Pripotnev S, Ruscito A, Ianoul A. Effect of Point Mutations on the Secondary Structure and Membrane Interaction of Antimicrobial Peptide Anoplin. J Phys Chem B 2011; 115:2371-9. [DOI: 10.1021/jp108343g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amy Won
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Stahs Pripotnev
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Annamaria Ruscito
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Anatoli Ianoul
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
153
|
A kinked antimicrobial peptide from Bombina maxima. II. Behavior in phospholipid bilayers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:463-70. [DOI: 10.1007/s00249-010-0668-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/03/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
|
154
|
Toke O, Bánóczi Z, Király P, Heinzmann R, Bürck J, Ulrich AS, Hudecz F. A kinked antimicrobial peptide from Bombina maxima. I. Three-dimensional structure determined by NMR in membrane-mimicking environments. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:447-62. [DOI: 10.1007/s00249-010-0657-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/09/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
|
155
|
Young AW, Liu Z, Zhou C, Totsingan F, Jiwrajka N, Shi Z, Kallenbach NR. Structure and antimicrobial properties of multivalent short peptides. MEDCHEMCOMM 2011. [DOI: 10.1039/c0md00247j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
156
|
Ren R, Jiang Z, Liu M, Tao X, Ma Y, Wei D. Display of adenoregulin with a novel Pichia pastoris cell surface display system. Mol Biotechnol 2010; 35:103-8. [PMID: 17435275 DOI: 10.1007/bf02686102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/25/2022]
Abstract
Two Pichia pastoris cell surface display vectors were constructed. The vectors consisted of the flocculation functional domain of Flo1p with its own secretion signal sequence or the alpha-factor secretion signal sequence, a polyhistidine (6xHis) tag for detection, an enterokinase recognition site, and the insertion sites for target proteins. Adenoregulin (ADR) is a 33-amino-acid antimicrobial peptide isolated from Phyllomedusa bicolor skin. The ADR was expressed and displayed on the Pichia pastoris KM71 cell surface with the system reported. The displayed recombinant ADR fusion protein was detected by fluorescence microscopy and confocal laser scanning microscopy (CLSM). The antimicrobial activity of the recombinant adenoregulin was detected after proteolytic cleavage of the fusion protein on cell surface. The validity of the Pichia pastoris cell surface display vectors was proved by the displayed ADR.
Collapse
Affiliation(s)
- Ren Ren
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | | | | | | | | | | |
Collapse
|
157
|
Growing insights into the safety of bacteriocins: the case of enterocin S37. Res Microbiol 2010; 162:159-63. [PMID: 21035542 DOI: 10.1016/j.resmic.2010.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 09/14/2010] [Indexed: 11/20/2022]
Abstract
Very few studies have been reported on the cytotoxicity and impact of bacteriocins, and especially enterocins, upon eukaryotic cells. In order to gain more information on the safety of bacteriocins, we focused this study on enterocin S37, a bacteriocin produced by Enterococcus faecalis S37. We observed dose-dependent cytotoxicity toward undifferentiated Caco-2/TC7 cells. Moreover, no significant effect on differentiated monolayer Caco-2/TC7 and no apoptotic features were observed when cells were treated with 10 μg/ml of enterocin S37. The results obtained indicate possible safe use of enterocin S37 in the gastrointestinal tract of animals to prevent pathogen invasion and/or infection.
Collapse
|
158
|
Bellemare A, Vernoux N, Morin S, Gagné SM, Bourbonnais Y. Structural and antimicrobial properties of human pre-elafin/trappin-2 and derived peptides against Pseudomonas aeruginosa. BMC Microbiol 2010; 10:253. [PMID: 20932308 PMCID: PMC2958999 DOI: 10.1186/1471-2180-10-253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/08/2010] [Indexed: 11/10/2022] Open
Abstract
Background Pre-elafin/trappin-2 is a human innate defense molecule initially described as a potent inhibitor of neutrophil elastase. The full-length protein as well as the N-terminal "cementoin" and C-terminal "elafin" domains were also shown to possess broad antimicrobial activity, namely against the opportunistic pathogen P. aeruginosa. The mode of action of these peptides has, however, yet to be fully elucidated. Both domains of pre-elafin/trappin-2 are polycationic, but only the structure of the elafin domain is currently known. The aim of the present study was to determine the secondary structures of the cementoin domain and to characterize the antibacterial properties of these peptides against P. aeruginosa. Results We show here that the cementoin domain adopts an α-helical conformation both by circular dichroism and nuclear magnetic resonance analyses in the presence of membrane mimetics, a characteristic shared with a large number of linear polycationic antimicrobial peptides. However, pre-elafin/trappin-2 and its domains display only weak lytic properties, as assessed by scanning electron micrography, outer and inner membrane depolarization studies with P. aeruginosa and leakage of liposome-entrapped calcein. Confocal microscopy of fluorescein-labeled pre-elafin/trappin-2 suggests that this protein possesses the ability to translocate across membranes. This correlates with the finding that pre-elafin/trappin-2 and elafin bind to DNA in vitro and attenuate the expression of some P. aeruginosa virulence factors, namely the biofilm formation and the secretion of pyoverdine. Conclusions The N-terminal cementoin domain adopts α-helical secondary structures in a membrane mimetic environment, which is common in antimicrobial peptides. However, unlike numerous linear polycationic antimicrobial peptides, membrane disruption does not appear to be the main function of either cementoin, elafin or full-length pre-elafin/trappin-2 against P. aeruginosa. Our results rather suggest that pre-elafin/trappin-2 and elafin, but not cementoin, possess the ability to modulate the expression of some P.aeruginosa virulence factors, possibly through acting on intracellular targets.
Collapse
Affiliation(s)
- Audrey Bellemare
- Département de Biochimie, Microbiologie et Bio-informatique, Institut de Biologie Intégrative et des Systèmes and Regroupement PROTEO, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
159
|
Grime JMA, Khan MO. Decreased Osmotic Pressure via Interfacial Charge Clustering. J Phys Chem B 2010; 114:10049-56. [DOI: 10.1021/jp1007973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John M. A. Grime
- Department of Physical and Analytical Chemistry, Physical Chemistry, Uppsala University, Uppsala, Sweden
| | - Malek O. Khan
- Department of Physical and Analytical Chemistry, Physical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
160
|
Domingues TM, Riske KA, Miranda A. Revealing the lytic mechanism of the antimicrobial peptide gomesin by observing giant unilamellar vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:11077-11084. [PMID: 20356040 DOI: 10.1021/la100662a] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Gomesin (Gm) is a potent cationic antimicrobial peptide from a Brazilian spider. Here we use optical and fluorescence microscopy to study the interaction of Gm, its low active linear analogue, [Ser(2,6,11,15)]-Gm (GmL), and a fluorescent labeled analogue, Gm-Rh, with giant unilamellar vesicles (GUVs) composed of mixtures of the neutral lipid palmitoyloleoyl phosphatidylcholine (POPC) with the negatively charged lipid palmitoyloleoyl phosphatidylglycerol (POPG) or cholesterol, so as to mimic bacterial and mammalian cell membranes, respectively. We observed the effect of injecting a peptide solution with a micropipet close to GUVs. As a result of peptide-lipid interaction, GUVs burst suddenly. Stable pores, which result in leaky vesicles, were not observed. Fluorescence microscopy of Gm-Rh injected on GUVs confirmed the high peptide/lipid affinity. These facts lead us to suggest that Gm and GmL disrupt the membrane via the carpet model. In order to quantify the lytic activity of both peptides against different membrane composition, a solution of GUVs was diluted in increasing concentration of peptides and the fraction of burst GUVs was measured as a function of time. The lytic activity of both peptides was enhanced by the presence of POPG and decreased upon addition of cholesterol. GmL exhibited lower lytic activity as compared to Gm, but this difference vanished at high POPG molar fraction.
Collapse
Affiliation(s)
- Tatiana M Domingues
- Departamento de Biofísica, Universidade Federal de São Paulo, 100 CEP 04044-020, São Paulo, SP, Brazil
| | | | | |
Collapse
|
161
|
Venugopal D, Klapper D, Srouji AH, Bhonsle JB, Borschel R, Mueller A, Russell AL, Williams BC, Hicks RP. Novel antimicrobial peptides that exhibit activity against select agents and other drug resistant bacteria. Bioorg Med Chem 2010; 18:5137-47. [PMID: 20558071 DOI: 10.1016/j.bmc.2010.05.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/21/2010] [Accepted: 05/23/2010] [Indexed: 11/30/2022]
Affiliation(s)
- Divakaramenon Venugopal
- Department of Chemistry, East Carolina University, Science and Technology Building, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Pranting M, Loov C, Burman R, Goransson U, Andersson DI. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J Antimicrob Chemother 2010; 65:1964-71. [DOI: 10.1093/jac/dkq220] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
163
|
Expression of the antimicrobial peptide cecropin fused with human lysozyme in Escherichia coli. Appl Microbiol Biotechnol 2010; 87:2169-76. [PMID: 20499232 DOI: 10.1007/s00253-010-2606-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 04/02/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
Lysozyme is an abundant, cationic antimicrobial protein that plays an important role in host defense. It targets the beta (1-4) glycosidic bond between N-acetylglucosamine and N-acetylmuramic residues that make up peptidoglycan, making lysozyme highly active against Gram-positive bacteria. However, lysozyme alone is inactive against Gram-negative bacteria because it cannot reach the peptidoglycan layer. Cecropins are cationic molecules with a wide range of antimicrobial activities. The main target for these peptides is the cytoplasmic membrane. We resume that cecopin may disrupt the outer membrane, giving the enzyme access to the peptidoglycan in cell wall. So in the present study, novel hybrid protein combining Musca domestica cecropin (Mdc) with human lysozyme (Hly) was designed. The DNA sequence encoding recombination fusion protein Mdc-hly was cloned into the pET-32a vector for protein expression in Escherichia coli strain BL21 (DE3). The protein was expressed as a His-tagged fusion protein, and the Mdc-hly was released from the fusion by enterokinase cleavage and separated from the carrier thioredoxin. Antimicrobial activity assays showed that the recombinant fusion protein Mdc-hly has improved in vitro antimicrobial activity and action spectrum compared to Mdc and hly. Mdc-hly may have important potential application as a future safely administered human drug and food additive.
Collapse
|
164
|
The role of calcium ions in the interactions of PrP106-126 amide with model membranes. Colloids Surf B Biointerfaces 2010; 77:40-6. [DOI: 10.1016/j.colsurfb.2010.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 12/30/2009] [Accepted: 01/03/2010] [Indexed: 11/24/2022]
|
165
|
Kim C. An NMR Study on the Phase Changes of Lipid Bilayers by Antimicrobial Peptides. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2010. [DOI: 10.5012/jkcs.2010.54.02.183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
166
|
Mastronicolis SK, Berberi A, Diakogiannis I, Petrova E, Kiaki I, Baltzi T, Xenikakis P. Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH. Antonie van Leeuwenhoek 2010; 98:307-16. [PMID: 20379849 PMCID: PMC2935972 DOI: 10.1007/s10482-010-9439-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 03/29/2010] [Indexed: 10/30/2022]
Abstract
This study provides a first approach to observe the effects on Listeria monocytogenes of cellular exposure to acid stress at low or neutral pH, notably how phospho- or neutral lipids are involved in this mechanism, besides the fatty acid profile alteration. A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown at pH 5.5 in presence of hydrochloric, acetic and lactic acids, or at neutral pH 7.3 in presence of benzoic acid, is described relative to cells grown in acid-free medium. The results showed that only low pH values enhance the antimicrobial activity of an acid. We suggest that, irrespective of pH, the acid adaptation response will lead to a similar alteration in fatty acid composition [decreasing the ratio of branched chain/saturated straight fatty acids of total lipids], mainly originating from the neutral lipid class of adapted cultures. Acid adaptation in L. monocytogenes was correlated with a decrease in total lipid phosphorus and, with the exception of cells adapted to benzoic acid, this change in the amount of phosphorus reflected a higher content of the neutral lipid class. Upon acetic or benzoic acid stress the lipid phosphorus proportion was analysed in the main phospholipids present: cardiolipin, phosphatidylglycerol, phosphoaminolipid and phosphatidylinositol. Interestingly only benzoic acid had a dramatic effect on the relative quantities of these four phospholipids.
Collapse
Affiliation(s)
- Sofia K Mastronicolis
- Food Chemistry Laboratory, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
167
|
Vooturi SK, Firestine SM. Solution-phase parallel synthesis of novel membrane-targeted antibiotics. ACTA ACUST UNITED AC 2010; 12:151-60. [PMID: 19928911 DOI: 10.1021/cc900138h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The increase in the incidence of antibiotic-resistant infections is a major concern to healthcare workers and requires the development of novel antibacterial agents. Recently, we described a series of benzophenone-containing antibiotics which displayed activity against antibiotic-resistant bacteria. We have shown that these agents function by disrupting the bacterial membrane. To further explore these compounds, a practical and efficient solution-phase parallel synthesis method was developed which allowed us to prepare combinatorial libraries of these agents. Using this method, we prepared 218 compounds in 58 reactions. All of the compounds were characterized by HPLC and MALDI-TOF mass spectrometry. Analysis of this library for antibacterial activity identified six compounds which displayed MIC values of 2.0 mg/L against Staphylococcus aureus. Examination of the structure-function relationships of these agents revealed that cationic groups were required and that cyclic, aliphatic amines were crucial for activity. Using the information generated here, we speculate on how the various structural features of the molecule are necessary for the interaction with the bacterial membrane.
Collapse
Affiliation(s)
- Sunil K Vooturi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
168
|
Monincová L, Budesínský M, Slaninová J, Hovorka O, Cvacka J, Voburka Z, Fucík V, Borovicková L, Bednárová L, Straka J, Cerovský V. Novel antimicrobial peptides from the venom of the eusocial bee Halictus sexcinctus (Hymenoptera: Halictidae) and their analogs. Amino Acids 2010; 39:763-75. [PMID: 20198492 DOI: 10.1007/s00726-010-0519-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 02/05/2010] [Indexed: 10/19/2022]
Abstract
Two novel antimicrobial peptides, named halictines, were isolated from the venom of the eusocial bee Halictus sexcinctus. Their primary sequences were established by ESI-QTOF mass spectrometry, Edman degradation and enzymatic digestion as Gly-Met-Trp-Ser-Lys-Ile-Leu-Gly-His-Leu-Ile-Arg-NH2 (HAL-1), and Gly-Lys-Trp-Met-Ser-Leu-Leu-Lys-His-Ile-Leu-Lys-NH2 (HAL-2). Both peptides exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria but also noticeable hemolytic activity. The CD spectra of HAL-1 and HAL-2 measured in the presence of trifluoroethanol or SDS showed ability to form an amphipathic alpha-helical secondary structure in an anisotropic environment such as bacterial cell membrane. NMR spectra of HAL-1 and HAL-2 measured in trifluoroethanol/water confirmed formation of helical conformation in both peptides with a slightly higher helical propensity in HAL-1. Altogether, we prepared 51 of HAL-1 and HAL-2 analogs to study the effect of such structural parameters as cationicity, hydrophobicity, alpha-helicity, amphipathicity, and truncation on antimicrobial and hemolytic activities. The potentially most promising analogs in both series are those with increased net positive charge, in which the suitable amino acid residues were replaced by Lys. This improvement basically relates to the increase of antimicrobial activity against pathogenic Pseudomonas aeruginosa and to the mitigation of hemolytic activity.
Collapse
Affiliation(s)
- Lenka Monincová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo 2, 16610, Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
An antimicrobial peptide that targets DNA repair intermediates in vitro inhibits Salmonella growth within murine macrophages. Antimicrob Agents Chemother 2010; 54:1888-99. [PMID: 20176906 DOI: 10.1128/aac.01610-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hexapeptide WRWYCR was previously identified on the basis of its ability to inhibit bacteriophage lambda integrase-mediated recombination by trapping and preventing resolution of the Holliday junction intermediate. This peptide inhibits several unrelated DNA repair enzymes that bind to and process Holliday junctions and branched DNA substrates. WRWYCR and its d stereoisomer, wrwycr, are bactericidal against both Gram-positive and Gram-negative bacteria, causing the accumulation of DNA breaks, chromosome segregation defects, and the filamentation of cells. DNA repair is a novel target of antibiotics. In the present study, we examined the ability of the peptides to inhibit the growth of Salmonella in mammalian cells. J774A.1 macrophage-like cells and murine peritoneal macrophages were infected with Salmonella enterica serovar Typhimurium and grown in the presence or absence of peptide. We found that peptide wrwycr reduced the number of Salmonella cells recovered after 24 h growth in J774A.1 cells by 100 to 1,000 times, depending on the multiplicity of infection. The peptide also inhibited Salmonella growth in peritoneal macrophages, and although higher doses were required, these were not toxic to the host cells. The apparent lower level of potency of the peptide paralleled the lower level of replication of Salmonella and the lower level of permeation of the peptide in the peritoneal macrophages than in the J774.1 cells. Treatment with peptide wrwycr elicited the SOS response in a significant fraction of the intracellular bacteria, as would be expected if the mechanism of bacterial killing was the same in pure culture and in host cells. These results represent a proof of principle of the antimicrobial activities of compounds that target DNA repair.
Collapse
|
170
|
Kim C. An NMR Study on the Phase Change of Lipid Membranes by an Antimicrobial Peptide, Protegrin-1. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.02.372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
171
|
Ringstad L, Schmidtchen A, Malmsten M. Effects of single amino acid substitutions on peptide interaction with lipid membranes and bacteria–variants of GKE21, an internal sequence from human LL-37. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2009.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
172
|
Rodziewicz-Motowidło S, Mickiewicz B, Greber K, Sikorska E, Szultka Ł, Kamysz E, Kamysz W. Antimicrobial and conformational studies of the active and inactive analogues of the protegrin-1 peptide. FEBS J 2010; 277:1010-22. [DOI: 10.1111/j.1742-4658.2009.07544.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
173
|
Abstract
Host defense peptides (HDPs) are relatively small, mostly cationic, amphipathic, and of variable length, sequence, and structure. The majority of these peptides exhibit broad-spectrum antimicrobial activity and often activity against viruses and some cancer cell lines. In addition, HDPs also provide a range of immunomodulatory activities related to innate immunity defense, inflammation, and wound healing. The development of these multi-faceted molecules and their bioactivities into clinically important therapeutics is being pursued using a number of different approaches. Here we review the role of HDPs in nature and application of this role to the development of novel therapeutics.
Collapse
|
174
|
Dossey AT. Insects and their chemical weaponry: New potential for drug discovery. Nat Prod Rep 2010; 27:1737-57. [DOI: 10.1039/c005319h] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
175
|
Lioy VS, Rey O, Balsa D, Pellicer T, Alonso JC. A toxin–antitoxin module as a target for antimicrobial development. Plasmid 2010; 63:31-9. [DOI: 10.1016/j.plasmid.2009.09.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 09/09/2009] [Accepted: 09/27/2009] [Indexed: 11/30/2022]
|
176
|
Cerovský V, Budesínský M, Hovorka O, Cvacka J, Voburka Z, Slaninová J, Borovicková L, Fucík V, Bednárová L, Votruba I, Straka J. Lasioglossins: three novel antimicrobial peptides from the venom of the eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae). Chembiochem 2009; 10:2089-99. [PMID: 19591185 DOI: 10.1002/cbic.200900133] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Three novel structurally related pentadecapeptides, named lasioglossins, were isolated from the venom of the eusocial bee Lasioglossum laticeps. Their primary sequences were established as H-Val-Asn-Trp-Lys-Lys-Val-Leu-Gly-Lys-Ile-Ile-Lys-Val-Ala-Lys-NH(2) (LL-I), H-Val-Asn-Trp-Lys-Lys-Ile-Leu-Gly-Lys-Ile-Ile-Lys-Val-Ala-Lys-NH(2) (LL-II) and H-Val-Asn-Trp-Lys-Lys-Ile-Leu-Gly-Lys-Ile-Ile-Lys-Val-Val-Lys-NH(2) (LL-III). These lasioglossins exhibited potent antimicrobial activity against both Gram-positive and Gram-negative bacteria, low haemolytic and mast cell degranulation activity, and a potency to kill various cancer cells in vitro. The lasioglossin CD spectra were measured in the presence of trifluoroethanol and sodium dodecyl sulfate solution and indicated a high degree of alpha-helical conformation. NMR spectroscopy, which was carried out in trifluoroethanol/water confirmed a curved alpha-helical conformation with a concave hydrophobic and convex hydrophilic side. To understand the role of this bend on biological activity, we studied lasioglossin analogues in which the Gly in the centre of the molecule was replaced by other amino acid residues (Ala, Lys, Pro). The importance of the N-terminal part of the molecule to the antimicrobial activity was revealed through truncation of five residues from both the N and C termini of the LL-III peptide. C-terminal deamidation of LL-III resulted in a drop in antimicrobial activity, but esterification of the C terminus had no effect. Molecular modelling of LL-III and the observed NOE contacts indicated the possible formation of a bifurcated H-bond between hydrogen from the Lys15 CONH peptide bond and one H of the C-terminal CONH(2) to the Ile11 oxygen atom. Such interactions cannot form with C-terminal esterification.
Collapse
Affiliation(s)
- Václav Cerovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6 (Czech Republic).
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Interactions of antimicrobial peptide from C-terminus of myotoxin II with phospholipid mono- and bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2277-83. [DOI: 10.1016/j.bbamem.2009.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/10/2009] [Accepted: 07/17/2009] [Indexed: 11/24/2022]
|
178
|
Lopez AI, Reins RY, McDermott AM, Trautner BW, Cai C. Antibacterial activity and cytotoxicity of PEGylated poly(amidoamine) dendrimers. MOLECULAR BIOSYSTEMS 2009; 5:1148-56. [PMID: 19756304 PMCID: PMC2965593 DOI: 10.1039/b904746h] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have investigated the antibacterial activity and cytotoxicity of a series of amino-terminated poly(amidoamine) (PAMAM) dendrimers modified with poly(ethylene glycol) (PEG) groups. The antibacterial activity of the PAMAM dendrimers and their derivatives against the common ocular pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, was evaluated by their minimum inhibitory concentrations (MICs). For the unmodified third and fifth generation (G3 and G5) amino-terminated dendrimers, the MICs against both P. aeruginosa and S. aureus were in the range of 6.3-12.5 microg mL(-1), comparable to that of the antimicrobial peptide LL-37 (1.3-12.5 microg mL(-1)) and within the wide range of 0.047-128 microg mL(-1) for the fluoroquinolone antibiotics. PEGylation of the dendrimers decreased their antibacterial activities, especially for the Gram-positive bacteria (S. aureus). The reduction in potency is likely due to the decrease in the number of protonated amino groups and shielding of the positive charges by the PEG chains, thus decreasing the electrostatic interactions of the dendrimers with the negatively-charged bacterial surface. Interestingly, localization of a greater number of amino groups on G5 vs. G3 dendrimers did not improve the potency. Significantly, even a low degree of PEGylation, e.g. 6% with EG(11) on G3 dendrimer, greatly reduced the cytotoxicity towards human corneal epithelial cells while maintaining a high potency against P. aeruginosa. The cytotoxicity of the PEGylated dendrimers to host cells is much lower than that reported for antimicrobial peptides. Furthermore, the MICs of these dendrimers against P. aeruginosa are more than two orders of magnitude lower than other antimicrobial polymers reported to date. These results motivate further exploration of the potential of cationic dendrimers as a new class of antimicrobial agents that may be less likely to induce bacterial resistance than standard antibiotics.
Collapse
Affiliation(s)
- Analette I. Lopez
- Department of Chemistry, University of Houston, Houston, TX, USA. ; Fax: +1 713 743-2709; Tel: +1 713 743-2710
| | - Rose Y. Reins
- College of Optometry, University of Houston, Houston, TX, USA
| | | | - Barbara W. Trautner
- Department of Medicine, Infectious Diseases Section, Baylor College of Medicine, Houston, TX, USA
| | - Chengzhi Cai
- Department of Chemistry, University of Houston, Houston, TX, USA. ; Fax: +1 713 743-2709; Tel: +1 713 743-2710
| |
Collapse
|
179
|
Ouellet M, Voyer N, Auger M. Membrane interactions and dynamics of a 21-mer cytotoxic peptide: a solid-state NMR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:235-43. [PMID: 19703408 DOI: 10.1016/j.bbamem.2009.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/06/2009] [Accepted: 07/30/2009] [Indexed: 11/29/2022]
Abstract
We have investigated the membrane interactions and dynamics of a 21-mer cytotoxic model peptide that acts as an ion channel by solid-state NMR spectroscopy. To shed light on its mechanism of membrane perturbation, (31)P and (2)H NMR experiments were performed on 21-mer peptide-containing bicelles. (31)P NMR results indicate that the 21-mer peptide stabilizes the bicelle structure and orientation in the magnetic field and perturbs the lipid polar head group conformation. On the other hand, (2)H NMR spectra reveal that the 21-mer peptide orders the lipid acyl chains upon binding. (15)N NMR experiments performed in DMPC bilayers stacked between glass plates also reveal that the 21-mer peptide remains at the bilayer surface. (15)N NMR experiments in perpendicular DMPC bicelles indicate that the 21-mer peptide does not show a circular orientational distribution in the bicelle planar region. Finally, (13)C NMR experiments were used to study the 21-mer peptide dynamics in DMPC multilamellar vesicles. By analyzing the (13)CO spinning sidebands, the results show that the 21-mer peptide is immobilized upon membrane binding. In light of these results, we propose a model of membrane interaction for the 21-mer peptide where it lies at the bilayer surface and perturbs the lipid head group conformation.
Collapse
Affiliation(s)
- Marise Ouellet
- Département de Chimie, PROTEO (Regroupement Québécois de Recherche sur la Fonction, la Structure et l'Ingénierie des Protéines), CERMA (Centre de Recherche sur les Matériaux Avancés), Université Laval, Québec, Québec, Canada G1V 0A6
| | | | | |
Collapse
|
180
|
Effects of lipid composition and phase on the membrane interaction of the prion peptide 106-126 amide. Biophys J 2009; 96:4610-21. [PMID: 19486683 DOI: 10.1016/j.bpj.2009.01.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 11/17/2008] [Accepted: 01/23/2009] [Indexed: 12/27/2022] Open
Abstract
Lipid rafts are specialized liquid-ordered (L(o)) phases of the cell membrane that are enriched in sphingolipids and cholesterol (Chl), and surrounded by a liquid-disordered (L(d)) phase enriched in glycerophospholipids. Lipid rafts are involved in the generation of pathological forms of proteins that are associated with neurodegenerative diseases. To investigate the effects of lipid composition and phase on the generation of pathological forms of proteins, we constructed an L(d)-gel phase-separated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/sphingomyelin (from bovine brain (BSM))-supported lipid bilayer (SLB) and an L(d)-L(o) phase-separated POPC/BSM/Chl SLB. We used in situ time-lapse atomic force microscopy to study the interactions between these SLBs and the prion peptide K(106)TNMKHMAGAAAAGAVVGGLG(126) (PrP106-126) amide, numbered according to the human prion-peptide sequence. Our results show that: 1), with the presence of BSM in the L(d) phase, the PrP106-126 amide induces fully penetrated porations in the L(d) phase of POPC/BSM SLB and POPC/BSM/Chl SLB; 2), with the presence of both BSM and Chl in the L(d) phase, the PrP106-126 amide induces the disintegration of the L(d) phase of POPC/BSM/Chl SLB; and 3), with the presence of both BSM and Chl in the L(o) phase, PrP106-126 amide induces membrane thinning in the L(o) phase of POPC/BSM/Chl SLB. These results provide comprehensive insight into the process by which the PrP106-126 amide interacts with lipid membranes.
Collapse
|
181
|
Sayyed-Ahmad A, Khandelia H, Kaznessis YN. Relative free energy of binding between antimicrobial peptides and SDS or DPC micelles. MOLECULAR SIMULATION 2009; 35:986-997. [PMID: 21113423 DOI: 10.1080/08927020902902742] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We present relative binding free energy calculations for six antimicrobial peptide-micelle systems, three peptides interacting with two types of micelles. The peptides are the scorpion derived antimicrobial peptide (AMP), IsCT and two of its analogues. The micelles are dodecylphosphatidylcholine (DPC) and sodium dodecylsulphate (SDS) micelles. The interfacial electrostatic properties of DPC and SDS micelles are assumed to be similar to those of zwitterionic mammalian and anionic bacterial membrane interfaces, respectively. We test the hypothesis that the binding strength between peptides and the anionic micelle SDS can provide information on peptide antimicrobial activity, since it is widely accepted that AMPs function by binding to and disrupting the predominantly anionic lipid bilayer of the bacterial cytoplasmic membrane. We also test the hypothesis that the binding strength between peptides and the zwitterionic micelle DPC can provide information on peptide haemolytic activities, since it is accepted that they also bind to and disrupt the zwitterionic membrane of mammalian cells. Equilibrium structures of the peptides, micelles and peptide-micelle complexes are obtained from more than 300 ns of molecular dynamics simulations. A thermodynamic cycle is introduced to compute the binding free energy from electrostatic, non-electrostatic and entropic contributions. We find relative binding free energy strengths between peptides and SDS to correlate with the experimentally measured rankings for peptide antimicrobial activities, and relative free energy binding strengths between peptides and DPC to correlate with the observed rankings for peptide haemolytic toxicities. These findings point to the importance of peptide-membrane binding strength for antimicrobial activity and haemolytic activity.
Collapse
Affiliation(s)
- Abdallah Sayyed-Ahmad
- Department of Chemical Engineering and Materials Science, and the Digital Technology Center, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
182
|
Vooturi SK, Cheung CM, Rybak MJ, Firestine SM. Design, Synthesis, and Structure−Activity Relationships of Benzophenone-Based Tetraamides as Novel Antibacterial Agents. J Med Chem 2009; 52:5020-31. [DOI: 10.1021/jm900519b] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sunil K. Vooturi
- Department of Pharmaceutical Sciences
- Anti-Infective Research Laboratory
- Eugene Applebaum College of Pharmacy, Wayne State University, Detroit, Michigan 48201
| | - Chrissy M. Cheung
- Department of Pharmaceutical Sciences
- Anti-Infective Research Laboratory
- Eugene Applebaum College of Pharmacy, Wayne State University, Detroit, Michigan 48201
| | - Michael J. Rybak
- Department of Pharmaceutical Sciences
- Anti-Infective Research Laboratory
- Eugene Applebaum College of Pharmacy, Wayne State University, Detroit, Michigan 48201
| | - Steven M. Firestine
- Department of Pharmaceutical Sciences
- Anti-Infective Research Laboratory
- Eugene Applebaum College of Pharmacy, Wayne State University, Detroit, Michigan 48201
| |
Collapse
|
183
|
van Damme CM, Willemse T, van Dijk A, Haagsman HP, Veldhuizen EJ. Altered cutaneous expression of β-defensins in dogs with atopic dermatitis. Mol Immunol 2009; 46:2449-55. [DOI: 10.1016/j.molimm.2009.05.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/15/2009] [Accepted: 05/21/2009] [Indexed: 11/30/2022]
|
184
|
Sek S, Laredo T, Dutcher JR, Lipkowski J. Molecular resolution imaging of an antibiotic peptide in a lipid matrix. J Am Chem Soc 2009; 131:6439-44. [PMID: 19368392 DOI: 10.1021/ja808180m] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we show molecular resolution scanning tunneling microscopy (STM) images of gramicidin, a model antibacterial peptide, inserted into a phospholipid matrix. The resolution of the images is superior to that obtained in previous attempts to image gramicidin in a lipid environment using atomic force microscopy (AFM). This breakthrough has allowed visualization of individual peptide molecules surrounded by lipid molecules. We have observed several important features: the peptide molecules do not aggregate, the peptide molecules adopt a single conformation corresponding to a specific ion channel form, and the lipid molecules adjacent to the peptide molecules are systematically longer than those in the lipid matrix. These results constitute a new approach to obtain structural characteristics of antibiotic peptides in lipid assemblies that is necessary for the understanding of their biological activity.
Collapse
Affiliation(s)
- Slawomir Sek
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|
185
|
Incorporation of antimicrobial compounds in mesoporous silica film monolith. Biomaterials 2009; 30:5729-36. [PMID: 19628277 DOI: 10.1016/j.biomaterials.2009.07.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 07/06/2009] [Indexed: 12/18/2022]
Abstract
Incorporation of the antimicrobial peptide LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES), as well as low molecular weight antimicrobial chlorhexidine, into mesoporous silica was obtained using an EISA one-pot synthesis method. FTIR confirmed efficient encapsulation of both LL-37 and chlorhexidine into mesoporous silica, while XRD and TEM showed that antimicrobial agent incorporation can be achieved without greatly affecting the structure of the mesoporous silica. The modified mesoporous silica released LL-37 and chlorhexidine slowly, reaching maximum release after about 200 h. The release rate could also be controlled through incorporation of SH groups in the pore walls, adding to pore hydrophobicity and reducing the release rate by about 50% compared to the unmodified mesoporous silica. Mesoporous silica containing either LL-37 or chlorhexidine displayed potent bactericidal properties against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. While chlorhexidine-loaded mesoporous silica displayed an accompanying high toxicity, as judged from hemolysis, LDH release, and MTT assay, the corresponding material containing LL-37 showed very low toxicity by all these assays, comparable to that observed for mesoporous silica in the absence of antibacterial drug, as well as to the negative controls in the respective assays. Mesoporous silica containing LL-37 therefore holds potential as an implantable material or a surface coating for such materials, as it combines potent bactericidal action with low toxicity, important features for controlling implant-related infections, e.g., for multi-resistant pathogens or for cases where access to the infection site of systemically administered antibiotics is limited due to collagen capsule formation or other factors.
Collapse
|
186
|
|
187
|
Pasupuleti M, Schmidtchen A, Chalupka A, Ringstad L, Malmsten M. End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing. PLoS One 2009; 4:e5285. [PMID: 19381271 PMCID: PMC2667214 DOI: 10.1371/journal.pone.0005285] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 03/24/2009] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Due to increasing resistance development among bacteria, antimicrobial peptides (AMPs), are receiving increased attention. Ideally, AMP should display high bactericidal potency, but low toxicity against (human) eukaryotic cells. Additionally, short and proteolytically stable AMPs are desired to maximize bioavailability and therapeutic versatility. METHODOLOGY AND PRINCIPAL FINDINGS A facile approach is demonstrated for reaching high potency of ultra-short antimicrobal peptides through end-tagging with W and F stretches. Focusing on a peptide derived from kininogen, KNKGKKNGKH (KNK10) and truncations thereof, end-tagging resulted in enhanced bactericidal effect against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Through end-tagging, potency and salt resistance could be maintained down to 4-7 amino acids in the hydrophilic template peptide. Although tagging resulted in increased eukaryotic cell permeabilization at low ionic strength, the latter was insignificant at physiological ionic strength and in the presence of serum. Quantitatively, the most potent peptides investigated displayed bactericidal effects comparable to, or in excess of, that of the benchmark antimicrobial peptide LL-37. The higher bactericidal potency of the tagged peptides correlated to a higher degree of binding to bacteria, and resulting bacterial wall rupture. Analogously, tagging enhanced peptide-induced rupture of liposomes, particularly anionic ones. Additionally, end-tagging facilitated binding to bacterial lipopolysaccharide, both effects probably contributing to the selectivity displayed by these peptides between bacteria and eukaryotic cells. Importantly, W-tagging resulted in peptides with maintained stability against proteolytic degradation by human leukocyte elastase, as well as staphylococcal aureolysin and V8 proteinase. The biological relevance of these findings was demonstrated ex vivo for pig skin infected by S. aureus and E. coli. CONCLUSIONS/SIGNIFICANCE End-tagging by hydrophobic amino acid stretches may be employed to enhance bactericidal potency also of ultra-short AMPs at maintained limited toxicity. The approach is of general applicability, and facilitates straightforward synthesis of hydrophobically modified AMPs without the need for post-peptide synthesis modifications.
Collapse
Affiliation(s)
- Mukesh Pasupuleti
- Section of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Artur Schmidtchen
- Section of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anna Chalupka
- Section of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Martin Malmsten
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
188
|
Chen W, Luo L. Classification of antimicrobial peptide using diversity measure with quadratic discriminant analysis. J Microbiol Methods 2009; 78:94-6. [PMID: 19348863 DOI: 10.1016/j.mimet.2009.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/20/2009] [Accepted: 03/30/2009] [Indexed: 11/27/2022]
Abstract
Accurate classification of antimicrobial peptides according to their biological activities will facilitate the design of novel antimicrobial agents and the discovery of new therapeutic targets. In this work, an excellent algorithm of Increment of Diversity with Quadratic Discriminant analysis (IDQD) was proposed to classify antimicrobial peptides with diverse biological activities.
Collapse
Affiliation(s)
- Wei Chen
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | | |
Collapse
|
189
|
Determining the orientation of protegrin-1 in DLPC bilayers using an implicit solvent-membrane model. PLoS One 2009; 4:e4799. [PMID: 19277199 PMCID: PMC2652109 DOI: 10.1371/journal.pone.0004799] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 01/12/2009] [Indexed: 11/22/2022] Open
Abstract
Continuum models that describe the effects of solvent and biological membrane molecules on the structure and behavior of antimicrobial peptides, holds a promise to improve our understanding of the mechanisms of antimicrobial action of these peptides. In such methods, a lipid bilayer model membrane is implicitly represented by multiple layers of relatively low dielectric constant embedded in a high dielectric aqueous solvent, while an antimicrobial peptide is accounted for by a dielectric cavity with fixed partial charge at the center of each one of its atoms. In the present work, we investigate the ability of continuum approaches to predict the most probable orientation of the β-hairpin antimicrobial peptide Protegrin-1 (PG-1) in DLPC lipid bilayers by calculating the difference in the transfer free energy from an aqueous environment to a membrane-water environment for multiple orientations. The transfer free energy is computed as a sum of two terms; polar/electrostatic and non-polar. They both include energetic and entropic contributions to the free energy. We numerically solve the Poisson-Boltzmann equation to calculate the electrostatic contribution to the transfer free energy, while the non-polar contribution to the free energy is approximated using a linear solvent accessible surface area relationships. The most probable orientation of PG-1 is that with the lowest relative transfer free energy. Our simulation results indicate that PG-1 assumes an oblique orientation in DLPC lipid bilayers. The predicted most favorable orientation was with a tilt angle of 19°, which is in qualitative agreement with the experimentally observed orientations derived from solid-state NMR data.
Collapse
|
190
|
Arias M, Orduz S, Lemeshko VV. Potential-dependent permeabilization of plasma membrane by the peptide BTM-P1 derived from the Cry11Bb1 protoxin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:532-7. [DOI: 10.1016/j.bbamem.2008.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 12/02/2008] [Accepted: 12/12/2008] [Indexed: 10/21/2022]
|
191
|
Cerovský V, Hovorka O, Cvacka J, Voburka Z, Bednárová L, Borovicková L, Slaninová J, Fucík V. Melectin: a novel antimicrobial peptide from the venom of the cleptoparasitic bee Melecta albifrons. Chembiochem 2009; 9:2815-21. [PMID: 18942691 DOI: 10.1002/cbic.200800476] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A novel antimicrobial peptide designated melectin was isolated from the venom of the cleptoparasitic bee Melecta albifrons. Its primary sequence was established as H-Gly-Phe-Leu-Ser-Ile-Leu-Lys-Lys-Val-Leu-Pro-Lys-Val-Met-Ala-His-Met-Lys-NH(2) by Edman degradation and ESI-QTOF mass spectrometry. Synthetic melectin exhibited antimicrobial activity against both gram-positive and -negative bacteria and it degranulated rat peritoneal mast cells, but its hemolytic activity was low. The CD spectra of melectin measured in the presence of trifluoroethanol and sodium dodecyl sulfate showed a high content alpha-helices, which indicates that melectin can adopt an amphipathic alpha-helical secondary structure in an anisotropic environment such as the bacterial cell membrane. To envisage the role of the proline residue located in the middle of the peptide chain on biological activity and secondary structure, we prepared several melectin analogues in which the Pro11 residue was either replaced by other amino acid residues or was omitted. The results of biological testing suggest that a Pro kink in the alpha-helical structure of melectin plays an important role in selectivity for bacterial cells. In addition, a series of N- and C-terminal-shortened analogues was synthesized to examine which region of the peptide is related to antimicrobial activity.
Collapse
Affiliation(s)
- Václav Cerovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo 2, 166 10 Prague 6, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Klein S, Lorenzo C, Hoffmann S, Walther JM, Storbeck S, Piekarski T, Tindall BJ, Wray V, Nimtz M, Moser J. Adaptation of Pseudomonas aeruginosa to various conditions includes tRNA-dependent formation of alanyl-phosphatidylglycerol. Mol Microbiol 2008; 71:551-65. [PMID: 19087229 DOI: 10.1111/j.1365-2958.2008.06562.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The opportunistic bacterium Pseudomonas aeruginosa synthesizes significant amounts of an additional phospholipid, identified as 2' alanyl-phosphatidylglycerol (A-PG), when exposed to acidic growth conditions. At pH 5.3 A-PG contributed up to 6% to the overall lipid content of the bacterium. Sequence analysis of P. aeruginosa revealed open reading frame PA0920 showing 34% sequence identity to a protein from Staphylococcus aureus involved in tRNA-dependent formation of lysyl-phosphatidylglycerol. The P. aeruginosa deletion mutant DeltaPA0920 failed to synthesize A-PG. Heterologous overproduction of PA0920 in Escherichia coli resulted in the formation of significant amounts of A-PG, otherwise not synthesized by E. coli. Consequently, the protein encoded by PA0920 was named A-PG synthase. The enzyme was identified as an integral component of the inner membrane. The protein was partially purified by detergent solubilization and subjected to an in vitro activity assay. tRNA(Ala)-dependent catalysis was demonstrated. Transcriptional analysis of the corresponding gene in P. aeruginosa using lacZ reporter gene fusion under various pH conditions indicated a 4.4-fold acid-activated transcription. A phenotype microarray analysis was used to identify further conditions for A-PG function.
Collapse
Affiliation(s)
- Stefanie Klein
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Virolainen NE, Pikkemaat MG, Elferink JWA, Karp MT. Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:11065-70. [PMID: 18998699 DOI: 10.1021/jf801797z] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Tetracycline (TC) specific luminescent bacterial biosensors were used in a rapid TC residue assay sensitized to meet the EU maximum residue limit (MRL) for TC residues in poultry muscle tissue (100 microg kg(-1)) by membrane-permeabilizing and chelating agents polymyxin B and EDTA. Sensitivities of 5 ng g(-1) for doxycycline, 7.5 ng g(-1) for chlortetracycline, and 25 ng g(-1) for tetracycline and oxytetracycline were reached. Except for doxycycline, the MRLs of these tetracyclines include their 4-epimer metabolites. In the biosensor assay, all four 4-epimers showed induction capacity and antimicrobial activity, and antimicrobial activity was also observed in the inhibition assay, although with lower efficiency than that of the corresponding parent compound in both assays. The biosensor assay is an inexpensive and rapid high-throughput screening method for the detection of 4-epimer TC residues along with their parent compounds.
Collapse
Affiliation(s)
- Nina E Virolainen
- Department of Chemistry and Bioengineering, Tampere University of Technology, Finland.
| | | | | | | |
Collapse
|
194
|
Wang L, Lai CE, Wu Q, Liu J, Zhou M, Ren Z, Sun D, Chen S, Xu A. Production and characterization of a novel antimicrobial peptide HKABF by Pichia pastoris. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
195
|
Dennison SR, Kim YS, Cha HJ, Phoenix DA. Investigations into the ability of the peptide, HAL18, to interact with bacterial membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:37-43. [PMID: 18600320 DOI: 10.1007/s00249-008-0352-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/06/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
Abstract
Halocidin was isolated from hemocytes, Halocynthia aurantium as a heterodimeric peptide consisting of two alpha-helical subunits, Hal15 and Hal18. Hal18 was shown to have antibacterial properties against Bacillus subtilis (MLC = 15 microM) and Escherichia coli (MLC = 100 microM). The peptide was shown to produce stable monolayers, which were characteristic of alpha-helical peptides predicted to orientate parallel to the surface of the interface. Constant area assays showed that Hal18 was surface active (4 microM) inducing surface pressure changes >30 mN m(-1) characteristic of membrane interactive peptides. The peptide induced stable surface pressure changes in monolayers that were mimetic of B. subtilis membranes (circa 7 mN m(-1)) and E. coli membrane-mimics (circa 4 mN m(-1)). Hal18 inserted readily into zwitterionic DOPE and anionic DOPG monolayers inducing surface pressure changes circa 8 mN m(-1) in both cases, providing evidence that interaction is not headgroup specific. Thermodynamic analysis of compression isotherms showed that the presence of Hal18 destabilised B. subtilis membranes (DeltaG (Mix) > 0), which is in contrast to its stabilising effect on E. coli lipid extract implying the differential antimicrobial efficacy may be driven by lipid packing.
Collapse
Affiliation(s)
- Sarah R Dennison
- Faculty of Science and Technology, University of Central Lancashire, Preston, UK
| | | | | | | |
Collapse
|
196
|
Thionin Thi2.1 from Arabidopsis thaliana expressed in endothelial cells shows antibacterial, antifungal and cytotoxic activity. Biotechnol Lett 2008; 30:1713-9. [PMID: 18563581 DOI: 10.1007/s10529-008-9756-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 05/14/2008] [Accepted: 05/27/2008] [Indexed: 10/21/2022]
Abstract
Thionins are plant antimicrobial peptides with antibacterial and antifungal activities. Thionin Thi2.1 cDNA from Arabidopsis thaliana was expressed in BVE-E6E7 bovine endothelial cell line and its activity was evaluated against Escherichia coli, Staphylococcus aureus, Candida albicans and different mammal cell lines. Total protein (2.5 microg) from conditioned medium (CM) of clone EC-Thi2.1 inhibited the growth of E. coli, S. aureus (>90%) and C. albicans strains (>80%) in relation to the CM from control cells. Also, CM of EC-Thi2.1 inhibited the viability of several transformed and normal mammal cell lines (38-95%). These results suggest that thionin Thi2.1 is an antimicrobial peptide that could be use in the treatment of mammalian infectious diseases.
Collapse
|
197
|
|
198
|
Cerovský V, Slaninová J, Fucík V, Hulacová H, Borovicková L, Jezek R, Bednárová L. New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs. Peptides 2008; 29:992-1003. [PMID: 18375018 DOI: 10.1016/j.peptides.2008.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Four new peptides of the mastoparan family, characterized recently in the venom of three neotropical social wasps collected in the Dominican Republic, Polistes major major, Polistes dorsalis dorsalis and Mischocyttarus phthisicus were synthesized and tested for antimicrobial potency against Bacillus subtilis, Staphylococcus aureus, Escherichia coli (E.c.) and Pseudomonas aeruginosa, and for hemolytic and mast cells degranulation activities. As these peptides possess strong antimicrobial activity (minimal inhibitory concentration (MIC) values against Bacillus subtillis and E.c. in the range of 5-40 microM), we prepared 40 of their analogs to correlate biological activities, especially antimicrobial, with the net positive charge, hydrophobicity, amphipathicity, peptide length, amino acid substitutions at different positions of the peptide chain, N-terminal acylation and C-terminal deamidation. Circular dichroism spectra of the peptides measured in the presence of trifluoroethanol or SDS showed that the peptides might adopt alpha-helical conformation in such anisotropic environments.
Collapse
Affiliation(s)
- Václav Cerovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
199
|
Parisien A, Allain B, Zhang J, Mandeville R, Lan CQ. Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Microbiol 2008; 104:1-13. [PMID: 18171378 DOI: 10.1111/j.1365-2672.2007.03498.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Extensive research has been conducted on the development of three groups of naturally occurring antimicrobials as novel alternatives to antibiotics: bacteriophages (phages), bacterial cell wall hydrolases (BCWH), and antimicrobial peptides (AMP). Phage therapies are highly efficient, highly specific, and relatively cost-effective. However, precautions have to be taken in the selection of phage candidates for therapeutic applications as some phages may encode toxins and others may, when integrated into host bacterial genome and converted to prophages in a lysogenic cycle, lead to bacterial immunity and altered virulence. BCWH are divided into three groups: lysozymes, autolysins, and virolysins. Among them, virolysins are the most promising candidates as they are highly specific and have the capability to rapidly lyse antibiotic-resistant bacteria on a generally species-specific basis. Finally, AMP are a family of natural proteins produced by eukaryotic and prokaryotic organisms or encoded by phages. AMP are of vast diversity in term of size, structure, mode of action, and specificity and have a high potential for clinical therapeutic applications.
Collapse
Affiliation(s)
- A Parisien
- Department of Chemical Engineering, University of Ottawa, Ottawa, Canada
| | | | | | | | | |
Collapse
|
200
|
Mereuta L, Luchian T, Park Y, Hahm KS. Single-molecule investigation of the interactions between reconstituted planar lipid membranes and an analogue of the HP(2-20) antimicrobial peptide. Biochem Biophys Res Commun 2008; 373:467-72. [PMID: 18433718 DOI: 10.1016/j.bbrc.2008.04.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
In this study, we employed electrophysiology experiments carried out at the single-molecule level to study the mechanism of action of the HPA3 peptide, an analogue of the linear antimicrobial peptide, HP(2-20), isolated from the N-terminal region of the Helicobacter pylori ribosomal protein. Amplitude analysis of currents fluctuations induced by HPA3 peptide at various potentials in zwitterionic lipid membranes reveal the existence of reproducible conductive states in the stochastic behavior of such events, which directly supports the existence of transmembrane pores induced the peptide. From our data recorded both at the single-pore and macroscopic levels, we propose that the HPA3 pore formation is electrophoretically facilitated by trans-negative transmembrane potentials, and HPA3 peptides translocate into the trans monolayers after forming the pores. We present evidence according to which the decrease in the membrane dipole potential of a reconstituted lipid membranes leads to an augmentation of the membrane activity of HPA3 peptides, and propose that a lower electric dipole field of the interfacial region of the membrane caused by phloretin facilitates the surface-bound HPA3 peptides to break free from one leaflet of the membrane, insert into the membrane and contribute to pore formation spanning the entire thickness of the membrane.
Collapse
Affiliation(s)
- Loredana Mereuta
- Alexandru I. Cuza University, Faculty of Physics, Laboratory of Biophysics & Medical Physics, Blvd. King Carol I, No. 11, Iasi R-700506, Romania
| | | | | | | |
Collapse
|