151
|
Yang DR, Ding XF, Luo J, Shan YX, Wang R, Lin SJ, Li G, Huang CK, Zhu J, Chen Y, Lee SO, Chang C. Increased chemosensitivity via targeting testicular nuclear receptor 4 (TR4)-Oct4-interleukin 1 receptor antagonist (IL1Ra) axis in prostate cancer CD133+ stem/progenitor cells to battle prostate cancer. J Biol Chem 2013; 288:16476-16483. [PMID: 23609451 DOI: 10.1074/jbc.m112.448142] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) stem/progenitor cells are known to have higher chemoresistance than non-stem/progenitor cells, but the underlying molecular mechanism remains unclear. We found the expression of testicular nuclear receptor 4 (TR4) is significantly higher in PCa CD133(+) stem/progenitor cells compared with CD133(-) non-stem/progenitor cells. Knockdown of TR4 levels in the established PCa stem/progenitor cells and the CD133(+) population of the C4-2 PCa cell line with lentiviral TR4 siRNA led to increased drug sensitivity to the two commonly used chemotherapeutic drugs, docetaxel and etoposide, judging from significantly reduced IC50 values and increased apoptosis in the TR4 knockdown cells. Mechanism dissection studies found that suppression of TR4 in these stem/progenitor cells led to down-regulation of Oct4 expression, which, in turn, down-regulated the IL-1 receptor antagonist (IL1Ra) expression. Neutralization experiments via adding these molecules into the TR4 knockdown PCa stem/progenitor cells reversed the chemoresistance, suggesting that the TR4-Oct4-IL1Ra axis may play a critical role in the development of chemoresistance in the PCa stem/progenitor cells. Together, these studies suggest that targeting TR4 may alter chemoresistance of PCa stem/progenitor cells, and this finding provides the possibility of targeting TR4 as a new and better approach to overcome the chemoresistance problem in PCa therapeutics.
Collapse
Affiliation(s)
- Dong-Rong Yang
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and the Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14642; Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Xian-Fan Ding
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and the Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14642; Department of Urology, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, 310016 China
| | - Jie Luo
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and the Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14642
| | - Yu-Xi Shan
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Ronghao Wang
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and the Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14642
| | - Shin-Jen Lin
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and the Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14642
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, 310016 China
| | - Chiung-Kuei Huang
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and the Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14642
| | - Jin Zhu
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and the Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14642; Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Yuhchyau Chen
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and the Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14642
| | - Soo Ok Lee
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou, 215004 China.
| | - Chawnshang Chang
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and the Wilmot Cancer Center. University of Rochester Medical Center, Rochester, New York 14642; Sex Hormone Research Center, China Medical University/Hospital, Taichung 404, Taiwan.
| |
Collapse
|
152
|
Jia Q, Zhang X, Deng T, Gao J. Positive correlation of Oct4 and ABCG2 to chemotherapeutic resistance in CD90(+)CD133(+) liver cancer stem cells. Cell Reprogram 2013; 15:143-50. [PMID: 23438193 DOI: 10.1089/cell.2012.0048] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Liver cancer is one of the most common tumors worldwide and drug resistance is a major obstacle to successful therapy. The growing data show that cancer stem cells (CSCs), a rare subpopulation of cancer cells, might be an important mechanism of drug resistance. To explore the self-renewal ability and chemotherapy resistance in liver CSCs, we enriched CD90(+)CD133(+) hepatocellular carcinoma (HCC) CSCs using sphere formation, which was accomplished by cultivating HCC CSCs from established HCC cell lines (HepG2 line and Hep3B line). Cell proliferation capacity was detected using colony formation assays, and cell activity was detected using methyl thiazolyl tetrazolium (MTT) assays after doxorubicin treatment. Expression of CD90, CD133, Oct4, and ABCG2 mRNA and protein levels was detected by PCR and western blot, respectively, which showed that these genes were significantly overexpressed in liver CSCs compared to parental cells (p<0.05). Oct4 and ABCG2 are highly expressed in enriched CD90(+)CD133(+) liver CSCs and are closely associated with chemotherapy drug resistance. We postulated that liver CSCs maybe the cause of high recurrence in liver cancer.
Collapse
Affiliation(s)
- Qian Jia
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | |
Collapse
|
153
|
Wen K, Fu Z, Wu X, Feng J, Chen W, Qian J. Oct-4 is required for an antiapoptotic behavior of chemoresistant colorectal cancer cells enriched for cancer stem cells: effects associated with STAT3/Survivin. Cancer Lett 2013; 333:56-65. [PMID: 23340171 DOI: 10.1016/j.canlet.2013.01.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/31/2012] [Accepted: 01/05/2013] [Indexed: 11/26/2022]
Abstract
Cancer stem cells (CSCs) have been implicated in multidrug resistance, a phenomenon responsible for the failure of cancer chemotherapy. However, the underlying mechanisms are still unclear. In our study, we established two oxaliplatin-resistant colorectal cancer cell lines displaying some CSCs characteristics. Oct4 overexpression was observed in these two lines. We performed Oct4 knock down by lentiviral vector-mediated specific shRNA. Knockdown increased apoptosis, decreased CSCs marker expression and weakened tumorigenicity in drug-resistant cell lines. In conclusion, we show that these events can be at least in part attributed to the STAT3/Survivin pathway.
Collapse
Affiliation(s)
- Kunming Wen
- Department of General Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | | | |
Collapse
|
154
|
Patel SA, Ramkissoon SH, Bryan M, Pliner LF, Dontu G, Patel PS, Amiri S, Pine SR, Rameshwar P. Delineation of breast cancer cell hierarchy identifies the subset responsible for dormancy. Sci Rep 2012. [PMID: 23205268 PMCID: PMC3510468 DOI: 10.1038/srep00906] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The bone marrow (BM) is a major organ of breast cancer (BC) dormancy and a common source of BC resurgence. Gap junctional intercellular communication (GJIC) between BC cells (BCCs) and BM stroma facilitates dormancy. This study reports on a hierarchy of BCCs with the most immature subset (Oct4hi/CD44hi/med/CD24−/+) demonstrating chemoresistance, dormancy, and stem cell properties: self-renewal, serial passaging ability, cycling quiescence, long doubling time, asymmetric division, high metastatic and invasive capability. In vitro and in vivo studies indicated that this subset was responsible for GJIC with BM stroma. Similar BCCs were detected in the blood of patients despite aggressive treatment and in a patient with a relatively large tumor but no lymph node involvement. In brief, these findings identified a novel BCC subset with stem cell properties, with preference for dormancy and in the circulation of patients. The findings establish a working cellular hierarchy of BCCs based on phenotype and functions.
Collapse
Affiliation(s)
- Shyam A Patel
- Department of Medicine - Division of Hematology/Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey , Newark, NJ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Samardzija C, Quinn M, Findlay JK, Ahmed N. Attributes of Oct4 in stem cell biology: perspectives on cancer stem cells of the ovary. J Ovarian Res 2012; 5:37. [PMID: 23171809 PMCID: PMC3536609 DOI: 10.1186/1757-2215-5-37] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/30/2012] [Indexed: 01/05/2023] Open
Abstract
Epithelial ovarian cancer (EOC) remains the most lethal of all the gynaecological malignancies with drug resistance and recurrence remaining the major therapeutic barrier in the management of the disease. Although several studies have been undertaken to understand the mechanisms responsible for chemoresistance and subsequent recurrence in EOC, the exact mechanisms associated with chemoresistance/recurrence continue to remain elusive. Recent studies have shown that the parallel characteristics commonly seen between embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSC) are also shared by a relatively rare population of cells within tumors that display stem cell-like features. These cells, termed 'cancer initiating cells' or 'cancer stem cells (CSCs)' have been shown not only to display increased self renewal and pluripotent abilities as seen in ESCs and iPSCs, but are also highly tumorigenic in in vivo mouse models. Additionally, these CSCs have been implicated in tumor recurrence and chemoresistance, and when isolated have consistently shown to express the master pluripotency and embryonic stem cell regulating gene Oct4. This article reviews the involvement of Oct4 in cancer progression and chemoresistance, with emphasis on ovarian cancer. Overall, we highlight why ovarian cancer patients, who initially respond to conventional chemotherapy subsequently relapse with recurrent chemoresistant disease that is essentially incurable.
Collapse
Affiliation(s)
- Chantel Samardzija
- Women's Cancer Research Centre, Royal Women's Hospital, 20 Flemington Road, Parkville, VIC, 3052, Australia.
| | | | | | | |
Collapse
|
156
|
Wu AML, Dalvi P, Lu X, Yang M, Riddick DS, Matthews J, Clevenger CV, Ross DD, Harper PA, Ito S. Induction of multidrug resistance transporter ABCG2 by prolactin in human breast cancer cells. Mol Pharmacol 2012; 83:377-88. [PMID: 23150485 DOI: 10.1124/mol.112.082362] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The multidrug transporter, breast cancer resistance protein, ABCG2, is up-regulated in certain chemoresistant cancer cells and in the mammary gland during lactation. We investigated the role of the lactogenic hormone prolactin (PRL) in the regulation of ABCG2. PRL dose-dependently induced ABCG2 expression in T-47D human breast cancer cells. This induction was significantly reduced by short-interfering RNA-mediated knockdown of Janus kinase 2 (JAK2). Knockdown or pharmacologic inhibition of the down-stream signal transducer and activator of transcription-5 (STAT5) also blunted the induction of ABCG2 by PRL, suggesting a role for the JAK2/STAT5 pathway in PRL-induced ABCG2 expression. Corroborating these findings, we observed PRL-stimulated STAT5 recruitment to a region containing a putative γ-interferon activation sequence (GAS) element at -434 base pairs upstream of the ABCG2 transcription start site. Introduction of a single mutation to the -434 GAS element significantly attenuated PRL-stimulated activity of a luciferase reporter driven by the ABCG2 gene promoter and 5'-flanking region containing the -434 GAS motif. In addition, this GAS element showed strong copy number dependency in its response to PRL treatment. Interestingly, inhibitors against the mitogen-activated protein kinase and phosphoinositide-3-kinase signaling pathways significantly decreased the induction of ABCG2 by PRL without altering STAT5 recruitment to the GAS element. We conclude that the JAK2/STAT5 pathway is required but not sufficient for the induction of ABCG2 by PRL.
Collapse
Affiliation(s)
- Alex Man Lai Wu
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Lin Y, Yang Y, Li W, Chen Q, Li J, Pan X, Zhou L, Liu C, Chen C, He J, Cao H, Yao H, Zheng L, Xu X, Xia Z, Ren J, Xiao L, Li L, Shen B, Zhou H, Wang YJ. Reciprocal regulation of Akt and Oct4 promotes the self-renewal and survival of embryonal carcinoma cells. Mol Cell 2012; 48:627-40. [PMID: 23041284 DOI: 10.1016/j.molcel.2012.08.030] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 07/05/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
Signaling via the Akt serine/threonine protein kinase plays critical roles in the self-renewal of embryonic stem cells and their malignant counterpart, embryonal carcinoma cells (ECCs). Here we show that in ECCs, Akt phosphorylated the master pluripotency factor Oct4 at threonine 235, and that the levels of phosphorylated Oct4 in ECCs correlated with resistance to apoptosis and tumorigenic potential. Phosphorylation of Oct4 increased its stability and facilitated its nuclear localization and its interaction with Sox2, which promoted the transcription of the core stemness genes POU5F1 and NANOG. Furthermore, in ECCs, unphosphorylated Oct4 bound to the AKT1 promoter and repressed its transcription. Phosphorylation of Oct4 by Akt resulted in dissociation of Oct4 from the AKT1 promoter, which activated AKT1 transcription and promoted cell survival. Therefore, a site-specific, posttranslational modification of the Oct4 protein orchestrates the regulation of its stability, subcellular localization, and transcriptional activities, which collectively promotes the survival and tumorigenicity of ECCs.
Collapse
Affiliation(s)
- Yuanji Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310003, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Wu YC, Ling TY, Lu SH, Kuo HC, Ho HN, Yeh SD, Shen CN, Huang YH. Chemotherapeutic sensitivity of testicular germ cell tumors under hypoxic conditions is negatively regulated by SENP1-controlled sumoylation of OCT4. Cancer Res 2012; 72:4963-73. [PMID: 23002208 DOI: 10.1158/0008-5472.can-12-0673] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Testicular germ cell tumors (TGCT) generally respond well to chemotherapy, but tumors that express low levels of the transcription factor OCT4 are associated with chemoresistance and poor prognosis. Hypoxia is known to induce drug resistance in TGCTs; however, the mechanistic basis for reduced expression of OCT4 and drug resistance is unclear. Here we show that hypoxia reduces OCT4 levels and increases the resistance of embryonal carcinoma (EC) cells to cisplatin and bleomycin. Furthermore, we show that the loss of OCT4 expression under hypoxia can be triggered by sumoylation, which was regulated by SUMO1 and the SUMO1 peptidase SENP1. Under hypoxic conditions, overexpression of SUMO1gg (the active form of SUMO1) not only increased the level of sumoylated OCT4 (Su-OCT4), but also decreased the stability of OCT4 protein. In addition, overexpression of SENP1 reduced the Su-OCT4 level induced by SUMO1gg overexpression, thereby maintaining OCT4 levels and enhancing chemosensitivity. Mechanistic investigations revealed that OCT4 sumoylation occurred at K123, as overexpression of an OCT4-K123R mutant effectively reduced the level of Su-OCT4 under hypoxic conditions. Taken together, our results showed that hypoxia reduces OCT4 expression levels in ECs to increase drug resistance and that these effects could be countered to ablate the suppressive effects of hypoxia on chemosensitivity. Our findings also highlight SENP1 as a potential therapeutic target for drug resistant TGCTs.
Collapse
Affiliation(s)
- Yu-Chih Wu
- Department of Biochemistry, School of Medicine, College of Medicine, Taipei Medical University, Nankang Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Kim K, Ro JY, Kim S, Cho YM. Expression of stem-cell markers OCT-4 and CD133: important prognostic factors in papillary renal cell carcinoma. Hum Pathol 2012; 43:2109-16. [PMID: 22944295 DOI: 10.1016/j.humpath.2012.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 01/24/2023]
Abstract
Except for tumor stage and histologic subtype, the prognostic factors of papillary renal cell carcinoma remain controversial. To the best of our knowledge, the prognostic significance of the expression of stem cell markers, OCT-4 and CD133, has not yet been studied in papillary renal cell carcinoma. Expressions of OCT-4 and CD133 were examined immunohistochemically in a tissue microarray construct generated from 119 cases of papillary renal cell carcinoma, collected from November 1996 to December 2008, and then the results were correlated with the clinicopathologic findings. OCT-4 was expressed at the nuclei of tumor cells in 26 cases (22%). The high expression of OCT-4 with a cut-off value of 12.5%, was associated with frequent microscopic lymphovascular invasion and poor disease-specific survival. CD133 was expressed in the apicolateral cell membrane of tumor cells in 21 cases (17.8%) with a cut-off value of 5%. The CD133 expression was correlated with small tumor size and lack of microscopic lymphovascular invasion, and it tended to be associated with a low Fuhrman nuclear grade and prolonged disease-specific survival. On multivariate analysis, tumor stage, histologic subtype, and OCT-4 expression, but not CD133 expression, were independent prognostic factors for disease-specific survival. OCT-4-expressing and CD133-nonexpressing papillary renal cell carcinoma showed the shortest disease-specific survival. These results showed that the expression of stem cell markers, OCT-4 and CD133, may serve, respectively, as a poor and favorable prognostic marker, in papillary renal cell carcinoma.
Collapse
Affiliation(s)
- Kyungeun Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 110-746, Republic of Korea
| | | | | | | |
Collapse
|
160
|
Chen Y, Yu D, Zhang H, He H, Zhang C, Zhao W, Shao RG. CD133(+)EpCAM(+) phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells. Int J Biol Sci 2012. [PMID: 22904667 DOI: 10.7150/ijbs.4454ijbsv08p0992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND EpCAM or CD133 has been used as the tumor initiating cells (TICs) marker in hepatocellular carcinoma (HCC). We investigated whether cells expressing with both EpCAM and CD133 surface marker were more representative for TICs in hepatocellular carcinoma Huh7 cells. METHODS Four different phenotypes of CD133(+)EpCAM(+), CD133(+)EpCAM(-), CD133(-)EpCAM(+) and CD133(-)EpCAM(-) in Huh7 cells were sorted by flow cytometry. Then cell differentiation, self-renewal, drug-resistance, spheroid formation and the levels of stem cell-related genes were detected to compare the characteristics of TICs. The ability of tumorigenicity was measured in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice to verify TICs. RESULTS CD133(+)EpCAM(+) cells have many characteristics of TICs in Huh7 cells compared with CD133(+)EpCAM(-), CD133(-)EpCAM(+), CD133(-)EpCAM(-) cells, including enrichment in side population cells, higher differentiation capacity, increased colony-formation ability, preferential expression of stem cell-related genes, appearance of drug-resistant to some chemotherapeutics, more spheroid formation of culture cells and stronger tumorigenicity in NOD/SCID mice. CONCLUSION CD133(+)EpCAM(+) phenotype is precisely represented TICs in Huh7 cells. It might be useful for studying biology mechanism of TICs in hepatocellular carcinoma and screening new targets for cancer therapy.
Collapse
Affiliation(s)
- Yi Chen
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China
| | | | | | | | | | | | | |
Collapse
|
161
|
Chen Y, Yu D, Zhang H, He H, Zhang C, Zhao W, Shao RG. CD133(+)EpCAM(+) phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells. Int J Biol Sci 2012; 8:992-1004. [PMID: 22904667 PMCID: PMC3421230 DOI: 10.7150/ijbs.4454] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/24/2012] [Indexed: 12/26/2022] Open
Abstract
Background: EpCAM or CD133 has been used as the tumor initiating cells (TICs) marker in hepatocellular carcinoma (HCC). We investigated whether cells expressing with both EpCAM and CD133 surface marker were more representative for TICs in hepatocellular carcinoma Huh7 cells. Methods: Four different phenotypes of CD133+EpCAM+, CD133+EpCAM-, CD133-EpCAM+ and CD133-EpCAM- in Huh7 cells were sorted by flow cytometry. Then cell differentiation, self-renewal, drug-resistance, spheroid formation and the levels of stem cell-related genes were detected to compare the characteristics of TICs. The ability of tumorigenicity was measured in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice to verify TICs. Results: CD133+EpCAM+ cells have many characteristics of TICs in Huh7 cells compared with CD133+EpCAM-, CD133-EpCAM+, CD133-EpCAM- cells, including enrichment in side population cells, higher differentiation capacity, increased colony-formation ability, preferential expression of stem cell-related genes, appearance of drug-resistant to some chemotherapeutics, more spheroid formation of culture cells and stronger tumorigenicity in NOD/SCID mice. Conclusion: CD133+EpCAM+ phenotype is precisely represented TICs in Huh7 cells. It might be useful for studying biology mechanism of TICs in hepatocellular carcinoma and screening new targets for cancer therapy.
Collapse
Affiliation(s)
- Yi Chen
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China
| | | | | | | | | | | | | |
Collapse
|
162
|
Residual dormant cancer stem-cell foci are responsible for tumor relapse after antiangiogenic metronomic therapy in hepatocellular carcinoma xenografts. J Transl Med 2012; 92:952-66. [PMID: 22546866 DOI: 10.1038/labinvest.2012.65] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common solid tumor and the third leading cause of cancer-related deaths. Currently available chemotherapeutic options are not curative due in part to tumor resistance to conventional therapies. We generated orthotopic HCC mouse models in immunodeficient NOD/SCID/IL2rγ null mice by injection of human alpha-feto protein (hAFP)- and/or luciferase-expressing HCC cell lines and primary cells from patients, where tumor growth and spread can be accurately monitored in a non-invasive way. In this model, low-dose metronomic administration of cyclophosphamide (LDM-CTX) caused complete regression of the tumor mass. A significant increase in survival (P<0.0001), reduced aberrant angiogenesis and hyperproliferation, and decrease in the number of circulating tumor cells were found in LDM-CTX-treated animals, in comparison with untreated mice. Co-administration of LDM-CTX with anti-VEGF therapy further improved the therapeutic efficacy. However, the presence of residual circulating hAFP levels suggested that some tumor cells were still present in livers of treated mice. Immunohistochemistry revealed that those cells had a hAFP+/CD13+/PCNA- phenotype, suggesting that they were dormant cancer stem cells (CSC). Indeed, discontinuation of therapy resulted in tumor regrowth. Moreover, in-vitro LDM-CTX treatment reduced hepatosphere formation in both number and size, and the resulting spheres were enriched in CD13+ cells indicating that these cells were particularly resistant to therapy. Co-treatment of the CD13-targeting drug, bestatin, with LDM-CTX leads to slower tumor growth and a decreased tumor volume. Therefore, combining a CD13 inhibitor, which targets the CSC-like population, with LDM-CTX chemotherapy may be used to eradicate minimal residual disease and improve the treatment of liver cancer.
Collapse
|
163
|
Qian YW, Chen Y, Yang W, Fu J, Cao J, Ren YB, Zhu JJ, Su B, Luo T, Zhao XF, Dai RY, Li JJ, Sun W, Wu MC, Feng GS, Wang HY. p28(GANK) prevents degradation of Oct4 and promotes expansion of tumor-initiating cells in hepatocarcinogenesis. Gastroenterology 2012; 142:1547-58.e14. [PMID: 22387393 DOI: 10.1053/j.gastro.2012.02.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 02/01/2012] [Accepted: 02/22/2012] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is believed to arise from tumor-initiating cells (T-ICs), although little is known about their stem cell-like properties. METHODS We quantified levels of p28(GANK) (Gankyrin), OV6, and Oct4 in 130 human HCC samples using immunohistochemistry. Magnetic-activated cell sorting was used to isolate OV6+ HCC cells. T-IC properties were evaluated by quantitative reverse-transcription polymerase chain reaction, flow cytometry, and spheroid formation. We used a coimmunoprecipitation assay to study interactions among p28(GANK), Oct4, and WWP2. Tumorigenicity and pulmonary metastasis were examined in nonobese diabetic and severe combined immunodeficient mice. RESULTS In HCC samples, high levels of p28(GANK) correlated with expansion of OV6+ tumor cells; the combination of high levels of p28(GANK) and OV6 was associated with progression of HCC. p28(GANK) was predominantly expressed in liver T-ICs, isolated by magnetic sorting, and undifferentiated primary HCC spheroids. Increased levels of p28(GANK) in T-ICs increased their percentages in HCC samples, expression of stem cell genes, self-renewal potential, chemoresistance in vitro, and tumorigenicity and ability to develop into pulmonary metastases in mice. Conversely, knockdown of p28(GANK) reduced their T-IC properties. p28(GANK) likely activates liver T-ICs by impeding ubiquitination and degradation of the transcription factor Oct4 by WWP2. In support of this concept, levels of p28(GANK) correlated with those of Oct4 in HCC samples. CONCLUSIONS p28(GANK) activates and maintains liver T-ICs in HCCs by preventing degradation of Oct4. Inhibitors of p28(GANK) might therefore be developed to inactivate T-ICs and slow tumor progression.
Collapse
Affiliation(s)
- You-Wen Qian
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Bernhardt M, Galach M, Novak D, Utikal J. Mediators of induced pluripotency and their role in cancer cells - current scientific knowledge and future perspectives. Biotechnol J 2012; 7:810-21. [PMID: 22589234 DOI: 10.1002/biot.201100347] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/19/2012] [Accepted: 03/26/2012] [Indexed: 12/15/2022]
Abstract
The discovery that overexpression of the transcription factors Oct4, Sox2, Klf4 and c-Myc reprograms differentiated cells into "induced pluripotent stem cells" (iPSCs) has extended our understanding of mechanisms required to maintain stem cell pluripotency and to drive differentiation. Subsequently, additional factors have been discovered that are able to induce a pluripotent state. Recently several groups have succeeded in reprogramming cancer cells to iPSC-like induced pluripotent cancer cells by use of the method established for the generation of iPSCs. This discovery highlighted several striking similarities between pluripotent stem cells and cancer cells, in turn implying that tumorigenesis and reprogramming are partly promoted by overlapping mechanisms. Thus, research on reprogramming might help unravel the mechanisms of carcinogenesis, and vice versa. This review gives an overview of the common features of pluripotent stem cells and cancer cells and summarizes the present state of knowledge in the field of cancer cell reprogramming.
Collapse
Affiliation(s)
- Mathias Bernhardt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | |
Collapse
|
165
|
Lee TKW, Cheung VCH, Ng IOL. Liver tumor-initiating cells as a therapeutic target for hepatocellular carcinoma. Cancer Lett 2012; 338:101-9. [PMID: 22579789 DOI: 10.1016/j.canlet.2012.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/27/2012] [Accepted: 05/02/2012] [Indexed: 01/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy worldwide and has poor prognosis. Existing treatment modalities, including surgery, chemotherapy, and radiofrequency ablation, which target tumor bulk, have demonstrated limited therapeutic efficacy. In the past 10years, accumulating evidence has supported the existence of cancer stem cells (CSCs) or tumor initiating cells (T-ICs) within tumors including HCC. Identification of liver T-ICs and the signaling pathways that they are involved in may shed light on novel therapeutic strategies against this deadly disease. In this review, we will discuss recent progresses made in the research of liver T-ICs with regard to identification, functional characterization, regulation and therapeutic implications.
Collapse
Affiliation(s)
- Terence Kin Wah Lee
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
166
|
Tang QL, Xie XB, Wang J, Chen Q, Han AJ, Zou CY, Yin JQ, Liu DW, Liang Y, Zhao ZQ, Yong BC, Zhang RH, Feng QS, Deng WG, Zhu XF, Zhou BP, Zeng YX, Shen JN, Kang T. Glycogen synthase kinase-3β, NF-κB signaling, and tumorigenesis of human osteosarcoma. J Natl Cancer Inst 2012; 104:749-63. [PMID: 22534782 PMCID: PMC3352834 DOI: 10.1093/jnci/djs210] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Glycogen synthase kinase-3β (GSK-3β), a serine/threonine protein kinase, may function as a tumor suppressor or an oncogene, depending on the tumor type. We sought to determine the biological function of GSK-3β in osteosarcoma, a rare pediatric cancer for which the identification of new therapeutic targets is urgent. Methods We used cell viability assays, colony formation assays, and apoptosis assays to analyze the effects of altered GSK-3β expression in U2OS, MG63, SAOS2, U2OS/MTX300, and ZOS osteosarcoma cell lines. Nude mice (n = 5–8 mice per group) were injected with U2OS/MTX300, and ZOS cells to assess the role of GSK-3β in osteosarcoma growth in vivo and to evaluate the effects of inhibitors and/or anticancer drugs on tumor growth. We used an antibody array, polymerase chain reaction, western blotting, and a luciferase reporter assay to establish the effect of GSK-3β inhibition on the nuclear factor-κB (NF-κB) pathway. Immunochemistry was performed on primary tumor specimens from osteosarcoma patients (n = 74) to determine the relationship of GSK-3β activity with overall survival. Results Osteosarcoma cells with low levels of inactive p-Ser9-GSK-3β formed colonies in vitro and tumors in vivo more readily than cells with higher levels and cells in which GSK-3β had been silenced formed fewer colonies and smaller tumors than parental cells. Silencing or pharmacological inhibition of GSK-3β resulted in apoptosis of osteosarcoma cells. Inhibition of GSK-3β resulted in inhibition of the NF-κB pathway and reduction of NF-κB-mediated transcription. Combination treatments with GSK-3β inhibitors, NF-κB inhibitors, and chemotherapy drugs increased the effectiveness of chemotherapy drugs in vitro and in vivo. Patients whose osteosarcoma specimens had hyperactive GSK-3β, and nuclear NF-κB had a shorter median overall survival time (49.2 months) compared with patients whose tumors had inactive GSK-3β and NF-κB (109.2 months). Conclusion GSK-3β activity may promote osteosarcoma tumor growth, and therapeutic targeting of the GSK-3β and/or NF-κB pathways may be an effective way to enhance the therapeutic activity of anticancer drugs against osteosarcoma.
Collapse
Affiliation(s)
- Qing-Lian Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Natarajan K, Xie Y, Baer MR, Ross DD. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol 2012; 83:1084-103. [PMID: 22248732 PMCID: PMC3307098 DOI: 10.1016/j.bcp.2012.01.002] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 01/16/2023]
Abstract
Since cloning of the ATP-binding cassette (ABC) family member breast cancer resistance protein (BCRP/ABCG2) and its characterization as a multidrug resistance efflux transporter in 1998, BCRP has been the subject of more than two thousand scholarly articles. In normal tissues, BCRP functions as a defense mechanism against toxins and xenobiotics, with expression in the gut, bile canaliculi, placenta, blood-testis and blood-brain barriers facilitating excretion and limiting absorption of potentially toxic substrate molecules, including many cancer chemotherapeutic drugs. BCRP also plays a key role in heme and folate homeostasis, which may help normal cells survive under conditions of hypoxia. BCRP expression appears to be a characteristic of certain normal tissue stem cells termed "side population cells," which are identified on flow cytometric analysis by their ability to exclude Hoechst 33342, a BCRP substrate fluorescent dye. Hence, BCRP expression may contribute to the natural resistance and longevity of these normal stem cells. Malignant tissues can exploit the properties of BCRP to survive hypoxia and to evade exposure to chemotherapeutic drugs. Evidence is mounting that many cancers display subpopulations of stem cells that are responsible for tumor self-renewal. Such stem cells frequently manifest the "side population" phenotype characterized by expression of BCRP and other ABC transporters. Along with other factors, these transporters may contribute to the inherent resistance of these neoplasms and their failure to be cured.
Collapse
Affiliation(s)
| | - Yi Xie
- University of Maryland Greenebaum Cancer Center
| | - Maria R. Baer
- University of Maryland Greenebaum Cancer Center
- Department of Medicine, University of Maryland School of Medicine
| | - Douglas D. Ross
- University of Maryland Greenebaum Cancer Center
- Department of Medicine, University of Maryland School of Medicine
- Departments of Pathology, and Pharmacology & Experimental Therapeutics, University of Maryland, School of Medicine
- Staff Physician, Baltimore VA Medical Center
| |
Collapse
|
168
|
Barbet R, Peiffer I, Hutchins JRA, Hatzfeld A, Garrido E, Hatzfeld JA. Expression of the 49 human ATP binding cassette (ABC) genes in pluripotent embryonic stem cells and in early- and late-stage multipotent mesenchymal stem cells: possible role of ABC plasma membrane transporters in maintaining human stem cell pluripotency. Cell Cycle 2012; 11:1611-20. [PMID: 22456339 DOI: 10.4161/cc.20023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The 49-member human ATP binding cassette (ABC) gene family encodes 44 membrane transporters for lipids, ions, peptides or xenobiotics, four translation factors without transport activity, as they lack transmembrane domains, and one pseudogene. To understand the roles of ABC genes in pluripotency and multipotency, we performed a sensitive qRT-PCR analysis of their expression in embryonic stem cells (hESCs), bone marrow-derived mesenchymal stem cells (hMSCs) and hESC-derived hMSCs (hES-MSCs). We confirm that hES-MSCs represent an intermediate developmental stage between hESCs and hMSCs. We observed that 44 ABCs were significantly expressed in hESCs, 37 in hES-MSCs and 35 in hMSCs. These variations are mainly due to plasma membrane transporters with low but significant gene expression: 18 are expressed in hESCs compared with 16 in hES-MSCs and 8 in hMSCs, suggesting important roles in pluripotency. Several of these ABCs shared similar substrates but differ regarding gene regulation. ABCA13 and ABCB4, similarly to ABCB1, could be new markers to select primitive hMSCs with specific plasma membrane transporter (low) phenotypes. ABC proteins performing basal intracellular functions, including translation factors and mitochondrial heme transporters, showed the highest constant gene expression among the three populations. Peptide transporters in the endoplasmic reticulum, Golgi and lysosome were well expressed in hESCs and slightly upregulated in hMSCs, which play important roles during the development of stem cell niches in bone marrow or meningeal tissue. These results will be useful to study specific cell cycle regulation of pluripotent stem cells or ABC dysregulation in complex pathologies, such as cancers or neurological disorders.
Collapse
Affiliation(s)
- Romain Barbet
- Human Stem Cell Laboratory, Institut André Lwoff (IAL), CNRS, Villejuif, France
| | | | | | | | | | | |
Collapse
|
169
|
Cancer stem cells: in the line of fire. Cancer Treat Rev 2012; 38:589-98. [PMID: 22469558 DOI: 10.1016/j.ctrv.2012.03.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 12/20/2022]
Abstract
Most tumours appear to contain a sub-population(s) of self-renewing and expanding stem cells known as cancer stem cells (CSCs). The CSC model proposes that CSCs are at the apex of a hierarchically organized cell population, somewhat akin to normal tissue organization. Selection pressures may also facilitate the stochastic clonal expansion of sub-sets of cancer cells that may co-exist with CSCs and their progeny, moreover the trait of stemness may be more fluid than hitherto expected, and cells may switch between the stem and non-stem cell state. A large body of evidence points to the fact that CSCs are particularly resistant to radiotherapy and chemotherapy. In this review we discuss the basis of such resistance that highlights the roles of ABC transporters, aldehyde dehydrogenase (ALDH) activity, intracellular signalling pathways, the DNA damage response, hypoxia and proliferative quiescence as being significant determinants. In the light of such observations, we outline strategies for the successful eradication of CSCs, including targeting the self-renewal controlling pathways (Wnt, Notch and Hedgehog), ALDH activity and ABC transporters, blocking epithelial mesenchymal transition (EMT), differentiation therapy and niche targeting.
Collapse
|
170
|
Kerr ID, Haider AJ, Gelissen IC. The ABCG family of membrane-associated transporters: you don't have to be big to be mighty. Br J Pharmacol 2012; 164:1767-79. [PMID: 21175590 DOI: 10.1111/j.1476-5381.2010.01177.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Along with many other mammalian ATP-binding cassette (ABC) transporters, members of the ABCG group are involved in the regulated transport of hydrophobic compounds across cellular membranes. In humans, five ABCG family members have been identified, encoding proteins ranging from 638 to 678 amino acids in length. All five have been the subject of intensive investigation to better understand their physiological roles, expression patterns, interactions with substrates and inhibitors, and regulation at both the transcript and protein level. The principal substrates for at least four of the ABCG proteins are endogenous and dietary lipids, with ABCG1 implicated in particular in the export of cholesterol, and ABCG5 and G8 forming a functional heterodimer responsible for plant sterol elimination from the body. ABCG2 has a much broader substrate specificity and its ability to transport numerous diverse pharmaceuticals has implications for the absorption, distribution, metabolism, excretion and toxicity (ADMETOx) profile of these compounds. ABCG2 is one of at least three so-called multidrug resistant ABC transporters expressed in humans, and its activity is associated with decreased efficacy of anti-cancer agents in several carcinomas. In addition to its role in cancer, ABCG2 also plays a role in the normal physiological transport of urate and haem, the implications of which are described. We summarize here data on all five human ABCG transporters and provide a current perspective on their roles in human health and disease.
Collapse
Affiliation(s)
- Ian D Kerr
- School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham.
| | | | | |
Collapse
|
171
|
Qiu JL, Huang PZ, You JH, Zou RH, Wang L, Hong J, Li BK, Zhou K, Yuan YF. LIN28 expression and prognostic value in hepatocellular carcinoma patients who meet the Milan criteria and undergo hepatectomy. CHINESE JOURNAL OF CANCER 2012; 31:223-32. [PMID: 22429493 PMCID: PMC3777525 DOI: 10.5732/cjc.011.10426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stem cell marker LIN28, related closely with SOX2 and OCT4, has been studied as a biomarker for the maintainance of pluripotent cells in several malignancies. Our previous study showed that SOX2 and OCT4 were negative predictors for hepatocellular carcinoma (HCC). However, the predictive value of LIN28 in HCC outcome is still undetermined. We hypothesized that LIN28 may also play a role as a biomarker for HCC. To test this hypothesis, we examined the expression of LIN28 in 129 radically resected HCC tissues using reverse transcription-polymerase chain reaction and analyzed the association of LIN28 expression with clinicopathologic features and prognosis. Our study showed that LIN28 was expressed at a higher frequency in tumor tissues than in non-HCC tissues (45.0% vs. 21.7%, P = 0.020). Moreover, LIN28 expression was significantly increased in cases with large tumor size (P = 0.010). Univariate analysis did not reveal a significant correlation between LIN28 expression and overall survival or recurrence-free survival. For HCC patients who met the Milan criteria, stratified analysis revealed shorter overall survival (P = 0.007) and recurrence-free survival (P < 0.001) in those with detectable LIN28 expression compared to those with no detectable LIN28 expression. Furthermore, multivariate analysis revealed that LIN28 was a negative independent predictor for both overall survival (hazard ratio= 7.093, P = 0.017) and recurrence-free survival (hazard ratio=5.518, P = 0.004) in patients who met the Milan criteria. Taken together, our results suggest that LIN28 identifies low-risk and high-risk subsets of HCC patients meeting the Milan criteria who undergo hepatectomy.
Collapse
Affiliation(s)
- Ji-Liang Qiu
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Asghar U, Meyer T. Are there opportunities for chemotherapy in the treatment of hepatocellular cancer? J Hepatol 2012; 56:686-95. [PMID: 21971559 DOI: 10.1016/j.jhep.2011.07.031] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 07/25/2011] [Accepted: 07/28/2011] [Indexed: 02/07/2023]
Abstract
Hepatocellular cancer is a significant global health problem yet the prognosis for the majority of patients has not changed significantly over the past few decades. For patients with advanced disease, sorafenib is currently the standard of care providing a survival advantage of 2-3 months in selected patients. Cytotoxic chemotherapy has been used for over 30 years but definite evidence that it prolongs survival has been lacking. Resistance remains a significant barrier for both targeted and cytotoxic agents and an understanding of the underlying mechanisms is critical if outcomes are to be improved. Here, we summarise the past and current data that constitute the evidence base for chemotherapy in HCC, review the causes of chemoresistance and suggest strategies to overcome these barriers.
Collapse
Affiliation(s)
- Uzma Asghar
- Department of Oncology, UCL Medical School, Royal Free Campus, London, UK
| | | |
Collapse
|
173
|
Abstract
The majority of deaths from carcinoma are caused by secondary growths that result from tumour invasion and metastasis. The importance of epithelial-to-mesenchymal transition (EMT) as a driver of invasion and metastasis is increasingly recognised, and recent evidence has highlighted a link between EMT and the cancer stem cells that initiate and maintain tumours and have also been implicated in invasion and metastasis. Here, we review cancer stem cells and their link with EMT, and explore the importance of this link in metastasis and therapeutic resistance of tumours. We also discuss new evidence from our laboratory demonstrating that cancer stem cells display a remarkable phenotypic plasticity that enables them to switch between an epithelial phenotype that drives tumour growth and an EMT phenotype that drives metastasis. As successful therapies must eradicate cancer stem cells in all their guises, the identification of sub-types of cancer stem cells that display therapeutic resistance and phenotypic plasticity has important implications for the future design of therapeutic strategies. The ability to assay the responses of different cancer stem cell phenotypes in vitro holds promise for the rapid development of a new generation of targeted therapies that fulfil this objective.
Collapse
Affiliation(s)
- Adrian Biddle
- Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK,
| | | |
Collapse
|
174
|
Nakanishi T, Ross DD. Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression. CHINESE JOURNAL OF CANCER 2011; 31:73-99. [PMID: 22098950 PMCID: PMC3777471 DOI: 10.5732/cjc.011.10320] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2) is an ATP-binding cassette (ABC) transporter identified as a molecular cause of multidrug resistance (MDR) in diverse cancer cells. BCRP physiologically functions as a part of a self-defense mechanism for the organism; it enhances elimination of toxic xenobiotic substances and harmful agents in the gut and biliary tract, as well as through the blood-brain, placental, and possibly blood-testis barriers. BCRP recognizes and transports numerous anticancer drugs including conventional chemotherapeutic and targeted small therapeutic molecules relatively new in clinical use. Thus, BCRP expression in cancer cells directly causes MDR by active efflux of anticancer drugs. Because BCRP is also known to be a stem cell marker, its expression in cancer cells could be a manifestation of metabolic and signaling pathways that confer multiple mechanisms of drug resistance, self-renewal (sternness), and invasiveness (aggressiveness), and thereby impart a poor prognosis. Therefore, blocking BCRP-mediated active efflux may provide a therapeutic benefit for cancers. Delineating the precise molecular mechanisms for BCRP gene expression may lead to identification of a novel molecular target to modulate BCRP-mediated MDR. Current evidence suggests that BCRP gene transcription is regulated by a number of trans-acting elements including hypoxia inducible factor 1α, estrogen receptor, and peroxisome proliferator-activated receptor. Furthermore, alternative promoter usage, demethylation of the BCRP promoter, and histone modification are likely associated with drug-induced BCRP overexpression in cancer cells. Finally, PI3K/AKT signaling may play a critical role in modulating BCRP function under a variety of conditions. These biological events seem involved in a complicated manner. Untangling the events would be an essential first step to developing a method to modulate BCRP function to aid patients with cancer. This review will present a synopsis of the impact of BCRP-mediated MDR in cancer cells, and the molecular mechanisms of acquired MDR currently postulated in a variety of human cancers.
Collapse
Affiliation(s)
- Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Kanazawa University School of Pharmaceutical Sciences, Kanazawa, Japan.
| | | |
Collapse
|
175
|
Yang YP, Chien Y, Chiou GY, Cherng JY, Wang ML, Lo WL, Chang YL, Huang PI, Chen YW, Shih YH, Chen MT, Chiou SH. Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials 2011; 33:1462-76. [PMID: 22098779 DOI: 10.1016/j.biomaterials.2011.10.071] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 10/26/2011] [Indexed: 12/14/2022]
Abstract
Glioblastomas (GBMs) are the most common primary brain tumors with poor prognosis. CD133 has been considered a putative marker of cancer stem cells (CSCs) in malignant cancers, including GBMs. MicroRNAs (miRNAs), highly conserved small RNA molecules, may target oncogenes and have potential as a therapeutic strategy against cancer. However, the role of miRNAs in GBM-associated CSCs remains mostly unclear. In this study, our miRNA/mRNA-microarray and RT-PCR analysis showed that the expression of miR145 (a tumor-suppressive miRNA) is inversely correlated with the levels of Oct4 and Sox2 in GBM-CD133(+) cells and malignant glioma specimens. We demonstrated that miR145 negatively regulates GBM tumorigenesis by targeting Oct4 and Sox2 in GBM-CD133(+). Using polyurethane-short branch polyethylenimine (PU-PEI) as a therapeutic-delivery vehicle, PU-PEI-mediated miR145 delivery to GBM-CD133(+) significantly inhibited their tumorigenic and CSC-like abilities and facilitated their differentiation into CD133(-)-non-CSCs. Furthermore, PU-PEI-miR145-treated GBM-CD133(+) effectively suppressed the expression of drug-resistance and anti-apoptotic genes and increased the sensitivity of the cells to radiation and temozolomide. Finally, the in vivo delivery of PU-PEI-miR145 alone significantly suppressed tumorigenesis with stemness, and synergistically improved the survival rate when used in combination with radiotherapy and temozolomide in orthotopic GBM-CD133(+)-transplanted immunocompromised mice. Therefore, PU-PEI-miR145 is a novel therapeutic approach for malignant brain tumors.
Collapse
Affiliation(s)
- Yi-Ping Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Chang CJ, Chien Y, Lu KH, Chang SC, Chou YC, Huang CS, Chang CH, Chen KH, Chang YL, Tseng LM, Song WS, Wang JJ, Lin JK, Huang PI, Lan YT. Oct4-related cytokine effects regulate tumorigenic properties of colorectal cancer cells. Biochem Biophys Res Commun 2011; 415:245-51. [PMID: 22037460 DOI: 10.1016/j.bbrc.2011.10.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/07/2011] [Indexed: 01/10/2023]
Abstract
Oct4, a member of the POU-domain transcription factor family, has been implicated in the cancer stem cell (CSC)-like properties of various cancers. However, the precise role of Oct4 in colorectal CSC initiation remains uncertain. Numerous studies have demonstrated a strong link between inflammation and tumorigenesis in colorectal cancers. In this study, we demonstrated that Oct4 overexpression enhances CSC-like properties of colorectal cancer cells (CRCs), including sphere formation, cell colony formation, cell migration, invasiveness, and drug resistance. In addition, putative CSC markers, stemness genes, drug-resistant genes, as well as interleukin (IL)-8 and IL-32 were upregulated. Microarray-based bioinformatics of CRCs showed higher expression levels of embryonic stem cell-specific genes in cells that overexpressed Oct4. Neutralization of either IL-8 or IL-32 with specific antibodies partially blocked the tumorigenic effects induced by either Oct4 overexpression or by the addition of conditioned media from Oct4-overexpressing CRCs. In addition, the presence of Oct4-overexpressing CRCs enhanced the tumorigenic potential of parental CRCs in vivo. In summary, these data suggest that IL-8 and IL-32 play a role in regulating the CSC-like properties that promote tumorigenesis of CRCs in both autocrine and paracrine manners.
Collapse
Affiliation(s)
- Charn-Jung Chang
- Department of Pharmacy Practice, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Li X, Zhang J, Gao L, McClellan S, Finan MA, Butler TW, Owen LB, Piazza GA, Xi Y. MiR-181 mediates cell differentiation by interrupting the Lin28 and let-7 feedback circuit. Cell Death Differ 2011; 19:378-86. [PMID: 21979467 DOI: 10.1038/cdd.2011.127] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) have attracted attention because of their key regulatory functions in many biological events, including differentiation and tumorigenesis. Recent studies have reported the existence of a reciprocal regulatory loop between the family of let-7 miRNAs and an RNA-binding protein, Lin28, both of which have been documented for their important roles during cell differentiation. Hence, using bipotent K562 human leukemia cells and human CD34+ hematopoietic progenitor cells as research models, we demonstrate that let-7 and Lin28 have contrary roles in megakaryocytic (MK) differentiation with a dynamic balance; expression of miR-181 is capable of effectively repressing Lin28 expression, disrupting the Lin28-let-7 reciprocal regulatory loop, upregulating let-7, and eventually promoting MK differentiation. However, miR-181 lacks a significant effect on hemin-induced erythrocyte differentiation. These results demonstrate that miR-181 can function as a 'molecular switch' during hematopoietic lineage progression specific to MK differentiation, thus providing insight into future development of miRNA-oriented therapeutics.
Collapse
Affiliation(s)
- X Li
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong-Dan-San-Tiao, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
|
179
|
Deisch J, Raisanen J, Rakheja D. Immunohistochemical expression of embryonic stem cell markers in malignant rhabdoid tumors. Pediatr Dev Pathol 2011; 14:353-9. [PMID: 21417895 DOI: 10.2350/10-09-0902-oa.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Malignant rhabdoid tumor is a highly aggressive pediatric neoplasm molecularly characterized by inactivating mutations of the SMARCB1 gene, a potent tumor suppressor and member of the SWI/SNF chromatin remodeling complex. It has been suggested that oncogenesis in SMARCB1-deficient cancers, such as malignant rhabdoid tumors, is driven not by the loss of SWI/SNF function but by an aberrant functioning of the BRG1-containing SWI/SNF complex. Since Brg1 is required for self-renewal and pluripotency of mouse embryonic stem cells, we hypothesized that the human malignant rhabdoid tumors may express pluripotency genes such as SALL4 , LIN28 , OCT3 and OCT4 (OCT3/4) , NANOG , and TCL1 . To test this hypothesis, we studied the immunohistochemical expression of SALL4, LIN28, OCT3/4, NANOG, and TCL1 in 11 malignant rhabdoid tumors of the central nervous system (atypical teratoid/rhabdoid tumors) and 5 malignant rhabdoid tumors of the kidney. Of the 16 malignant rhabdoid tumors, 14 (88%) tumors showed robust SALL4 and/or LIN28 expression. No tumor showed any significant OCT3/4, NANOG, or TCL1 expression. Our results suggest that malignant rhabdoid tumors may arise from and/or share features with embryonic stem cells or germ cells.
Collapse
Affiliation(s)
- Jeremy Deisch
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
180
|
Isolation and characterization of cancer stem-like side population cells in human oral cancer cells. Oral Oncol 2011; 47:855-60. [DOI: 10.1016/j.oraloncology.2011.06.501] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/26/2011] [Accepted: 06/21/2011] [Indexed: 01/06/2023]
|
181
|
Achuthan S, Santhoshkumar TR, Prabhakar J, Nair SA, Pillai MR. Drug-induced senescence generates chemoresistant stemlike cells with low reactive oxygen species. J Biol Chem 2011; 286:37813-29. [PMID: 21878644 PMCID: PMC3199523 DOI: 10.1074/jbc.m110.200675] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tumor recurrence after chemotherapy or radiation remains a major obstacle to successful cancer treatment. A subset of cancer cells, termed cancer stem cells, can elude conventional treatments and eventually regenerate a tumor that is more aggressive. Despite the large number of studies, molecular events that govern the emergence of aggressive therapy-resistant cells with stem cell properties after chemotherapy are poorly defined. The present study provides evidence for the rare escape of tumor cells from drug-induced cell death, after an intermediate stay in a non-cycling senescent stage followed by unstable multiplication characterized by spontaneous cell death. However, some cells appear to escape and generate stable colonies with an aggressive tumor stem cell-like phenotype. These cells displayed higher CD133 and Oct-4 expression. Notably, the drug-selected cells that contained low levels of reactive oxygen species (ROS) also showed an increase in antioxidant enzymes. Consistent with this in vitro experimental data, we observed lower levels of ROS in breast tumors obtained after neoadjuvant chemotherapy compared with samples that did not receive preoperative chemotherapy. These latter tissues also expressed enhanced levels of ROS defenses with enhanced expression of superoxide dismutase. Higher levels of Oct-4 and CD133 were also observed in tumors obtained after neoadjuvant chemotherapy. Further studies provided evidence for the stabilization of Nrf2 due to reduced 26 S proteasome activity and increased p21 association as the driving signaling event that contributes to the transition from a high ROS quiescent state to a low ROS proliferating stage in drug-induced tumor stem cell enrichment.
Collapse
Affiliation(s)
- Santhi Achuthan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram 695014, Kerala, India
| | | | | | | | | |
Collapse
|
182
|
Abstract
Hepatocellular carcinoma (HCC) is the most commonly diagnosed malignancy of the liver and is the third most frequent cause of cancer death worldwide. Although advances in HCC detection and treatment have increased the likelihood of a cure at early stages of the disease, HCC remains largely incurable because of late presentation and tumor recurrence. Only 25% of HCC patients are deemed suitable for curative treatment, with the overall survival at just a few months for inoperable patients. Additionally, this disease is particularly difficult to treat because of the high recurrence rate, its chemotherapy-resistant nature and the premalignant nature of surrounding cirrhotic liver disease. In the past few years, compelling evidence has emerged in support of the hierarchic cancer stem cell (CSC)/tumor-initiating cell (T-IC) model for solid tumors, including HCC. Understanding the characteristics and function of CSCs in the liver has also shed light on HCC management and treatment, including the implications for prognosis, prediction and treatment resistance. In this review, a detailed summary of the recent progress in liver CSC research with regard to identification, regulation and therapeutic implications will be discussed.
Collapse
Affiliation(s)
- Carol Man Tong
- Department of Pathology, Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
183
|
Wu CP, Hsieh CH, Wu YS. The Emergence of Drug Transporter-Mediated Multidrug Resistance to Cancer Chemotherapy. Mol Pharm 2011; 8:1996-2011. [DOI: 10.1021/mp200261n] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chung-Pu Wu
- Department of Physiology and Pharmacology, Chang Gung University, Tao-Yuan 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Chia-Hung Hsieh
- Graduate Institute of Basic Medical Science, China Medical University and Hospital, Taichung, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| |
Collapse
|
184
|
Xu Y, Xia F, Ma L, Shan J, Shen J, Yang Z, Liu J, Cui Y, Bian X, Bie P, Qian C. MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest. Cancer Lett 2011; 310:160-9. [DOI: 10.1016/j.canlet.2011.06.027] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 06/20/2011] [Accepted: 06/23/2011] [Indexed: 02/06/2023]
|
185
|
Tsai LL, Yu CC, Chang YC, Yu CH, Chou MY. Markedly increased Oct4 and Nanog expression correlates with cisplatin resistance in oral squamous cell carcinoma. J Oral Pathol Med 2011; 40:621-8. [PMID: 21342274 DOI: 10.1111/j.1600-0714.2011.01015.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the sixth most prevalent cancer worldwide. Cancer stem cells (CSC) model theoretically contribute to tumor growth, metastasis, and chemo-radioresistance. Cisplatin is a widely used chemotherapeutic agent for OSCC treatment. The aim of this study was to compare stemness genes expression in chemo-sensitive and chemo-resistant specimens and further explore the potential markers that may lead to induce chemo-resistance in OSCC. METHODS The study method is the treatment of OC2 cells with cisplatin select cisplatin-resistant OC2 cells. Self-renewal ability was evaluated by cultivating parental and cisplatin-resistant OC2 cells within sphere-forming assay after serial passages. Differential expression profile of stemness markers between parental and cisplatin-resistant OC2 cells was elucidated. The parental and cisplatin-resistant OC2 cells were assessed for migration/invasion/clonogenicity tumorigenic properties in vitro. Expression of stemness markers in chemo-sensitive and chemo-resistant patients with OSCC was performed by immunohistochemistry staining in vivo. RESULTS Sphere-forming/self-renewal capability was increased in cisplatin-resistant OC2 cells. Cisplatin-resistant OC2 cells highly expressed the stemness markers (Nanog, Oct4, Bmi1, CD117, CD133, and ABCG2). Furthermore, cisplatin-resistant OC2 cells increased migration/invasion/clonogenicity ability. Notably, up-regulation of Oct4 and Nanog expression was significantly observed in cisplatin-resistant patients with OSCC (**P < 0.01). CONCLUSIONS These data indicate that cancer stem-like properties were expanded during the acquisition of cisplatin resistance in OSCC. Clinically, oral cancer stemness markers (Oct4 and Nanog) overexpression may promote the OSCC's recurrence to resist cisplatin.
Collapse
Affiliation(s)
- Lo-Lin Tsai
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
186
|
Lim YC, Oh SY, Cha YY, Kim SH, Jin X, Kim H. Cancer stem cell traits in squamospheres derived from primary head and neck squamous cell carcinomas. Oral Oncol 2010; 47:83-91. [PMID: 21167769 DOI: 10.1016/j.oraloncology.2010.11.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/18/2010] [Accepted: 11/18/2010] [Indexed: 02/08/2023]
Abstract
A subpopulation of cancer stem cells (CSCs), but not the majority of non-tumorigenic cancer cells, in a variety of human malignancies plays a critical role in cancer cell proliferation, invasion, metastasis, and tumor recurrence post-therapies. We report the isolation of sphere-forming cells (squamospheres) from primary head and neck squamous cell carcinomas (HNSCCs), and characterization of their CSC properties. Squamospheres appeared within 2 weeks after seeding as single-dissociated cells obtained from primary HNSCC specimens in serum-free culture conditions. Real-time RT-PCR and immunocytochemistry assays revealed that a number of stem cell markers, including CK5, OCT4, SOX2, and nestin, were up-regulated in HNSCC-driven squamospheres. Fluorescence-activated cell sorting (FACS) analysis showed that squamospheres contain enriched side population cells compared to serum-induced differentiated squamosphere cells. Furthermore, HNSCC-driven squamospheres appeared to be chemoresistant to cisplatin, 5-fluorouracil (FU), paclitaxel and doxetaxel, and showed increased levels of ABCG2, one of the ATP-binding cassette (ABC) transporters. Of particular interest, in sharp contrast to subcutaneous injection of 1×10(6) differentiated squamosphere cells, as few as 100 squamosphere cells were able to give rise to tumors in nude mice. Altogether, we assert that primary HNSCC-driven squamospheres possess CSC properties, and its functional analysis may provide a novel tool for investigating the tumorigenic process of HNSCC.
Collapse
Affiliation(s)
- Young Chang Lim
- Department of Otorhinolaryngology, Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Republic of Korea
| | | | | | | | | | | |
Collapse
|