151
|
Ravichandran R, Ng CC, Liao S, Pliszka D, Raghunath M, Ramakrishna S, Chan CK. Biomimetic surface modification of titanium surfaces for early cell capture by advanced electrospinning. Biomed Mater 2011; 7:015001. [PMID: 22156014 DOI: 10.1088/1748-6041/7/1/015001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The time required for osseointegration with a metal implant having a smooth surface ranges from three to six months. We hypothesized that biomimetic coating surfaces with poly(lactic-co-glycolic acid) (PLGA)/collagen fibers and nano-hydroxyapatite (n-HA) on the implant would enhance the adhesion of mesenchymal stem cells. Therefore, this surface modification of dental and bone implants might enhance the process of osseointegration. In this study, we coated PLGA or PLGA/collagen (50:50 w/w ratio) fiber on Ti disks by modified electrospinning for 5 s to 2 min; after that, we further deposited n-HA on the fibers. PLGA fibers of fiber diameter 0.957 ± 0.357 µm had a contact angle of 9.9 ± 0.3° and PLGA/collagen fibers of fiber diameter 0.378 ± 0.068 µm had a contact angle of 0°. Upon n-HA incorporation, all the fibers had a contact angle of 0° owing to the hydrophilic nature of n-HA biomolecule. The cell attachment efficiency was tested on all the scaffolds for different intervals of time (10, 20, 30 and 60 min). The alkaline phosphatase activity, cell proliferation and mineralization were analyzed on all the implant surfaces on days 7, 14 and 21. Results of the cell adhesion study indicated that the cell adhesion was maximum on the implant surface coated with PLGA/collagen fibers deposited with n-HA compared to the other scaffolds. Within a short span of 60 min, 75% of the cells adhered onto the mineralized PLGA/collagen fibers. Similarly by day 21, the rate of cell proliferation was significantly higher (p ⩽ 0.05) on the mineralized PLGA/collagen fibers owing to enhanced cell adhesion on these fibers. This enhanced initial cell adhesion favored higher cell proliferation, differentiation and mineralization on the implant surface coated with mineralized PLGA/collagen fibers.
Collapse
|
152
|
Wang L, Jeong KJ, Chiang HH, Zurakowski D, Behlau I, Chodosh J, Dohlman CH, Langer R, Kohane DS. Hydroxyapatite for keratoprosthesis biointegration. Invest Ophthalmol Vis Sci 2011; 52:7392-9. [PMID: 21849419 DOI: 10.1167/iovs.11-7601] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Integration of keratoprosthesis with the surrounding cornea is very important in preventing bacterial invasion, which may cause ocular injury. Here the authors investigated whether hydroxyapatite (HAp) coating can improve keratoprosthesis (KPro) biointegration, using polymethyl methacrylate (PMMA)--the principal component of the Boston KPro--as a model polymer. METHODS HAp coatings were induced on PMMA discs after treatment with concentrated NaOH and coating with poly-dopamine (PDA) or polydopamine and then with 11-mercaptoundecanoic acid (11-MUA). Coatings were characterized chemically (Fourier transform infrared spectroscopy [FTIR], energy dispersive X-ray spectroscopy [EDX]) and morphologically (SEM) and were used as substrates for keratocyte growth in vitro. Cylinders of coated PMMA were implanted in porcine corneas ex vivo for 2 weeks, and the force required to pull them out was measured. The inflammatory reaction to coated discs was assessed in the rabbit cornea in vivo. RESULTS FTIR of the coatings showed absorption bands characteristic of phosphate groups, and EDX showed that the Ca/P ratios were close to those of HAp. By SEM, each method resulted in morphologically distinct HAp films; the 11-MUA group had the most uniform coating. The hydroxyapatite coatings caused comparable enhancement of keratocyte proliferation compared with unmodified PMMA surfaces. HAp coating significantly increased the force and work required to pull PMMA cylinders out of porcine corneas ex vivo. HAp coating of implants reduced the inflammatory response around the PMMA implants in vivo. CONCLUSIONS These results are encouraging for the potential of HAp-coated surfaces for use in keratoprostheses.
Collapse
Affiliation(s)
- Liqiang Wang
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Zhang MY, Cheng GJ. Pulsed laser coating of hydroxyapatite/titanium nanoparticles on Ti-6Al-4V substrates: multiphysics simulation and experiments. IEEE Trans Nanobioscience 2011; 10:177-86. [PMID: 21926031 DOI: 10.1109/tnb.2011.2163641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pulsed laser coating (PLC) of bioceramics/metal nanomaterials on metal substrates was investigated in this research. It is found that due to the nature of the nanosized particles and pulse laser beam, PLC processed hydroxyapatite (HAp) coatings possess strong coating/substrate interfacial bonding strength, and minimum thermal decomposition. Feasibility analysis of PLC is conducted using both simulation and experiments. In the multiphysics simulation, laser interacting with metal nanoparticles and heat conduction is simulated by coupling the electromagnetic (EM) module and heat transfer (HT) module. In experiments, HAp and titanium nanoparticle mixture are coated on Ti-6Al-4V substrate using nanosecond pulsed Nd:YAG laser with wavelength of 1064 nm. Resulting temperature is measured by calibrated infrared (IR) camera and compared with simulation results. Experimental results agree well with simulation which serves as a guidance to find appropriate processing parameters. It is found that resulting temperature increases with increasing of pulse energy linearly and decreasing of pulse duration following the power law. It is recommended that shorter pulses to be used in PLC due to its better sinterability. Microstructure and chemical characterizations confirmed that HAp was physically and chemically maintained due to pulse laser caused rapid heating and cooling processes.
Collapse
Affiliation(s)
- Martin Yi Zhang
- School of Industrial Engineering, Purdue University, West Lafayette, IN 47907-2023, USA
| | | |
Collapse
|
154
|
Bone Regeneration around Dental Implants as a Treatment for Peri-Implantitis: A Review of the Literature. ACTA ACUST UNITED AC 2011. [DOI: 10.4028/www.scientific.net/jbbte.11.21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript discusses peri-implantitis around dental implants and the current methodologies of surgical and non-surgical approaches towards treating peri-implantitis. Mechanical, chemical cleansing and reactivation of infected implant surface along with recent advances like the use of Laser and Photodynamic therapy (PDT) have also been reviewed in this literature. Bone regenerative treatment methods for the treatment of peri-implantitis using non-resorbable membranes (Guided Bone Regeneration), autogenous bone grafts and bone substitute materials with recombinant human bone morphogenetic protein-2 (rhBMP-2) and other growth factors have also been reviewed in this manuscript.
Collapse
|
155
|
Singh R, Tiwari SK, Mishra SK, Dahotre NB. Electrochemical and mechanical behavior of laser processed Ti-6Al-4V surface in Ringer's physiological solution. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1787-1796. [PMID: 21660586 DOI: 10.1007/s10856-011-4362-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 05/28/2011] [Indexed: 05/30/2023]
Abstract
Laser surface modification of Ti-6Al-4V with an existing calcium phosphate coating has been conducted to enhance the surface properties. The electrochemical and mechanical behaviors of calcium phosphate deposited on a Ti-6Al-4V surface and remelted using a Nd:YAG laser at varying laser power densities (25-50 W/mm(2)) have been studied and the results are presented. The electrochemical properties of the modified surfaces in Ringer's physiological solution were evaluated by employing both potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The potentiodynamic polarizations showed an increase in the passive current density of Ti-6Al-4V after laser modification at power densities up to 35 W/mm(2), after which it exhibited a decrease. A reduction in the passive current density (by more than an order) was observed with an increase in the laser power density from 25 to 50 W/mm(2). EIS studies at the open circuit potential (OCP) and in the passive region at 1.19 V showed that the polarization resistance increased from 8.274 × 10(3) to 4.38 × 10(5) Ω cm(2) with increasing laser power densities. However, the magnitudes remain lower than that of the untreated Ti-6Al-4V at OCP. The average hardness and modulus of the laser treated Ti-6Al-4V, evaluated by the nanoindentation method, were determined to be 5.4-6.5 GPa (with scatter <±0.976 GPa) and 124-155 GPa (with scatter <±13 GPa) respectively. The corresponding hardness and modulus of untreated Ti-6Al-4V were ~4.1 (±0.62) and ~148 (±7) GPa respectively. Laser processing at power densities >35 W/mm(2) enhanced the surface properties (as passive current density is reduced) so that the materials may be suitable for the biomedical applications.
Collapse
Affiliation(s)
- Raghuvir Singh
- Council of Scientific & Industrial Research-National Metallurgical Laboratory (CSIR-NML), Jamshedpur, 831007, India.
| | | | | | | |
Collapse
|
156
|
Ueta J, Ohtsu N, Kanno T, Tada K, Horiuchi J. Protein Adsorption Properties on Titanium with and without Calcium Titanate-coating. ACTA ACUST UNITED AC 2011. [DOI: 10.1088/1757-899x/18/19/192023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
157
|
Abstract
The state-of-the-art of biocomposites and hybrid biomaterials based on calcium orthophosphates that are suitable for biomedical applications is presented in this review. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through successful combinations of the desired properties of matrix materials with those of fillers (in such systems, calcium orthophosphates might play either role), innovative bone graft biomaterials can be designed. Various types of biocomposites and hybrid biomaterials based on calcium orthophosphates, either those already in use or being investigated for biomedical applications, are extensively discussed. Many different formulations, in terms of the material constituents, fabrication technologies, structural and bioactive properties as well as both in vitro and in vivo characteristics, have already been proposed. Among the others, the nanostructurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using biocomposites and hybrid biomaterials based on calcium orthophosphates in the selected applications are highlighted. As the way from the laboratory to the hospital is a long one, and the prospective biomedical candidates have to meet many different necessities, this review also examines the critical issues and scientific challenges that require further research and development.
Collapse
|
158
|
Hägi TT, Enggist L, Michel D, Ferguson SJ, Liu Y, Hunziker EB. Mechanical insertion properties of calcium-phosphate implant coatings. Clin Oral Implants Res 2011; 21:1214-22. [PMID: 20546252 DOI: 10.1111/j.1600-0501.2010.01916.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate the influence of protein incorporation on the resistance of biomimetic calcium-phosphate coatings to the shear forces that are generated during implant insertion. MATERIALS AND METHODS Thirty-eight standard (5 × 13 mm) Osseotite® implants were coated biomimetically with a layer of calcium phosphate, which either lacked or bore a co-precipitated (incorporated) depot of the model protein bovine serum albumin (BSA). The coated implants were inserted into either artificial bone (n=18) or the explanted mandibles of adult pigs (n=12). The former set-up was established for the measurement of torque and of coating losses during the insertion process. The latter set-up was established for the histological and histomorphometric analysis of the fate of the coatings after implantation. RESULTS BSA-bearing coatings had higher mean torque values than did those that bore no protein depot. During the insertion process, less material was lost from the former than from the latter type of coating. The histological and histomorphometric analysis revealed fragments of material to be sheared off from both types of coating at vulnerable points, namely, at the tips of the threads. The sheared-off fragments were retained within the peri-implant space. CONCLUSION The incorporation of a protein into a biomimetically prepared calcium-phosphate coating increases its resistance to the shear forces that are generated during implant insertion. In a clinical setting, the incorporated protein would be an osteogenic agent, whose osteoinductive potential would not be compromised by the shearing off of coating material, and the osteoconductivity of an exposed implant surface would not be less than that of a coated one.
Collapse
Affiliation(s)
- Tobias T Hägi
- Center of Regenerative Medicine for Skeletal Tissues, Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
159
|
Fujibayashi S, Takemoto M, Neo M, Matsushita T, Kokubo T, Doi K, Ito T, Shimizu A, Nakamura T. A novel synthetic material for spinal fusion: a prospective clinical trial of porous bioactive titanium metal for lumbar interbody fusion. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 20:1486-95. [PMID: 21369760 DOI: 10.1007/s00586-011-1728-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/23/2011] [Accepted: 02/16/2011] [Indexed: 11/29/2022]
Abstract
The objective of this study was to establish the efficacy and safety of porous bioactive titanium metal for use in a spinal fusion device, based on a prospective human clinical trial. A high-strength spinal interbody fusion device was manufactured from porous titanium metal. A bioactive surface was produced by simple chemical and thermal treatment. Five patients with unstable lumbar spine disease were treated surgically using this device in a clinical trial approved by our Ethics Review Committee and the University Hospital Medical Information Network. Clinical and radiological results were reported at the minimum follow-up period of 1 year. The optimal mechanical strength and interconnected structure of the porous titanium metal were adjusted for the device. The whole surface of porous titanium metal was treated uniformly and its bioactive ability was confirmed before clinical use. Successful bony union was achieved in all cases within 6 months without the need for autologous iliac crest bone grafting. Two specific findings including an anchoring effect and gap filling were evident radiologically. All clinical parameters improved significantly after the operation and no adverse effects were encountered during the follow-up period. Although a larger and longer-term follow-up clinical study is mandatory to reach any firm conclusions, the study results show that this porous bioactive titanium metal is promising material for a spinal fusion device.
Collapse
Affiliation(s)
- Shunsuke Fujibayashi
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Fukuda A, Takemoto M, Saito T, Fujibayashi S, Neo M, Yamaguchi S, Kizuki T, Matsushita T, Niinomi M, Kokubo T, Nakamura T. Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments. Acta Biomater 2011; 7:1379-86. [PMID: 20883837 DOI: 10.1016/j.actbio.2010.09.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 10/19/2022]
Abstract
Ti15Zr4Nb4Ta and Ti29Nb13Ta4.6Zr, which do not contain the potentially cytotoxic elements V and Al, represent a new generation of alloys with improved corrosion resistance, mechanical properties, and cytocompatibility. Recently it has become possible for the apatite forming ability of these alloys to be ascertained by treatment with alkali, CaCl2, heat, and water (ACaHW). In order to confirm the actual in vivo bioactivity of commercially pure titanium (cp-Ti) and these alloys after subjecting them to ACaHW treatment at different temperatures, the bone bonding strength of implants made from these materials was evaluated. The failure load between implant and bone was measured for treated and untreated plates at 4, 8, 16, and 26 weeks after implantation in rabbit tibia. The untreated implants showed almost no bonding, whereas all treated implants showed successful bonding by 4 weeks, and the failure load subsequently increased with time. This suggests that a simple and economical ACaHW treatment could successfully be used to impart bone bonding bioactivity to Ti metal and Ti-Zr-Nb-Ta alloys in vivo. In particular, implants heat treated at 700 °C exhibited significantly greater bone bonding strength, as well as augmented in vitro apatite formation, in comparison with those treated at 600 °C. Thus, with this improved bioactive treatment process these advantageous Ti-Zr-Nb-Ta alloys can serve as useful candidates for orthopedic devices.
Collapse
|
161
|
Hsu HC, Tsou HK, Hsu SK, Wu SC, Lai CH, Ho WF. Effect of water aging on the apatite formation of a low-modulus Ti–7.5Mo alloy treated with aqueous NaOH. JOURNAL OF MATERIALS SCIENCE 2011; 46:1369-1379. [DOI: 10.1007/s10853-010-4929-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
|
162
|
Huang J, Li X, Koller GP, Di Silvio L, Vargas-Reus MA, Allaker RP. Electrohydrodynamic deposition of nanotitanium doped hydroxyapatite coating for medical and dental applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:491-496. [PMID: 21243517 DOI: 10.1007/s10856-010-4226-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 12/23/2010] [Indexed: 05/30/2023]
Abstract
Nano-sized titanium containing hydroxyaptite has been prepared, the particle size of nanoTiHA was shown to be 12-20 nm in width and 30-40 nm in length, smaller than that of nanoHA. X-ray diffraction analysis revealed the phase purity of nanoTiHA produced. Antimicrobical assays demonstrated that nanoTiHA has excellent growth inhibitory properties, and is able to inhibit the growth of all bacterial strains tested, both Gram-negative and Gram-positive species, including multi-antibiotic resistant EMRSA 15 and EMRSA 16 'superbugs'. Biocidal activity against all four Staphylococcus spp was also shown at the concentration tested. Nanostuctured TiHA coating was successfully deposited onto Ti surfaces using EHDA spraying under optimized processing conditions with the thickness of the coating being further controlled by the spraying time. All of the nanoTiHA coated Ti surfaces were able to support human osteoblast (HOB) cell attachment and growth. The coating thickness did not significantly influence the proliferation of HOB cells on nanoTiHA coatings, while the ability of nanoTiHA coating to support HOB cell differentiation was demonstrated from the alkaline phosphatase activity. Our study showed that nanoTiHA has excellent anti-bacterial properties and the thin nanoTiHA coating was also able to support the attachment, growth and differentiation of HOB cells. Therefore, nanoTiHA coating could pave the way for the development of the next generation of dental and orthopedic implants by offering anti-infection potential in addition to osteoconductivity.
Collapse
Affiliation(s)
- J Huang
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC 1E 7JE, UK.
| | | | | | | | | | | |
Collapse
|
163
|
Aparicio C, Rodriguez D, Gil F. Variation of roughness and adhesion strength of deposited apatite layers on titanium dental implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.09.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
164
|
Overgaard S. Calcium phosphate coatings for fixation of bone implants. Evaluated mechanically and histologically by stereological methods. ACTA ACUST UNITED AC 2011. [DOI: 10.1080/000164702760300297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
165
|
Mingalyov PG, Kolyagin YG, Lisichkin GV. Solid-state NMR spectroscopic study of the structure of grafted layers of phosphonic acid ester-modified hydroxyapatite. COLLOID JOURNAL 2011. [DOI: 10.1134/s1061933x11010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
166
|
Bøe BG, Röhrl SM, Heier T, Snorrason F, Nordsletten L. A prospective randomized study comparing electrochemically deposited hydroxyapatite and plasma-sprayed hydroxyapatite on titanium stems. Acta Orthop 2011; 82:13-9. [PMID: 21189109 PMCID: PMC3229992 DOI: 10.3109/17453674.2010.548027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Plasma-sprayed hydroxyapatite (HA) is a successful coating for fixation of uncemented femoral stems. There may be alternative coatings with advantages in bone remodeling and transport of bone-active substances. We investigated whether an electrochemically deposited hydroxyapatite, Bonemaster (BM), might be a safe alternative in total hip arthroplasty. Our hypothesis was that the new coating would not be inferior to the conventional one. PATIENTS AND METHODS 50 patients (55 hips) were included. The stem was tapered and porous-coated proximally. On top of the porous coating was either HA or BM. Patients were evaluated postoperatively and after 3, 6, 12, and 24 months to measure fixation by radiostereometric analysis (RSA), bone mineral density by dual-energy X-ray absorptiometry (DXA), and conventional radiography. Clinical evaluation was performed with Harris hip score and Oxford hip score, both preoperatively and after 2 years. RESULTS After 2 years, the stems had subsided 0.25 (HA) and 0.28 (BM) mm and there were no statistically significant differences between the groups in any direction, regarding both migration and rotation. The BM group retained significantly more bone than the HA group in Gruen zone 1 during the first 2 years. The Harris and Oxford hip scores were similar in both groups. INTERPRETATION Electrochemically deposited hydroxyapatite on an uncemented stem does not appear to be inferior to plasma-sprayed HA regarding clinical and radiological results, bone remodeling, and micromotion after 2 years follow-up.
Collapse
Affiliation(s)
| | - Stephan M Röhrl
- Department of Orthopaedics, Oslo University Hospital, Ullevål
| | - Tore Heier
- Department of Surgery, Diakonhjemmet Hospital, Oslo, Norway
| | | | | |
Collapse
|
167
|
Munir G, Koller G, Di Silvio L, Edirisinghe MJ, Bonfield W, Huang J. The pathway to intelligent implants: osteoblast response to nano silicon-doped hydroxyapatite patterning. J R Soc Interface 2011; 8:678-88. [PMID: 21208969 DOI: 10.1098/rsif.2010.0548] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bioactive hydroxyapatite (HA) with addition of silicon (Si) in the crystal structure (silicon-doped hydroxyapatite (SiHA)) has become a highly attractive alternative to conventional HA in bone replacement owing to the significant improvement in the in vivo bioactivity and osteoconductivity. Nanometre-scaled SiHA (nanoSiHA), which closely resembles the size of bone mineral, has been synthesized in this study. Thus, the silicon addition provides an extra chemical cue to stimulate and enhance bone formation for new generation coatings, and the next stage in metallic implantation design is to further improve cellular adhesion and proliferation by control of cell alignment. Topography has been found to provide a powerful set of signals for cells and form contact guidance. Using the recently developed novel technique of template-assisted electrohydrodynamic atomization (TAEA), patterns of pillars and tracks of various dimensions of nanoSiHA were achieved. Modifying the parameters of TAEA, the resolution of pattern structures was controlled, enabling the topography of a substrate to be modified accordingly. Spray time, flow rate and distance between the needle and substrate were varied to improve the pattern formation of pillars and tracks. The 15 min deposition time provided the most consistent patterned topography with a distance of 50 mm and flow rate of 4 µl min(-1). A titanium substrate was patterned with pillars and tracks of varying widths, line lengths and distances under the optimized TAEA processing condition. A fast bone-like apatite formation rate was found on nanoSiHA after immersion in simulated body fluid, thus demonstrating its high in vitro bioactivity. Primary human osteoblast (HOB) cells responded to SiHA patterns by stretching of the filopodia between track and pillar, attaching to the apex of the pillar pattern and stretching between two. HOB cells responded to the track pattern by elongating along and between the track, and the length of HOB cells was proportional to the gaps between track patterns, but this relationship was not observed on the pillar patterns. The study has therefore provided an insight for future design of next generation implant surfaces to control and guide cellular responses, while TAEA patterning provides a controllable technique to provide topography to medical implants.
Collapse
Affiliation(s)
- G Munir
- Department of Mechanical Engineering, University College London, Torrington Place, London WC 1E 7JE, UK.
| | | | | | | | | | | |
Collapse
|
168
|
Fontana F, Rocchietta I, Addis A, Schupbach P, Zanotti G, Simion M. Effects of a calcium phosphate coating on the osseointegration of endosseous implants in a rabbit model. Clin Oral Implants Res 2010; 22:760-766. [DOI: 10.1111/j.1600-0501.2010.02056.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
169
|
Dorozhkin SV. Calcium orthophosphates as bioceramics: state of the art. J Funct Biomater 2010; 1:22-107. [PMID: 24955932 PMCID: PMC4030894 DOI: 10.3390/jfb1010022] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/16/2010] [Accepted: 11/25/2010] [Indexed: 12/18/2022] Open
Abstract
In the late 1960s, much interest was raised in regard to biomedical applications of various ceramic materials. A little bit later, such materials were named bioceramics. This review is limited to bioceramics prepared from calcium orthophosphates only, which belong to the categories of bioactive and bioresorbable compounds. There have been a number of important advances in this field during the past 30-40 years. Namely, by structural and compositional control, it became possible to choose whether calcium orthophosphate bioceramics were biologically stable once incorporated within the skeletal structure or whether they were resorbed over time. At the turn of the millennium, a new concept of calcium orthophosphate bioceramics-which is able to promote regeneration of bones-was developed. Presently, calcium orthophosphate bioceramics are available in the form of particulates, blocks, cements, coatings, customized designs for specific applications and as injectable composites in a polymer carrier. Current biomedical applications include artificial replacements for hips, knees, teeth, tendons and ligaments, as well as repair for periodontal disease, maxillofacial reconstruction, augmentation and stabilization of the jawbone, spinal fusion and bone fillers after tumor surgery. Exploratory studies demonstrate potential applications of calcium orthophosphate bioceramics as scaffolds, drug delivery systems, as well as carriers of growth factors, bioactive peptides and/or various types of cells for tissue engineering purposes.
Collapse
|
170
|
Park DS, Kim IS, Kim H, Chou AHK, Hahn BD, Li LH, Hwang SJ. Improved biocompatibility of hydroxyapatite thin film prepared by aerosol deposition. J Biomed Mater Res B Appl Biomater 2010; 94:353-358. [PMID: 20574972 DOI: 10.1002/jbm.b.31658] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Technical development for an efficient coating of bioactive materials improves the characteristics of a fully functional implant. The aim of this study was to investigate the osteoinductive effect of a newly developed hydroxyapatite (HA)-coating technique using aerosol deposition without post-heat treatment [room temperature (RT) group] on the titanium (Ti) dental implant in vitro and in vivo, compared with that of HA coating with post-heat treatment (HT-400 group) or machined surface (control group). Cell proliferation or attachment on the HA-coated Ti surface was assessed using tetrazolium salt, WST-8 or scanning electron microscopy (SEM). Human osteoblasts (HOB) on RT group were well attached and grew alike in the control or HT-400 group. The alkaline phosphatase activity of HOB cultured on RT and HT-400 group was significantly higher than the control group (p < 0.05). Evaluation by SEM, TEM, and XRD demonstrated that aerosol deposition facilitated HA particles to form a dense and uniform HA layer in the RT group despite no post-heating. In a rabbit tibia model (n = 3), the ratios of bone implant contact and bone area in the RT group (49.88%, 86.05%) were greater than in the HT-400 group (38.82%, 77.34%) or the control (28.31%, 73.86%). The finding of this study showed that the HA coating using aerosol deposition without post-heat treatment has a good biocompatibility, and provide a promoting strategy to enhance osseointegration in the application of the dental implant.
Collapse
Affiliation(s)
- Dong-Soo Park
- Functional Ceramics Research Group, Korea Institute of Materials Science, Changwon, Gyeongnam 641-831, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
171
|
Suzuki O. Octacalcium phosphate: osteoconductivity and crystal chemistry. Acta Biomater 2010; 6:3379-87. [PMID: 20371385 DOI: 10.1016/j.actbio.2010.04.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 12/20/2022]
Abstract
Octacalcium phosphate (OCP), which is structurally similar to hydroxyapatite (HA), is a possible precursor of bone apatite crystals. Although disagreement remains as to whether OCP comprises the initial mineral crystals in the early stage of bone mineralization, the results of recent biomaterial studies using synthetic OCP indicate the potential role of OCP as a bone substitute material, owing to its highly osteoconductive and biodegradable characteristics. OCP tends to convert to HA not only in an in vitro environment, but also as an implant in bone defects. Several lines of evidence from both in vivo and in vitro studies suggest that the conversion process could be involved in the stimulatory capacity of OCP for osteoblastic differentiation and osteoclast formation. However, the osteoconductivity of OCP cannot always be secured if an OCP with distinct crystal characteristics is used, because the stoichiometry and microstructure of OCP crystals greatly affect bone-regenerative properties. Osteoconductivity and stimulatory capabilities may be caused by the chemical characteristics of OCP, which allows the release or exchange of calcium and phosphate ions with the surrounding of this salt, and its tendency to grow towards specific crystal faces, which could be a variable of the synthesis condition. This paper reviews the effect of calcium phosphates on osteoblastic activity and bone regeneration, with a special emphasis on OCP, since OCP seems to be performing better than other calcium phosphates in vivo.
Collapse
Affiliation(s)
- O Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
172
|
Zeng L, Wang H, Fu G, Jiang J, Zhang X. A new approach for synthesis of the comb-shaped poly (ε-caprolactone) brushes on the surface of nano-hydroxyapatite by combination of ATRP and ROP. J Colloid Interface Sci 2010; 352:36-42. [PMID: 20825951 DOI: 10.1016/j.jcis.2010.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/04/2010] [Accepted: 08/06/2010] [Indexed: 10/19/2022]
Abstract
A facile strategy for growing the comb-shaped poly (ε-caprolactone) brushes on the surface of nano-hydroxyapatite (n-HAP) by combination of atom transfer radical polymerization (ATRP) and ring-opening polymerization (ROP) would be presented. Firstly, ATRP was used to graft poly (2-hydroxyethyl methacrylate) (PHEMA) onto the n-HAP surface. Then, the hydroxyl groups introduced onto the n-HAP were used to initiate the ROP of ε-caprolactone for constructing comb-shaped polymer brushes on the surface of n-HAP. The surface modified n-HAP was characterized by Fourier transform infrared (FT-IR) spectra, (13)C solid-state cross-polarization magic-angle-spinning ((13)C CP/MAS), and thermal gravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM) measurements, respectively. The results demonstrated that the comb-shaped poly (ε-caprolactone) brushes had been grafted successfully, and the grafting ratio could be controlled well by adjusting the feed ratio of initiator and monomer.
Collapse
Affiliation(s)
- Liang Zeng
- Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan 411105, PR China
| | | | | | | | | |
Collapse
|
173
|
Kim H, Choi SH, Chung SM, Li LH, Lee IS. Enhanced bone forming ability of SLA-treated Ti coated with a calcium phosphate thin film formed by e-beam evaporation. Biomed Mater 2010; 5:044106. [PMID: 20683124 DOI: 10.1088/1748-6041/5/4/044106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With an electron-beam evaporation process, a calcium phosphate (Ca-P) thin film of approximately 500 nm thick was deposited on sand blasted with large grits and acid etched (SLA) Ti without changing the typical morphology of the SLA surface. Dissolution behavior was investigated by measuring the amount of dissolved phosphate ions with ion chromatography after immersing the SLA Ti sample coated with a Ca-P film in 1 ml de-ionized water maintained at 37 degrees C for different periods of soaking time, and the surface morphology was observed with field emission scanning electron microscopy. The amount of phosphate ions increased quickly right after immersion but began to decrease after 2 days of immersion by redeposition with Ca ions as apatite, and the amount of biomimetic apatite increased with the extended soaking time. The Saos-2 cell was more attached on the coated surface, and the in vivo evaluation was that the Ca-P deposited SLA implant greatly improved the new bone formation ability.
Collapse
Affiliation(s)
- Hyeongil Kim
- Restorative Dentistry, School of Dental Medicine, University at Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
174
|
Functional Coatings or Films for Hard-Tissue Applications. MATERIALS 2010; 3:3994-4050. [PMID: 28883319 PMCID: PMC5445792 DOI: 10.3390/ma3073994] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 06/23/2010] [Accepted: 07/07/2010] [Indexed: 12/21/2022]
Abstract
Metallic biomaterials like stainless steel, Co-based alloy, Ti and its alloys are widely used as artificial hip joints, bone plates and dental implants due to their excellent mechanical properties and endurance. However, there are some surface-originated problems associated with the metallic implants: corrosion and wear in biological environments resulting in ions release and formation of wear debris; poor implant fixation resulting from lack of osteoconductivity and osteoinductivity; implant-associated infections due to the bacterial adhesion and colonization at the implantation site. For overcoming these surface-originated problems, a variety of surface modification techniques have been used on metallic implants, including chemical treatments, physical methods and biological methods. This review surveys coatings that serve to provide properties of anti-corrosion and anti-wear, biocompatibility and bioactivity, and antibacterial activity.
Collapse
|
175
|
Sugiyama T, Miake Y, Yajima Y, Yamamoto K, Sakurai K. Surface observation of thin hydroxyapatite-coated implants at 80 months after insertion. J ORAL IMPLANTOL 2010; 37:273-8. [PMID: 20594064 DOI: 10.1563/aaid-joi-d-09-00113.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We observed surfaces and cross sections of thin hydroxyapatite (HA)-coated implants produced by the thermal decomposition method in a patient attending our clinic who underwent implant removal at 80 months due to fracture of the implants. On the implant surfaces of the removed sample, most of the HA had dissolved, and extensive osseointegration was observed where Ti had closely bonded to bone. This indicated that the HA coated on the implant surfaces had disappeared and osseointegration had been established where Ti directly bonded to the bone. In addition, calcium titanate (CaTiO(3)) and HA layers formed by the thermal decomposition method showed no desorption. The results clearly indicate the positive clinical potential of thin HA-coating by the thermal decomposition method.
Collapse
Affiliation(s)
- Tetsuya Sugiyama
- Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College, Chiba, Japan.
| | | | | | | | | |
Collapse
|
176
|
Rudnev VS, Morozova VP, Lukiyanchuk IV, Adigamova MV. Calcium-containing biocompatible oxide-phosphate coatings on titanium. RUSS J APPL CHEM+ 2010. [DOI: 10.1134/s107042721004018x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
177
|
In vivo bone response and mechanical evaluation of electrosprayed CaP nanoparticle coatings using the iliac crest of goats as an implantation model. Acta Biomater 2010; 6:2227-36. [PMID: 19944782 DOI: 10.1016/j.actbio.2009.11.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 01/11/2023]
Abstract
Recent trends in clinical implantology include the use of endosseous dental implant surfaces embellished with nano-sized modifications. The current study was initiated to evaluate the mechanical properties, as well as the potential beneficial effects, of electrosprayed CaP nanoparticle-coated (nano-CaP) implants on the in vivo osteogenic response, compared with grit-blasted, acid-etched (GAE) implant surfaces as controls. For this purpose nano-CaP coatings were deposited on cylindrical screw-type (St) implants and implanted bilaterally into the iliac crest of goats for 6weeks. In addition to histological and histomorphometrical analyses, insertion torque and removal torque values were measured on implant placement and retrieval, respectively. The present study showed similar insertion and removal torque values for nano-CaP-coated and GAE control implants, with no statistically significant increase in torque value during the implant period for either group. With regard to bone-implant contact and peri-implant bone volume, no significant differences were found between nano-CaP-coated and GAE implants after 6weeks implantation. In conclusion, this study has demonstrated that in situations in which implants are placed in a non-compromised situation using a standard press fit implantation strategy the performance of electrosprayed nano-CaP coatings is comparable with GAE implants, both with respect to implant fixation and bone healing response.
Collapse
|
178
|
Sim YU, Kim JH, Yang TY, Yoon SY, Park HC. Biomimetic whisker-shaped apatite coating of titanium powder. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:1489-1494. [PMID: 20094901 DOI: 10.1007/s10856-010-3999-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 01/09/2010] [Indexed: 05/28/2023]
Abstract
Biomimetic apatite coatings on chemically modified titanium powder have been processed and the resulting coating layers evaluated in terms of morphology, composition and structure, using TF-XRD, XPS, SEM, TEM and FTIR analysis. After 7 days immersion in a simulated body fluid (SBF), nanometer-sized fine precipitates with an amorphous whisker-like phase and a Ca/P atomic ratio of 1.94 were obtained on the external surface of the titanium particles. When the immersion time in SBF was extended to 16 days, the coating layer consisted of the whisker-like nanostructured crystals of carbonated hydroxyapatite with a atomic ratio of 3; in such a case, a double coating layer was developed. The double layer could be divided into two regions and could be clearly distinguished: an inner dense region (approximately 200 nm in thickness) which may include hard agglomerated crystals and an outer less dense region (> 500 nm in thickness) in which crystals are loosely distributed.
Collapse
Affiliation(s)
- Young Uk Sim
- School of Materials Science and Engineering, Pusan National University, Pusan, 609-735, South Korea
| | | | | | | | | |
Collapse
|
179
|
Ho WF, Lai CH, Hsu HC, Wu SC. Surface modification of a Ti-7.5Mo alloy using NaOH treatment and Bioglass coating. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:1479-1488. [PMID: 20069344 DOI: 10.1007/s10856-010-3990-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 01/04/2010] [Indexed: 05/28/2023]
Abstract
The objective of this study was to propose a surface modification for a low-modulus Ti-7.5Mo alloy to initiate the formation of hydroxyapatite (HA) during in vitro bioactivity tests in simulated body fluid (SBF). Specimens of commercially pure titanium (c.p. Ti) and Ti-7.5Mo were initially immersed in a 15 M NaOH solution at 60 degrees C for 24 h, resulting in the formation of a porous network structure composed of sodium titanate (Na(2)Ti(5)O(11)). Afterwards, bioactive Bioglass particles were deposited on the surface of NaOH-treated c.p. Ti and Ti-7.5Mo. The specimens were then immersed in SBF at 37 degrees C for 1, 7 and 28 days, respectively. The apatite-forming ability of the NaOH-treated and Bioglass-coated Ti-7.5Mo was higher than that of the c.p. Ti under the same condition. The X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS) results indicated that the deposited amounts of calcium phosphate were much greater for the surface-treated Ti-7.5Mo than for the c.p. Ti, a finding attributable to or correlated with the higher pH value of the SBF containing surface-treated Ti-7.5Mo. Moreover, in the surface-treated Ti-7.5Mo, the pH value of the SBF approached a peak of 7.66 on the first day. A combination of NaOH treatment and subsequent Bioglass coating was successfully used to initiate in vitro HA formation in the surface of the Ti-7.5Mo alloy.
Collapse
Affiliation(s)
- Wen-Fu Ho
- Department of Materials Science and Engineering, Da-Yeh University, 168 University Road, Dacun, Changhua, 51591, Taiwan, ROC.
| | | | | | | |
Collapse
|
180
|
Wu J, Liu ZM, Zhao XH, Gao Y, Hu J, Gao B. Improved biological performance of microarc-oxidized low-modulus Ti-24Nb-4Zr-7.9Sn alloy. J Biomed Mater Res B Appl Biomater 2010; 92:298-306. [PMID: 19904739 DOI: 10.1002/jbm.b.31515] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ti-24Nb-4Zr-7.9Sn (TNZS) is a newly developed beta-titanium alloy with low modulus and it has been considered as good material for dental or orthopedic implant. The purpose of the current study is to evaluate the effect of micro-arc oxidation (MAO) treatment on the biological performance of TNZS surface. The phases, morphology and chemical composition of the MAO-treated surface were characterized by X-ray diffraction, energy dispersive spectroscope and scanning electron microscopy analysis respectively. Then we tested the biocompatibility by examining the cell morphology and viability of osteoblast cells growing on MAO-TNZS surface. The bone binding strength of the specimens was evaluated by removal torque test after implantation in rabbit tibiae for 6 weeks. Compared with the none-treated titanium and TNZS specimens, MAO treated TNZS specimens showed a significant increase (p<0.05) in hydrophilicity, roughness, cell viability and removal torque forces. In summary, MAO treatment helps to form a porous surface with a biologically active bone-like apatite layer on TNZS specimens, which may improve the biological response of MAO-TNZS implants.
Collapse
Affiliation(s)
- Jiang Wu
- School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | |
Collapse
|
181
|
Matsumura K, Hayami T, Hyon SH, Tsutsumi S. Control of proliferation and differentiation of osteoblasts on apatite-coated poly(vinyl alcohol) hydrogel as an artificial articular cartilage material. J Biomed Mater Res A 2010; 92:1225-32. [PMID: 19322880 DOI: 10.1002/jbm.a.32448] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the key challenges in employing biomaterials is determining how to fix them into the surrounding tissue. To enhance the interaction with surrounding bone, amorphous hydroxyapatite (HA) was coated onto the surface of the bio-inert poly(vinyl alcohol) hydrogel (PVA-H), as an artificial cartilage material, by a pulsed laser deposition technique. Next we examined the binding effects of the HA thin film (300 nm thick) to the underlying bone using osteoblast proliferation and differentiation. A mouse osteoblast cell line, MC3T3E1, was cultured on the HA-coated and noncoated PVA-H with a water content of 33% or 53% for 3 weeks. Cell proliferation, alkaline phosphatase (ALP) activity, and levels of osteocalcin were evaluated for biocompatibility and differentiation. HA coating enhanced the cell proliferation, the ALP activity, and the levels of osteocalcin on both low and high water-content PVA-Hs. The cell growth rates on the PVA-H were lower than on tissue culture dishes even after the HA coating was added; however, osteoblastic differentiation was highly promoted by the HA coating on low water content PVA-H. These results suggested that the HA coating on the PVA-H enhanced the affinity between the bone and the PVA-H as an artificial cartilage material in surface replacement arthroplasty.
Collapse
Affiliation(s)
- Kazuaki Matsumura
- Department of Medical Simulation Engineering, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | | | | | |
Collapse
|
182
|
Abstract
A strong interest in use of ceramics for biomedical applications appeared in the late 1960's. Used initially as alternatives to metals in order to increase a biocompatibility of implants, bioceramics have become a diverse class of biomaterials, presently including three basic types: relatively bioinert ceramics, bioactive (or surface reactive) and bioresorbable ones. Furthermore, any type of bioceramics could be porous to provide tissue ingrowth. This review is devoted to bioceramics prepared from calcium orthophosphates, which belong to the categories of bioresorbable and bioactive compounds. During the past 30-40 years, there have been a number of major advances in this field. Namely, after the initial work on development of bioceramics that was tolerated in the physiological environment, emphasis was shifted towards the use of bioceramics that interacted with bones by forming a direct chemical bond. By the structural and compositional control, it became possible to choose whether the bioceramics of calcium orthophosphates was biologically stable once incorporated within the skeletal structure or whether it was resorbed over time. At the turn of the millennium, a new concept of calcium orthophosphate bioceramics, which is able to regenerate bone tissues, has been developed. Current biomedical applications of calcium orthophosphate bioceramics include replacements for hips, knees, teeth, tendons and ligaments, as well as repair for periodontal disease, maxillofacial reconstruction, augmentation and stabilization of the jawbone, spinal fusion and bone fillers after tumor surgery. Potential future applications of calcium orthophosphate bioceramics will include drug-delivery systems, as well as they will become effective carriers of growth factors, bioactive peptides and/or various types of cells for tissue engineering purposes.
Collapse
|
183
|
Cao SW, Zhu YJ, Wu J, Wang KW, Tang QL. Preparation and sustained-release property of triblock copolymer/calcium phosphate nanocomposite as nanocarrier for hydrophobic drug. NANOSCALE RESEARCH LETTERS 2010; 5:781-5. [PMID: 20671783 PMCID: PMC2893746 DOI: 10.1007/s11671-010-9558-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 01/30/2010] [Indexed: 05/05/2023]
Abstract
The P123/ACP nanocomposite with sizes less than 100 nm consisting of triblock copolymer P123 and amorphous calcium phosphate (ACP) has been prepared by using an aqueous solution containing CaCl2, (NH4)3PO4, and P123 at room temperature. The P123/ACP nanocomposite is used as the nanocarrier for hydrophobic drug ibuprofen, based on the combined advantages of both amphiphilic block copolymer and calcium phosphate delivery system. The P123/ACP nanocomposite has a much higher ibuprofen loading capacity (148 mg/g) than the single-phase calcium phosphate nanostructures. The drug release percentage of the P123/ACP nanocomposite in simulated body fluid reaches about 100% in a period of 156 h, which is much slower than that of single-phase calcium phosphate nanostructures. It is expected that the P123/ACP nanocomposite is promising for the application in the controlled delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Shao-Wen Cao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, People's Republic of China.
| | | | | | | | | |
Collapse
|
184
|
Abstract
This manuscript reviews about titanium surface modification techniques for its application in orthopaedic and dental implants. There are a few limitations in the long term prognosis of orthopaedic and dental implants. Poor osseointegration with bone, periimplant infection leading to implant failure and short term longevity demanding revision surgery, are to mention a few. Micro- and nanoscale modification of titanium surface using physicochemical, morphological and biochemical approaches have resulted in higher bone to implant contact ratio and improved osseointegration. With recent advances in micro, nano-fabrication techniques and multidisciplinary research studies focusing on bridging biomaterials for medical applications, TiO2 nanotubes have been extensively studied for implant applications. The need for titanium implant surface that can closely mimic the nanoscale architecture of human bone has become a priority. For such purpose, TiO2 nanotubes of different dimensions and architectural fashions at the nanoscale level are being evaluated. This manuscript discusses in brief about the in-vitro and in-vivo studies on titanium surface modification techniques. This manuscript also addresses the recent studies done on such nanotubular surfaces for the effective delivery of osteoinductive growth factors and anti bacterial/ anti inflammatory drugs to promote osseointegration and prevent peri-implant infection.
Collapse
|
185
|
Junker R, Manders PJD, Wolke J, Borisov Y, Jansen JA. Bone-supportive behavior of microplasma-sprayed CaP-coated implants: mechanical and histological outcome in the goat. Clin Oral Implants Res 2010; 21:189-200. [DOI: 10.1111/j.1600-0501.2009.01819.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
186
|
Michiardi A, Hélary G, Nguyen PC, Gamble L, Anagnostou F, Castner D, Migonney V. Bioactive polymer grafting onto titanium alloy surfaces. Acta Biomater 2010; 6:667-75. [PMID: 19733698 DOI: 10.1016/j.actbio.2009.08.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/26/2009] [Accepted: 08/31/2009] [Indexed: 10/20/2022]
Abstract
Bioactive polymers bearing sulfonate (styrene sodium sulfonate, NaSS) and carboxylate (methylacrylic acid, MA) groups were grafted onto Ti6Al4V alloy surfaces by a two-step procedure. The Ti alloy surfaces were first chemically oxidized in a piranha solution and then directly subjected to radical polymerization at 70 degrees C in the absence of oxygen. The grafted surfaces were characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and the toluidine blue colorimetric method. Toluidine blue results showed 1-5microgcm(-2) of polymer was grafted onto the oxidized Ti surfaces. Grafting resulted in a decrease in the XPS Ti and O signals from the underlying Ti substrate and a corresponding increase in the XPS C and S signals from the polymer layer. The ToF-SIMS intensities of the S(-) and SO(-) ions correlated linearly with the XPS atomic percent S concentrations and the ToF-SIMS intensity of the TiO(3)H(2)(-) ion correlated linearly with the XPS atomic per cent Ti concentration. Thus, the ToF-SIMS S(-), SO(-) and TiO(3)H(2)(-) intensities can be used to quantify the composition and amount of grafted polymer. ToF-SIMS also detected ions that were more characteristic of the polymer molecular structure (C(6)H(4)SO(3)(-) and C(8)H(7)SO(3)(-) from NaSS, C(4)H(5)O(2)(-) from MA), but the intensity of these peaks depended on the polymer thickness and composition. An in vitro cell culture test was carried out with human osteoblast-like cells to assess the influence of the grafted polymers on cell response. Cell adhesion after 30min of incubation showed significant differences between the grafted and ungrafted surfaces. The NaSS grafted surfaces showed the highest degree of cell adhesion while the MA-NaSS grafted surfaces showed the lowest degree of cell adhesion. After 4 weeks in vivo in rabbit femoral bones, bone was observed to be in direct contact with all implants. The percentage of mineralized tissue around the implants was similar for NaSS grafted and non-grafted implants (59% and 57%). The MA-NaSS grafted implant exhibited a lower amount of mineralized tissue (47%).
Collapse
|
187
|
Bajgai MP, Parajuli DC, Park SJ, Chu KH, Kang HS, Kim HY. In vitro bioactivity of sol-gel-derived hydroxyapatite particulate nanofiber modified titanium. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:685-694. [PMID: 19851842 DOI: 10.1007/s10856-009-3902-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 10/05/2009] [Indexed: 05/28/2023]
Abstract
A chemically-etched titanium surface was modified by electrospinning a sol-gel-derived hydroxyapatite (HAp) that was subjected to calcination within the temperature range of 200-1400 degrees C in the normative atmospheric condition. After heat treatment, crystal structures of the filmed titanium oxide and HAp on the titanium's surface were identified using wide-angle X-ray diffraction. A highly porous layer of HAp was found to have formed on the oxidized titanium surfaces. The surfaces of three different samples; (1) electrospun HAp, (2) HAp calcined at 600 degrees C, and (3) HAp calcined at 800 degrees C, were investigated for their ability to foster promotion, proliferation, and differentiation of human osteoblasts (HOB) (in the 9th passage) in vitro up to 6 days. Among the three samples, cells cultured on the HAp calcined at 800 degrees C titanium surfaces displayed the best results with regard to adhesion, growth, and proliferation of HOB. This novel method for fabrication of titanium substrates would provide a promising improvement for titanium-based medical devices over the current standards, which lack such substrates. These titanium substrates explicitly provide enhanced HOB proliferation in terms of both desired surface properties and their produced bulk quantity.
Collapse
Affiliation(s)
- Madhab Prasad Bajgai
- Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
188
|
Bongio M, van den Beucken JJJP, Leeuwenburgh SCG, Jansen JA. Development of bone substitute materials: from ‘biocompatible’ to ‘instructive’. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm00795a] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
189
|
Zhang C, Li ZA, Cheng XR, Xiao Q, Li HB. Hydroxyapatite crystals biologically inspired on titanium by using an organic template based on the copolymer of acrylic acid and itaconic acid. J Biomed Mater Res A 2010; 92:63-9. [DOI: 10.1002/jbm.a.32323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
190
|
de Jonge LT, Leeuwenburgh SCG, van den Beucken JJJP, te Riet J, Daamen WF, Wolke JGC, Scharnweber D, Jansen JA. The osteogenic effect of electrosprayed nanoscale collagen/calcium phosphate coatings on titanium. Biomaterials 2009; 31:2461-9. [PMID: 20022365 DOI: 10.1016/j.biomaterials.2009.11.114] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 11/29/2009] [Indexed: 11/29/2022]
Abstract
For orthopedic and dental implants, the ultimate goal is to obtain a life-long secure anchoring of the implant in the native surrounding bone. To this end, nanoscale calcium phosphate (CaP) and collagen-CaP (col-CaP) composite coatings have been successfully deposited using the electrospray deposition (ESD) technique. In order to study to what extent the thickness of these coatings can be reduced without losing coating osteogenic properties, we have characterized the mechanical and biological coating properties using tape tests (ASTM D-3359) and in vitro cell culture experiments, respectively. Co-deposition of collagen significantly improved coating adhesive and cohesive strength, resulting in a remarkably high coating retention of up to 97% for coating thicknesses below 100 nm. In vitro cell culture experiments showed that electrosprayed CaP and col-CaP composite coatings enhanced osteoblast differentiation, leading to improved mineral deposition. This effect was most pronounced upon co-deposition of collagen with CaP, and these coatings displayed osteogenic effects even for a coating thickness of below 100 nm.
Collapse
Affiliation(s)
- Lise T de Jonge
- Department of Periodontology and Biomaterials PB309, Radboud University Nijmegen Medical Center, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Sun J, Li J, Liu X, Wei L, Wang G, Meng F. Proliferation and gene expression of osteoblasts cultured in DMEM containing the ionic products of dicalcium silicate coating. Biomed Pharmacother 2009; 63:650-7. [DOI: 10.1016/j.biopha.2009.01.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Accepted: 01/13/2009] [Indexed: 10/21/2022] Open
|
192
|
Rakngarm A, Mutoh Y. Characterization and fatigue damage of plasma sprayed HAp top coat with Ti and HAp/Ti bond coat layers on commercially pure titanium substrate. J Mech Behav Biomed Mater 2009; 2:444-53. [DOI: 10.1016/j.jmbbm.2008.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 10/28/2008] [Accepted: 11/03/2008] [Indexed: 11/28/2022]
|
193
|
Lin D, Li Q, Li W, Swain M. Dental implant induced bone remodeling and associated algorithms. J Mech Behav Biomed Mater 2009; 2:410-32. [DOI: 10.1016/j.jmbbm.2008.11.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 11/28/2008] [Accepted: 11/30/2008] [Indexed: 11/30/2022]
|
194
|
Tamilselvi S, Raghavendran HB, Srinivasan P, Rajendran N. In vitro and in vivo studies of alkali- and heat-treated Ti-6Al-7Nb and Ti-5Al-2Nb-1Ta alloys for orthopedic implants. J Biomed Mater Res A 2009; 90:380-6. [PMID: 18523948 DOI: 10.1002/jbm.a.32099] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In vitro studies of Ti-6Al-7Nb and Ti-5Al-2Nb-1Ta alloys were carried out by treating the specimens with 10 M NaOH at 60 degrees C for 24 h and subsequently heat-treated at 600 degrees C for 1 h. After the alkali and heat treatments, and on subsequent soaking in simulated body fluid (SBF), the morphological and compositional changes on the surface of the specimens were examined using scanning electron microscope attached with an energy-dispersive electron probe X-ray analyzer. The results revealed a dense and uniform bonelike apatite layer on the surface of treated substrates immersed in SBF solution. In vivo studies were carried out in rats to evaluate osteoconduction of Ti-6Al-7Nb and Ti-5Al-2Nb-1Ta alloys surface after alkali and heat treatments compared with untreated titanium alloys as the control. The following titanium implants were prepared from these species: (1) control without implant; (2) untreated titanium implant; (3) alkali- and heat-treated implant--the implants were immersed in 10 M NaOH solution at 60 degrees C for 24 h and subsequently heated at 600 degrees C for 1 h. The specimens were inserted into the medial side of each tibia of rats. Histologically, direct bone contact with the implant surface was significantly higher in the alkali heat-treated implants than the untreated titanium implants.
Collapse
Affiliation(s)
- S Tamilselvi
- Department of Chemistry, MIT Campus, Anna University, Chennai-44, India
| | | | | | | |
Collapse
|
195
|
Inoue M, Rodriguez AP, Takagi T, Katase N, Kubota M, Nagai N, Nagatsuka H, Inoue M, Nagaoka N, Takagi S, Suzuki K. Effect of a New Titanium Coating Material (CaTiO3-aC) Prepared by Thermal Decomposition Method on Osteoblastic Cell Response. J Biomater Appl 2009; 24:657-72. [DOI: 10.1177/0885328209340334] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Titanium and hydroxyapatite (HA) are widely used as biomaterials for dental and medical applications. HA-coated titanium implants have excellent biocompatibility and mechanical properties. However, the adherence of HA film formed on titanium substrate is weak because of the lack of chemical interaction between HA and titanium. A solution to this problem is to form an intermediate film on titanium substrate, which provide excellent adherence to both titanium substrate and HA. We developed a novel biomaterial called calcium titanate-amorphous carbon (CaTiO3-aC) coating prepared by modified thermal decomposition method. The purpose of this study was to evaluate the effect of CaTiO 3-aC and HA coating (positive control), and Ti (negative control) on osteoblastic (MT3T3-E1) cell responses. An increased cellular proliferation was observed in CaTiO3-aC coating compared to HA coating. The maximum expressions of ALP activity, Col I and ALP mRNA were higher and achieved in shorter period of time in CaTiO3-aC coating compared to others. These results demonstrated that CaTiO3-aC promoted better cell attachment, cellular proliferation, and osteoblastic differentiation compared with HA. In conclusion, we suggested that CaTiO3-aC could be considered as an important candidate as a coating material.
Collapse
Affiliation(s)
- Miho Inoue
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Okayama 700-8525, Japan,
| | - Andrea P. Rodriguez
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Okayama 700-8525, Japan
| | - Tohru Takagi
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Okayama 700-8525, Japan
| | - Naoki Katase
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Okayama 700-8525, Japan
| | - Midori Kubota
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Okayama 700-8525, Japan
| | - Noriyuki Nagai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Okayama 700-8525, Japan, Center of Oral Health Science, International Dental Hygienist College in Okayama, Motoyama Gakuin, 3-2-18 Daiku, Okayama 700-0913, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Okayama 700-8525, Japan
| | - Masahisa Inoue
- Laboratory for Structure and Function, Faculty of Pharmaceutical Sciences, Tokushima Bunri University 180 Yamashiro-Cho Nishihamabouji, Tokushima 770-8514, Japan
| | - Noriyuki Nagaoka
- Laboratory for Electron Microscopy, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University 2-5-1 Shikata-Cho, Okayama 700-8525, Japan
| | - Shin Takagi
- Department of Oral and Maxillofacial Reconstructive Surgery Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University, 2-5-1 Shikata-Cho, Okayama 700-8525, Japan
| | - Kazuomi Suzuki
- Department of Biomaterials, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University 2-5-1 Shikata-Cho, Okayama 700-8525, Japan
| |
Collapse
|
196
|
High revision rate of hydroxyapatite-coated ABG-I prosthesis. J Orthop Sci 2009; 14:543-7. [PMID: 19802665 DOI: 10.1007/s00776-009-1367-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 05/08/2009] [Indexed: 02/09/2023]
Abstract
BACKGROUND The aim of this study was to investigate the causes of the high revision rate of the hydroxyapatite-coated Anatomique Benoist Girard (ABG-I) prosthesis. METHODS We performed 204 total hip arthroplasties (THAs) at our hospital between March 1992 and December 1996. Of the 204 THA patients, 129 were followed up; the mean duration of follow-up was 12.2 years (range 10.0-14.5 years). There were 113 male patients and 16 female patients, with an average age of 53 years (30-83 years) at the time of surgery. The reasons for THA were avascular necrosis in 119 hips, acetabular dysplasia in 8 hips, and traumatic arthritis in 2 hips. RESULTS The Harris hip score was 47.3 preoperatively and 86.4 at the last follow-up. The linear polyethylene wear was an average of 0.29 mm/year. Acetabular osteolysis was seen in 113 cases (88%). Altogether, 61 (47.2%) acetabular cups were revised for aseptic loosening in 38 hips, polyethylene wear and osteolysis in 20 hips, recurrent dislocation in 2 hips, and deep infection in 1 hip. Femoral osteolysis was observed in 100 cases (77.5%). The femoral stem was revised in 4 hips (3.1%). CONCLUSION We observed that the fatal detriment to ABG-I acetabular cup survival in long-term follow-up was periacetabular osteolysis followed by aseptic loosening.
Collapse
|
197
|
Shi GS, Ren LF, Wang LZ, Lin HS, Wang SB, Tong YQ. H2O2/HCl and heat-treated Ti-6Al-4V stimulates pre-osteoblast proliferation and differentiation. ACTA ACUST UNITED AC 2009; 108:368-75. [DOI: 10.1016/j.tripleo.2009.05.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 04/17/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
|
198
|
Ueda M, Kinoshita T, Ikeda M, Ogawa M. Photo-induced formation of hydroxyapatite on TiO2 synthesized by a chemical–hydrothermal treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2009.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
199
|
Sharma DK, Brooks S, Creasey S, Lewis B. Fracture of fully hydroxyapatite-coated titanium femoral stem of a total hip replacement—a report of 3 cases. ACTA ACUST UNITED AC 2009; 75:768-71. [PMID: 15762270 DOI: 10.1080/00016470410004175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Dinesh K Sharma
- Birmingham Heartlands & Solihull (Teaching) Hospitals, Birmingham, UK.
| | | | | | | |
Collapse
|
200
|
Digas G. New polymer materials in total hip arthroplasty. ACTA ORTHOPAEDICA. SUPPLEMENTUM 2009. [DOI: 10.1080/17453674078540521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|