151
|
Webb DL. Tests of intestinal mucosal hyperpermeability: Many diseases, many biomarkers and a bright future. Best Pract Res Clin Gastroenterol 2019; 40-41:101636. [PMID: 31594645 DOI: 10.1016/j.bpg.2019.101636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/18/2019] [Indexed: 01/31/2023]
Abstract
The number of disorders now linked to increased intestinal mucosal permeability implies that a substantial percent of the population is affected. Drug interventions targeting reduced tight junctional permeability are being pursued. Although hyper-permeability in itself is not a clinically recognized disease entity, its relationship to disease processes has driven interest in measuring, and even monitoring mucosal permeability in vivo. Along with improved knowledge of gut barrier physiology, advances have been made in tests and biomarkers of barrier function. Drawing from our experiences in the past decade, considerations and challenges faced in assessing in vivo intestinal permeability are discussed herein, along with indications of what the future might hold.
Collapse
Affiliation(s)
- Dominic-Luc Webb
- Gastroenterology and Hepatology Unit, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
152
|
Dutta SK, Verma S, Jain V, Surapaneni BK, Vinayek R, Phillips L, Nair PP. Parkinson's Disease: The Emerging Role of Gut Dysbiosis, Antibiotics, Probiotics, and Fecal Microbiota Transplantation. J Neurogastroenterol Motil 2019; 25:363-376. [PMID: 31327219 PMCID: PMC6657920 DOI: 10.5056/jnm19044] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/17/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022] Open
Abstract
The role of the microbiome in health and human disease has emerged at the forefront of medicine in the 21st century. Over the last 2 decades evidence has emerged to suggest that inflammation-derived oxidative damage and cytokine induced toxicity may play a significant role in the neuronal damage associated with Parkinson’s disease (PD). Presence of pro-inflammatory cytokines and T cell infiltration has been observed in the brain parenchyma of patients with PD. Furthermore, evidence for inflammatory changes has been reported in the enteric nervous system, the vagus nerve branches and glial cells. The presence of α-synuclein deposits in the post-mortem brain biopsy in patients with PD has further substantiated the role of inflammation in PD. It has been suggested that the α-synuclein misfolding might begin in the gut and spread “prion like” via the vagus nerve into lower brainstem and ultimately to the midbrain; this is known as the Braak hypothesis. It is noteworthy that the presence of gastrointestinal symptoms (constipation, dysphagia, and hypersalivation), altered gut microbiota and leaky gut have been observed in PD patients several years prior to the clinical onset of the disease. These clinical observations have been supported by in vitro studies in mice as well, demonstrating the role of genetic (α-synuclein overexpression) and environmental (gut dysbiosis) factors in the pathogenesis of PD. The restoration of the gut microbiome in patients with PD may alter the clinical progression of PD and this alteration can be accomplished by carefully designed studies using customized probiotics and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Sudhir K Dutta
- Sinai Hospital, Baltimore, MD, USA.,University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | - Padmanabhan P Nair
- Sinai Hospital, Baltimore, MD, USA.,Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,NonInvasive Technologies LLC, Elkridge, MD, USA
| |
Collapse
|
153
|
UYAR GÖ, YILDIRAN H. A nutritional approach to microbiota in Parkinson's disease. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2019; 38:115-127. [PMID: 31763115 PMCID: PMC6856517 DOI: 10.12938/bmfh.19-002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/09/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by motor impairment and the accumulation of alpha-synucleinopathy (α-syn), which can affect different levels of the brain-gut axis. There is a two-way communication between the gastrointestinal tract, and brain that includes the gut microbiota. This bidirectional communication between the gut microbiota and the brain includes many pathways, such as immune mechanisms, the vagus nerve, and microbial neurometabolite production. The common cause of constipation in PD is thought to be the accumulation of α-syn proteins in the enteric nervous system. Recent studies have focused on changes in microbial metabolites and gut microbiota dysbiosis. Microbiota dysbiosis is associated with increased intestinal permeability, intestinal inflammation, and neuroinflammation. Many factors, such as unbalanced nutrition, antibiotic use, age, and infection, result in alteration of microbial metabolites, triggering α-syn accumulation in the intestinal mucosa cells. Increased evidence indicates that the amount, type, and balance of dietary macronutrients (carbohydrates, proteins, and fats); high consumption of vegetables, fruits, and omega-3 fatty acids; and healthy diet patterns such as the Mediterranean diet may have a great protective impact on PD. This review focuses on the potential benefits of prebiotics, probiotics, and synbiotics to regulate microbiota dysbiosis along with the effect of diet on the gut microbiota in PD.
Collapse
Affiliation(s)
- Gizem Özata UYAR
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Besevler, Ankara, Turkey
| | - Hilal YILDIRAN
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Besevler, Ankara, Turkey
| |
Collapse
|
154
|
Pinel Ríos J, Madrid Navarro CJ, Pérez Navarro MJ, Cabello Tapia MJ, Piña Vera MJ, Campos Arillo V, Gómez García MR, Mínguez Castellanos A, Escamilla Sevilla F. Association of Parkinson's disease and treatment with aminosalicylates in inflammatory bowel disease: a cross-sectional study in a Spain drug dispensation records. BMJ Open 2019; 9:e025574. [PMID: 31221869 PMCID: PMC6588996 DOI: 10.1136/bmjopen-2018-025574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 03/12/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To analyse the association between aminosalicylate-treated inflammatory bowel disease (IBD) and Parkinson's disease (PD) at population level. DESIGN Cross-sectional study. SETTING The study was performed based on electronic drug prescription and dispensation records of the Andalusian Public Health System. PARTICIPANTS All individuals aged ≥50 years with at least one drug dispensation during December 2014 were identified from the records. PRIMARY AND SECONDARY OUTCOME MEASURES Groups were formed: 'possible PD' group, including all who received an anti-Parkinson agent; 'possible IBD' group, those treated with mesalazine and/or derivatives (5-aminosalicylic acid (5-ASA)); and 'possible PD and IBD', including those receiving both anti-Parkinson agent and 5-ASA. Prevalence of possible PD was determined among those with possible IBD and among those without this condition. The age-adjusted and sex-adjusted OR was calculated. RESULTS We recorded 2 020 868 individuals (68±11 years, 56% female), 19 966 were included in possible PD group (75±9 years, 53% female) and 7485 in possible IBD group (64±10 years, 47% female); only 56 were included in both groups (76±8 years, 32% female). The prevalence of possible PD was 0.7% among those with possible IBD and 1% among those without this condition (adjusted OR=0.94; 95% CI 0.72 to 1.23; p=0.657). OR was 0.28 in individuals aged ≤65 years (95% CI 0.10 to 0.74; p=0.01) and 1.17 in older individuals (95% CI 0.89 to 1.54; p=0.257). CONCLUSIONS Within the limitations of this study, the results suggest a protective role for IBD and/or 5-ASA against PD development, especially among under 65-year olds. Further studies are warranted to explore this association given its scientific and therapeutic implications.
Collapse
Affiliation(s)
- Javier Pinel Ríos
- Neuroscience Unit, Hospital Vithas Xanit Internacional, Benalmadena, Spain
| | | | | | | | - María José Piña Vera
- Andalusian Health Service Pharmacy and Benefit Support Department, Andalusian Health Service, Government of Andalusia, Sevilla, Spain
| | | | | | | | | |
Collapse
|
155
|
Chiang HL, Lin CH. Altered Gut Microbiome and Intestinal Pathology in Parkinson's Disease. J Mov Disord 2019; 12:67-83. [PMID: 31158941 PMCID: PMC6547039 DOI: 10.14802/jmd.18067] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder arising from an interplay between genetic and environmental risk factors. Studies have suggested that the pathological hallmarks of intraneuronal α-synuclein aggregations may start from the olfactory bulb and the enteric nervous system of the gut and later propagate to the brain via the olfactory tract and the vagus nerve. This hypothesis correlates well with clinical symptoms, such as constipation, that may develop up to 20 years before the onset of PD motor symptoms. Recent interest in the gut-brain axis has led to vigorous research into the gastrointestinal pathology and gut microbiota changes in patients with PD. In this review, we provide current clinical and pathological evidence of gut involvement in PD by summarizing the changes in gut microbiota composition and gut inflammation associated with its pathogenesis.
Collapse
Affiliation(s)
- Han-Lin Chiang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
156
|
Parkinson's disease and the gastrointestinal microbiome. J Neurol 2019; 267:2507-2523. [PMID: 31041582 DOI: 10.1007/s00415-019-09320-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Recently, there has been a surge in awareness of the gastrointestinal microbiome (GM) and its role in health and disease. Of particular note is an association between the GM and Parkinson's disease (PD) and the realisation that the GM can act via a complex bidirectional communication between the gut and the brain. Compelling evidence suggests that a shift in GM composition may play an important role in the pathogenesis of PD by facilitating the characteristic ascending neurodegenerative spread of α-synuclein aggregates from the enteric nervous system to the brain. Here, we review evidence linking GM changes with PD, highlighting mechanisms supportive of pathological α-synuclein spread and intestinal inflammation in PD. We summarise existing patterns and correlations seen in clinical studies of the GM in PD, together with the impacts of non-motor symptoms, medications, lifestyle, diet and ageing on the GM. Roles of GM modulating therapies including probiotics and faecal microbiota transplantation are discussed. Encouragingly, alterations in the GM have repeatedly been observed in PD, supporting a biological link and highlighting it as a potential therapeutic target.
Collapse
|
157
|
Miraglia F, Colla E. Microbiome, Parkinson's Disease and Molecular Mimicry. Cells 2019; 8:E222. [PMID: 30866550 PMCID: PMC6468760 DOI: 10.3390/cells8030222] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022] Open
Abstract
Parkinson's Disease (PD) is typically classified as a neurodegenerative disease affecting the motor system. Recent evidence, however, has uncovered the presence of Lewy bodies in locations outside the CNS, in direct contact with the external environment, including the olfactory bulbs and the enteric nervous system. This, combined with the ability of alpha-synuclein (αS) to propagate in a prion-like manner, has supported the hypothesis that the resident microbial community, commonly referred to as microbiota, might play a causative role in the development of PD. In this article, we will be reviewing current knowledge on the importance of the microbiota in PD pathology, concentrating our investigation on mechanisms of microbiota-host interactions that might become harmful and favor the onset of PD. Such processes, which include the secretion of bacterial amyloid proteins or other metabolites, may influence the aggregation propensity of αS directly or indirectly, for example by favoring a pro-inflammatory environment in the gut. Thus, while the development of PD has not yet being associated with a unique microbial species, more data will be necessary to examine potential harmful interactions between the microbiota and the host, and to understand their relevance in PD pathogenesis.
Collapse
Affiliation(s)
- Fabiana Miraglia
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| | - Emanuela Colla
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| |
Collapse
|
158
|
Christensen LF, Jensen KF, Nielsen J, Vad BS, Christiansen G, Otzen DE. Reducing the Amyloidogenicity of Functional Amyloid Protein FapC Increases Its Ability To Inhibit α-Synuclein Fibrillation. ACS OMEGA 2019; 4:4029-4039. [PMID: 31459612 PMCID: PMC6647998 DOI: 10.1021/acsomega.8b03590] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/11/2019] [Indexed: 05/15/2023]
Abstract
Functional amyloid (FA) proteins have evolved to assemble into fibrils with a characteristic cross-β structure, which stabilizes biofilms and contributes to bacterial virulence. Some of the most studied bacterial FAs are the curli protein CsgA, expressed in a wide range of bacteria, and FapC, produced mainly by members of the Pseudomonas genus. Though unrelated, both CsgA and FapC contain imperfect repeats believed to drive the formation of amyloid fibrils. While much is known about CsgA biogenesis and fibrillation, the mechanism of FapC fibrillation remains less explored. Here, we show that removing the three imperfect repeats of FapC (FapC ΔR1R2R3) slows down the fibrillation but does not prevent it. The increased lag phase seen for FapC ΔR1R2R3 allows for disulfide bond formation, which further delays fibrillation. Remarkably, these disulfide-bonded species of FapC ΔR1R2R3 also significantly delay the fibrillation of human α-synuclein, a key protein in Parkinson's disease pathology. This attenuation of α-synuclein fibrillation was not seen for the reduced form of FapC ΔR1R2R3. The results presented here shed light on the FapC fibrillation mechanism and emphasize how unrelated fibrillation systems may share such common fibril formation mechanisms, allowing inhibitors of one fibrillating protein to affect a completely different protein.
Collapse
Affiliation(s)
- Line Friis
Bakmann Christensen
- Interdisciplinary
Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK, 8000 Aarhus C, Denmark
| | - Kirstine Friis Jensen
- Interdisciplinary
Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK, 8000 Aarhus C, Denmark
| | - Janni Nielsen
- Interdisciplinary
Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK, 8000 Aarhus C, Denmark
| | - Brian Stougaard Vad
- Interdisciplinary
Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK, 8000 Aarhus C, Denmark
| | - Gunna Christiansen
- Section
for Medical Microbiology and Immunology, Department of Biomedicine, Aarhus University, Vennelyst Boulevard 4, 8000 Aarhus C, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary
Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK, 8000 Aarhus C, Denmark
- E-mail:
| |
Collapse
|
159
|
Breen DP, Halliday GM, Lang AE. Gut-brain axis and the spread of α-synuclein pathology: Vagal highway or dead end? Mov Disord 2019; 34:307-316. [PMID: 30653258 DOI: 10.1002/mds.27556] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/06/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022] Open
Abstract
Spread of α-synuclein pathology from the peripheral to central nervous system may be an important etiological factor in Parkinson's disease, although there are some unanswered questions about its correlation with neuronal loss. Experimental evidence has highlighted the gastrointestinal tract as a potential starting point for aggregated α-synuclein, with the vagus nerve acting as a "highway" by which pathology may be transmitted to the lower brain stem. This review begins by highlighting the key studies demonstrating that α-synuclein pathology has the ability to spread from certain sites in the gastrointestinal tract to the brain (and vice versa). We go on to assess the recent epidemiological studies that have shown that vagotomy and appendectomy may have the potential to reduce the risk of developing Parkinson's disease. Finally, we discuss the factors in the gastrointestinal tract (such as dysbiosis of the gut microbiota, infection, and inflammation) that may trigger α-synuclein aggregation in the first place, as well as other potential mechanisms underlying the distribution of α-synuclein pathology in the brain. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David P Breen
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, Scotland
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | - Glenda M Halliday
- Brain and Mind Centre, Sydney Medical School, University of Sydney, Camperdown, Australia
- School of Medical Sciences, University of New South Wales, Kensington, Australia
- Neuroscience Research Australia, Randwick, Australia
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Canada
- Krembil Research Institute, Toronto Western Hospital, Toronto, Canada
| |
Collapse
|
160
|
Barbut D, Stolzenberg E, Zasloff M. Gastrointestinal Immunity and Alpha-Synuclein. JOURNAL OF PARKINSON'S DISEASE 2019; 9:S313-S322. [PMID: 31594249 PMCID: PMC6839499 DOI: 10.3233/jpd-191702] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Abstract
The gastrointestinal (GI) tract is equipped with robust immune defenses which protect the organism from infection. Enteric nerves are front and center in this defensive network, even in the most primitive organisms. Neuropeptides exhibit potent antimicrobial activity in the vicinity of the nerve and attract the innate and adaptive immune systems to help confine the invading agent. Alpha-synuclein (αS) has many biophysical characteristics of antimicrobial peptides and binds small vesicles such as those carrying endocytosed viruses. It is induced in nerve cells in response to viral and bacterial infections. It renders the nerve cell resistant to viral infection and propagation. It signals the immune system by attracting neutrophils and macrophages, and by activating dendritic cells. Most remarkably αS is trafficked to the central nervous system (CNS) conferring immunity in advance of an infection. Chronic GI infection or breakdown of the epithelial barrier can cause αS to accumulate and form neurotoxic aggregates. Overproduction of αS in the enteric nervous system (ENS) and its chronic trafficking to the CNS may damage nerves and lead to Parkinson's disease. Targeting the formation of αS aggregates in the ENS may therefore slow the progression of the disease.
Collapse
Affiliation(s)
| | | | - Michael Zasloff
- Enterin, Inc., Philadelphia, PA, USA
- MedStar Georgetown Transplant Institute, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
161
|
Suzuki A, Ito M, Hamaguchi T, Mori H, Takeda Y, Baba R, Watanabe T, Kurokawa K, Asakawa S, Hirayama M, Ohno K. Quantification of hydrogen production by intestinal bacteria that are specifically dysregulated in Parkinson's disease. PLoS One 2018; 13:e0208313. [PMID: 30586410 PMCID: PMC6306167 DOI: 10.1371/journal.pone.0208313] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
Oral administration of hydrogen water ameliorates Parkinson’s disease (PD) in rats, mice, and humans. We previously reported that the number of putative hydrogen-producing bacteria in intestinal microbiota is low in PD compared to controls. We also reported that the amount of hydrogen produced by ingestion of lactulose is low in PD patients. The decreased hydrogen production by intestinal microbiota may be associated with the development and progression of PD. We measured the amount of hydrogen production using gas chromatography by seven bacterial strains, which represented seven major intestinal bacterial groups/genera/species. Blautia coccoides and Clostridium leptum produced the largest amount of hydrogen. Escherichia coli and Bacteroides fragilis constituted the second group that produced hydrogen 34- to 93-fold lower than B. coccoides. Bifidobacterium pseudocatenulatum and Atopobium parvulum constituted the third group that produced hydrogen 559- to 2164-fold lower than B. coccoides. Lactobacillus casei produced no detectable hydrogen. Assuming that taxonomically neighboring strains have similar hydrogen production, we simulated hydrogen production using intestinal microbiota that we previously reported, and found that PD patients produce a 2.2-fold lower amount of intestinal hydrogen compared to controls. The lower amount of intestinal hydrogen production in PD was also simulated in cohorts of two other countries. The number of hydrogen-producing intestinal bacteria may be associated with the development and progression of PD. Further studies are required to prove its beneficial effect.
Collapse
Affiliation(s)
- Anzu Suzuki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonori Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Mori
- Genome Evolution Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Yuka Takeda
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuko Baba
- Laboratory of Soil Biology and Chemistry, Department of Biological Mechanisms and Functions, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya, Japan
| | - Takeshi Watanabe
- Laboratory of Soil Biology and Chemistry, Department of Biological Mechanisms and Functions, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya, Japan
| | - Ken Kurokawa
- Genome Evolution Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Susumu Asakawa
- Laboratory of Soil Biology and Chemistry, Department of Biological Mechanisms and Functions, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya, Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| |
Collapse
|
162
|
Kujawska M, Jodynis-Liebert J. What is the Evidence That Parkinson's Disease is a Prion Disorder, Which Originates in the Gut? Int J Mol Sci 2018; 19:3573. [PMID: 30424585 PMCID: PMC6274907 DOI: 10.3390/ijms19113573] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder resulting from degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). PD is characterized by motor dysfunctions as well as gastrointestinal symptoms and mental impairment. The pathological hallmark of PD is an accumulation of misfolded α-synuclein aggregates within the brain. The etiology of PD and related synucleinopathy is poorly understood, but recently, the hypothesis that α-synuclein pathology spreads in a prion-like fashion originating in the gut has gained much scientific attention. A crucial clue was the appearance of constipation before the onset of motor symptoms, gut dysbiosis and synucleinopathy in PD patients. Another line of evidence, demonstrating accumulation of α-synuclein within the peripheral autonomic nervous system (PANS), including the enteric nervous system (ENS), and the dorsal motor nucleus of the vagus (DMV) support the concept that α-synuclein can spread from the ENS to the brain by the vagus nerve. The decreased risk of PD following truncal vagotomy supports this. The convincing evidence of the prion-like behavior of α-synuclein came from postmortem observations that pathological α-synuclein inclusions appeared in healthy grafted neurons. In this review, we summarize the available data from human subjects' research and animal experiments, which seem to be the most suggestive for explaining the hypotheses.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznań, Poland.
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznań, Poland.
| |
Collapse
|
163
|
Zhao YF, Qiong-Zhang, Zhang JF, Lou ZY, Zu HB, Wang ZG, Zeng WC, Kai-Yao, Xiao BG. The Synergy of Aging and LPS Exposure in a Mouse Model of Parkinson's Disease. Aging Dis 2018; 9:785-797. [PMID: 30271656 PMCID: PMC6147589 DOI: 10.14336/ad.2017.1028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/29/2017] [Indexed: 12/20/2022] Open
Abstract
Aging is an inevitable physiological challenge occurring in organisms over time, and is also the most important risk factor of neurodegenerative diseases. In this study, we observed cellular and molecular changes of different age mice and LPS-induced Parkinson disease (PD) model. The results showed that behavioral performance and dopaminergic (DA) neurons were declined, accompanied by increased expression of pro-inflammatory factors (TLR2, p-NF-kB-p65, IL-1β and TNF-α), as well as pro-oxidative stress factor gp91phox in aged mice compared with young mice. Aging exaggerated inflammatory M1 microglia, and destroyed the balance between oxidation and anti-oxidation. The intranasal LPS instillation induced PD model in both young and aged mice. The poor behavioral performance and the loss of DA neurons as well as TLR2, p-NF-kB-p65, IL-1β, TNF-α, iNOS and gp91phox were further aggravated in LPS-aged mice. Interestingly, the expression of Nrf2 and HO-1 was up-regulated by LPS only in young LPS-PD mice, but not in aged mice. The results indicate that the synergy of aging process and LPS exposure may prominently aggravate the DA neurons loss caused by more serious neuroinflammation and oxidative stress in the brain.
Collapse
Affiliation(s)
- Yong-Fei Zhao
- 1Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Qiong-Zhang
- 2Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Jian-Feng Zhang
- 1Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhi-Yin Lou
- 3Department of Neurology, Xinhua Hospital, Medical College, Shanghai Jiaotong University, Shanghai, China
| | - Hen-Bing Zu
- 1Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zi-Gao Wang
- 1Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wei-Cheng Zeng
- 1Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Kai-Yao
- 1Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Bao-Guo Xiao
- 2Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
164
|
Butkovich LM, Houser MC, Tansey MG. α-Synuclein and Noradrenergic Modulation of Immune Cells in Parkinson's Disease Pathogenesis. Front Neurosci 2018; 12:626. [PMID: 30258347 PMCID: PMC6143806 DOI: 10.3389/fnins.2018.00626] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022] Open
Abstract
α-synuclein (α-syn) pathology and loss of noradrenergic neurons in the locus coeruleus (LC) are among the most ubiquitous features of Parkinson's disease (PD). While noradrenergic dysfunction is associated with non-motor symptoms of PD, preclinical research suggests that the loss of LC norepinephrine (NE), and subsequently its immune modulatory and neuroprotective actions, may exacerbate or even accelerate disease progression. In this review, we discuss the mechanisms by which α-syn pathology and loss of central NE may directly impact brain health by interrupting neurotrophic factor signaling, exacerbating neuroinflammation, and altering regulation of innate and adaptive immune cells.
Collapse
Affiliation(s)
| | | | - Malú G. Tansey
- Tansey Laboratory, Department of Physiology, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
165
|
Pellegrini C, Antonioli L, Colucci R, Blandizzi C, Fornai M. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases? Acta Neuropathol 2018; 136:345-361. [PMID: 29797112 DOI: 10.1007/s00401-018-1856-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 12/14/2022]
Abstract
Neurological diseases, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS) and multiple sclerosis, are often associated with functional gastrointestinal disorders. These gastrointestinal disturbances may occur at all stages of the neurodegenerative diseases, to such an extent that they are now considered an integral part of their clinical picture. Several lines of evidence support the contention that, in central neurodegenerative diseases, changes in gut microbiota and enteric neuro-immune system alterations could contribute to gastrointesinal dysfunctions as well as initiation and upward spreading of the neurologic disorder. The present review has been intended to provide a comprehensive overview of the available knowledge on the role played by enteric microbiota, mucosal immune system and enteric nervous system, considered as an integrated network, in the pathophysiology of the main neurological diseases known to be associated with intestinal disturbances. In addition, based on current human and pre-clinical evidence, our intent was to critically discuss whether changes in the dynamic interplay between gut microbiota, intestinal epithelial barrier and enteric neuro-immune system are a consequence of the central neurodegeneration or might represent the starting point of the neurodegenerative process. Special attention has been paid also to discuss whether alterations of the enteric bacterial-neuro-immune network could represent a common path driving the onset of the main neurodegenerative diseases, even though each disease displays its own distinct clinical features.
Collapse
Affiliation(s)
- Carolina Pellegrini
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Padova, Italy
| | - Corrado Blandizzi
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| |
Collapse
|
166
|
Fang X. Impaired tissue barriers as potential therapeutic targets for Parkinson's disease and amyotrophic lateral sclerosis. Metab Brain Dis 2018; 33:1031-1043. [PMID: 29681010 DOI: 10.1007/s11011-018-0239-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier and the intestinal barrier show signs of disruption in patients with idiopathic Parkinson's disease (PD) and animal models of nigrostriatal degeneration, and likewise in amyotrophic lateral sclerosis (ALS) models. A substantial body of evidence shows that defects in epithelial membrane barriers, both in the gut and within the cerebral vasculature, can result in increased vulnerability of tissues to external factors potentially participating in the pathogenesis of PD and ALS. As such, restoration of tissue barriers may prove to be a novel therapeutic target in neurodegenerative disease. In this review, we focus on the potential of new intervention strategies for rescuing and maintaining barrier functions in PD and ALS.
Collapse
Affiliation(s)
- Xin Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
167
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|
168
|
Lin A, Zheng W, He Y, Tang W, Wei X, He R, Huang W, Su Y, Huang Y, Zhou H, Xie H. Gut microbiota in patients with Parkinson's disease in southern China. Parkinsonism Relat Disord 2018; 53:82-88. [DOI: 10.1016/j.parkreldis.2018.05.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/17/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
|
169
|
Endres K, Schäfer KH. Influence of Commensal Microbiota on the Enteric Nervous System and Its Role in Neurodegenerative Diseases. J Innate Immun 2018; 10:172-180. [PMID: 29742516 DOI: 10.1159/000488629] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/14/2018] [Indexed: 12/12/2022] Open
Abstract
When thinking about neurodegenerative diseases, the first symptoms that come to mind are loss of memory and learning capabilities, which all resemble hallmarks of manifestation of such diseases in the central nervous system (CNS). However, the gut comprises the largest nervous system outside the CNS that is autonomously active and in close interplay with its microbiota. Therefore, the enteric nervous system (ENS) might serve as an indicator of degenerative pathomechanisms that also affect the CNS. On the other hand, it might offer an entry point for devastating influences from the microbial community or - conversely - for therapeutic approaches via gut commensals. Within the last years, the ENS and gut microbiota therefore have sparked the interest of researchers of CNS diseases and we here report on recent findings and open questions, especially with regard to Alzheimer and Parkinson diseases.
Collapse
Affiliation(s)
- Kristina Endres
- Department of Psychiatry and Psychotherapy, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Karl-Herbert Schäfer
- University of Applied Sciences Kaiserslautern, Campus Zweibrücken, Zweibrücken, Germany
| |
Collapse
|
170
|
Brown EG, Tanner CM, Goldman SM. The Microbiome in Neurodegenerative Disease. CURRENT GERIATRICS REPORTS 2018. [DOI: 10.1007/s13670-018-0240-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
171
|
Houser MC, Chang J, Factor SA, Molho ES, Zabetian CP, Hill-Burns EM, Payami H, Hertzberg VS, Tansey MG. Stool Immune Profiles Evince Gastrointestinal Inflammation in Parkinson's Disease. Mov Disord 2018; 33:793-804. [PMID: 29572994 DOI: 10.1002/mds.27326] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/17/2017] [Accepted: 01/11/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gastrointestinal symptoms are common in Parkinson's disease and frequently precede the development of motor impairments. Intestinal inflammation has been proposed as a driver of disease pathology, and evaluation of inflammatory mediators in stool could possibly identify valuable early-stage biomarkers. We measured immune- and angiogenesis-related proteins in human stool to examine inflammatory profiles associated with Parkinson's disease. METHODS Stool samples and subjects' self-reported metadata were obtained from 156 individuals with Parkinson's disease and 110 without, including spouse and nonhousehold controls. Metadata were probed for disease-associated differences, and levels of 37 immune and angiogenesis factors in stool homogenates were measured by multiplexed immunoassay and compared across experimental groups. RESULTS Parkinson's disease patients reported greater incidence of intestinal disease and digestive problems than controls. Direct comparison of levels of stool analytes in patients and controls revealed elevated vascular endothelial growth factor receptor 1, interleukin-1α, and CXCL8 in patients' stool. Paired comparison of patients and spouses suggested higher levels of multiple factors in patients, but this was complicated by sex differences. Sex, body mass index, a history of smoking, and use of probiotics were found to strongly influence levels of stool analytes. Multivariate analysis accounting for these and other potential confounders confirmed elevated levels of interleukin-1α and CXCL8 and also revealed increased interleukin-1β and C-reactive protein in stool in Parkinson's disease. These differences were not dependent on subject age or disease duration. CONCLUSIONS Levels of stool immune factors indicate that intestinal inflammation is present in patients with Parkinson's disease. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Madelyn C Houser
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jianjun Chang
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stewart A Factor
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eric S Molho
- Department of Neurology, Albany Medical College, Albany, New York, USA
| | - Cyrus P Zabetian
- Veterans Affairs Puget Sound Health Care System and Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Erin M Hill-Burns
- Department of Neurology, University of Alabama at Birmingham, Birminham, Alabama, USA
| | - Haydeh Payami
- Department of Neurology, University of Alabama at Birmingham, Birminham, Alabama, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Vicki S Hertzberg
- Center for Nursing Data Science, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Malú G Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
172
|
Pretorius E, Page MJ, Mbotwe S, Kell DB. Lipopolysaccharide-binding protein (LBP) can reverse the amyloid state of fibrin seen or induced in Parkinson's disease. PLoS One 2018; 13:e0192121. [PMID: 29494603 PMCID: PMC5832207 DOI: 10.1371/journal.pone.0192121] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/18/2018] [Indexed: 01/13/2023] Open
Abstract
The thrombin-induced polymerisation of fibrinogen to form fibrin is well established as a late stage of blood clotting. It is known that Parkinson's Disease (PD) is accompanied by dysregulation in blood clotting, but it is less widely known as a coagulopathy. In recent work, we showed that the presence of tiny amounts of bacterial lipopolysaccharide (LPS) in healthy individuals could cause clots to adopt an amyloid form, and this could be observed via scanning electron microscopy (SEM) or via the fluorescence of thioflavin-T. This could be prevented by the prior addition of lipopolysaccharide-binding protein (LBP). We had also observed by SEM this unusual clotting in the blood of patients with Parkinson's Disease. We hypothesised, and here show, that this too can be prevented by LBP in the context of PD. This adds further evidence implicating inflammatory microbial cell wall products as an accompaniment to the disease, and may be part of its aetiology. This may lead to novel treatment strategies in PD designed to target microbes and their products.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Martin J. Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Sthembile Mbotwe
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- School of Chemistry, The University of Manchester, Manchester, Lancs, United Kingdom
- The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancs, United Kingdom
| |
Collapse
|
173
|
Nair AT, Ramachandran V, Joghee NM, Antony S, Ramalingam G. Gut Microbiota Dysfunction as Reliable Non-invasive Early Diagnostic Biomarkers in the Pathophysiology of Parkinson's Disease: A Critical Review. J Neurogastroenterol Motil 2018; 24:30-42. [PMID: 29291606 PMCID: PMC5753901 DOI: 10.5056/jnm17105] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/08/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
Recent investigations suggest that gut microbiota affects the brain activity through the microbiota-gut-brain axis under both physiological and pathological disease conditions like Parkinson's disease. Further dopamine synthesis in the brain is induced by dopamine producing enzymes that are controlled by gut microbiota via the microbiota-gut-brain axis. Also alpha synuclein deposition and the associated neurodegeneration in the enteric nervous system that increase intestinal permeability, oxidative stress, and local inflammation, accounts for constipation in Parkinson's disease patients. The trigger that causes blood brain barrier leakage, immune cell activation and inflammation, and ultimately neuroinflammation in the central nervous system is believed to be due to the chronic low-grade inflammation in the gut. The non-motor symptoms that appear years before motor symptoms could be reliable early biomarkers, if they could be correlated with the established and reliable neuroimaging techniques or behavioral indices. The future directions should therefore, focus on the exploration of newer investigational techniques to identify these reliable early biomarkers and define the specific gut microbes that contribute to the development of Parkinson's disease. This ultimately should pave the way to safer and novel therapeutic approaches that avoid the complications of the drugs delivered today to the brain of Parkinson's disease patients.
Collapse
Affiliation(s)
- Arun T Nair
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru), Ootacamund, Tamilnadu,
India
| | - Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru), Ootacamund, Tamilnadu,
India
- Correspondence: Vadivelan Ramachandran, PhD, Department of Pharmacology, JSS College of Pharmacy ((JSS Academy of Higher Education and Research, Mysuru), Ootacamund, Tamilnadu 643001, India Tel: +91-9047539532, Fax: +91-423-2442937,
| | - Nanjan M Joghee
- JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru), Ootacamund, Tamilnadu,
India
| | - Shanish Antony
- Department of Pharmacology, Government Medical College, Kottayam, Kerala,
India
| | - Gopalakrishnan Ramalingam
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru), Ootacamund, Tamilnadu,
India
| |
Collapse
|
174
|
Choi JG, Kim N, Ju IG, Eo H, Lim SM, Jang SE, Kim DH, Oh MS. Oral administration of Proteus mirabilis damages dopaminergic neurons and motor functions in mice. Sci Rep 2018; 8:1275. [PMID: 29352191 PMCID: PMC5775305 DOI: 10.1038/s41598-018-19646-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022] Open
Abstract
Recently, studies on the relationship between gut dysbiosis and Parkinson's disease (PD) have increased, but whether a specific gut bacterium may cause PD remains unexplored. Here, we report, for the first time, that a specific gut bacterium directly induces PD symptoms and dopaminergic neuronal damage in the mouse brain. We found that the number of Enterobacteriaceae, particularly Proteus mirabilis, markedly and commonly increased in PD mouse models. Administration of P. mirabilis isolated from PD mice significantly induced motor deficits, selectively caused dopaminergic neuronal damage and inflammation in substantia nigra and striatum, and stimulated α-synuclein aggregation in the brain as well as in the colon. We found that lipopolysaccharides, a virulence factor of P. mirabilis, may be associated in these pathological changes via gut leakage and inflammatory actions. Our results suggest a role of P. mirabilis on PD pathogenesis in the brain.
Collapse
Affiliation(s)
- Jin Gyu Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - In Gyoung Ju
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hyeyoon Eo
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Su-Min Lim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Se-Eun Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
175
|
Manfredsson FP, Luk KC, Benskey MJ, Gezer A, Garcia J, Kuhn NC, Sandoval IM, Patterson JR, O'Mara A, Yonkers R, Kordower JH. Induction of alpha-synuclein pathology in the enteric nervous system of the rat and non-human primate results in gastrointestinal dysmotility and transient CNS pathology. Neurobiol Dis 2018; 112:106-118. [PMID: 29341898 DOI: 10.1016/j.nbd.2018.01.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023] Open
Abstract
Alpha-Synuclein (α-syn) is by far the most highly vetted pathogenic and therapeutic target in Parkinson's disease. Aggregated α-syn is present in sporadic Parkinson's disease, both in the central nervous system (CNS) and peripheral nervous system (PNS). The enteric division of the PNS is of particular interest because 1) gastric dysfunction is a key clinical manifestation of Parkinson's disease, and 2) Lewy pathology in myenteric and submucosal neurons of the enteric nervous system (ENS) has been referred to as stage zero in the Braak pathological staging of Parkinson's disease. The presence of Lewy pathology in the ENS and the fact that patients often experience enteric dysfunction before the onset of motor symptoms has led to the hypothesis that α-syn pathology starts in the periphery, after which it spreads to the CNS via interconnected neural pathways. Here we sought to directly test this hypothesis in rodents and non-human primates (NHP) using two distinct models of α-syn pathology: the α-syn viral overexpression model and the preformed fibril (PFF) model. Subjects (rat and NHP) received targeted enteric injections of PFFs or adeno-associated virus overexpressing the Parkinson's disease associated A53T α-syn mutant. Rats were evaluated for colonic motility monthly and sacrificed at 1, 6, or 12 months, whereas NHPs were sacrificed 12 months following inoculation, after which the time course and spread of pathology was examined in all animals. Rats exhibited a transient GI phenotype that resolved after four months. Minor α-syn pathology was observed in the brainstem (dorsal motor nucleus of the vagus and locus coeruleus) 1 month after PFF injections; however, no pathology was observed at later time points (nor in saline or monomer treated animals). Similarly, a histopathological analysis of the NHP brains revealed no pathology despite the presence of robust α-syn pathology throughout the ENS which persisted for the entirety of the study (12 months). Our study shows that induction of α-syn pathology in the ENS is sufficient to induce GI dysfunction. Moreover, our data suggest that sustained spread of α-syn pathology from the periphery to the CNS and subsequent propagation is a rare event, and that the presence of enteric α-syn pathology and dysfunction may represent an epiphenomenon.
Collapse
Affiliation(s)
- Fredric P Manfredsson
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; Mercy Health Saint Mary's, Grand Rapids, MI, United States.
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Matthew J Benskey
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Aysegul Gezer
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; DO/PHD Physician Scientist Training Program, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - Joanna Garcia
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Nathan C Kuhn
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Ivette M Sandoval
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; Mercy Health Saint Mary's, Grand Rapids, MI, United States
| | - Joseph R Patterson
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Alana O'Mara
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; Undergraduate Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Reid Yonkers
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; Undergraduate Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Jeffrey H Kordower
- Dept. of Neurological Science, Rush University Medical Center, Chicago, IL, United States; Center on Neurodegeneration, Van Andel Research Institute, Grand Rapids, MI, United States
| |
Collapse
|
176
|
Kundu P, Blacher E, Elinav E, Pettersson S. Our Gut Microbiome: The Evolving Inner Self. Cell 2017; 171:1481-1493. [PMID: 29245010 DOI: 10.1016/j.cell.2017.11.024] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/30/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023]
Abstract
The "holobiont" concept, defined as the collective contribution of the eukaryotic and prokaryotic counterparts to the multicellular organism, introduces a complex definition of individuality enabling a new comprehensive view of human evolution and personalized characteristics. Here, we provide snapshots of the evolving microbial-host associations and relations during distinct milestones across the lifespan of a human being. We discuss the current knowledge of biological symbiosis between the microbiome and its host and portray the challenges in understanding these interactions and their potential effects on human physiology, including microbiome-nervous system inter-relationship and its relevance to human variation and individuality.
Collapse
Affiliation(s)
- Parag Kundu
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, Singapore 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Eran Blacher
- Department of Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Sven Pettersson
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, Singapore 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
177
|
Chen Y, Jiang M, Li L, Ye M, Yu M, Zhang L, Ge B, Xu W, Wei D. DL‑3‑n‑butylphthalide reduces microglial activation in lipopolysaccharide‑induced Parkinson's disease model mice. Mol Med Rep 2017; 17:3884-3890. [PMID: 29286148 DOI: 10.3892/mmr.2017.8332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/01/2017] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yuhua Chen
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Mujun Jiang
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Li Li
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Ming Ye
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Meiling Yu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Lina Zhang
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Bobo Ge
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Wenfang Xu
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Daoxiang Wei
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
178
|
Wang W. Optogenetic manipulation of ENS - The brain in the gut. Life Sci 2017; 192:18-25. [PMID: 29155296 DOI: 10.1016/j.lfs.2017.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/25/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Optogenetics has emerged as an important tool in neuroscience, especially in central nervous system research. It allows for the study of the brain's highly complex network with high temporal and spatial resolution. The enteric nervous system (ENS), the brain in the gut, plays critical roles for life. Although advanced progress has been made, the neural circuits of the ENS remain only partly understood because the appropriate research tools are lacking. In this review, I highlight the potential application of optogenetics in ENS research. Firstly, I describe the development of optogenetics with focusing on its three main components. I discuss the applications in vitro and in vivo, and summarize current findings in the ENS research field obtained by optogenetics. Finally, the challenges for the application of optogenetics to the ENS research will be discussed.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China.
| |
Collapse
|
179
|
Perez-Pardo P, Hartog M, Garssen J, Kraneveld AD. Microbes Tickling Your Tummy: the Importance of the Gut-Brain Axis in Parkinson's Disease. Curr Behav Neurosci Rep 2017; 4:361-368. [PMID: 29201595 PMCID: PMC5694504 DOI: 10.1007/s40473-017-0129-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose of Review Patients suffering from Parkinson's disease (PD) are known to experience gastrointestinal dysfunction that might precede the onset of motor symptoms by several years. Evidence suggests an important role of the gut-brain axis in PD pathogenesis. These interactions might be essentially influenced by the gut microbiota. Here, we review recent findings supporting that changes in the gut microbiota composition might be a trigger for inflammation contributing to neurodegeneration in PD. Recent Findings Recent research revealed that PD patients exhibit a pro-inflammatory microbiota profile in their intestinal tract that might increase gut permeability, allowing leakage of bacterial products and inflammatory mediators from the intestines. Evidence in literature indicates that alpha-synuclein deposition might start in the enteric nervous system by pro-inflammatory immune activity and then propagates to the CNS. Alternatively, the peripheral inflammatory response could impact the brain through systemic mechanisms. Summary A better understanding of the gut-brain interactions and the role of the intestinal microbiota in the regulation of immune responses might bring new insights in PD pathological progression and might lead to novel diagnostics and therapeutic approaches.
Collapse
Affiliation(s)
- Paula Perez-Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mitch Hartog
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Nutricia Research, Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
180
|
Minato T, Maeda T, Fujisawa Y, Tsuji H, Nomoto K, Ohno K, Hirayama M. Progression of Parkinson's disease is associated with gut dysbiosis: Two-year follow-up study. PLoS One 2017; 12:e0187307. [PMID: 29091972 PMCID: PMC5665539 DOI: 10.1371/journal.pone.0187307] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/17/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND We previously reported gut dysbiosis in patients with Parkinson's disease (PD). OBJECTIVE The aim of this study is to examine whether gut dysbiosis correlates with the progression of PD. METHODS We examined changes in gut microbiota and demographic features in 2 years in 36 PD patients. RESULTS A change of total UPDRS scores in 2 years was predicted by the counts of Bifidobacterium and Atopobium cluster at year 0 with a correlation coefficient of 0.52. Correlation analysis additionally revealed that low counts of Bifidobacterium and Bacteroides fragilis at year 0 were associated with worsening of UPDRS I scores in 2 years. In addition, low counts of Bifidobacterium at year 0 were associated with worsening of hallucinations/delusions in 2 years. Similarly, low counts of B. fragilis at year 0 were associated with worsening of motivation/initiative in 2 years. The patients were evenly divided into the deteriorated and stable groups based on the degree of worsening of total UPDRS scores. The deteriorated group had lower counts of Bifidobacterium, B. fragilis, and Clostridium leptium than the stable group at year 0 but not at year 2, suggesting that the deteriorated group may demonstrate accelerated lowering of these bacteria at year 0. CONCLUSIONS The total counts of intestinal bacterial decrease in the course of PD progression. Temporal profiles of lowering of bacterial counts are likely to be different from bacteria to bacteria, and also between the deteriorating and stable groups, which may be able to be exploited to differentiate patients with rapidly and slowly progressive PD pathology.
Collapse
Affiliation(s)
- Tomomi Minato
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of medicine, Iwate Medical University, Morioka, Japan
| | - Yoshiro Fujisawa
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail: (MH); (KO)
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail: (MH); (KO)
| |
Collapse
|
181
|
Stolzenberg E, Berry D, Yang D, Lee EY, Kroemer A, Kaufman S, Wong GCL, Oppenheim JJ, Sen S, Fishbein T, Bax A, Harris B, Barbut D, Zasloff MA. A Role for Neuronal Alpha-Synuclein in Gastrointestinal Immunity. J Innate Immun 2017. [PMID: 28651250 DOI: 10.1159/000477990] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Alpha-synuclein (αS) is a nerve cell protein associated with Parkinson disease (PD). Accumulation of αS within the enteric nervous system (ENS) and its traffic from the gut to the brain are implicated in the pathogenesis and progression of PD. αS has no known function in humans and the reason for its accumulation within the ENS is unknown. Several recent studies conducted in rodents have linked αS to immune cell activation in the central nervous system. We hypothesized that αS in the ENS might play a role in the innate immune defenses of the human gastrointestinal (GI) tract. METHODS We immunostained endoscopic biopsies for αS from children with documented gastric and duodenal inflammation and intestinal allograft recipients who contracted norovirus. To determine whether αS exhibited immune-modulatory activity, we examined whether human αS induced leukocyte migration and dendritic cell maturation. FINDINGS We showed that the expression of αS in the enteric neurites of the upper GI tract of pediatric patients positively correlated with the degree of acute and chronic inflammation in the intestinal wall. In intestinal allograft subjects who were closely monitored for infection, expression of αS was induced during norovirus infection. We also demonstrated that both monomeric and oligomeric αS have potent chemoattractant activity, causing the migration of neutrophils and monocytes dependent on the presence of the integrin subunit, CD11b, and that both forms of αS stimulate dendritic cell maturation. INTERPRETATION These findings strongly suggest that αS is expressed within the human ENS to direct intestinal inflammation and implicates common GI infections in the pathogenesis of PD.
Collapse
Affiliation(s)
- Ethan Stolzenberg
- Department of Pathology, Section of Neuropathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Bedarf JR, Hildebrand F, Coelho LP, Sunagawa S, Bahram M, Goeser F, Bork P, Wüllner U. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson's disease patients. Genome Med 2017; 9:39. [PMID: 28449715 PMCID: PMC5408370 DOI: 10.1186/s13073-017-0428-y] [Citation(s) in RCA: 377] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/08/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) presently is conceptualized as a protein aggregation disease in which pathology involves both the enteric and the central nervous system, possibly spreading from one to another via the vagus nerves. As gastrointestinal dysfunction often precedes or parallels motor symptoms, the enteric system with its vast diversity of microorganisms may be involved in PD pathogenesis. Alterations in the enteric microbial taxonomic level of L-DOPA-naïve PD patients might also serve as a biomarker. METHODS We performed metagenomic shotgun analyses and compared the fecal microbiomes of 31 early stage, L-DOPA-naïve PD patients to 28 age-matched controls. RESULTS We found increased Verrucomicrobiaceae (Akkermansia muciniphila) and unclassified Firmicutes, whereas Prevotellaceae (Prevotella copri) and Erysipelotrichaceae (Eubacterium biforme) were markedly lowered in PD samples. The observed differences could reliably separate PD from control with a ROC-AUC of 0.84. Functional analyses of the metagenomes revealed differences in microbiota metabolism in PD involving the ẞ-glucuronate and tryptophan metabolism. While the abundances of prophages and plasmids did not differ between PD and controls, total virus abundance was decreased in PD participants. Based on our analyses, the intake of either a MAO inhibitor, amantadine, or a dopamine agonist (which in summary relates to 90% of PD patients) had no overall influence on taxa abundance or microbial functions. CONCLUSIONS Our data revealed differences of colonic microbiota and of microbiota metabolism between PD patients and controls at an unprecedented detail not achievable through 16S sequencing. The findings point to a yet unappreciated aspect of PD, possibly involving the intestinal barrier function and immune function in PD patients. The influence of the parkinsonian medication should be further investigated in the future in larger cohorts.
Collapse
Affiliation(s)
- J R Bedarf
- Department of Neurology, University of Bonn, Bonn, Germany.,German Centre for neurodegenerative disease research (DZNE), Bonn, Germany
| | - F Hildebrand
- European Molecular Biology Laboratory, EMBL, Heidelberg, Germany
| | - L P Coelho
- European Molecular Biology Laboratory, EMBL, Heidelberg, Germany
| | - S Sunagawa
- European Molecular Biology Laboratory, EMBL, Heidelberg, Germany.,ETH Zurich, Institute of Microbiology, Vladimir-Prelog-1-5/10, 8093, Zurich, Switzerland
| | - M Bahram
- Evolutionary Biology Centre, Uppsala University, Norbyva ̈gen 18D, 75236, Uppsala, Sweden.,Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St., 51005, Tartu, Estonia
| | - F Goeser
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Bonn-Cologne, Germany
| | - P Bork
- European Molecular Biology Laboratory, EMBL, Heidelberg, Germany. .,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany. .,Max Delbrück Centre for Molecular Medicine, 13125, Berlin, Germany. .,Department of Bioinformatics, University of Würzburg, 97074, Würzburg, Germany. .,, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| | - U Wüllner
- Department of Neurology, University of Bonn, Bonn, Germany. .,German Centre for neurodegenerative disease research (DZNE), Bonn, Germany. .,, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.
| |
Collapse
|
183
|
Blaylock RL. Parkinson's disease: Microglial/macrophage-induced immunoexcitotoxicity as a central mechanism of neurodegeneration. Surg Neurol Int 2017; 8:65. [PMID: 28540131 PMCID: PMC5421223 DOI: 10.4103/sni.sni_441_16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/01/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is one of the several neurodegenerative disorders that affects aging individuals, with approximately 1% of those over the age of 60 years developing the disorder in their lifetime. The disease has the characteristics of a progressive disorder in most people, with a common pattern of pathological change occurring in the nervous system that extends beyond the classical striatal degeneration of dopaminergic neurons. Earlier studies concluded that the disease was a disorder of alpha-synuclein, with the formation of aggregates of abnormal alpha-synuclein being characteristic. More recent studies have concluded that inflammation plays a central role in the disorder and that the characteristic findings can be accounted for by either mutation or oxidative damage to alpha-synuclein, with resulting immune reactions from surrounding microglia, astrocytes, and macrophages. What has been all but ignored in most of these studies is the role played by excitotoxicity and that the two processes are intimately linked, with inflammation triggered cell signaling enhancing the excitotoxic cascade. Further, there is growing evidence that it is the excitotoxic reactions that actually cause the neurodegeneration. I have coined the name immunoexcitotoxicity to describe this link between inflammation and excitotoxicity. It appears that the two processes are rarely, if ever, separated in neurodegenerative diseases.
Collapse
|
184
|
Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJA, Kraneveld AD. Exploring Braak's Hypothesis of Parkinson's Disease. Front Neurol 2017; 8:37. [PMID: 28243222 PMCID: PMC5304413 DOI: 10.3389/fneur.2017.00037] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/26/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder for which there is no cure. Most patients suffer from sporadic PD, which is likely caused by a combination of genetic and environmental factors. Braak’s hypothesis states that sporadic PD is caused by a pathogen that enters the body via the nasal cavity, and subsequently is swallowed and reaches the gut, initiating Lewy pathology (LP) in the nose and the digestive tract. A staging system describing the spread of LP from the peripheral to the central nervous system was also postulated by the same research group. There has been criticism to Braak’s hypothesis, in part because not all patients follow the proposed staging system. Here, we review literature that either supports or criticizes Braak’s hypothesis, focused on the enteric route, digestive problems in patients, the spread of LP on a tissue and a cellular level, and the toxicity of the protein αSynuclein (αSyn), which is the major constituent of LP. We conclude that Braak’s hypothesis is supported by in vitro, in vivo, and clinical evidence. However, we also conclude that the staging system of Braak only describes a specific subset of patients with young onset and long duration of the disease.
Collapse
Affiliation(s)
- Carmen D Rietdijk
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Utrecht , Netherlands
| | - Paula Perez-Pardo
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Utrecht , Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Nutricia Research, Utrecht, Netherlands
| | - Richard J A van Wezel
- Department of Biomedical Signals and Systems, MIRA, University of Twente, Enschede, Netherlands; Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Utrecht , Netherlands
| |
Collapse
|
185
|
The gut-brain axis: is intestinal inflammation a silent driver of Parkinson's disease pathogenesis? NPJ PARKINSONS DISEASE 2017. [PMID: 28649603 PMCID: PMC5445611 DOI: 10.1038/s41531-016-0002-0] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The state of the intestinal environment can have profound effects on the activity of the central nervous system through the physiological contributions of the microbiota, regulation of intestinal barrier function, and altered activity of peripheral neurons. The common language employed for much of the gut-brain communication is the modulation of immune activity. Chronic proinflammatory immune activity is increasingly being recognized as a fundamental element of neurodegenerative disorders, and in Parkinson's disease, inflammation in the intestine appears particularly relevant in pathogenesis. We review the evidence that intestinal dysfunction is present in Parkinson's disease and that it may reflect the earliest manifestations of Parkinson's disease pathology, and we link these findings to dysregulated immune activity. Based on this, we present a model for Parkinson's disease pathogenesis in which the disorder originates in the intestine and progresses with inflammation as its underlying mechanism. More in-depth investigations into the physiological mechanisms underlying peripheral pre-motor symptoms in Parkinson's disease are expected to lead to the development of novel diagnostic and therapeutic measures that can slow or limit progression of the disease to more advanced stages involving debilitating motor and cognitive symptoms.
Collapse
|
186
|
Lee HU, McPherson ZE, Tan B, Korecka A, Pettersson S. Host-microbiome interactions: the aryl hydrocarbon receptor and the central nervous system. J Mol Med (Berl) 2017; 95:29-39. [PMID: 27858116 PMCID: PMC5225196 DOI: 10.1007/s00109-016-1486-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022]
Abstract
The microbiome located within a given host and its organs forms a holobiont, an intimate functional entity with evolutionarily designed interactions to support nutritional intake and reproduction. Thus, all organs in a holobiont respond to changes within the microbiome. The development and function of the central nervous system and its homeostatic mechanisms are no exception and are also subject to regulation by the gut microbiome. In order for the holobiont to function effectively, the microbiome and host must communicate. The aryl hydrocarbon receptor is an evolutionarily conserved receptor recognizing environmental compounds, including a number of ligands produced directly and indirectly by the microbiome. This review focuses on the microbiome-gut-brain axis in regard to the aryl hydrocarbon receptor signaling pathway and its impact on underlying mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- Hae Ung Lee
- The LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Zachary E McPherson
- The School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Bryan Tan
- The School of Medicine, Imperial College, London, UK
| | - Agata Korecka
- Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet, Solna, Sweden
| | - Sven Pettersson
- The LKC School of Medicine, Nanyang Technological University, Singapore, Singapore.
- Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
187
|
Bester J, Soma P, Kell DB, Pretorius E. Viscoelastic and ultrastructural characteristics of whole blood and plasma in Alzheimer-type dementia, and the possible role of bacterial lipopolysaccharides (LPS). Oncotarget 2016; 6:35284-303. [PMID: 26462180 PMCID: PMC4742105 DOI: 10.18632/oncotarget.6074] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer-type dementia (AD) is a neurodegenerative disorder and the most common form of dementia. Patients typically present with neuro- and systemic inflammation and iron dysregulation, associated with oxidative damage that reflects in hypercoagulability. Hypercoagulability is closely associated with increased fibrin(ogen) and in AD patients fibrin(ogen) has been implicated in the development of neuroinflammation and memory deficits. There is still no clear reason precisely why (a) this hypercoagulable state, (b) iron dysregulation and (c) increased fibrin(ogen) could together lead to the loss of neuronal structure and cognitive function. Here we suggest an alternative hypothesis based on previous ultrastructural evidence of the presence of a (dormant) blood microbiome in AD. Furthermore, we argue that bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, might be the cause of the continuing and low-grade inflammation, characteristic of AD. Here, we follow an integrated approach, by studying the viscoelastic and ultrastructural properties of AD plasma and whole blood by using scanning electron microscopy, Thromboelastography (TEG®) and the Global Thrombosis Test (GTT®). Ultrastructural analysis confirmed the presence and close proximity of microbes to erythrocytes. TEG® analysis showed a hypercoagulable state in AD. TEG® results where LPS was added to naive blood showed the same trends as were found with the AD patients, while the GTT® results (where only platelet activity is measured), were not affected by the added LPS, suggesting that LPS does not directly impact platelet function. Our findings reinforce the importance of further investigating the role of LPS in AD.
Collapse
Affiliation(s)
- Janette Bester
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Prashilla Soma
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| |
Collapse
|
188
|
Kim C, Lv G, Lee JS, Jung BC, Masuda-Suzukake M, Hong CS, Valera E, Lee HJ, Paik SR, Hasegawa M, Masliah E, Eliezer D, Lee SJ. Exposure to bacterial endotoxin generates a distinct strain of α-synuclein fibril. Sci Rep 2016; 6:30891. [PMID: 27488222 PMCID: PMC4973277 DOI: 10.1038/srep30891] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/12/2016] [Indexed: 11/09/2022] Open
Abstract
A single amyloidogenic protein is implicated in multiple neurological diseases and capable of generating a number of aggregate "strains" with distinct structures. Among the amyloidogenic proteins, α-synuclein generates multiple patterns of proteinopathies in a group of diseases, such as Parkinson disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). However, the link between specific conformations and distinct pathologies, the key concept of the strain hypothesis, remains elusive. Here we show that in the presence of bacterial endotoxin, lipopolysaccharide (LPS), α-synuclein generated a self-renewable, structurally distinct fibril strain that consistently induced specific patterns of synucleinopathies in mice. These results suggest that amyloid fibrils with self-renewable structures cause distinct types of proteinopathies despite the identical primary structure and that exposure to exogenous pathogens may contribute to the diversity of synucleinopathies.
Collapse
Affiliation(s)
- Changyoun Kim
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Departments of Neurosciences and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Guohua Lv
- Department of Biochemistry, Weill Cornell Medical College, NY, USA
| | - Jun Sung Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Chul Jung
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Laboratory Science, College of Health Science, Yonsei University, Wonju, Korea
| | - Masami Masuda-Suzukake
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chul-Suk Hong
- School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Seoul, Korea
| | - Elvira Valera
- Departments of Neurosciences and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - He-Jin Lee
- Department of Anatomy, School of Medicine, Konkuk University, Seoul, Korea
| | - Seung R. Paik
- School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Seoul, Korea
| | - Masato Hasegawa
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Eliezer Masliah
- Departments of Neurosciences and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, NY, USA
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
189
|
Felice VD, Quigley EM, Sullivan AM, O'Keeffe GW, O'Mahony SM. Microbiota-gut-brain signalling in Parkinson's disease: Implications for non-motor symptoms. Parkinsonism Relat Disord 2016; 27:1-8. [PMID: 27013171 DOI: 10.1016/j.parkreldis.2016.03.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/15/2016] [Accepted: 03/15/2016] [Indexed: 12/19/2022]
Abstract
Parkinson's disease is the second most common neurodegenerative disorder, affecting 1-2% of the population over 65 years of age. The primary neuropathology is the loss of midbrain dopaminergic neurons, resulting in characteristic motor deficits, upon which the clinical diagnosis is based. However, a number of significant non-motor symptoms (NMS) are also evident that appear to have a greater impact on the quality of life of these patients. In recent years, it has become increasingly apparent that neurobiological processes can be modified by the bi-directional communication that occurs along the brain-gut axis. The microbiota plays a key role in this communication throughout different routes in both physiological and pathological conditions. Thus, there has been an increasing interest in investigating how microbiota changes within the gastrointestinal tract may be implicated in health and disease including PD. Interestingly α-synuclein-aggregates, the cardinal neuropathological feature in PD, are present in both the submucosal and myenteric plexuses of the enteric nervous system, prior to their appearance in the brain, indicating a possible gut to brain route of "prion-like" spread. In this review we highlight the potential importance of gut to brain signalling in PD with particular focus on the role of the microbiota as major player in this communication.
Collapse
Affiliation(s)
- Valeria D Felice
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Eamonn M Quigley
- APC Microbiome Institute, University College Cork, Cork, Ireland; Division of Gastroenterology and Hepatology, Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital, and Weill Cornell Medical College, 6550 Fannin St, SM 1001, Houston, TX 77030, USA
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland. http://publish.ucc.ie/researchprofiles/C003/somahony
| |
Collapse
|
190
|
Billings JL, Hare DJ, Nurjono M, Volitakis I, Cherny RA, Bush AI, Adlard PA, Finkelstein DI. Effects of Neonatal Iron Feeding and Chronic Clioquinol Administration on the Parkinsonian Human A53T Transgenic Mouse. ACS Chem Neurosci 2016; 7:360-6. [PMID: 26712118 DOI: 10.1021/acschemneuro.5b00305] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Increased nigral iron (Fe) is a cardinal feature of Parkinson's disease, as is the accumulation of aggregates comprising α-synuclein. We used wild-type mice and transgenic mice overexpressing the human A53T mutation to α-synuclein to examine the influence of increased Fe (days 10-17 postpartum) on the parkinsonian development phenotype of these animals (including abnormal nigral Fe levels and deficits in both cell numbers and locomotor activity), and to explore the impact of the Fe chelator clioquinol in the model. Both untreated and Fe-loaded A53T mice showed similar levels of nigral cell loss, though 5 months of clioquinol treatment was only able to prevent the loss in the non-Fe-loaded A53T group. Iron levels in the Fe-loaded A53T mice returned to normal at 8 months, though effects of dopamine denervation remained, demonstrated by limited locomotor activity and sustained neuron loss. These data suggest that Fe exposure during a critical developmental window, combined with the overexpression mutant α-synuclein, presents a disease phenotype resistant to intervention using clioquinol later in life.
Collapse
Affiliation(s)
- Jessica L. Billings
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Dominic J. Hare
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
- Elemental
Bio-imaging Facility, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Milawaty Nurjono
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Irene Volitakis
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Robert A. Cherny
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ashley I. Bush
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Paul A. Adlard
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - David I. Finkelstein
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
191
|
Calo L, Wegrzynowicz M, Santivañez-Perez J, Grazia Spillantini M. Synaptic failure and α-synuclein. Mov Disord 2016; 31:169-77. [PMID: 26790375 DOI: 10.1002/mds.26479] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/19/2015] [Accepted: 10/25/2015] [Indexed: 12/20/2022] Open
Abstract
Although the physiological function of α-synuclein is not fully understood, it has been suggested to primarily localize to the presynaptic terminals of mature neurons, where it fulfills roles in synaptic function and plasticity. Based on current knowledge, α-synuclein (αSYN) is thought to be involved in maintaining neurotransmitter homeostasis by regulating synaptic vesicle fusion, clustering, and trafficking between the reserve and ready-releasable pools, as well as interacting with neurotransmitter membrane transporters. In this review, we focus on evidence proposing synapses as the main site of αSYN pathology and its propagation in Parkinson's disease and dementia with Lewy bodies, which belong to a group of neurodegenerative diseases known as α-synucleinopathies. We provide an overview of the evidence supporting presynaptic dysfunction as the primary event in the pathogenesis of these conditions.
Collapse
Affiliation(s)
- Laura Calo
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Michal Wegrzynowicz
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
192
|
Protective effect of simvastatin on impaired intestine tight junction protein ZO-1 in a mouse model of Parkinson's disease. ACTA ACUST UNITED AC 2015; 35:880-884. [PMID: 26670440 DOI: 10.1007/s11596-015-1522-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Recently, several studies showed that gastrointestinal tract may be associated with pathophysiology of Parkinson's disease (PD). Intestine tight junction protein zonula occluden-1 (ZO-1) is an important component of intestinal barrier which can be degraded by matrix metallopeptidase 9 (MMP-9). In our previous study, a significant decline in ZO-1 was observed along with enhanced MMP-9 activity in the duodenum and distal colon of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. In this study, the protective effect of simvastatin on ZO-1 was investigated using an MPTP mouse model of PD. Seven days after the end of MPTP application, the expression level of ZO-1 was evaluated by immunohistochemistry. The protein expression levels of ZO-1 and MMP9 were detected by Western blotting. Meanwhile, MMP-9 activity was analyzed by gelatin zymography. MPTP treatment led to a decrease in the expression of ZO-1, which was accompanied by elevated MMP-9 activity. Treatment with simvastatin could partly reverse the MPTP-induced changes in ZO-1 expression and reduce MMP-9 protein and activity. Taken together, these findings suggest that simvastatin administration may partially reverse the impairment of ZO-1 induced by MPTP via inhibiting the activity of MMP9, fortify the impaired intestinal barrier and limit gut-derived toxins that pass across the intestinal barrier.
Collapse
|
193
|
Abstract
The discovery of alpha-synuclein's prion-like behaviors in mammals, as well as a non-Mendelian type of inheritance, has led to a new concept in biology, the "prion hypothesis" of Parkinson's disease. The misfolding and aggregation of alpha-synuclein (α-syn) within the nervous system occur in many neurodegenerative diseases including Parkinson's disease (PD), Lewy body dementia (LBD), and multiple system atrophy (MSA). The molecular basis of synucleinopathies appears to be tightly coupled to α-syn's conformational conversion and fibril formation. The pathological form of α-syn consists of oligomers and fibrils with rich in β-sheets. The conversion of its α-helical structure to the β-sheet rich fibril is a defining pathologic feature of α-syn. These kinds of disorders have been classified as protein misfolding diseases or proteopathies which share key biophysical and biochemical characteristics with prion diseases. In this review, we highlight α-syn's prion-like activities in PD and PD models, describe the idea of a prion-like mechanism contributing to PD pathology, and discuss several key molecules that can modulate the α-syn accumulation and propagation.
Collapse
Affiliation(s)
- Yaping Chu
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL, 60612, USA,
| | | |
Collapse
|
194
|
Hasegawa S, Goto S, Tsuji H, Okuno T, Asahara T, Nomoto K, Shibata A, Fujisawa Y, Minato T, Okamoto A, Ohno K, Hirayama M. Intestinal Dysbiosis and Lowered Serum Lipopolysaccharide-Binding Protein in Parkinson's Disease. PLoS One 2015; 10:e0142164. [PMID: 26539989 PMCID: PMC4634857 DOI: 10.1371/journal.pone.0142164] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/08/2015] [Indexed: 01/18/2023] Open
Abstract
Background The intestine is one of the first affected organs in Parkinson’s disease (PD). PD subjects show abnormal staining for Escherichia coli and α-synuclein in the colon. Methods We recruited 52 PD patients and 36 healthy cohabitants. We measured serum markers and quantified the numbers of 19 fecal bacterial groups/genera/species by quantitative RT-PCR of 16S or 23S rRNA. Although the six most predominant bacterial groups/genera/species covered on average 71.3% of total intestinal bacteria, our analysis was not comprehensive compared to metagenome analysis or 16S rRNA amplicon sequencing. Results In PD, the number of Lactobacillus was higher, while the sum of analyzed bacteria, Clostridium coccoides group, and Bacteroides fragilis group were lower than controls. Additionally, the sum of putative hydrogen-producing bacteria was lower in PD. A linear regression model to predict disease durations demonstrated that C. coccoides group and Lactobacillus gasseri subgroup had the largest negative and positive coefficients, respectively. As a linear regression model to predict stool frequencies showed that these bacteria were not associated with constipation, changes in these bacteria were unlikely to represent worsening of constipation in the course of progression of PD. In PD, the serum lipopolysaccharide (LPS)-binding protein levels were lower than controls, while the levels of serum diamine oxidase, a marker for intestinal mucosal integrity, remained unchanged in PD. Conclusions The permeability to LPS is likely to be increased without compromising the integrity of intestinal mucosa in PD. The increased intestinal permeability in PD may make the patients susceptible to intestinal dysbiosis. Conversely, intestinal dysbiosis may lead to the increased intestinal permeability. One or both of the two mechanisms may be operational in development and progression of PD.
Collapse
Affiliation(s)
- Satoru Hasegawa
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sae Goto
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Tatsuya Okuno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | - Akihide Shibata
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiro Fujisawa
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomomi Minato
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Okamoto
- Department of School Health Sciences, Aichi University of Education, Kariya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail: (MH); (KO)
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail: (MH); (KO)
| |
Collapse
|
195
|
Fang X. Potential role of gut microbiota and tissue barriers in Parkinson's disease and amyotrophic lateral sclerosis. Int J Neurosci 2015; 126:771-6. [PMID: 26381230 DOI: 10.3109/00207454.2015.1096271] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases with pathophysiology that may be related to the gastrointestinal tract. It is well established that tissue barriers maintain homeostasis and health. Furthermore, gut microbiota may have an impact on brain activity through the gut-microbiota-brain axis under both physiological and pathological conditions. In this review, we highlight the current knowledge regarding the role of gut microbiota and tissue barriers in PD and ALS. To our knowledge, this is the first review of the key issues involving both the altered gut microbiota and impaired tissue barriers in the pathophysiology of PD and ALS.
Collapse
Affiliation(s)
- Xin Fang
- a Department of Neurology, The First Affiliated Hospital of Nanchang University , Nanchang , China
| |
Collapse
|
196
|
Mulak A, Bonaz B. Brain-gut-microbiota axis in Parkinson's disease. World J Gastroenterol 2015; 21:10609-10620. [PMID: 26457021 PMCID: PMC4588083 DOI: 10.3748/wjg.v21.i37.10609] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/28/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is characterized by alpha-synucleinopathy that affects all levels of the brain-gut axis including the central, autonomic, and enteric nervous systems. Recently, it has been recognized that the brain-gut axis interactions are significantly modulated by the gut microbiota via immunological, neuroendocrine, and direct neural mechanisms. Dysregulation of the brain-gut-microbiota axis in PD may be associated with gastrointestinal manifestations frequently preceding motor symptoms, as well as with the pathogenesis of PD itself, supporting the hypothesis that the pathological process is spread from the gut to the brain. Excessive stimulation of the innate immune system resulting from gut dysbiosis and/or small intestinal bacterial overgrowth and increased intestinal permeability may induce systemic inflammation, while activation of enteric neurons and enteric glial cells may contribute to the initiation of alpha-synuclein misfolding. Additionally, the adaptive immune system may be disturbed by bacterial proteins cross-reacting with human antigens. A better understanding of the brain-gut-microbiota axis interactions should bring a new insight in the pathophysiology of PD and permit an earlier diagnosis with a focus on peripheral biomarkers within the enteric nervous system. Novel therapeutic options aimed at modifying the gut microbiota composition and enhancing the intestinal epithelial barrier integrity in PD patients could influence the initial step of the following cascade of neurodegeneration in PD.
Collapse
|
197
|
GPER1-mediated immunomodulation and neuroprotection in the myenteric plexus of a mouse model of Parkinson's disease. Neurobiol Dis 2015; 82:99-113. [DOI: 10.1016/j.nbd.2015.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/09/2015] [Accepted: 05/27/2015] [Indexed: 01/27/2023] Open
|
198
|
Scheperjans F, Aho V, Pereira PAB, Koskinen K, Paulin L, Pekkonen E, Haapaniemi E, Kaakkola S, Eerola‐Rautio J, Pohja M, Kinnunen E, Murros K, Auvinen P. Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov Disord 2014; 30:350-8. [DOI: 10.1002/mds.26069] [Citation(s) in RCA: 1068] [Impact Index Per Article: 97.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/21/2014] [Accepted: 10/08/2014] [Indexed: 12/11/2022] Open
Affiliation(s)
- Filip Scheperjans
- Department of NeurologyHelsinki University Central Hospitaland Department of Neurological SciencesUniversity of HelsinkiHelsinki Finland
| | - Velma Aho
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of HelsinkiHelsinki Finland
| | - Pedro A. B. Pereira
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of HelsinkiHelsinki Finland
| | - Kaisa Koskinen
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of HelsinkiHelsinki Finland
| | - Lars Paulin
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of HelsinkiHelsinki Finland
| | - Eero Pekkonen
- Department of NeurologyHelsinki University Central Hospitaland Department of Neurological SciencesUniversity of HelsinkiHelsinki Finland
| | - Elena Haapaniemi
- Department of NeurologyHelsinki University Central Hospitaland Department of Neurological SciencesUniversity of HelsinkiHelsinki Finland
| | - Seppo Kaakkola
- Department of NeurologyHelsinki University Central Hospitaland Department of Neurological SciencesUniversity of HelsinkiHelsinki Finland
| | - Johanna Eerola‐Rautio
- Department of NeurologyHelsinki University Central Hospitaland Department of Neurological SciencesUniversity of HelsinkiHelsinki Finland
| | - Marjatta Pohja
- Department of NeurologyHelsinki University Central Hospitaland Department of Neurological SciencesUniversity of HelsinkiHelsinki Finland
| | - Esko Kinnunen
- Department of NeurologyHyvinkää HospitalHyvinkää Finland
| | - Kari Murros
- Department of NeurologyHelsinki University Central Hospitaland Department of Neurological SciencesUniversity of HelsinkiHelsinki Finland
| | - Petri Auvinen
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of HelsinkiHelsinki Finland
| |
Collapse
|