151
|
Zaytsev DV, Morozov VA, Fan J, Zhu X, Mukherjee M, Ni S, Kennedy MA, Ogawa MY. Metal-binding properties and structural characterization of a self-assembled coiled coil: Formation of a polynuclear Cd–thiolate cluster. J Inorg Biochem 2013; 119:1-9. [DOI: 10.1016/j.jinorgbio.2012.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 01/10/2023]
|
152
|
Sarkar AK, Lahiri A. Specificity determinants for the abscisic acid response element. FEBS Open Bio 2013; 3:101-5. [PMID: 23772380 PMCID: PMC3668542 DOI: 10.1016/j.fob.2013.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 12/31/2022] Open
Abstract
Abscisic acid (ABA) response elements (ABREs) are a group of cis-acting DNA elements that have been identified from promoter analysis of many ABA-regulated genes in plants. We are interested in understanding the mechanism of binding specificity between ABREs and a class of bZIP transcription factors known as ABRE binding factors (ABFs). In this work, we have modeled the homodimeric structure of the bZIP domain of ABRE binding factor 1 from Arabidopsis thaliana (AtABF1) and studied its interaction with ACGT core motif-containing ABRE sequences. We have also examined the variation in the stability of the protein–DNA complex upon mutating ABRE sequences using the protein design algorithm FoldX. The high throughput free energy calculations successfully predicted the ability of ABF1 to bind to alternative core motifs like GCGT or AAGT and also rationalized the role of the flanking sequences in determining the specificity of the protein-DNA interaction.
Collapse
Affiliation(s)
| | - Ansuman Lahiri
- Corresponding author. Tel.: +91 33 2350 8386/6387/6396; fax: +91 33 2351 9755.
| |
Collapse
|
153
|
Cristian L, Zhang Y. Use of thiol-disulfide exchange method to study transmembrane peptide association in membrane environments. Methods Mol Biol 2013; 1063:3-18. [PMID: 23975769 DOI: 10.1007/978-1-62703-583-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The development of methods for reversibly folding membrane proteins in a two-state manner remains a considerable challenge for studies of membrane protein stability. In recent years, a variety of techniques have been established and studies of membrane protein folding thermodynamics in the native bilayer environments have become feasible. Here we present the thiol-disulfide exchange method, a promising experimental approach for investigating the thermodynamics of transmembrane (TM) helix-helix association in membrane-mimicking environments. The method involves initiating disulfide cross-linking of a protein under reversible redox conditions in a thiol-disulfide buffer and quantitative assessment of the extent of cross-linking at equilibrium. This experimental method provides a broadly applicable tool for thermodynamic studies of folding, oligomerization, and helix-helix interactions of membrane proteins.
Collapse
|
154
|
The C-terminal domain of the Uup protein is a DNA-binding coiled coil motif. J Struct Biol 2012; 180:577-84. [DOI: 10.1016/j.jsb.2012.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/07/2012] [Accepted: 09/08/2012] [Indexed: 11/21/2022]
|
155
|
Structure of the formin-interaction domain of the actin nucleation-promoting factor Bud6. Proc Natl Acad Sci U S A 2012; 109:E3424-33. [PMID: 23161908 DOI: 10.1073/pnas.1203035109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Formin proteins and their associated factors cooperate to assemble unbranched actin filaments in diverse cellular structures. The Saccharomyces cerevisiae formin Bni1 and its associated nucleation-promoting factor (NPF) Bud6 generate actin cables and mediate polarized cell growth. Bud6 binds to both the tail of the formin and G-actin, thereby recruiting monomeric actin to the formin to create a nucleation seed. Here, we structurally and functionally dissect the nucleation-promoting C-terminal region of Bud6 into a Bni1-binding "core" domain and a G-actin binding "flank" domain. The ∼2-Å resolution crystal structure of the Bud6 core domain reveals an elongated dimeric rod with a unique fold resembling a triple-helical coiled-coil. Binding and actin-assembly assays show that conserved residues on the surface of this domain mediate binding to Bni1 and are required for NPF activity. We find that the Bni1 dimer binds two Bud6 dimers and that the Bud6 flank binds a single G-actin molecule. These findings suggest a model in which a Bni1/Bud6 complex with a 2:4 subunit stoichiometry assembles a nucleation seed with Bud6 coordinating up to four actin subunits.
Collapse
|
156
|
Vincent TL, Green PJ, Woolfson DN. LOGICOIL--multi-state prediction of coiled-coil oligomeric state. ACTA ACUST UNITED AC 2012; 29:69-76. [PMID: 23129295 DOI: 10.1093/bioinformatics/bts648] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION The coiled coil is a ubiquitous α-helical protein-structure domain that directs and facilitates protein-protein interactions in a wide variety of biological processes. At the protein-sequence level, the coiled coil is readily recognized via a conspicuous heptad repeat of hydrophobic and polar residues. However, structurally coiled coils are more complicated, existing in a wide range of oligomer states and topologies. As a consequence, predicting these various states from sequence remains an unmet challenge. RESULTS This work introduces LOGICOIL, the first algorithm to address the problem of predicting multiple coiled-coil oligomeric states from protein-sequence information alone. By covering >90% of the known coiled-coil structures, LOGICOIL is a net improvement compared with other existing methods, which achieve a predictive coverage of ∼31% of this population. This leap in predictive power offers better opportunities for genome-scale analysis, and analyses of coiled-coil containing protein assemblies. AVAILABILITY LOGICOIL is available via a web-interface at http://coiledcoils.chm.bris.ac.uk/LOGICOIL. Source code, training sets and supporting information can be downloaded from the same site.
Collapse
|
157
|
Armstrong CT, Watkins DW, Anderson JLR. Constructing manmade enzymes for oxygen activation. Dalton Trans 2012; 42:3136-50. [PMID: 23076271 DOI: 10.1039/c2dt32010j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Natural oxygenases catalyse the insertion of oxygen into an impressive array of organic substrates with exquisite efficiency, specificity and power unparalleled by current biomimetic catalysts. However, their true potential to provide tailor-made oxygenation catalysts remains largely untapped, perhaps a consequence of the evolutionary complexity imprinted into their three-dimensional structures through millennia of exposure to parallel selective pressures. In this perspective we describe how we may take inspiration from natural enzymes to design manmade oxygenase enzymes free from such complexity. We explore the differing chemistries accessed by natural oxygenases and outline a stepwise methodology whereby functional elements key to oxygenase catalysis are assembled within artificially designed protein scaffolds.
Collapse
Affiliation(s)
- Craig T Armstrong
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
158
|
Sunitha MS, Nair AG, Charya A, Jadhav K, Mukhopadhyay S, Sowdhamini R. Structural attributes for the recognition of weak and anomalous regions in coiled-coils of myosins and other motor proteins. BMC Res Notes 2012; 5:530. [PMID: 23009691 PMCID: PMC3542152 DOI: 10.1186/1756-0500-5-530] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/28/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coiled-coils are found in different proteins like transcription factors, myosin tail domain, tropomyosin, leucine zippers and kinesins. Analysis of various structures containing coiled-coils has revealed the importance of electrostatic and hydrophobic interactions. In such domains, regions of different strength of interactions need to be identified since they could be biologically relevant. FINDINGS We have updated our coiled-coil validation webserver, now called COILCHECK+, where new features were added to efficiently identify the strength of interaction at the interface region and measure the density of charged residues and hydrophobic residues. We have examined charged residues and hydrophobic ladders, using a new algorithm called CHAHO, which is incorporated within COILCHECK + server. CHAHO permits the identification of spatial charged residue patches and the continuity of hydrophobic ladder which stabilizes and destabilizes the coiled-coil structure. CONCLUSIONS The availability of such computational tools should be useful to understand the importance of spatial clustering of charged residues and the continuity of hydrophobic residues at the interface region of coiled-coil dimers. COILCHECK + is a structure based tool to validate coiled-coil stability; it can be accessed at http://caps.ncbs.res.in/coilcheckplus.
Collapse
Affiliation(s)
- Margaret S Sunitha
- National Centre for Biological Sciences (TIFR), UAS-GKVK Campus, Bellary Road, Bangalore 560 065, India
| | | | | | | | | | | |
Collapse
|
159
|
New currency for old rope: from coiled-coil assemblies to α-helical barrels. Curr Opin Struct Biol 2012; 22:432-41. [DOI: 10.1016/j.sbi.2012.03.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/01/2012] [Accepted: 03/01/2012] [Indexed: 11/18/2022]
|
160
|
Abstract
Hybrid biomaterials are systems created from components of at least two distinct classes of molecules, for example, synthetic macromolecules and proteins or peptide domains. The synergistic combination of two types of structures may produce new materials that possess unprecedented levels of structural organization and novel properties. This Review focuses on biorecognition-driven self-assembly of hybrid macromolecules into functional hydrogel biomaterials. First, basic rules that govern the secondary structure of peptides are discussed, and then approaches to the specific design of hybrid systems with tailor-made properties are evaluated, followed by a discussion on the similarity of design principles of biomaterials and macromolecular therapeutics. Finally, the future of the field is briefly outlined.
Collapse
Affiliation(s)
- Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA.
| | | |
Collapse
|
161
|
Kopeček J, Yang J. “Intelligente” Biomaterialien durch Selbstorganisation von Hybridhydrogelen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
162
|
Matsumura H, Kusaka N, Nakamura T, Tanaka N, Sagegami K, Uegaki K, Inoue T, Mukai Y. Crystal structure of the N-terminal domain of the yeast general corepressor Tup1p and its functional implications. J Biol Chem 2012; 287:26528-38. [PMID: 22707714 DOI: 10.1074/jbc.m112.369652] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Cyc8p-Tup1p protein complex is a general transcriptional corepressor of genes involved in many different physiological processes. Herein, we present the crystal structure of the Tup1p N-terminal domain (residues 1-92), essential for Tup1p self-assembly and interaction with Cyc8p. This domain tetramerizes to form a novel antiparallel four-helix bundle. Coiled coil interactions near the helical ends hold each dimer together, whereas interdimeric association involves only two sets of two residues located toward the chain centers. A mutagenesis study confirmed that the nonpolar residues responsible for the association of the protomers as dimers are also required for transcriptional repression. An additional structural study demonstrated that the domain containing an Leu(62) → Arg mutation that had been shown not to bind Cyc8p exhibits an altered structure, distinct from the wild type. This altered structure explains why the mutant cannot bind Cyc8p. The data presented herein highlight the importance of the architecture of the Tup1p N-terminal domain for self-association.
Collapse
Affiliation(s)
- Hiroyoshi Matsumura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Fletcher JM, Boyle AL, Bruning M, Bartlett GJ, Vincent TL, Zaccai NR, Armstrong CT, Bromley EHC, Booth PJ, Brady RL, Thomson AR, Woolfson DN. A basis set of de novo coiled-coil peptide oligomers for rational protein design and synthetic biology. ACS Synth Biol 2012; 1:240-50. [PMID: 23651206 DOI: 10.1021/sb300028q] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein engineering, chemical biology, and synthetic biology would benefit from toolkits of peptide and protein components that could be exchanged reliably between systems while maintaining their structural and functional integrity. Ideally, such components should be highly defined and predictable in all respects of sequence, structure, stability, interactions, and function. To establish one such toolkit, here we present a basis set of de novo designed α-helical coiled-coil peptides that adopt defined and well-characterized parallel dimeric, trimeric, and tetrameric states. The designs are based on sequence-to-structure relationships both from the literature and analysis of a database of known coiled-coil X-ray crystal structures. These give foreground sequences to specify the targeted oligomer state. A key feature of the design process is that sequence positions outside of these sites are considered non-essential for structural specificity; as such, they are referred to as the background, are kept non-descript, and are available for mutation as required later. Synthetic peptides were characterized in solution by circular-dichroism spectroscopy and analytical ultracentrifugation, and their structures were determined by X-ray crystallography. Intriguingly, a hitherto widely used empirical rule-of-thumb for coiled-coil dimer specification does not hold in the designed system. However, the desired oligomeric state is achieved by database-informed redesign of that particular foreground and confirmed experimentally. We envisage that the basis set will be of use in directing and controlling protein assembly, with potential applications in chemical and synthetic biology. To help with such endeavors, we introduce Pcomp, an on-line registry of peptide components for protein-design and synthetic-biology applications.
Collapse
Affiliation(s)
- Jordan M. Fletcher
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8
1TS, U.K
| | - Aimee L. Boyle
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8
1TS, U.K
| | - Marc Bruning
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8
1TS, U.K
| | - Gail J. Bartlett
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8
1TS, U.K
| | - Thomas L. Vincent
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8
1TS, U.K
| | - Nathan R. Zaccai
- School of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol BS8 1TD, U.K
| | - Craig T. Armstrong
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8
1TS, U.K
- School of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol BS8 1TD, U.K
| | | | - Paula J. Booth
- School of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol BS8 1TD, U.K
| | - R. Leo Brady
- School of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol BS8 1TD, U.K
| | - Andrew R. Thomson
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8
1TS, U.K
| | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8
1TS, U.K
- School of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol BS8 1TD, U.K
| |
Collapse
|
164
|
Buer BC, Meagher JL, Stuckey JA, Marsh ENG. Structural basis for the enhanced stability of highly fluorinated proteins. Proc Natl Acad Sci U S A 2012; 109:4810-5. [PMID: 22411812 PMCID: PMC3324029 DOI: 10.1073/pnas.1120112109] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Noncanonical amino acids have proved extremely useful for modifying the properties of proteins. Among them, extensively fluorinated (fluorous) amino acids seem particularly effective in increasing protein stability; however, in the absence of structural data, the basis of this stabilizing effect remains poorly understood. To address this problem, we solved X-ray structures for three small proteins with hydrophobic cores that are packed with either fluorocarbon or hydrocarbon side chains and compared their stabilities. Although larger, the fluorinated residues are accommodated within the protein with minimal structural perturbation, because they closely match the shape of the hydrocarbon side chains that they replace. Thus, stability increases seem to be better explained by increases in buried hydrophobic surface area that accompany fluorination than by specific fluorous interactions between fluorinated side chains. This finding is illustrated by the design of a highly fluorinated protein that, by compensating for the larger volume and surface area of the fluorinated side chains, exhibits similar stability to its nonfluorinated counterpart. These structure-based observations should inform efforts to rationally modulate protein function using noncanonical amino acids.
Collapse
Affiliation(s)
| | | | - Jeanne A. Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109; and
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - E. Neil G. Marsh
- Department of Chemistry and
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
165
|
|
166
|
Joo H, Chavan AG, Phan J, Day R, Tsai J. An amino acid packing code for α-helical structure and protein design. J Mol Biol 2012; 419:234-54. [PMID: 22426125 DOI: 10.1016/j.jmb.2012.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/22/2012] [Accepted: 03/07/2012] [Indexed: 11/19/2022]
Abstract
This work demonstrates that all packing in α-helices can be simplified to repetitive patterns of a single motif: the knob-socket. Using the precision of Voronoi Polyhedra/Delauney Tessellations to identify contacts, the knob-socket is a four-residue tetrahedral motif: a knob residue on one α-helix packs into the three-residue socket on another α-helix. The principle of the knob-socket model relates the packing between levels of protein structure: the intra-helical packing arrangements within secondary structure that permit inter-helix tertiary packing interactions. Within an α-helix, the three-residue sockets arrange residues into a uniform packing lattice. Inter-helix packing results from a definable pattern of interdigitated knob-socket motifs between two α-helices. Furthermore, the knob-socket model classifies three types of sockets: (1) free, favoring only intra-helical packing; (2) filled, favoring inter-helical interactions; and (3) non, disfavoring α-helical structure. The amino acid propensities in these three socket classes essentially represent an amino acid code for structure in α-helical packing. Using this code, we used a novel yet straightforward approach for the design of α-helical structure to validate the knob-socket model. Unique sequences for three peptides were created to produce a predicted amount of α-helical structure: mostly helical, some helical, and no helix. These three peptides were synthesized, and helical content was assessed using CD spectroscopy. The measured α-helicity of each peptide was consistent with the expected predictions. These results and analysis demonstrate that the knob-socket motif functions as the basic unit of packing and presents an intuitive tool to decipher the rules governing packing in protein structure.
Collapse
Affiliation(s)
- Hyun Joo
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | | | | | | | | |
Collapse
|
167
|
Kon T, Oyama T, Shimo-Kon R, Imamula K, Shima T, Sutoh K, Kurisu G. The 2.8 Å crystal structure of the dynein motor domain. Nature 2012; 484:345-50. [PMID: 22398446 DOI: 10.1038/nature10955] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/17/2012] [Indexed: 01/04/2023]
Abstract
Dyneins are microtubule-based AAA(+) motor complexes that power ciliary beating, cell division, cell migration and intracellular transport. Here we report the most complete structure obtained so far, to our knowledge, of the 380-kDa motor domain of Dictyostelium discoideum cytoplasmic dynein at 2.8 Å resolution; the data are reliable enough to discuss the structure and mechanism at the level of individual amino acid residues. Features that can be clearly visualized at this resolution include the coordination of ADP in each of four distinct nucleotide-binding sites in the ring-shaped AAA(+) ATPase unit, a newly identified interaction interface between the ring and mechanical linker, and junctional structures between the ring and microtubule-binding stalk, all of which should be critical for the mechanism of dynein motility. We also identify a long-range allosteric communication pathway between the primary ATPase and the microtubule-binding sites. Our work provides a framework for understanding the mechanism of dynein-based motility.
Collapse
Affiliation(s)
- Takahide Kon
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
168
|
Polyansky AA, Volynsky PE, Efremov RG. Structural, dynamic, and functional aspects of helix association in membranes: a computational view. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 83:129-61. [PMID: 21570667 DOI: 10.1016/b978-0-12-381262-9.00004-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review surveys recent achievements of molecular computer modeling in understanding spatial structure, dynamics, and mechanisms of functioning of transmembrane α-helical dimers in membranes. The factors driving self-association of hydrophobic helices in the membrane milieu are considered with examples of their applications to biologically relevant problems. The emphasis is made on the recent results, which help to understand important aspects of structure-function relations for these systems and their biological activity. Limitations and shortcomings of the methods, along with their perspectives in design of new membrane active agents, are discussed.
Collapse
Affiliation(s)
- Anton A Polyansky
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
169
|
Syamaladevi DP, Spudich JA, Sowdhamini R. Structural and functional insights on the Myosin superfamily. Bioinform Biol Insights 2012; 6:11-21. [PMID: 22399849 PMCID: PMC3290112 DOI: 10.4137/bbi.s8451] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The myosin superfamily is a versatile group of molecular motors involved in the transport of specific biomolecules, vesicles and organelles in eukaryotic cells. The processivity of myosins along an actin filament and transport of intracellular ‘cargo’ are achieved by generating physical force from chemical energy of ATP followed by appropriate conformational changes. The typical myosin has a head domain, which harbors an ATP binding site, an actin binding site, and a light-chain bound ‘lever arm’, followed often by a coiled coil domain and a cargo binding domain. Evolution of myosins started at the point of evolution of eukaryotes, S. cerevisiae being the simplest one known to contain these molecular motors. The coiled coil domain of the myosin classes II, V and VI in whole genomes of several model organisms display differences in the length and the strength of interactions at the coiled coil interface. Myosin II sequences have long-length coiled coil regions that are predicted to have a highly stable dimeric interface. These are interrupted, however, by regions that are predicted to be unstable, indicating possibilities of alternate conformations, associations to make thick filaments, and interactions with other molecules. Myosin V sequences retain intermittent regions of strong and weak interactions, whereas myosin VI sequences are relatively devoid of strong coiled coil motifs. Structural deviations at coiled coil regions could be important for carrying out normal biological function of these proteins.
Collapse
Affiliation(s)
- Divya P Syamaladevi
- National Centre for Biological Sciences (NCBS-TIFR), GKVK Campus, Bellary Road, Bangalore, India
| | | | | |
Collapse
|
170
|
Esposito C, Cantisani M, D'Auria G, Falcigno L, Pedone E, Galdiero S, Berisio R. Mapping key interactions in the dimerization process of HBHA fromMycobacterium tuberculosis, insights into bacterial agglutination. FEBS Lett 2012; 586:659-67. [DOI: 10.1016/j.febslet.2012.01.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 12/28/2011] [Accepted: 01/18/2012] [Indexed: 11/16/2022]
|
171
|
Gáspári Z, Süveges D, Perczel A, Nyitray L, Tóth G. Charged single alpha-helices in proteomes revealed by a consensus prediction approach. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:637-46. [PMID: 22310480 DOI: 10.1016/j.bbapap.2012.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 01/20/2012] [Accepted: 01/22/2012] [Indexed: 11/24/2022]
Abstract
Charged single α-helices (CSAHs) constitute a recently recognized protein structural motif. Its presence and role is characterized in only a few proteins. To explore its general features, a comprehensive study is necessary. We have set up a consensus prediction method available as a web service (at http://csahserver.chem.elte.hu) and downloadable scripts capable of predicting CSAHs from protein sequences. Using our method, we have performed a comprehensive search on the UniProt database. We found that the motif is very rare but seems abundant in proteins involved in symbiosis and RNA binding/processing. Although there are related proteins with CSAH segments, the motif shows no deep conservation in protein families. We conclude that CSAH-containing proteins, although rare, are involved in many key biological processes. Their conservation pattern and prevalence in symbiosis-associated proteins suggest that they might be subjects of relatively rapid molecular evolution and thus can contribute to the emergence of novel functions.
Collapse
Affiliation(s)
- Zoltán Gáspári
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
172
|
Abstract
The wealth of available protein structural data provides unprecedented opportunity to study and better understand the underlying principles of protein folding and protein structure evolution. A key to achieving this lies in the ability to analyse these data and to organize them in a coherent classification scheme. Over the past years several protein classifications have been developed that aim to group proteins based on their structural relationships. Some of these classification schemes explore the concept of structural neighbourhood (structural continuum), whereas other utilize the notion of protein evolution and thus provide a discrete rather than continuum view of protein structure space. This chapter presents a strategy for classification of proteins with known three-dimensional structure. Steps in the classification process along with basic definitions are introduced. Examples illustrating some fundamental concepts of protein folding and evolution with a special focus on the exceptions to them are presented.
Collapse
|
173
|
Chen K, Kurgan L. Computational prediction of secondary and supersecondary structures. Methods Mol Biol 2012; 932:63-86. [PMID: 22987347 DOI: 10.1007/978-1-62703-065-6_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The sequence-based prediction of the secondary and supersecondary structures enjoys strong interest and finds applications in numerous areas related to the characterization and prediction of protein structure and function. Substantial efforts in these areas over the last three decades resulted in the development of accurate predictors, which take advantage of modern machine learning models and availability of evolutionary information extracted from multiple sequence alignment. In this chapter, we first introduce and motivate both prediction areas and introduce basic concepts related to the annotation and prediction of the secondary and supersecondary structures, focusing on the β hairpin, coiled coil, and α-turn-α motifs. Next, we overview state-of-the-art prediction methods, and we provide details for 12 modern secondary structure predictors and 4 representative supersecondary structure predictors. Finally, we provide several practical notes for the users of these prediction tools.
Collapse
Affiliation(s)
- Ke Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
174
|
Stabilization of vimentin coil2 fragment via an engineered disulfide. J Struct Biol 2012; 177:46-53. [DOI: 10.1016/j.jsb.2011.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/07/2011] [Accepted: 11/09/2011] [Indexed: 11/21/2022]
|
175
|
Solmaz SR, Chauhan R, Blobel G, Melčák I. Molecular architecture of the transport channel of the nuclear pore complex. Cell 2011; 147:590-602. [PMID: 22036567 PMCID: PMC3431207 DOI: 10.1016/j.cell.2011.09.034] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 06/28/2011] [Accepted: 09/12/2011] [Indexed: 01/02/2023]
Abstract
The nuclear pore complex encloses a central channel for nucleocytoplasmic transport, which is thought to consist of three nucleoporins, Nup54, Nup58, and Nup62. However, the structure and composition of the channel are elusive. We determined the crystal structures of the interacting domains between these nucleoporins and pieced together the molecular architecture of the mammalian transport channel. Located in the channel midplane is a flexible Nup54⋅Nup58 ring that can undergo large rearrangements yielding diameter changes from ∼20 to ∼40 nm. Nup62⋅Nup54 triple helices project alternately up and down from either side of the midplane ring and form nucleoplasmic and cytoplasmic entries. The channel consists of as many as 224 copies of the three nucleoporins, amounting to a molar mass of 12.3 MDa and contributing 256 phenylalanine-glycine repeat regions. We propose that the occupancy of these repeat regions with transport receptors modulates ring diameter and transport activity.
Collapse
Affiliation(s)
- Sozanne R Solmaz
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | |
Collapse
|
176
|
Zaccai NR, Chi B, Thomson AR, Boyle AL, Bartlett GJ, Bruning M, Linden N, Sessions RB, Booth PJ, Brady RL, Woolfson DN. A de novo peptide hexamer with a mutable channel. Nat Chem Biol 2011; 7:935-41. [PMID: 22037471 PMCID: PMC3223406 DOI: 10.1038/nchembio.692] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/19/2011] [Indexed: 11/10/2022]
Abstract
The design of new proteins that expand the repertoire of natural protein structures represents a formidable challenge. Success in this area would increase understanding of protein structure, and present new scaffolds that could be exploited in biotechnology and synthetic biology. Here we describe the design, characterisation and X-ray crystal structure of a new coiled-coil protein. The de novo sequence forms a stand-alone, parallel, 6-helix bundle with a channel running through it. Although lined exclusively by hydrophobic leucine and isoleucine side chains, the 6 Å channel is permeable to water. One layer of leucine residues within the channel is mutable accepting polar aspartic acid (Asp) and histidine (His) side chains, and leading to subdivision and organization of solvent within the lumen. Moreover, these mutants can be combined to form a stable and unique (Asp-His)3 heterohexamer. These new structures provide a basis for engineering de novo proteins with new functions.
Collapse
|
177
|
Weitzel CS, Waldman VM, Graham TA, Oakley MG. A repeated coiled-coil interruption in the Escherichia coli condensin MukB. J Mol Biol 2011; 414:578-95. [PMID: 22041452 DOI: 10.1016/j.jmb.2011.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 01/18/2023]
Abstract
MukB, a divergent structural maintenance of chromosomes (SMC) protein, is important for chromosome segregation and condensation in Escherichia coli and other γ-proteobacteria. MukB and canonical SMC proteins share a common five-domain structure in which globular N- and C-terminal regions combine to form an ATP-binding-cassette-like ATPase domain. This ATPase domain is connected to a central, globular dimerization domain by a long antiparallel coiled coil. The structures of both globular domains have been solved recently. In contrast, little is known about the coiled coil, in spite of its clear importance for SMC function. Recently, we identified interacting regions on the N- and C-terminal halves of the MukB coiled coil through photoaffinity cross-linking experiments. On the basis of these low-resolution experimental constraints, phylogenetic data, and coiled-coil prediction analysis, we proposed a preliminary model in which the MukB coiled coil is divided into multiple segments. Here, we use a disulfide cross-linking assay to detect paired residues on opposite strands of MukB's coiled coil. This method provides accurate register data and demonstrates the presence of at least five coiled-coil segments in this domain. Moreover, these studies show that the segments are interrupted by a repeated, unprecedented deviation from canonical coiled-coil structure. These experiments provide a sufficiently detailed view of the MukB coiled coil to allow rational manipulation of this region for the first time, opening the door for structure-function studies of this domain.
Collapse
|
178
|
Interhead tension determines processivity across diverse N-terminal kinesins. Proc Natl Acad Sci U S A 2011; 108:16253-8. [PMID: 21911401 DOI: 10.1073/pnas.1102628108] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Consistent with their diverse intracellular roles, the processivity of N-terminal kinesin motors varies considerably between different families. Kinetics experiments on isolated motor domains suggest that differences in processivity result from differences in the underlying biochemistry of the catalytic heads. However, the length of the flexible neck linker domain also varies from 14 to 18 residues between families. Because the neck linker acts as a mechanical element that transmits interhead tension, altering its mechanical properties is expected to affect both front and rear head gating, mechanisms that underlie processive walking. To test the hypothesis that processivity differences result from family-specific differences in neck linker mechanics, we systematically altered the neck linker length in kinesin-1, -2, -3, -5, and -7 motors and measured run length and velocity in a single-molecule fluorescence assay. Shortening the neck linkers of kinesin-3 (Unc104/KIF1A) and kinesin-5 (Eg5/KSP) to 14 residues enhanced processivity to match kinesin-1, which has a 14-residue neck linker. After substituting a single residue in the last alpha helix of the catalytic core, kinesin-7 (CENP-E) exhibited this same behavior. This convergence of processivity was observed even though motor speeds varied over a 25-fold range. These results suggest that differences in unloaded processivity between diverse kinesins is primarily due to differences in the lengths of their neck linker domains rather than specific tuning of rate constants in their ATP hydrolysis cycles.
Collapse
|
179
|
Trigg J, Gutwin K, Keating AE, Berger B. Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone. PLoS One 2011; 6:e23519. [PMID: 21901122 PMCID: PMC3162000 DOI: 10.1371/journal.pone.0023519] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 07/20/2011] [Indexed: 12/23/2022] Open
Abstract
The alpha-helical coiled coil can adopt a variety of topologies, among the most common of which are parallel and antiparallel dimers and trimers. We present Multicoil2, an algorithm that predicts both the location and oligomerization state (two versus three helices) of coiled coils in protein sequences. Multicoil2 combines the pairwise correlations of the previous Multicoil method with the flexibility of Hidden Markov Models (HMMs) in a Markov Random Field (MRF). The resulting algorithm integrates sequence features, including pairwise interactions, through multinomial logistic regression to devise an optimized scoring function for distinguishing dimer, trimer and non-coiled-coil oligomerization states; this scoring function is used to produce Markov Random Field potentials that incorporate pairwise correlations localized in sequence. Multicoil2 significantly improves both coiled-coil detection and dimer versus trimer state prediction over the original Multicoil algorithm retrained on a newly-constructed database of coiled-coil sequences. The new database, comprised of 2,105 sequences containing 124,088 residues, includes reliable structural annotations based on experimental data in the literature. Notably, the enhanced performance of Multicoil2 is evident when tested in stringent leave-family-out cross-validation on the new database, reflecting expected performance on challenging new prediction targets that have minimal sequence similarity to known coiled-coil families. The Multicoil2 program and training database are available for download from http://multicoil2.csail.mit.edu.
Collapse
Affiliation(s)
- Jason Trigg
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Karl Gutwin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Amy E. Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (BB); (AEK)
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory and Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (BB); (AEK)
| |
Collapse
|
180
|
Armstrong CT, Vincent TL, Green PJ, Woolfson DN. SCORER 2.0: an algorithm for distinguishing parallel dimeric and trimeric coiled-coil sequences. Bioinformatics 2011; 27:1908-14. [PMID: 21576179 DOI: 10.1093/bioinformatics/btr299] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The coiled coil is a ubiquitous α-helical protein structure domain that directs and facilitates protein-protein interactions in a wide variety of biological processes. At the protein-sequence level, coiled coils are quite straightforward and readily recognized via the conspicuous heptad repeats of hydrophobic and polar residues. However, structurally they are more complicated, existing in a range of oligomer states and topologies. Here, we address the issue of predicting coiled-coil oligomeric state from protein sequence. RESULTS The predominant coiled-coil oligomer states in Nature are parallel dimers and trimers. Here, we improve and retrain the first-published algorithm, SCORER, that distinguishes these states, and test it against the current standard, MultiCoil. The SCORER algorithm has been revised in two key respects: first, the statistical basis for SCORER is improved markedly. Second, the training set for SCORER has been expanded and updated to include only structurally validated coiled coils. The result is a much-improved oligomer state predictor that outperforms MultiCoil, particularly in assigning oligomer state to short coiled coils, and those that are diverse from the training set. AVAILABILITY SCORER 2.0 is available via a web interface at http://coiledcoils.chm.bris.ac.uk/Scorer. Source code, training sets and Supporting Information can be downloaded from the same site.
Collapse
|
181
|
Mahrenholz CC, Abfalter IG, Bodenhofer U, Volkmer R, Hochreiter S. Complex networks govern coiled-coil oligomerization--predicting and profiling by means of a machine learning approach. Mol Cell Proteomics 2011; 10:M110.004994. [PMID: 21311038 PMCID: PMC3098589 DOI: 10.1074/mcp.m110.004994] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 01/18/2011] [Indexed: 11/23/2022] Open
Abstract
Understanding the relationship between protein sequence and structure is one of the great challenges in biology. In the case of the ubiquitous coiled-coil motif, structure and occurrence have been described in extensive detail, but there is a lack of insight into the rules that govern oligomerization, i.e. how many α-helices form a given coiled coil. To shed new light on the formation of two- and three-stranded coiled coils, we developed a machine learning approach to identify rules in the form of weighted amino acid patterns. These rules form the basis of our classification tool, PrOCoil, which also visualizes the contribution of each individual amino acid to the overall oligomeric tendency of a given coiled-coil sequence. We discovered that sequence positions previously thought irrelevant to direct coiled-coil interaction have an undeniable impact on stoichiometry. Our rules also demystify the oligomerization behavior of the yeast transcription factor GCN4, which can now be described as a hybrid--part dimer and part trimer--with both theoretical and experimental justification.
Collapse
Affiliation(s)
- Carsten C. Mahrenholz
- From the ‡Institute of Medical Immunology, Charité Medical School, Hessische Str. 3-4, 10117 Berlin, Germany
| | - Ingrid G. Abfalter
- §Institute of Bioinformatics, Johannes Kepler University, Altenberger Str. 69, 4040 Linz, Austria
| | - Ulrich Bodenhofer
- §Institute of Bioinformatics, Johannes Kepler University, Altenberger Str. 69, 4040 Linz, Austria
| | - Rudolf Volkmer
- From the ‡Institute of Medical Immunology, Charité Medical School, Hessische Str. 3-4, 10117 Berlin, Germany
| | - Sepp Hochreiter
- §Institute of Bioinformatics, Johannes Kepler University, Altenberger Str. 69, 4040 Linz, Austria
| |
Collapse
|
182
|
Stafford RL, Tang MY, Sawaya MR, Phillips ML, Bowie JU. Crystal structure of the central coiled-coil domain from human liprin-β2. Biochemistry 2011; 50:3807-15. [PMID: 21462929 DOI: 10.1021/bi200141e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liprins are a conserved family of scaffolding proteins important for the proper regulation and development of neuronal synapses. Humans have four liprin-αs and two liprin-βs which all contain long coiled-coil domains followed by three tandem SAM domains. Complex interactions between the coiled-coil and SAM domains are thought to create liprin scaffolds, but the structural and biochemical properties of these domains remain largely uncharacterized. In this study we find that the human liprin-β2 coiled-coil forms an extended dimer. Several protease-resistant subdomains within the liprin-β1 and liprin-β2 coiled-coils were also identified. A 2.0 Å crystal structure of the central, protease-resistant core of the liprin-β2 coiled-coil reveals a parallel helix orientation. These studies represent an initial step toward determining the overall architecture of liprin scaffolds and understanding the molecular basis for their synaptic functions.
Collapse
Affiliation(s)
- Ryan L Stafford
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, Boyer Hall 611 Charles E. Young Dr. E., Los Angeles, California 90095-1570, USA
| | | | | | | | | |
Collapse
|
183
|
Tu D, Li Y, Song HK, Toms AV, Gould CJ, Ficarro SB, Marto JA, Goode BL, Eck MJ. Crystal structure of a coiled-coil domain from human ROCK I. PLoS One 2011; 6:e18080. [PMID: 21445309 PMCID: PMC3061879 DOI: 10.1371/journal.pone.0018080] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/21/2011] [Indexed: 11/19/2022] Open
Abstract
The small GTPase Rho and one of its targets, Rho-associated kinase (ROCK), participate in a variety of actin-based cellular processes including smooth muscle contraction, cell migration, and stress fiber formation. The ROCK protein consists of an N-terminal kinase domain, a central coiled-coil domain containing a Rho binding site, and a C-terminal pleckstrin homology domain. Here we present the crystal structure of a large section of the central coiled-coil domain of human ROCK I (amino acids 535-700). The structure forms a parallel α-helical coiled-coil dimer that is structurally similar to tropomyosin, an actin filament binding protein. There is an unusual discontinuity in the coiled-coil; three charged residues (E613, R617 and D620) are positioned at what is normally the hydrophobic core of coiled-coil packing. We speculate that this conserved irregularity could function as a hinge that allows ROCK to adopt its autoinhibited conformation.
Collapse
Affiliation(s)
- Daqi Tu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Yiqun Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Hyun Kyu Song
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Angela V. Toms
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Christopher J. Gould
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Scott B. Ficarro
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Jarrod A. Marto
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Bruce L. Goode
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael J. Eck
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
184
|
Abstract
In recent years our ability to design and assemble peptide-based materials and objects de novo (i.e. from first principles) has improved considerably. This brings us to a point where the resulting assemblies are quite sophisticated and amenable to engineering in new functions. Whilst such systems could be used in a variety of ways, biological applications are of particular interest because of the demand for biocompatible, readily produced systems with potential as drug-delivery agents, components of biosensors and scaffolds for 3D cell and tissue culture. This tutorial review describes the building blocks (or tectons) that are being used in peptide assembly, highlights a range of materials and objects that have been produced, notably hydrogels and virus-like particles, and introduces a number of potential applications for the designs.
Collapse
Affiliation(s)
- Aimee L Boyle
- School of Chemistry, University of Bristol, Cantocks Close, Bristol, BS8 1TS, UK
| | | |
Collapse
|
185
|
Swiecki M, Scheaffer SM, Allaire M, Fremont DH, Colonna M, Brett TJ. Structural and biophysical analysis of BST-2/tetherin ectodomains reveals an evolutionary conserved design to inhibit virus release. J Biol Chem 2011; 286:2987-97. [PMID: 21084286 PMCID: PMC3024793 DOI: 10.1074/jbc.m110.190538] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/02/2010] [Indexed: 11/06/2022] Open
Abstract
BST-2/tetherin is a host antiviral molecule that functions to potently inhibit the release of enveloped viruses from infected cells. In return, viruses have evolved antagonists to this activity. BST-2 traps budding virions by using two separate membrane-anchoring regions that simultaneously incorporate into the host and viral membranes. Here, we detailed the structural and biophysical properties of the full-length BST-2 ectodomain, which spans the two membrane anchors. The 1.6-Å crystal structure of the complete mouse BST-2 ectodomain reveals an ∼145-Å parallel dimer in an extended α-helix conformation that predominantly forms a coiled coil bridged by three intermolecular disulfides that are required for stability. Sequence analysis in the context of the structure revealed an evolutionarily conserved design that destabilizes the coiled coil, resulting in a labile superstructure, as evidenced by solution x-ray scattering displaying bent conformations spanning 150 and 180 Å for the mouse and human BST-2 ectodomains, respectively. Additionally, crystal packing analysis revealed possible curvature-sensing tetrameric structures that may aid in proper placement of BST-2 during the genesis of viral progeny. Overall, this extended coiled-coil structure with inherent plasticity is undoubtedly necessary to accommodate the dynamics of viral budding while ensuring separation of the anchors.
Collapse
Affiliation(s)
| | | | - Marc Allaire
- the National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973
| | - Daved H. Fremont
- From the Departments of Pathology and Immunology
- Biochemistry and Molecular Biophysics, and
| | | | - Tom J. Brett
- Internal Medicine
- Biochemistry and Molecular Biophysics, and
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| |
Collapse
|
186
|
Stedall TP, Butler MF, Woolfson DN, Hanna S. Computer simulations of the growth of synthetic peptide fibres. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2011; 34:5. [PMID: 21253806 DOI: 10.1140/epje/i2011-11005-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 11/29/2010] [Indexed: 05/30/2023]
Abstract
We present a coarse-grained computer model designed to study the growth of fibres in a synthetic self-assembling peptide system. The system consists of two 28 residue α-helical sequences, denoted AB and CD, in which the interactions between the half peptides, A, B, C and D, may be tuned individually to promote different types of growth behaviour. In the model, AB and CD are represented by double ended rods, with interaction sites distributed along their lengths. Monte Carlo simulations are performed to follow fibre growth. It is found that lateral and longitudinal growth of the fibre are governed by different mechanisms--the former is diffusion limited with a very small activation energy for the addition of units, whereas the latter occurs via a process of secondary nucleation at the fibre ends. As a result, longitudinal growth generally proceeds more slowly than lateral growth. Furthermore, it is shown that the aspect ratio of the growing fibre may be controlled by adjusting the temperature and the relative strengths of the interactions. The predictions of the model are discussed in the context of published data from real peptide systems.
Collapse
Affiliation(s)
- T P Stedall
- H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, BS81TL Bristol, UK
| | | | | | | |
Collapse
|
187
|
Bromley EHC, Channon KJ. Alpha-helical peptide assemblies giving new function to designed structures. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:231-75. [PMID: 21999998 PMCID: PMC7150058 DOI: 10.1016/b978-0-12-415906-8.00001-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The design of alpha-helical tectons for self-assembly is maturing as a science. We have now reached the point where many different coiled-coil topologies can be reliably produced and validated in synthetic systems and the field is now moving on towards more complex, discrete structures and applications. Similarly the design of infinite or fiber assemblies has also matured, with the creation fibers that have been modified or functionalized in a variety of ways. This chapter discusses the progress made in both of these areas as well as outlining the challenges still to come.
Collapse
|
188
|
Gradišar H, Jerala R. De novo design of orthogonal peptide pairs forming parallel coiled-coil heterodimers. J Pept Sci 2010; 17:100-6. [PMID: 21234981 DOI: 10.1002/psc.1331] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 10/20/2010] [Accepted: 10/20/2010] [Indexed: 11/07/2022]
Abstract
We used the principles governing the selectivity and stability of coiled-coil segments to design and experimentally test a set of four pairs of parallel coiled-coil-forming peptides composed of four heptad repeats. The design was based on maximizing the difference in stability between desired pairs and the most stable unwanted combinations using N-terminal helix initiator residues, favorable combinations of the electrostatic and hydrophobic interaction motifs and negative design motif based on burial of asparagine residues. Experimental analysis of all 36 pair combinations among the eight peptides was performed by circular dichroism (CD). On the basis of CD spectra, each peptide formed a high level of α-helical structure exclusively in combination with its designed peptide partner which demonstrates the orthogonality of the designed peptide pair set.
Collapse
Affiliation(s)
- Helena Gradišar
- Department of Biotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
189
|
Grigoryan G, Degrado WF. Probing designability via a generalized model of helical bundle geometry. J Mol Biol 2010; 405:1079-100. [PMID: 20932976 DOI: 10.1016/j.jmb.2010.08.058] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 08/26/2010] [Accepted: 08/31/2010] [Indexed: 10/19/2022]
Abstract
Because the space of folded protein structures is highly degenerate, with recurring secondary and tertiary motifs, methods for representing protein structure in terms of collective physically relevant coordinates are of great interest. By collapsing structural diversity to a handful of parameters, such methods can be used to delineate the space of designable structures (i.e., conformations that can be stabilized with a large number of sequences)-a crucial task for de novo protein design. We first demonstrate this on natural α-helical coiled coils using the Crick parameterization. We show that over 95% of known coiled-coil structures are within 1-Å C(α) root mean square deviation of a Crick-ideal backbone. Derived parameters show that natural geometric space of coiled coils is highly restricted and can be represented by "allowed" conformations amidst a potential continuum of conformers. Allowed structures have (1) restricted axial offsets between helices, which differ starkly between parallel and anti-parallel structures; (2) preferred superhelical radii, which depend linearly on the oligomerization state; (3) pronounced radius-dependent a- and d-position amino acid propensities; and (4) discrete angles of rotation of helices about their axes, which are surprisingly independent of oligomerization state or orientation. In all, we estimate the space of designable coiled-coil structures to be reduced at least 160-fold relative to the space of geometrically feasible structures. To extend the benefits of structural parameterization to other systems, we developed a general mathematical framework for parameterizing arbitrary helical structures, which reduces to the Crick parameterization as a special case. The method is successfully validated on a set of non-coiled-coil helical bundles, frequent in channels and transporter proteins, which show significant helix bending but not supercoiling. Programs for coiled-coil parameter fitting and structure generation are provided via a web interface at http://www.gevorggrigoryan.com/cccp/, and code for generalized helical parameterization is available upon request.
Collapse
Affiliation(s)
- Gevorg Grigoryan
- Department of Biochemistry, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
190
|
Liberelle B, Bartholin L, Boucher C, Murschel F, Jolicoeur M, Durocher Y, Merzouki A, De Crescenzo G. New ELISA approach based on coiled-coil interactions. J Immunol Methods 2010; 362:161-7. [PMID: 20869967 DOI: 10.1016/j.jim.2010.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/02/2010] [Accepted: 09/16/2010] [Indexed: 11/24/2022]
Abstract
The de novo designed heterodimeric E/K coiled-coil system has been previously demonstrated to be an excellent capture/dimerization system applicable to various needs in both biotechnology and pharmaceutical fields. Those include controlled protein dimerization, capture, purification and Western-blot detection. We here report the development of a new generation of ELISA test based on coiled-coil interactions for the direct quantitation of coil-tagged epidermal growth factor (EGF). The new approach was evaluated for its specificity, plate storability and reusability as well as for convenience when compared to commercially available systems. Our results show a similar affinity/sensitivity to standard capturing antibody-based ELISA systems and an improved affinity/sensitivity when compared to the commercially available Ni-NTA capture system. The E/K coiled-coil ELISA system was validated with respect to recovery, intra- and inter-assay variations. The practical working range was estimated to be between 5.2 and 34,000 pM. Furthermore, the storability and reusability of the plates was greater than the two aforementioned systems, suggesting that the E/K coiled-coil system is a good alternative to traditional tags such as poly-histidine for the development of ELISA tests aiming at quantitating coil-tagged proteins.
Collapse
Affiliation(s)
- Benoît Liberelle
- Department of Chemical Engineering, Bio-P2 Research Unit, Institute of Biomedical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Ecole Polytechnique de Montréal, PO BOX 6079, Station Centre-ville, Montréal (QC) Canada H3C 3A7
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Structural and functional studies on the extracellular domain of BST2/tetherin in reduced and oxidized conformations. Proc Natl Acad Sci U S A 2010; 107:17951-6. [PMID: 20880831 DOI: 10.1073/pnas.1008206107] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
HIV-1 and other enveloped viruses can be restricted by a host cellular protein called BST2/tetherin that prevents release of budded viruses from the cell surface. Mature BST2 contains a small cytosolic region, a predicted transmembrane helix, and an extracellular domain with a C-terminal GPI anchor. To advance understanding of BST2 function, we have determined a 2.6 Å crystal structure of the extracellular domain of the bacterially expressed recombinant human protein, residues 47-152, under reducing conditions. The structure forms a single long helix that associates as a parallel dimeric coiled coil over its C-terminal two-thirds, while the N-terminal third forms an antiparallel four-helix bundle with another dimer, creating a global tetramer. We also report the 3.45 Å resolution structure of BST2(51-151) prepared by expression as a secreted protein in HEK293T cells. This oxidized construct forms a dimer in the crystal that is superimposable with the reduced protein over the C-terminal two-thirds of the molecule, and its N terminus suggests pronounced flexibility. Hydrodynamic data demonstrated that BST2 formed a stable tetramer under reducing conditions and a dimer when oxidized to form disulfide bonds. A mutation that selectively disrupted the tetramer (L70D) increased protein expression modestly but only reduced antiviral activity by approximately threefold. Our data raise the possibility that BST2 may function as a tetramer at some stage, such as during trafficking, and strongly support a model in which the primary functional state of BST2 is a parallel disulfide-bound coiled coil that displays flexibility toward its N terminus.
Collapse
|
192
|
Rackham OJL, Madera M, Armstrong CT, Vincent TL, Woolfson DN, Gough J. The evolution and structure prediction of coiled coils across all genomes. J Mol Biol 2010; 403:480-93. [PMID: 20813113 DOI: 10.1016/j.jmb.2010.08.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 08/06/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
Coiled coils are α-helical interactions found in many natural proteins. Various sequence-based coiled-coil predictors are available, but key issues remain: oligomeric state and protein-protein interface prediction and extension to all genomes. We present SpiriCoil (http://supfam.org/SUPERFAMILY/spiricoil), which is based on a novel approach to the coiled-coil prediction problem for coiled coils that fall into known superfamilies: hundreds of hidden Markov models representing coiled-coil-containing domain families. Using whole domains gives the advantage that sequences flanking the coiled coils help. SpiriCoil performs at least as well as existing methods at detecting coiled coils and significantly advances the state of the art for oligomer state prediction. SpiriCoil has been run on over 16 million sequences, including all completely sequenced genomes (more than 1200), and a resulting Web interface supplies data downloads, alignments, scores, oligomeric state classifications, three-dimensional homology models and visualisation. This has allowed, for the first time, a genomewide analysis of coiled-coil evolution. We found that coiled coils have arisen independently de novo well over a hundred times, and these are observed in 16 different oligomeric states. Coiled coils in almost all oligomeric states were present in the last universal common ancestor of life. The vast majority of occasions that individual coiled coils have arisen de novo were before the last universal common ancestor of life; we do, however, observe scattered instances throughout subsequent evolutionary history, mostly in the formation of the eukaryote superkingdom. Coiled coils do not change their oligomeric state over evolution and did not evolve from the rearrangement of existing helices in proteins; coiled coils were forged in unison with the fold of the whole protein.
Collapse
Affiliation(s)
- Owen J L Rackham
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | | | | | | | | | | |
Collapse
|
193
|
Brown JH. How sequence directs bending in tropomyosin and other two-stranded alpha-helical coiled coils. Protein Sci 2010; 19:1366-75. [PMID: 20506487 PMCID: PMC2974828 DOI: 10.1002/pro.415] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/15/2010] [Accepted: 05/02/2010] [Indexed: 12/31/2022]
Abstract
A quantitative analysis of the direction of bending of two-stranded alpha-helical coiled coils in crystal structures has been carried out to help determine how the amino acid sequence of the coiled coil influences its shape and function. Change in the axial staggering of the coiled coil, occurring at the boundaries of either clusters of core alanines in tropomyosin or of clusters of core bulky residues in the myosin rod, causes bending within the plane of the local dimer. The results also reveal that large gaps in the core of the coiled coil, which are seen for small core residues near large core residues or for unbranched core residues near canonical branched core residues, are correlated with bending out of the local dimeric plane. Comparison of tropomyosin structures determined in independent crystal environments provides further evidence for the concept that sequence directs the bending of the coiled coil, but that crystal environment is at least as important as sequence for determining the magnitude of bending. Tropomyosin thus appears to consist of more directionally restrained hinge-like joints rather than directionally variable universal joints, which helps account for and predicts the geometric and dynamic nature of its binding to F-actin.
Collapse
Affiliation(s)
- Jerry H Brown
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| |
Collapse
|
194
|
Carter AP, Vale RD. Communication between the AAA+ ring and microtubule-binding domain of dynein. Biochem Cell Biol 2010; 88:15-21. [PMID: 20130675 DOI: 10.1139/o09-127] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dyneins are microtubule motors, the core of which consists of a ring of AAA+ domains. ATP-driven conformational changes of the AAA+ ring are used to drive the movement of a mechanical element (termed the linker domain) that provides the motor's powerstroke and to change the affinity of the motor for microtubules (strong binding during the power stroke and weak binding to allow stepping and recocking of the linker domain). Dynein's microtubule-binding domain (MTBD) is located at the end of a 10 nm long anti-parallel coiled coil (the stalk) and conformational changes that alter the affinity for microtubules must propagate through this coiled coil. A recent crystal structure of dynein's MTBD sheds new light on how this long-range communication along a coiled coil might occur.
Collapse
Affiliation(s)
- Andrew P Carter
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.
| | | |
Collapse
|
195
|
Szappanos B, Süveges D, Nyitray L, Perczel A, Gáspári Z. Folded-unfolded cross-predictions and protein evolution: the case study of coiled-coils. FEBS Lett 2010; 584:1623-7. [PMID: 20303956 DOI: 10.1016/j.febslet.2010.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/13/2010] [Accepted: 03/15/2010] [Indexed: 12/29/2022]
Abstract
Here we report a thorough analysis of cross-predictions between coiled-coil and disordered protein segments using various prediction algorithms for both sequence classes. Coiled-coils are often predicted to be unstructured, consistent with their obligate multimeric nature, whereas reverse cross-predictions are rare due to the regularity of coiled-coil sequences. We propose the simultaneous use of the programs Coils and IUPred to achieve acceptable prediction accuracy and minimize the extent of cross-predictions. The relevance of observed cross-predictions might be that disordered sequences can adopt coiled-coil conformation relatively easily during protein evolution.
Collapse
Affiliation(s)
- Balázs Szappanos
- Eötvös Loránd University, Institute of Chemistry, Structural Chemistry and Biology Laboratory, Budapest, Hungary
| | | | | | | | | |
Collapse
|
196
|
The many types of interhelical ionic interactions in coiled coils - an overview. J Struct Biol 2010; 170:192-201. [PMID: 20211731 DOI: 10.1016/j.jsb.2010.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/26/2010] [Accepted: 03/02/2010] [Indexed: 01/26/2023]
Abstract
Coiled coils represent the most frequent protein oligomerization motif in nature and are involved in many important biological processes. The prototype interhelical ionic interaction for coiled coils described in literature is an i to i+5 ionic interaction from heptad position g to e', but other possible ionic interactions have also been described. Here we use a statistical approach to systematically analyze all high-quality coiled-coil structures in the RCSB protein database for their interhelical ionic interactions. We provide a complete listing of all possible arrangements and analyze the frequency of their occurrence in the primary sequence together with their probability of formation in the quaternary structure of the coiled coils. We show that the classical i to i+5 ionic interaction is indeed characteristic for parallel dimeric and trimeric coiled coils. But we also show that there are many more i to i+2 ionic interactions in parallel tetrameric and pentameric coiled coils, and in antiparallel coiled coils the classical i to i+5 ionic interaction is in none of the oligomerizations states the most frequently observed ionic interaction. We also demonstrate that many ionic interactions involve residues at the core positions that are usually occupied by hydrophobic residues and that such interhelical ionic interactions are a hallmark feature of dimeric coiled coils.
Collapse
|
197
|
Structural insights into the molecular mechanisms of cauliflower mosaic virus transmission by its insect vector. J Virol 2010; 84:4706-13. [PMID: 20181714 DOI: 10.1128/jvi.02662-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) is transmitted from plant to plant through a seemingly simple interaction with insect vectors. This process involves an aphid receptor and two viral proteins, P2 and P3. P2 binds to both the aphid receptor and P3, itself tightly associated with the virus particle, with the ensemble forming a transmissible viral complex. Here, we describe the conformations of both unliganded CaMV P3 protein and its virion-associated form. X-ray crystallography revealed that the N-terminal domain of unliganded P3 is a tetrameric parallel coiled coil with a unique organization showing two successive four-stranded subdomains with opposite supercoiling handedness stabilized by a ring of interchain disulfide bridges. A structural model of virus-liganded P3 proteins, folding as an antiparallel coiled-coil network coating the virus surface, was derived from molecular modeling. Our results highlight the structural and biological versatility of this coiled-coil structure and provide new insights into the molecular mechanisms involved in CaMV acquisition and transmission by the insect vector.
Collapse
|
198
|
Nicolet S, Herrmann H, Aebi U, Strelkov SV. Atomic structure of vimentin coil 2. J Struct Biol 2010; 170:369-76. [PMID: 20176112 DOI: 10.1016/j.jsb.2010.02.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 02/12/2010] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
Abstract
Intermediate filaments (IFs) are essential cytoskeletal components in metazoan cells. They assemble from elementary dimers that are built around the central alpha-helical coiled-coil rod domain representing the IF 'signature'. The rod consists of two similarly-sized parts, coil 1 and coil 2, connected by a non-alpha-helical linker L12. Coil 2 is absolutely conserved in length across all IF types and was initially predicted to consist of a short coiled-coil segment 2A based on a heptad pattern of hydrophobic residues, another linker L2 and a coiled-coil segment 2B. Here we present the crystal structure of human vimentin fragment including residues 261-335 i.e. approximately the first half of coil 2. The N-terminal part of this fragment reveals a parallel alpha-helical bundle characterized by 3.5 consecutive hendecad repeats. It is immediately followed by a regular left-handed coiled coil. The distinct non-helical linker L2 is therefore not observed. Together with the previously determined crystal structure of the major part of segment 2B (Strelkov et al., 2002), we can now build a complete atomic model of the 21nm long vimentin coil 2 dimer being a relatively rigid rod.
Collapse
Affiliation(s)
- Stefan Nicolet
- Department of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Belgium
| | | | | | | |
Collapse
|
199
|
Esposito C, Carullo P, Pedone E, Graziano G, Del Vecchio P, Berisio R. Dimerisation and structural integrity of Heparin Binding Hemagglutinin A from Mycobacterium tuberculosis: implications for bacterial agglutination. FEBS Lett 2010; 584:1091-6. [PMID: 20178790 DOI: 10.1016/j.febslet.2010.02.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 11/19/2022]
Abstract
Heparin Binding Hemagglutinin A (HBHA) is hitherto the sole virulence factor associated with tuberculosis dissemination from the lungs, the site of primary infection, to epithelial cells. We have previously reported the solution structure of HBHA, a dimeric and elongated molecule. Since oligomerisation of HBHA is associated with its ability to induce bacterial agglutination, we investigated this process using experimental and modelling techniques. We here identified a short segment of HBHA whose presence is mandatory for the stability of folded conformation, whose denaturation is a reversible two-state process. Our data suggest that agglutination-driven cell-cell interactions do not occur via association of HBHA monomers, nor via association of HBHA dimers and open the scenario to a possible trans-dimerisation process.
Collapse
Affiliation(s)
- Carla Esposito
- Istitute of Biostructures and Bioimaging, CNR, Naples, Italy
| | | | | | | | | | | |
Collapse
|
200
|
Wilbur JD, Hwang PK, Brodsky FM, Fletterick RJ. Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:314-8. [PMID: 20179344 DOI: 10.1107/s0907444909054535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 12/17/2009] [Indexed: 11/10/2022]
Abstract
Huntingtin-interacting protein 1 (HIP1) is an important link between the actin cytoskeleton and clathrin-mediated endocytosis machinery. HIP1 has also been implicated in the pathogenesis of Huntington's disease. The binding of HIP1 to actin is regulated through an interaction with clathrin light chain. Clathrin light chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. To understand the mechanism of this conformational regulation, a high-resolution crystal structure of a stable fragment from the HIP1 coiled-coil domain was determined. The flexibility of the HIP1 coiled-coil region was evident from its variation from a previously determined structure of a similar region. A hydrogen-bond network and changes in coiled-coil monomer interaction suggest that the HIP1 coiled-coil domain is uniquely suited to allow conformational flexibility.
Collapse
Affiliation(s)
- Jeremy D Wilbur
- Graduate Program in Biophysics, University of California, San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|