151
|
Hung CP, Yang JC, Chen JH, Chi MC, Lin LL. Unfolding analysis of the mature and unprocessed forms of Bacillus licheniformis γ-glutamyltranspeptidase. J Biol Phys 2011; 37:463-75. [PMID: 22942488 DOI: 10.1007/s10867-011-9228-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/08/2011] [Indexed: 11/30/2022] Open
Abstract
Bacillus licheniformis γ-glutamyltranspeptidase (BlGGT) undergoes an autocatalytic process to generate 44.9 and 21.7 kDa subunits; however, a mutant protein (T399A) loses completely the processing ability and mainly exists as a precursor. For a comprehensive understanding of their structural features, the biophysical properties of these two proteins were investigated by circular dichroism and fluorescence spectroscopy. Tryptophan fluorescence and circular dichroism spectra were nearly identical for BlGGT and T399A, but unfolding analyses revealed that these two proteins had a different sensitivity towards temperature- and guanidine hydrochloride (GdnHCl)-induced denaturation. BlGGT and the unprocessed T399A displayed T(m) values of 61.4°C and 68.1°C, respectively, and thermal unfolding of both proteins was found to be highly irreversible. Fluorescence quenching analysis showed that T399A had a dynamic quenching constant similar to that of the wild-type enzyme. BlGGT started to unfold beyond ∼2.14 M GdnHCl and reached an unfolded intermediate, [GdnHCl](0.5, N - U), at 2.85 M, corresponding to free energy change [Formula: see text] of 12.34 kcal mol( - 1), whereas the midpoint of the denaturation curve for T399A was approximately 3.94 M, corresponding to a [Formula: see text] of 4.45 kcal mol( - 1). Taken together, it can be concluded that the structural stability of BlGGT is superior to that of T399A.
Collapse
|
152
|
Bieri M, d'Auvergne EJ, Gooley PR. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins. JOURNAL OF BIOMOLECULAR NMR 2011; 50:147-155. [PMID: 21618018 DOI: 10.1007/s10858-011-9509-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 04/01/2011] [Indexed: 05/30/2023]
Abstract
Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.
Collapse
Affiliation(s)
- Michael Bieri
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | | |
Collapse
|
153
|
Fieulaine S, Boularot A, Artaud I, Desmadril M, Dardel F, Meinnel T, Giglione C. Trapping conformational states along ligand-binding dynamics of peptide deformylase: the impact of induced fit on enzyme catalysis. PLoS Biol 2011; 9:e1001066. [PMID: 21629676 PMCID: PMC3101196 DOI: 10.1371/journal.pbio.1001066] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/14/2011] [Indexed: 11/18/2022] Open
Abstract
For several decades, molecular recognition has been considered one of the most fundamental processes in biochemistry. For enzymes, substrate binding is often coupled to conformational changes that alter the local environment of the active site to align the reactive groups for efficient catalysis and to reach the transition state. Adaptive substrate recognition is a well-known concept; however, it has been poorly characterized at a structural level because of its dynamic nature. Here, we provide a detailed mechanism for an induced-fit process at atomic resolution. We take advantage of a slow, tight binding inhibitor-enzyme system, actinonin-peptide deformylase. Crystal structures of the initial open state and final closed state were solved, as well as those of several intermediate mimics captured during the process. Ligand-induced reshaping of a hydrophobic pocket drives closure of the active site, which is finally “zipped up” by additional binding interactions. Together with biochemical analyses, these data allow a coherent reconstruction of the sequence of events leading from the encounter complex to the key-lock binding state of the enzyme. A “movie” that reconstructs this entire process can be further extrapolated to catalysis. The notion of induced fit when a protein binds its ligand—like a glove adapting to the shape of a hand—is a central concept of structural biochemistry introduced over 50 years ago. A detailed molecular demonstration of this phenomenon has eluded biochemists, however, largely due to the difficulty of capturing the steps of this very transient process: the “conformational change.” In this study, we were able to see this process by using X-ray diffraction to determine more than 10 distinct structures adopted by a single enzyme when it binds a ligand. To do this, we took advantage of the “slow, tight-binding” of a potent inhibitor to its specific target enzyme to trap intermediates in the binding process, which allowed us to monitor the action of an enzyme in real-time at atomic resolution. We showed the kinetics of the conformational change from an initial open state, including the encounter complex, to the final closed state of the enzyme. From these data and other biochemical and biophysical analyses, we make a coherent causal reconstruction of the sequence of events leading to inhibition of the enzyme's activity. We also generated a movie that reconstructs the sequence of events during the encounter. Our data provide new insights into how enzymes achieve a catalytically competent conformation in which the reactive groups are brought into close proximity, resulting in catalysis.
Collapse
Affiliation(s)
| | | | - Isabelle Artaud
- Université Paris Descartes, UMR8601, Paris, France
- CNRS, UMR8601, Paris, France
| | - Michel Desmadril
- Université Paris-Sud, IBBMC, UMR8619, Orsay, France
- CNRS, IBBMC, UMR8619, Orsay, France
| | - Frédéric Dardel
- Université Paris Descartes, UMR8015, Paris, France
- CNRS, UMR8015, Paris, France
| | - Thierry Meinnel
- CNRS, ISV, UPR2355, Gif-sur-Yvette, France
- * E-mail: (TM); (CG)
| | | |
Collapse
|
154
|
Mészáros B, Simon I, Dosztányi Z. The expanding view of protein-protein interactions: complexes involving intrinsically disordered proteins. Phys Biol 2011; 8:035003. [PMID: 21572179 DOI: 10.1088/1478-3975/8/3/035003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A frequently neglected aspect of protein-protein interactions is flexibility. Small-scale fluctuations are present even in globular proteins, and alternative conformations can have a significant influence on the binding process. However, flexibility becomes highly prominent in complexes involving intrinsically disordered proteins. The importance of disordered regions in protein interactions has been recognized only relatively recently. In this survey we examine the basic properties of the complexes of disordered and ordered proteins from three different directions. The comparison of the interface properties shows that although disordered proteins can also adopt well-defined conformations in their bound form, their inherently dynamic nature is cast into their complexes. Furthermore, an overview of prediction methods indicates that disordered proteins as well as their binding regions can be recognized from the amino acid sequence by capturing the basic biophysical properties of these segments. Finally, we propose the generalization of the 'energy landscape model' for the description of complex formation that can help to put the various types of protein associations on a common ground.
Collapse
Affiliation(s)
- Bálint Mészáros
- Institute of Enzymology, Hungarian Academy of Sciences, PO Box 7, H-1518 Budapest, Hungary
| | | | | |
Collapse
|
155
|
Grupi A, Haas E. Time-resolved FRET detection of subtle temperature-induced conformational biases in ensembles of α-synuclein molecules. J Mol Biol 2011; 411:234-47. [PMID: 21570984 DOI: 10.1016/j.jmb.2011.04.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/07/2011] [Accepted: 04/21/2011] [Indexed: 12/12/2022]
Abstract
The α-synuclein (αS) molecule, a polypeptide of 140 residues, is an intrinsically disordered protein that is involved in the onset of Parkinson's disease. We applied time-resolved excitation energy transfer measurements in search of specific deviations from the disordered state in segments of the αS backbone that might be involved in the initiation of aggregation. Since at higher temperatures, the αS molecule undergoes accelerated aggregation, we studied the temperature dependence of the distributions of intramolecular segmental end-to-end distances and their fast fluctuations in eight labeled chain segments of the αS molecule. Over the temperature range of 5-40 °C, no temperature-induced unfolding or folding was detected at the N-terminal domain (residues 1-66) of the αS molecule. The intramolecular diffusion coefficient of the segments' ends relative to each other increased monotonously with temperature. A common very high upper limiting value of ∼25 A²/ns was reached at 40 °C, another indication of a fully disordered state. Three exceptions were two segments with reduced values of the diffusion coefficients (the shortest segment where the excluded volume effect is dominant and the segment labeled in the NAC domain) and a nonlinear cooperative transition in the N-terminal segment. These specific subtle deviations from the common pattern of temperature dependence reflect specific structural constraints that could be critical in controlling the stability of the soluble monomer, or for its aggregation. Such very weak effects might be dominant in determination of the fate of ensembles of disordered polypeptides either to folding or to misfolding.
Collapse
Affiliation(s)
- Asaf Grupi
- The Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat Gan, Israel
| | | |
Collapse
|
156
|
Crystallographic and molecular dynamics analysis of loop motions unmasking the peptidoglycan-binding site in stator protein MotB of flagellar motor. PLoS One 2011; 6:e18981. [PMID: 21533052 PMCID: PMC3080404 DOI: 10.1371/journal.pone.0018981] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/22/2011] [Indexed: 12/03/2022] Open
Abstract
Background The C-terminal domain of MotB (MotB-C) shows high sequence similarity to outer membrane protein A and related peptidoglycan (PG)-binding proteins. It is believed to anchor the power-generating MotA/MotB stator unit of the bacterial flagellar motor to the peptidoglycan layer of the cell wall. We previously reported the first crystal structure of this domain and made a puzzling observation that all conserved residues that are thought to be essential for PG recognition are buried and inaccessible in the crystal structure. In this study, we tested a hypothesis that peptidoglycan binding is preceded by, or accompanied by, some structural reorganization that exposes the key conserved residues. Methodology/Principal Findings We determined the structure of a new crystalline form (Form B) of Helicobacter pylori MotB-C. Comparisons with the existing Form A revealed conformational variations in the petal-like loops around the carbohydrate binding site near one end of the β-sheet. These variations are thought to reflect natural flexibility at this site required for insertion into the peptidoglycan mesh. In order to understand the nature of this flexibility we have performed molecular dynamics simulations of the MotB-C dimer. The results are consistent with the crystallographic data and provide evidence that the three loops move in a concerted fashion, exposing conserved MotB residues that have previously been implicated in binding of the peptide moiety of peptidoglycan. Conclusion/Significance Our structural analysis provides a new insight into the mechanism by which MotB inserts into the peptidoglycan mesh, thus anchoring the power-generating complex to the cell wall.
Collapse
|
157
|
Agarwal G, Mahajan S, Srinivasan N, de Brevern AG. Identification of local conformational similarity in structurally variable regions of homologous proteins using protein blocks. PLoS One 2011; 6:e17826. [PMID: 21445259 PMCID: PMC3060819 DOI: 10.1371/journal.pone.0017826] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 02/15/2011] [Indexed: 11/18/2022] Open
Abstract
Structure comparison tools can be used to align related protein structures to identify structurally conserved and variable regions and to infer functional and evolutionary relationships. While the conserved regions often superimpose well, the variable regions appear non superimposable. Differences in homologous protein structures are thought to be due to evolutionary plasticity to accommodate diverged sequences during evolution. One of the kinds of differences between 3-D structures of homologous proteins is rigid body displacement. A glaring example is not well superimposed equivalent regions of homologous proteins corresponding to α-helical conformation with different spatial orientations. In a rigid body superimposition, these regions would appear variable although they may contain local similarity. Also, due to high spatial deviation in the variable region, one-to-one correspondence at the residue level cannot be determined accurately. Another kind of difference is conformational variability and the most common example is topologically equivalent loops of two homologues but with different conformations. In the current study, we present a refined view of the “structurally variable” regions which may contain local similarity obscured in global alignment of homologous protein structures. As structural alphabet is able to describe local structures of proteins precisely through Protein Blocks approach, conformational similarity has been identified in a substantial number of ‘variable’ regions in a large data set of protein structural alignments; optimal residue-residue equivalences could be achieved on the basis of Protein Blocks which led to improved local alignments. Also, through an example, we have demonstrated how the additional information on local backbone structures through protein blocks can aid in comparative modeling of a loop region. In addition, understanding on sequence-structure relationships can be enhanced through our approach. This has been illustrated through examples where the equivalent regions in homologous protein structures share sequence similarity to varied extent but do not preserve local structure.
Collapse
Affiliation(s)
- Garima Agarwal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Swapnil Mahajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore, India
| | | | - Alexandre G. de Brevern
- Dynamique des Structures et Interactions des Macromolécules Biologiques (DSIMB), INSERM, U665, Paris, France
- Université Paris Diderot - Paris 7, UMR-S665, Paris, France
- Institut National de la Transfusion Sanguine (INTS), Paris, France
| |
Collapse
|
158
|
Skjaerven L, Grant B, Muga A, Teigen K, McCammon JA, Reuter N, Martinez A. Conformational sampling and nucleotide-dependent transitions of the GroEL subunit probed by unbiased molecular dynamics simulations. PLoS Comput Biol 2011; 7:e1002004. [PMID: 21423709 PMCID: PMC3053311 DOI: 10.1371/journal.pcbi.1002004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/09/2010] [Indexed: 12/01/2022] Open
Abstract
GroEL is an ATP dependent molecular chaperone that promotes the folding of a large number of substrate proteins in E. coli. Large-scale conformational transitions occurring during the reaction cycle have been characterized from extensive crystallographic studies. However, the link between the observed conformations and the mechanisms involved in the allosteric response to ATP and the nucleotide-driven reaction cycle are not completely established. Here we describe extensive (in total long) unbiased molecular dynamics (MD) simulations that probe the response of GroEL subunits to ATP binding. We observe nucleotide dependent conformational transitions, and show with multiple 100 ns long simulations that the ligand-induced shift in the conformational populations are intrinsically coded in the structure-dynamics relationship of the protein subunit. Thus, these simulations reveal a stabilization of the equatorial domain upon nucleotide binding and a concomitant “opening” of the subunit, which reaches a conformation close to that observed in the crystal structure of the subunits within the ADP-bound oligomer. Moreover, we identify changes in a set of unique intrasubunit interactions potentially important for the conformational transition. Molecular machines convert chemical energy to mechanical work in the process of carrying out their specific tasks. Often these proteins are fueled by ATP binding and hydrolysis, enabling switching between different conformations. The ATP-dependent chaperone GroEL is a molecular machine that opens and closes its barrel-like structure in order to provide a folding cage for unfolded proteins. The quest to fully understand and control GroEL and other molecular machines is enhanced by complementing experimental work with computational approaches. Here, we provide a description of the molecular basis for the conformational changes in the GroEL subunit by performing extensive molecular dynamics simulations. The simulations sample the conformational population for the different nucleotide-free and bound states in the isolated subunit. The results reveal that the conformations of the subunit when isolated resemble those of the subunit integrated in the GroEL complex. Moreover, the molecular dynamics simulations allow following detailed changes in individual interatomic interactions brought about by ATP-binding.
Collapse
Affiliation(s)
- Lars Skjaerven
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
159
|
Jensen KS, Winther JR, Teilum K. Millisecond dynamics in glutaredoxin during catalytic turnover is dependent on substrate binding and absent in the resting states. J Am Chem Soc 2011; 133:3034-42. [PMID: 21323311 DOI: 10.1021/ja1096539] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Conformational dynamics is important for enzyme function. Which motions of enzymes determine catalytic efficiency and whether the same motions are important for all enzymes, however, are not well understood. Here we address conformational dynamics in glutaredoxin during catalytic turnover with a combination of NMR magnetization transfer, R(2) relaxation dispersion, and ligand titration experiments. Glutaredoxins catalyze a glutathione exchange reaction, forming a stable glutathinoylated enzyme intermediate. The equilibrium between the reduced state and the glutathionylated state was biochemically tuned to exchange on the millisecond time scale. The conformational changes of the protein backbone during catalysis were followed by (15)N nuclear spin relaxation dispersion experiments. A conformational transition that is well described by a two-state process with an exchange rate corresponding to the glutathione exchange rate was observed for 23 residues. Binding of reduced glutathione resulted in competitive inhibition of the reduced enzyme having kinetics similar to that of the reaction. This observation couples the motions observed during catalysis directly to substrate binding. Backbone motions on the time scale of catalytic turnover were not observed for the enzyme in the resting states, implying that alternative conformers do not accumulate to significant concentrations. These results infer that the turnover rate in glutaredoxin is governed by formation of a productive enzyme-substrate encounter complex, and that catalysis proceeds by an induced fit mechanism rather than by conformer selection driven by intrinsic conformational dynamics.
Collapse
Affiliation(s)
- Kristine Steen Jensen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | | | | |
Collapse
|
160
|
Houde D, Berkowitz SA, Engen JR. The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies. J Pharm Sci 2010; 100:2071-86. [PMID: 21491437 DOI: 10.1002/jps.22432] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/23/2010] [Accepted: 11/15/2010] [Indexed: 12/13/2022]
Abstract
The function, efficacy, and safety of protein biopharmaceuticals are tied to their three-dimensional structure. The analysis and verification of this higher-order structure are critical in demonstrating manufacturing consistency and in establishing the absence of structural changes in response to changes in production. It is, therefore, essential to have reliable, high-resolution and high sensitivity biophysical tools capable of interrogating protein structure and conformation. Here, we demonstrate the use of hydrogen/deuterium exchange mass spectrometry (H/DX-MS) in biopharmaceutical comparability studies. H/DX-MS measurements can be conducted with good precision, consume only picomoles of protein, interrogate nearly the entire molecule with peptide level resolution, and can be completed in a few days. Structural comparability or lack of comparability was monitored for different preparations of interferon-β-1a. We present specific graphical formats for the display of H/DX-MS data that aid in rapidly making both the qualitative (visual) and quantitative assessment of comparability. H/DX-MS is capable of making significant contributions in biopharmaceutical characterization by providing more informative and confidant comparability assessments of protein higher-order structures than are currently available within the biopharmaceutical industry.
Collapse
Affiliation(s)
- Damian Houde
- Biogen Idec, Inc, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
161
|
Protein stability, flexibility and function. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:969-76. [PMID: 21094283 DOI: 10.1016/j.bbapap.2010.11.005] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/24/2010] [Accepted: 11/11/2010] [Indexed: 02/08/2023]
Abstract
Proteins rely on flexibility to respond to environmental changes, ligand binding and chemical modifications. Potentially, a perturbation that changes the flexibility of a protein may interfere with its function. Millions of mutations have been performed on thousands of proteins in quests for a delineation of the molecular details of their function. Several of these mutations interfered with the binding of a specific ligand with a concomitant effect on the stability of the protein scaffold. It has been ambiguous and not straightforward to recognize if any relationships exist between the stability of a protein and the affinity for its ligand. In this review, we present examples of proteins where changes in stability results in changes in affinity and of proteins where stability and affinity are uncorrelated. We discuss the possibility for a relationship between stability and binding. From the data presented is it clear that there are specific sites (flexibility hotspots) in proteins that are important for both binding and stability. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
|
162
|
Sohtome Y, Shin B, Horitsugi N, Takagi R, Noguchi K, Nagasawa K. Entropy-Controlled Catalytic Asymmetric 1,4-Type Friedel-Crafts Reaction of Phenols Using Conformationally Flexible Guanidine/Bisthiourea Organocatalyst. Angew Chem Int Ed Engl 2010; 49:7299-303. [DOI: 10.1002/anie.201003172] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
163
|
Sohtome Y, Shin B, Horitsugi N, Takagi R, Noguchi K, Nagasawa K. Entropy-Controlled Catalytic Asymmetric 1,4-Type Friedel-Crafts Reaction of Phenols Using Conformationally Flexible Guanidine/Bisthiourea Organocatalyst. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201003172] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
164
|
Ding Z, Rossi AM, Riley AM, Rahman T, Potter BVL, Taylor CW. Binding of inositol 1,4,5-trisphosphate (IP3) and adenophostin A to the N-terminal region of the IP3 receptor: thermodynamic analysis using fluorescence polarization with a novel IP3 receptor ligand. Mol Pharmacol 2010; 77:995-1004. [PMID: 20215561 PMCID: PMC2879921 DOI: 10.1124/mol.109.062596] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 03/09/2010] [Indexed: 11/22/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)R) are intracellular Ca(2+) channels. Their opening is initiated by binding of IP(3) to the IP(3)-binding core (IBC; residues 224-604 of IP(3)R1) and transmitted to the pore via the suppressor domain (SD; residues 1-223). The major conformational changes leading to IP(3)R activation occur within the N terminus (NT; residues 1-604). We therefore developed a high-throughput fluorescence polarization (FP) assay using a newly synthesized analog of IP(3), fluorescein isothiocyanate (FITC)-IP(3), to examine the thermodynamics of IP(3) and adenophostin A binding to the NT and IBC. Using both single-channel recording and the FP assay, we demonstrate that FITC-IP(3) is a high-affinity partial agonist of the IP(3)R. Conventional [(3)H]IP(3) and FP assays provide similar estimates of the K(D) for both IP(3) and adenophostin A in cytosol-like medium at 4 degrees C. They further establish that the isolated IBC retains the ability of full-length IP(3)R to bind adenophostin A with approximately 10-fold greater affinity than IP(3). By examining the reversible effects of temperature on ligand binding, we established that favorable entropy changes (T Delta S) account for the greater affinities of both ligands for the IBC relative to the NT and for the greater affinity of adenophostin A relative to IP(3). The two agonists differ more substantially in the relative contribution of Delta H and T Delta S to binding to the IBC relative to the NT. This suggests that different initial binding events drive the IP(3)R on convergent pathways toward a similar open state.
Collapse
Affiliation(s)
- Zhao Ding
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom
| | | | | | | | | | | |
Collapse
|
165
|
Uversky VN, Dunker AK. Understanding protein non-folding. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1231-64. [PMID: 20117254 PMCID: PMC2882790 DOI: 10.1016/j.bbapap.2010.01.017] [Citation(s) in RCA: 917] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 01/09/2010] [Accepted: 01/21/2010] [Indexed: 02/07/2023]
Abstract
This review describes the family of intrinsically disordered proteins, members of which fail to form rigid 3-D structures under physiological conditions, either along their entire lengths or only in localized regions. Instead, these intriguing proteins/regions exist as dynamic ensembles within which atom positions and backbone Ramachandran angles exhibit extreme temporal fluctuations without specific equilibrium values. Many of these intrinsically disordered proteins are known to carry out important biological functions which, in fact, depend on the absence of a specific 3-D structure. The existence of such proteins does not fit the prevailing structure-function paradigm, which states that a unique 3-D structure is a prerequisite to function. Thus, the protein structure-function paradigm has to be expanded to include intrinsically disordered proteins and alternative relationships among protein sequence, structure, and function. This shift in the paradigm represents a major breakthrough for biochemistry, biophysics and molecular biology, as it opens new levels of understanding with regard to the complex life of proteins. This review will try to answer the following questions: how were intrinsically disordered proteins discovered? Why don't these proteins fold? What is so special about intrinsic disorder? What are the functional advantages of disordered proteins/regions? What is the functional repertoire of these proteins? What are the relationships between intrinsically disordered proteins and human diseases?
Collapse
Affiliation(s)
- Vladimir N Uversky
- Institute for Intrinsically Disordered Protein Research, Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
166
|
Münz M, Lyngsø R, Hein J, Biggin PC. Dynamics based alignment of proteins: an alternative approach to quantify dynamic similarity. BMC Bioinformatics 2010; 11:188. [PMID: 20398246 PMCID: PMC2868010 DOI: 10.1186/1471-2105-11-188] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 04/14/2010] [Indexed: 11/15/2022] Open
Abstract
Background The dynamic motions of many proteins are central to their function. It therefore follows that the dynamic requirements of a protein are evolutionary constrained. In order to assess and quantify this, one needs to compare the dynamic motions of different proteins. Comparing the dynamics of distinct proteins may also provide insight into how protein motions are modified by variations in sequence and, consequently, by structure. The optimal way of comparing complex molecular motions is, however, far from trivial. The majority of comparative molecular dynamics studies performed to date relied upon prior sequence or structural alignment to define which residues were equivalent in 3-dimensional space. Results Here we discuss an alternative methodology for comparative molecular dynamics that does not require any prior alignment information. We show it is possible to align proteins based solely on their dynamics and that we can use these dynamics-based alignments to quantify the dynamic similarity of proteins. Our method was tested on 10 representative members of the PDZ domain family. Conclusions As a result of creating pair-wise dynamics-based alignments of PDZ domains, we have found evolutionarily conserved patterns in their backbone dynamics. The dynamic similarity of PDZ domains is highly correlated with their structural similarity as calculated with Dali. However, significant differences in their dynamics can be detected indicating that sequence has a more refined role to play in protein dynamics than just dictating the overall fold. We suggest that the method should be generally applicable.
Collapse
Affiliation(s)
- Márton Münz
- Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | | | | |
Collapse
|
167
|
Byeon IJL, Dao KK, Jung J, Keen J, Leiros I, Døskeland SO, Martinez A, Gronenborn AM. Allosteric communication between cAMP binding sites in the RI subunit of protein kinase A revealed by NMR. J Biol Chem 2010; 285:14062-70. [PMID: 20197278 DOI: 10.1074/jbc.m110.106666] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation of protein kinase A involves the synergistic binding of cAMP to two cAMP binding sites on the inhibitory R subunit, causing release of the C subunit, which subsequently can carry out catalysis. We used NMR to structurally characterize in solution the RIalpha-(98-381) subunit, a construct comprising both cyclic nucleotide binding (CNB) domains, in the presence and absence of cAMP, and map the effects of cAMP binding at single residue resolution. Several conformationally disordered regions in free RIalpha become structured upon cAMP binding, including the interdomain alphaC:A and alphaC':A helices that connect CNB domains A and B and are primary recognition sites for the C subunit. NMR titration experiments with cAMP, B site-selective 2-Cl-8-hexylamino-cAMP, and A site-selective N(6)-monobutyryl-cAMP revealed that cyclic nucleotide binding to either the B or A site affected the interdomain helices. The NMR resonances of this interdomain region exhibited chemical shift changes upon ligand binding to a single site, either site B or A, with additional changes occurring upon binding to both sites. Such distinct, stepwise conformational changes in this region reflect the synergistic interplay between the two sites and may underlie the positive cooperativity of cAMP activation of the kinase. Furthermore, nucleotide binding to the A site also affected residues within the B domain. The present NMR study provides the first structural evidence of unidirectional allosteric communication between the sites. Trp(262), which lines the CNB A site but resides in the sequence of domain B, is an important structural determinant for intersite communication.
Collapse
Affiliation(s)
- In-Ja L Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Cho KJ, Kim JK, Lee JH, Shin HJ, Park SS, Kim KH. Structural features of cephalosporin acylase reveal the basis of autocatalytic activation. Biochem Biophys Res Commun 2009; 390:342-8. [PMID: 19800869 DOI: 10.1016/j.bbrc.2009.09.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
Abstract
Cephalosporin acylase (CA), a member of the N-terminal nucleophile hydrolase family, is activated through two steps of intramolecular autoproteolysis, the first mediated by a serine residue, and the second by a glutamate, which releases the pro-segment and produces an active enzyme. In this study, we have determined the crystal structures of mutants which could affect primary or secondary auto-cleavage and of sequential intermediates of a slow-processing mutant at 2.0-2.5A resolutions. The pro-segments of the mutants undergo dynamic conformational changes during activation and adopt surprisingly different loop conformations from one another. However, the autoproteolytic site was found to form a catalytically competent conformation with a solvent water molecule, which was essentially conserved in the CA mutants.
Collapse
Affiliation(s)
- Ki Joon Cho
- Department of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|