151
|
Ordoñez RM, Colombo I, Alberto MR, Isla MI. Production of tannase from wood-degrading fungus using as substrate plant residues: purification and characterization. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0699-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
152
|
Abdel-Nabe M, Sherief A, EL-Tanash A. Tannin Biodegradation and Some Factors Affecting Tannase Production by Two Aspergillus sp. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/biotech.2011.149.158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
153
|
|
154
|
Srivastava A, Kar R. Application of immobilized tannase from Aspergillus niger for the removal of tannin from myrobalan juice. Indian J Microbiol 2010; 50:46-51. [PMID: 22815571 DOI: 10.1007/s12088-010-0029-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 02/04/2009] [Indexed: 11/25/2022] Open
Abstract
Tannase produced optimally on an agroresidue by an Aspergillus niger isolate under submerged fermentation immobilized on sodium alginate beads with 93.6% efficiency was applied for tannin removal from myrobalan/aonla (Phyllanthus emblica) juice. The pH and temperature optima of the immobilized enzyme were found to be 5.4 and 40°C while the corresponding values of the soluble enzyme were 5.8 and 35°C. Maximum tannin removal of 73.6% was obtained at 40°C and 150 rpm in 180 min with 36.6 U/ml of immobilized enzyme while the same amount of the soluble enzyme removed 45.2% of tannin at 37°C and 150 rpm in the same time period. The immobilized beads could be used repeatedly till 7th cycle with 77% efficiency. When preserved at 6°C the beads retained 71.7% of enzyme activity after 60 days. Reduction in vitamin C content, which is responsible for antioxidant property of the fruit, was minimum at only 2% during the treatment.
Collapse
Affiliation(s)
- Anita Srivastava
- Department of Biochemical Engineering and Food Technology, Harcourt Butler Technological Institute, Kanpur, 208002 India
| | | |
Collapse
|
155
|
Bader J, Mast-Gerlach E, Popović MK, Bajpai R, Stahl U. Relevance of microbial coculture fermentations in biotechnology. J Appl Microbiol 2009; 109:371-387. [PMID: 20070440 DOI: 10.1111/j.1365-2672.2009.04659.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The purpose of this article is to review coculture fermentations in industrial biotechnology. Examples for the advantageous utilization of cocultures instead of single cultivations include the production of bulk chemicals, enzymes, food additives, antimicrobial substances and microbial fuel cells. Coculture fermentations may result in increased yield, improved control of product qualities and the possibility of utilizing cheaper substrates. Cocultivation of different micro-organisms may also help to identify and develop new biotechnological substances. The relevance of coculture fermentations and the potential of improving existing processes as well as the production of new chemical compounds in industrial biotechnology are pointed out here by means of more than 35 examples.
Collapse
Affiliation(s)
- J Bader
- Technische Universität Berlin, Fachgebiet Mikrobiologie and Genetik, Seestraβe 13, Berlin, Germany
| | - E Mast-Gerlach
- Technische Universität Berlin, Fachgebiet Mikrobiologie and Genetik, Seestraβe 13, Berlin, Germany
| | - M K Popović
- Beuth Hochschule für Technik, Fachbereich Biotechnologie, Seestraβe 64, Berlin, Germany
| | - R Bajpai
- Chemical Engineering Department, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - U Stahl
- Technische Universität Berlin, Fachgebiet Mikrobiologie and Genetik, Seestraβe 13, Berlin, Germany
| |
Collapse
|
156
|
Selwal MK, Yadav A, Selwal KK, Aggarwal NK, Gupta R, Gautam SK. Optimization of cultural conditions for tannase production by Pseudomonas aeruginosa IIIB 8914 under submerged fermentation. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0209-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
157
|
Cecconi D, Cristofoletti M, Milli A, Antonioli P, Rinalducci S, Zolla L, Zapparoli G. Effect of tannic acid on Lactobacillus plantarum wine strain during starvation: A proteomic study. Electrophoresis 2009; 30:957-65. [PMID: 19229842 DOI: 10.1002/elps.200800310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The molecular mechanisms involved in tannic-acid (TA)-mediated cell growth retardation and viability prolongation of Lactobacillus plantarum VP08 strain were evaluated by a proteomic analysis of starved cells grown in the presence of TA or glucose as carbon source. The tannase activity and the cell growth retardation as well as viability prolongation were confirmed by enzymatic assay and growing tests, respectively. In order to gain information about the effect triggered at the molecular level by TA, total proteins (extracted from starved cells grown in 250 mg/L TA, or 2 g/L glucose) were analyzed by a 2D-PAGE/MS approach to detect differentially expressed proteins. A total of 15 spots were found to be down-regulated and 21 up-regulated in TA-grown cells. The results indicate an overall impact of TA on proteins involved in some cellular and metabolic pathways: glycolysis, amino acid metabolism, translation and protein folding. The modulation of specific proteins correlates with the positive effect of TA on the survival of tannase-positive L. plantarum.
Collapse
|
158
|
Ventura J, Gutiérrez-Sanchez G, Rodríguez-Herrera R, Aguilar CN. Fungal cultures of tar bush and creosote bush for production of two phenolic antioxidants (Pyrocatechol and Gallic acid). Folia Microbiol (Praha) 2009; 54:199-203. [DOI: 10.1007/s12223-009-0031-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 03/02/2009] [Indexed: 10/20/2022]
|
159
|
Curiel JA, Rodríguez H, Acebrón I, Mancheño JM, De Las Rivas B, Muñoz R. Production and physicochemical properties of recombinant Lactobacillus plantarum tannase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:6224-6230. [PMID: 19601665 DOI: 10.1021/jf901045s] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tannase is an enzyme with important biotechnological applications in the food industry. Previous studies have identified the tannase encoding gene in Lactobacillus plantarum and also have reported the description of the purification of recombinant L. plantarum tannase through a protocol involving several chromatographic steps. Here, we describe the high-yield production of pure recombinant tannase (17 mg/L) by a one-step affinity procedure. The purified recombinant tannase exhibits optimal activity at pH 7 and 40 degrees C. Addition of Ca(2+) to the reaction mixture greatly increased tannase activity. The enzymatic activity of tannase was assayed against 18 simple phenolic acid esters. Only esters derived from gallic acid and protocatechuic acid were hydrolyzed. In addition, tannase activity was also assayed against the tannins tannic acid, gallocatechin gallate, and epigallocatechin gallate. Despite L. plantarum tannase representing a novel family of tannases, which shows no significant similarity to tannases from fungal sources, both families of enzymes shared similar substrate specificity range. The physicochemical characteristics exhibited by L. plantarum recombinant tannase make it an adequate alternative to the currently used fungal tannases.
Collapse
Affiliation(s)
- José Antonio Curiel
- Departamento de Microbiología, Instituto de Fermentaciones Industriales CSIC, Juan de la Cierva 3, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
160
|
Böer E, Bode R, Mock HP, Piontek M, Kunze G. Atan1p-an extracellular tannase from the dimorphic yeast Arxula adeninivorans: molecular cloning of the ATAN1 gene and characterization of the recombinant enzyme. Yeast 2009; 26:323-37. [PMID: 19387973 DOI: 10.1002/yea.1669] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tannase-encoding Arxula adeninivorans gene ATAN1 was isolated from genomic DNA by PCR, using as primers oligonucleotide sequences derived from peptides obtained after tryptic digestion of the purified tannase protein. The gene harbours an ORF of 1764 bp, encoding a 587-amino acid protein, preceded by an N-terminal secretion sequence comprising 28 residues. The deduced amino acid sequence was similar to those of tannases from Aspergillus oryzae (50% identity), A. niger (48%) and putative tannases from A. fumigatus (52%) and A. nidulans (50%). The sequence contains the consensus pentapeptide motif (-Gly-X-Ser-X-Gly-) which forms part of the catalytic centre of serine hydrolases. Expression of ATAN1 is regulated by the carbon source. Supplementation with tannic acid or gallic acid leads to induction of ATAN1, and accumulation of the native tannase enzyme in the medium. The enzymes recovered from both wild-type and recombinant strains were essentially indistinguishable. A molecular mass of approximately 320 kDa was determined, indicating that the native, glycosylated tannase consists of four identical subunits. The enzyme has a temperature optimum at 35-40 degrees C and a pH optimum at approximately 6.0. The enzyme is able to remove gallic acid from both condensed and hydrolysable tannins. The wild-type strain LS3 secreted amounts of tannase equivalent to 100 U/l under inducing conditions, while the transformant strain, which overexpresses the ATAN1 gene from the strong, constitutively active A. adeninivorans TEF1 promoter, produced levels of up to 400 U/l when grown in glucose medium in shake flasks.
Collapse
Affiliation(s)
- Erik Böer
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | | | | | | | | |
Collapse
|
161
|
Rodríguez H, Curiel JA, Landete JM, de las Rivas B, López de Felipe F, Gómez-Cordovés C, Mancheño JM, Muñoz R. Food phenolics and lactic acid bacteria. Int J Food Microbiol 2009; 132:79-90. [PMID: 19419788 DOI: 10.1016/j.ijfoodmicro.2009.03.025] [Citation(s) in RCA: 391] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/23/2009] [Accepted: 03/31/2009] [Indexed: 11/29/2022]
Abstract
Phenolic compounds are important constituents of food products of plant origin. These compounds are directly related to sensory characteristics of foods such as flavour, astringency, and colour. In addition, the presence of phenolic compounds on the diet is beneficial to health due to their chemopreventive activities against carcinogenesis and mutagenesis, mainly due to their antioxidant activities. Lactic acid bacteria (LAB) are autochthonous microbiota of raw vegetables. To get desirable properties on fermented plant-derived food products, LAB has to be adapted to the characteristics of the plant raw materials where phenolic compounds are abundant. Lactobacillus plantarum is the commercial starter most frequently used in the fermentation of food products of plant origin. However, scarce information is still available on the influence of phenolic compounds on the growth and viability of L. plantarum and other LAB species. Moreover, metabolic pathways of biosynthesis or degradation of phenolic compounds in LAB have not been completely described. Results obtained in L. plantarum showed that L. plantarum was able to degrade some food phenolic compounds giving compounds influencing food aroma as well as compounds presenting increased antioxidant activity. Recently, several L. plantarum proteins involved in the metabolism of phenolic compounds have been genetically and biochemically characterized. The aim of this review is to give a complete and updated overview of the current knowledge among LAB and food phenolics interaction, which could facilitate the possible application of selected bacteria or their enzymes in the elaboration of food products with improved characteristics.
Collapse
Affiliation(s)
- Héctor Rodríguez
- Departamento de Microbiología, Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Maity C, Das Mohapatra PK, Pati BR, Mondal KC. A simple gel detection method of microbial tannin acyl hydrolase (EC 3.1.1.20). World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9935-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
163
|
Ramírez L, Arrizon J, Sandoval G, Cardador A, Bello-Mendoza R, Lappe P, Mateos-Díaz JC. A new microplate screening method for the simultaneous activity quantification of feruloyl esterases, tannases, and chlorogenate esterases. Appl Biochem Biotechnol 2008; 151:711-23. [PMID: 18830826 DOI: 10.1007/s12010-008-8319-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 07/11/2008] [Indexed: 11/29/2022]
Abstract
Feruloyl, chlorogenate esterases, and tannases are enzymes useful in phenolic modifications of pharmaceutical relevance as protectors against several degenerative human diseases. Therefore, there is a growing interest in discovering new sources of these enzymes. However, traditional methods for their activity measurements are time-consuming and poorly adapted for high-throughput screening. In this study, a successful new microplate high-throughput screening method for the simultaneous quantification of all mentioned activities is demonstrated. This method allows the detection of activities as low as 1.7 mU ml(-1). Furthermore, reaction rates increased proportionally with the amount of enzyme added, and no interferences with the other commercial hydrolases tested were found. The utility of the method was demonstrated after simultaneously screening feruloyl, chlorogenate esterase, and tannase activities in solid state fermentation extracts obtained during the kinetics of production of 20 fungal strains. Among these, seven strains were positive for at least one of the esterase activities tested. This result shows the potential for the rapid routine screening assays for multiple samples of moderate low to high enzymatic levels.
Collapse
Affiliation(s)
- L Ramírez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC, Colonia Colinas de la Normal, Guadalajara, Jalisco, CP, México
| | | | | | | | | | | | | |
Collapse
|
164
|
Ellagic Acid Production from Biodegradation of Creosote Bush Ellagitannins by Aspergillus niger in Solid State Culture. FOOD BIOPROCESS TECH 2008. [DOI: 10.1007/s11947-008-0063-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
165
|
Aguilera-Carbo A, Augur C, Prado-Barragan LA, Favela-Torres E, Aguilar CN. Microbial production of ellagic acid and biodegradation of ellagitannins. Appl Microbiol Biotechnol 2008; 78:189-99. [DOI: 10.1007/s00253-007-1276-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 11/05/2007] [Indexed: 10/22/2022]
|
166
|
Ellagic acid production by Aspergillus niger in solid state fermentation of pomegranate residues. J Ind Microbiol Biotechnol 2008. [DOI: 10.1007/s10295-008-0309-x pmid: 18228068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
167
|
Ellagic acid production by Aspergillus niger in solid state fermentation of pomegranate residues. J Ind Microbiol Biotechnol 2008; 35:507-13. [PMID: 18228068 DOI: 10.1007/s10295-008-0309-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
Abstract
Two Aspergillus niger strains (GH1 and PSH) previously isolated from a semiarid region of Mexico were characterized for their effectiveness in converting pomegranate ellagitannins (ET) into ellagic acid (EA) in a solid state fermentation (SSF). Pomegranate seeds and husk were used as support for the SSF. Released EA was evaluated by liquid chromatography. Yields of 6.3 and 4.6 mg of EA per gram of dried pomegranate husk were obtained with A. niger GH1 and PSH, respectively. Total hydrolyzable polyphenols of pomegranate husk were degraded during the first 72 h of culture (71 and 61%, by GH1 and PSH strains, respectively). Tannin acyl hydrolase activity was not clearly associated with EA production. EA that accumulated in cultures of A. niger GH1 was remarkably pure after a simple extraction process. Pomegranate husk is a good support, and at the same time an excellent substrate in the production of high commercial interest metabolites like EA due the degradation of its ET content.
Collapse
|
168
|
Rodríguez H, de las Rivas B, Gómez-Cordovés C, Muñoz R. Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T. Int J Food Microbiol 2007; 121:92-8. [PMID: 18054106 DOI: 10.1016/j.ijfoodmicro.2007.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 09/04/2007] [Accepted: 11/02/2007] [Indexed: 11/25/2022]
Abstract
In foods, tannins are considered nutritionally undesirable. Spectrophotometric methods have been used to detect tannin degradation by L. plantarum strains isolated from food substrates. Enzymatic degradation of tannic acid by L. plantarum CECT 748T was examined in liquid cultures and in cell-free extracts by HPLC. Significative reduction of tannic acid was not observed during incubation in the presence of L. plantarum cells after 7 days incubation. However, tannic acid was effectively degraded by cell-free extracts of L. plantarum during 16 h incubation. We have partially characterized L. plantarum tannase activity by measuring its esterase activity on methyl gallate. Tannase activity was optimal at pH 5.0 and 30 degrees C, and showed nearly 75% of the maximal activity at 50 degrees C. The biochemical characteristics showed by L. plantarum tannase are considered favourable for tannin biodegradation in the food-processing industry.
Collapse
Affiliation(s)
- Héctor Rodríguez
- Departamento de Microbiología, Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
169
|
Treviňo L, Contreras-Esquivel JC, Rodríguez-Herrera R, Aguilar CN. Effects of polyurethane matrices on fungal tannase and gallic acid production under solid state culture. J Zhejiang Univ Sci B 2007; 8:771-6. [PMID: 17910122 PMCID: PMC1997233 DOI: 10.1631/jzus.2007.b0771] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The influence of the physical structure of polyurethane matrix as a support in a solid state culture in tannase production and gallic acid accumulation by Aspergillus niger Aa-20 was evaluated. Three different polyurethane matrices were used as the support: continuous, semi-discontinuous and discontinuous. The highest tannase production at 2479.59 U/L during the first 12 h of culture was obtained using the discontinuous matrix. The gallic acid was accumulated at 7.64 g/L at the discontinuous matrix. The results show that the discontinuous matrix of polyurethane is better for tannase production and gallic acid accumulation in a solid state culture bioprocess than the continuous and semi-discontinuous matrices.
Collapse
|