151
|
Nava Ramírez T, Hansberg W. Características comunes de las chaperonas pequeñas y diméricas. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Las chaperonas moleculares constituyen un mecanismo importante para evitar la muerte celular provocada por la agregación de proteínas. Las chaperonas independientes del ATP son un grupo de proteínas de bajo peso molecular que pueden proteger y ayudar a alcanzar la estructura nativa de las proteínas desplegadas o mal plegadas sin necesidad de un gasto energético. Hemos encontrado que el dominio C-terminal de las catalasas de subunidad grande tiene actividad de chaperona. Por ello, en esta revisión analizamos las características más comunes de las chaperonas pequeñas y más estudiadas como: αB-cristalina, Hsp20, Spy, Hsp33 y Hsp31. En particular, se examina la participación de los aminoácidos hidrofóbicos y de los aminoácidos con carga en el reconocimiento de las proteínas sustrato, así como el papel que tiene la forma dimérica y su oligomerización en la actividad de chaperona. En cada una de esas chaperonas revisaremos la estructura de la proteína, su función, localización celular e importancia para la célula.
Collapse
|
152
|
Kim TY, Leem E, Lee JM, Kim SR. Control of Reactive Oxygen Species for the Prevention of Parkinson's Disease: The Possible Application of Flavonoids. Antioxidants (Basel) 2020; 9:antiox9070583. [PMID: 32635299 PMCID: PMC7402123 DOI: 10.3390/antiox9070583] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress reflects an imbalance between the production of reactive oxygen species (ROS) and antioxidant defense systems, and it can be associated with the pathogenesis and progression of neurodegenerative diseases such as multiple sclerosis, stroke, and Parkinson's disease (PD). The application of antioxidants, which can defend against oxidative stress, is able to detoxify the reactive intermediates and prevent neurodegeneration resulting from excessive ROS production. There are many reports showing that numerous flavonoids, a large group of natural phenolic compounds, can act as antioxidants and the application of flavonoids has beneficial effects in the adult brain. For instance, it is well known that the long-term consumption of the green tea-derived flavonoids catechin and epigallocatechin gallate (EGCG) can attenuate the onset of PD. Also, flavonoids such as ampelopsin and pinocembrin can inhibit mitochondrial dysfunction and neuronal death through the regulation of gene expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Additionally, it is well established that many flavonoids exhibit anti-apoptosis and anti-inflammatory effects through cellular signaling pathways, such as those involving (ERK), glycogen synthase kinase-3β (GSK-3β), and (Akt), resulting in neuroprotection. In this review article, we have described the oxidative stress involved in PD and explained the therapeutic potential of flavonoids to protect the nigrostriatal DA system, which may be useful to prevent PD.
Collapse
Affiliation(s)
- Tae Yeon Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea; (T.Y.K.); (E.L.)
| | - Eunju Leem
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea; (T.Y.K.); (E.L.)
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Sang Ryong Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea; (T.Y.K.); (E.L.)
- Institute of Life Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-7362
| |
Collapse
|
153
|
Zhao Y, Han Y, Wang Z, Chen T, Qian H, He J, Li J, Han B, Wang T. Rosmarinic acid protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity in zebrafish embryos. Toxicol In Vitro 2020; 65:104823. [PMID: 32147576 DOI: 10.1016/j.tiv.2020.104823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
Abstract
Rosmarinic acid (RA) is an extract that can be obtained from Lamiaceae herbs and the Boraginaceae family. This study aimed to evaluate the effect of RA on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity in zebrafish embryos. Embryos were challenged with MPTP and then were treated with RA or brusatol (a Nrf2 inhibitor). Locomotor activity of zebrafish was recorded using a video camera. The swimming distance was analyzed with SMART 3.0 software. Tyrosine hydroxylase (TH) immunohistochemistry, reactive oxygen species (ROS), glutathione (GSH), and malondialdehyde (MDA) contents were evaluated. The expressions of proteins in the DJ-1/Akt/Nrf2 signaling pathway were measured. The results showed that RA not only prevented MPTP-induced dopaminergic neuron loss, but also attenuated the deficit in locomotor behavior. RA attenuated the increases of ROS and MDA induced by MPTP. Treatment with RA augmented expression of glutamate cysteine ligase catalytic subunit, glutamate cysteine ligase modifier subunit, and GSH. Furthermore, RA increased the expression of DJ-1, p-Akt, Nuclear-Nrf2, HO-1 and inhibited the expression of PTEN. Brusatol partially abolished the neuroprotective effect of RA in MPTP-induced Parkinson's disease (PD) model of zebrafish embryos. The results of this study indicate that RA exerts neuroprotective effects on MPTP-induced neurotoxicity in dopaminergic neurons of a zebrafish PD model. The mechanism underlying the effects of RA is associated with promotion of antioxidant gene expression via regulation of the DJ-1/Akt/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yue Zhao
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai 264005, PR China
| | - Yingjie Han
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai 264005, PR China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai 264005, PR China
| | - Tianrong Chen
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai 264005, PR China
| | - Haowen Qian
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai 264005, PR China
| | - Jie He
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai 264005, PR China
| | - Ji Li
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai 264005, PR China
| | - Bing Han
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai 264005, PR China.
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| |
Collapse
|
154
|
Urmey AR, Zondlo NJ. Cysteine oxidation to the sulfinic acid induces oxoform-specific lanthanide binding and fluorescence in a designed peptide. Free Radic Biol Med 2020; 152:166-174. [PMID: 32097680 DOI: 10.1016/j.freeradbiomed.2020.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/30/2020] [Accepted: 02/19/2020] [Indexed: 10/24/2022]
Abstract
Cysteine sulfinic acid (Cys-SO2-) is a protein post-translational modification that is formed reversibly under oxidative conditions. A short, encodable peptide was developed whose metal binding and terbium luminescence are dependent on cysteine (Cys) oxidation to the sulfinic acid. The protein design is based on the modification of a key metal-binding aspartate (Asp) in a canonical EF-Hand motif (DKDADGWISPAEAK) to Cys. In this design, Cys in the thiol oxidation state does not mimic the native Asp, and thus the peptide binds terbium(III) (Tb3+) poorly and exhibits weak terbium luminescence (fluorescence). In contrast, when Cys is oxidized to the Cys sulfinic acid oxoform, the Cys sulfinate effectively mimics Asp, resulting in a significant increase in terbium affinity and luminescence. Asp residues at positions 1, 3, and 5 of the EF-Hand motif were examined as potential sites for Cys oxidation-responsive metal binding. The peptide with Cys at residue 1 exhibited the highest Tb3+ affinity in both oxidation states. The peptide with Cys at residue 3 exhibited a 4.2-fold distinction in affinity between the oxidation states. Most significantly, the peptide with Cys at residue 5 had only modest Tb3+ affinity as the Cys thiol, but exhibited a 30-fold increase in Tb3+ affinity and an 18-fold increase in Tb3+ luminescence on Cys oxidation to the sulfinic acid. This peptide (Ac-DKDACGWISPAEAK-NH2) exhibited selective Tb3+ binding via Cys-SO2- over the thiol, S-glutathionyl, S-nitrosyl, and sulfonic acid oxoforms, indicating substantially greater Lewis basicity of the sulfinate than the sulfonate. NMR spectroscopy and quantum homology modeling indicated that the designed peptide binds metal with an overall geometry similar to that of an EF-Hand motif, with the Cys sulfinate effectively replacing Asp as a metal-binding ligand. This peptide was applied to detect Cys oxidation to the sulfinic acid by fluorescence spectroscopy, suggesting its broader application in understanding Cys sulfinic acid biology.
Collapse
Affiliation(s)
- Andrew R Urmey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States.
| |
Collapse
|
155
|
Yi J, Zhu M, Qiu F, Zhou Y, Shu P, Liu N, Wei C, Xiang S. TNFAIP1 Mediates Formaldehyde-Induced Neurotoxicity by Inhibiting the Akt/CREB Pathway in N2a Cells. Neurotox Res 2020; 38:184-198. [PMID: 32335808 DOI: 10.1007/s12640-020-00199-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Formaldehyde (FA) is a common air pollutant. Exposure to exogenous FA can cause damage to the nervous system, such as learning and memory impairment, balance dysfunction, and sleep disorders. Excessive production of endogenous FA also causes memory impairment and is thought to be associated with Alzheimer's disease (AD). Tumor necrosis factor alpha-induced protein 1 (TNFAIP1) plays a crucial role in neurodevelopment and neurological diseases. However, the role of TNFAIP1 in FA-induced neurotoxicity is unclear. Herein, using a mouse neuroblastoma cell line (N2a cells), we explored the mechanism of TNFAIP1 in FA-induced neurotoxicity, the involvement of the Akt/CREB signaling pathway, and how the expression of TNFAIP1 is regulated by FA. We found that exposure to 100 μM or 200 μM FA for 24 h led to decreased cell viability, increased cell apoptosis and neurite retraction, increased reactive oxygen species (ROS) levels, upregulated protein expression of TNFAIP1 and decreased the levels of phosphorylated Akt and CREB in the Akt/CREB pathway. Knockdown of TNFAIP1 using a TNFAIP1 small interfering RNA (siRNA) expression vector prevented FA from inhibiting the Akt/CREB pathway, thus reducing cell apoptosis and restoring cell viability and neurite outgrowth. Clearance of ROS by vitamin E (Vit E) repressed the FA-mediated upregulation of TNFAIP1 expression. These results suggest that FA increases the expression of TNFAIP1 by inducing oxidative stress and that upregulated TNFAIP1 then inhibits the Akt/CREB pathway, consequently leading to cell apoptosis and neurite retraction. Therefore, TNFAIP1 is a potential target for alleviating FA-induced neurotoxicity and related neurological disorders.
Collapse
Affiliation(s)
- Junzhi Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Min Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Feng Qiu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yubo Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Pan Shu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ning Liu
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Chenxi Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China. .,The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China. .,The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
156
|
Porcine Circovirus 2 Induction of ROS Is Responsible for Mitophagy in PK-15 Cells via Activation of Drp1 Phosphorylation. Viruses 2020; 12:v12030289. [PMID: 32155766 PMCID: PMC7150875 DOI: 10.3390/v12030289] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial dynamics is essential for the maintenance of cell homeostasis. Previous studies have shown that porcine circovirus 2 (PCV2) infection decreases the mitochondrial membrane potential and causes the elevation of reactive oxygen species (ROS), which may ultimately lead to mitochondrial apoptosis. However, whether PCV2 induce mitophagy remains unknown. Here we show that PCV2-induced mitophagy in PK-15 cells via Drp1 phosphorylation and PINK1/Parkin activation. PCV2 infection enhanced the phosphorylation of Drp1 and its subsequent translocation to mitochondria. PCV2-induced Drp1 phosphorylation could be suppressed by specific CDK1 inhibitor RO-3306, suggesting CDK1 as its possible upstream molecule. PCV2 infection increased the amount of ROS, up-regulated PINK1 expression, and stimulated recruitment of Parkin to mitochondria. N-acetyl-L-cysteine (NAC) markedly decreased PCV2-induced ROS, down-regulated Drp1 phosphorylation, and lessened PINK1 expression and mitochondrial accumulation of Parkin. Inhibition of Drp1 by mitochondrial division inhibitor-1 Mdivi-1 or RNA silencing not only resulted in the reduction of ROS and PINK1, improved mitochondrial mass and mitochondrial membrane potential, and decreased mitochondrial translocation of Parkin, but also led to reduced apoptotic responses. Together, our study shows that ROS induction due to PCV2 infection is responsible for the activation of Drp1 and the subsequent mitophagic and mitochondrial apoptotic responses.
Collapse
|
157
|
Molecular Mechanism Underlying Hypoxic Preconditioning-Promoted Mitochondrial Translocation of DJ-1 in Hypoxia/Reoxygenation H9c2 Cells. Molecules 2019; 25:molecules25010071. [PMID: 31878239 PMCID: PMC6983240 DOI: 10.3390/molecules25010071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 01/06/2023] Open
Abstract
DJ-1 was recently reported to be involved in the cardioprotection of hypoxic preconditioning (HPC) against hypoxia/reoxygenation (H/R)-induced oxidative stress damage, by preserving mitochondrial complex I activity and, subsequently, inhibiting mitochondrial reactive oxygen species (ROS) generation. However, the molecular mechanism by which HPC enables mitochondrial translocation of DJ-1, which has no mitochondria-targeting sequence, to preserve mitochondrial complex I, is largely unknown. In this study, co-immunoprecipitation data showed that DJ-1 was associated with glucose-regulated protein 75 (Grp75), and this association was significantly enhanced after HPC. Immunofluorescence imaging and Western blot analysis showed that HPC substantially enhanced the translocation of DJ-1 from cytosol to mitochondria in H9c2 cells subjected to H/R, which was mimicked by DJ-1 overexpression induced by pFlag-DJ-1 transfection. Importantly, knockdown of Grp75 markedly reduced the mitochondrial translocation of DJ-1 induced by HPC and pFlag-DJ-1 transfection. Moreover, HPC promoted the association of DJ-1 with mitochondrial complex I subunits ND1 and NDUFA4, improved complex I activity, and inhibited mitochondria-derived ROS production and subsequent oxidative stress damage after H/R, which was also mimicked by pFlag-DJ-1 transfection. Intriguingly, these effects of HPC and pFlag-DJ-1 transfection were also prevented by Grp75 knockdown. In conclusion, these results indicated that HPC promotes the translocation of DJ-1 from cytosol to mitochondria in a Grp75-dependent manner and Grp75 is required for DJ-1-mediated protection of HPC on H/R-induced mitochondrial complex I defect and subsequent oxidative stress damage.
Collapse
|
158
|
Allen SP, Hall B, Woof R, Francis L, Gatto N, Shaw AC, Myszczynska M, Hemingway J, Coldicott I, Willcock A, Job L, Hughes RM, Boschian C, Bayatti N, Heath PR, Bandmann O, Mortiboys H, Ferraiuolo L, Shaw PJ. C9orf72 expansion within astrocytes reduces metabolic flexibility in amyotrophic lateral sclerosis. Brain 2019; 142:3771-3790. [PMID: 31647549 PMCID: PMC6906594 DOI: 10.1093/brain/awz302] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/25/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022] Open
Abstract
It is important to understand how the disease process affects the metabolic pathways in amyotrophic lateral sclerosis and whether these pathways can be manipulated to ameliorate disease progression. To analyse the basis of the metabolic defect in amyotrophic lateral sclerosis we used a phenotypic metabolic profiling approach. Using fibroblasts and reprogrammed induced astrocytes from C9orf72 and sporadic amyotrophic lateral sclerosis cases we measured the production rate of reduced nicotinamide adenine dinucleotides (NADH) from 91 potential energy substrates simultaneously. Our screening approach identified that C9orf72 and sporadic amyotrophic lateral sclerosis induced astrocytes have distinct metabolic profiles compared to controls and displayed a loss of metabolic flexibility that was not observed in fibroblast models. This loss of metabolic flexibility, involving defects in adenosine, fructose and glycogen metabolism, as well as disruptions in the membrane transport of mitochondrial specific energy substrates, contributed to increased starvation induced toxicity in C9orf72 induced astrocytes. A reduction in glycogen metabolism was attributed to loss of glycogen phosphorylase and phosphoglucomutase at the protein level in both C9orf72 induced astrocytes and induced neurons. In addition, we found alterations in the levels of fructose metabolism enzymes and a reduction in the methylglyoxal removal enzyme GLO1 in both C9orf72 and sporadic models of disease. Our data show that metabolic flexibility is important in the CNS in times of bioenergetic stress.
Collapse
Affiliation(s)
- Scott P Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Benjamin Hall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Ryan Woof
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Francis
- The Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Noemi Gatto
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Allan C Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Monika Myszczynska
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Jordan Hemingway
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Amelia Willcock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Lucy Job
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Rachel M Hughes
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Camilla Boschian
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Nadhim Bayatti
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| |
Collapse
|
159
|
Estevez AY, Ganesana M, Trentini JF, Olson JE, Li G, Boateng YO, Lipps JM, Yablonski SER, Donnelly WT, Leiter JC, Erlichman JS. Antioxidant Enzyme-Mimetic Activity and Neuroprotective Effects of Cerium Oxide Nanoparticles Stabilized with Various Ratios of Citric Acid and EDTA. Biomolecules 2019; 9:E562. [PMID: 31623336 PMCID: PMC6843313 DOI: 10.3390/biom9100562] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Cerium oxide (CeO2) nanoparticles (CeNPs) are potent antioxidants that are being explored as potential therapies for diseases in which oxidative stress plays an important pathological role. However, both beneficial and toxic effects of CeNPs have been reported, and the method of synthesis as well as physico-chemical, biological, and environmental factors can impact the ultimate biological effects of CeNPs. In the present study, we explored the effect of different ratios of citric acid (CA) and EDTA (CA/EDTA), which are used as stabilizers during synthesis of CeNPs, on the antioxidant enzyme-mimetic and biological activity of the CeNPs. We separated the CeNPs into supernatant and pellet fractions and used commercially available enzymatic assays to measure the catalase-, superoxide dismutase (SOD)-, and oxidase-mimetic activity of each fraction. We tested the effects of these CeNPs in a mouse hippocampal brain slice model of ischemia to induce oxidative stress where the fluorescence indicator SYTOX green was used to assess cell death. Our results demonstrate that CeNPs stabilized with various ratios of CA/EDTA display different enzyme-mimetic activities. CeNPs with intermediate CA/EDTA stabilization ratios demonstrated greater neuroprotection in ischemic mouse brain slices, and the neuroprotective activity resides in the pellet fraction of the CeNPs. The neuroprotective effects of CeNPs stabilized with equal proportions of CA/EDTA (50/50) were also demonstrated in two other models of ischemia/reperfusion in mice and rats. Thus, CeNPs merit further development as a neuroprotective therapy for use in diseases associated with oxidative stress in the nervous system.
Collapse
Affiliation(s)
- Ana Y Estevez
- Biology Department, St. Lawrence University, Canton, NY 13617, USA.
- Psychology Department, St. Lawrence University, Canton, NY 13617, USA.
| | - Mallikarjunarao Ganesana
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - John F Trentini
- Department of Emergency Medicine, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, USA.
| | - James E Olson
- Department of Emergency Medicine, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, USA.
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, USA.
| | - Guangze Li
- Department of Emergency Medicine, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, USA.
| | - Yvonne O Boateng
- Biology Department, St. Lawrence University, Canton, NY 13617, USA.
| | - Jennifer M Lipps
- Biology Department, St. Lawrence University, Canton, NY 13617, USA.
| | | | - William T Donnelly
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - James C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | | |
Collapse
|
160
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|