151
|
Norollahi SE, Hamidian SMT, Vahidi S, Babaei K, Samadani AA. Modifications of WNT signaling pathway genes including WNT1, KLF5 and WNT16 in colorectal cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
152
|
Castresana-Aguirre M, Sonnhammer ELL. Pathway-specific model estimation for improved pathway annotation by network crosstalk. Sci Rep 2020; 10:13585. [PMID: 32788619 PMCID: PMC7423893 DOI: 10.1038/s41598-020-70239-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
Pathway enrichment analysis is the most common approach for understanding which biological processes are affected by altered gene activities under specific conditions. However, it has been challenging to find a method that efficiently avoids false positives while keeping a high sensitivity. We here present a new network-based method ANUBIX based on sampling random gene sets against intact pathway. Benchmarking shows that ANUBIX is considerably more accurate than previous network crosstalk based methods, which have the drawback of modelling pathways as random gene sets. We demonstrate that ANUBIX does not have a bias for finding certain pathways, which previous methods do, and show that ANUBIX finds biologically relevant pathways that are missed by other methods.
Collapse
Affiliation(s)
- Miguel Castresana-Aguirre
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Box 1031, 17121, Solna, Sweden
| | - Erik L L Sonnhammer
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Box 1031, 17121, Solna, Sweden.
| |
Collapse
|
153
|
Sun Y, Li G, Zhou Q, Shao D, Lv J, Zhou J. Dual Targeting of Cell Growth and Phagocytosis by Erianin for Human Colorectal Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3301-3313. [PMID: 32848368 PMCID: PMC7429191 DOI: 10.2147/dddt.s259006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
Objective To investigate the effect of erianin on tumor growth and immune response in human colorectal cancer cells (CRC). Methods The effect of erianin on tumor growth was determined by CCK8 and colony formation assay. Western blotting was used to evaluate the expression levels of relevant proteins and qRT-PCR was used to evaluate the mRNA level of the relevant gene. The transcriptional activity of β-catenin was determined by dual-luciferase reporter assay. Cellular thermal shift assay was used to quantify drug–target interactions. The cell surface CD47 was assessed by flow cytometry. The enrichment of H3K27 acetyl marks on CD47 promoter was evaluated by chromatin immunoprecipitation assay. Phagocytosis assay was used to determine the phagocytic activity of macrophage. In vivo role of erianin was studied on xenograft models. Results We found that erianin significantly decreased cell survival, colony formation, induced cell cycle arrest, and led to cell apoptosis in SW480 and HCT116 cells. Mechanism analysis demonstrated that erianin inhibited the nuclear translocation and transcriptional activity of β-catenin, which might result from erianin-β-catenin interaction. In addition, the downstream gene expressions, such as c-Myc and cyclin D1, was decreased. More interestingly, erianin decreased the expression of CD47 by regulating H3K27 acetyl marks enrichment on CD47 promoter. Consequently, macrophage-mediated phagocytosis was increased. Our in vivo experiments further confirmed the inhibitory effect of erianin on tumor growth. Conclusion In summary, erianin could inhibit CRC cells growth and promoted phagocytosis, which suggested erianin as a potential therapeutic strategy for CRC patients.
Collapse
Affiliation(s)
- Yihan Sun
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| | - Guofeng Li
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| | - Qi Zhou
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| | - Danyue Shao
- Second School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jingwei Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| | - Jianhua Zhou
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| |
Collapse
|
154
|
Perillo F, Amoroso C, Strati F, Giuffrè MR, Díaz-Basabe A, Lattanzi G, Facciotti F. Gut Microbiota Manipulation as a Tool for Colorectal Cancer Management: Recent Advances in Its Use for Therapeutic Purposes. Int J Mol Sci 2020; 21:E5389. [PMID: 32751239 PMCID: PMC7432108 DOI: 10.3390/ijms21155389] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a multifaceted disease influenced by both environmental and genetic factors. A large body of literature has demonstrated the role of gut microbes in promoting inflammatory responses, creating a suitable microenvironment for the development of skewed interactions between the host and the gut microbiota and cancer initiation. Even if surgery is the primary therapeutic strategy, patients with advanced disease or cancer recurrence after surgery remain difficult to cure. Therefore, the gut microbiota has been proposed as a novel therapeutic target in light of recent promising data in which it seems to modulate the response to cancer immunotherapy. The use of microbe-targeted therapies, including antibiotics, prebiotics, live biotherapeutics, and fecal microbiota transplantation, is therefore considered to support current therapies in CRC management. In this review, we will discuss the importance of host-microbe interactions in CRC and how promoting homeostatic immune responses through microbe-targeted therapies may be useful in preventing/treating CRC development.
Collapse
Affiliation(s)
- Federica Perillo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| | - Chiara Amoroso
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| | - Francesco Strati
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| | - Maria Rita Giuffrè
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| | - Angélica Díaz-Basabe
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20135 Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20135 Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| |
Collapse
|
155
|
Wang H. MicroRNAs and Apoptosis in Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21155353. [PMID: 32731413 PMCID: PMC7432330 DOI: 10.3390/ijms21155353] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer death in the world, and its incidence is rising in developing countries. Treatment with 5-Fluorouracil (5-FU) is known to improve survival in CRC patients. Most anti-cancer therapies trigger apoptosis induction to eliminate malignant cells. However, de-regulated apoptotic signaling allows cancer cells to escape this signaling, leading to therapeutic resistance. Treatment resistance is a major challenge in the development of effective therapies. The microRNAs (miRNAs) play important roles in CRC treatment resistance and CRC progression and apoptosis. This review discusses the role of miRNAs in contributing to the promotion or inhibition of apoptosis in CRC and the role of miRNAs in modulating treatment resistance in CRC cells.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
156
|
Understanding the Mechanisms of Diet and Outcomes in Colon, Prostate, and Breast Cancer; Malignant Gliomas; and Cancer Patients on Immunotherapy. Nutrients 2020; 12:nu12082226. [PMID: 32722632 PMCID: PMC7468768 DOI: 10.3390/nu12082226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer patients often ask which foods would be best to consume to improve outcomes. This is a difficult question to answer as there are no case-controlled, prospective studies that control for confounding factors. Therefore, a literature review utilizing PubMed was conducted with the goal to find evidence-based support for certain diets in specific cancer patients—specifically, we reviewed data for colon cancer, prostate cancer, breast cancer, malignant gliomas, and cancer patients on immunotherapy. Improved outcomes in colon cancer and patients on immunotherapy were found with high-fiber diets. Improved outcomes in malignant gliomas were found with ketogenic diets. Improved outcomes in prostate cancer and breast cancer were found with plant-based diets. However, the data are not conclusive for breast cancer. Additionally, the increased intake of omega-3 fatty acids were also associated with better outcomes for prostate cancer. While current research, especially in humans, is minimal, the studies discussed in this review provide the groundwork for future research to further investigate the role of dietary intervention in improving cancer outcomes.
Collapse
|
157
|
Ghandadi M, Valadan R, Mohammadi H, Akhtari J, Khodashenas S, Ashari S. Wnt-β-catenin Signaling Pathway, the Achilles' Heels of Cancer Multidrug Resistance. Curr Pharm Des 2020; 25:4192-4207. [PMID: 31721699 DOI: 10.2174/1381612825666191112142943] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Most of the anticancer chemotherapies are hampered via the development of multidrug resistance (MDR), which is the resistance of tumor cells against cytotoxic effects of multiple chemotherapeutic agents. Overexpression and/or over-activation of ATP-dependent drug efflux transporters is a key mechanism underlying MDR development. Moreover, enhancement of drug metabolism, changes in drug targets and aberrant activation of the main signaling pathways, including Wnt, Akt and NF-κB are also responsible for MDR. METHODS In this study, we have reviewed the roles of Wnt signaling in MDR as well as its potential therapeutic significance. Pubmed and Scopus have been searched using Wnt, β-catenin, cancer, MDR and multidrug resistance as keywords. The last search was done in March 2019. Manuscripts investigating the roles of Wnt signaling in MDR or studying the modulation of MDR through the inhibition of Wnt signaling have been involved in the study. The main focus of the manuscript is regulation of MDR related transporters by canonical Wnt signaling pathway. RESULT AND CONCLUSION Wnt signaling has been involved in several pathophysiological states, including carcinogenesis and embryonic development. Wnt signaling is linked to various aspects of MDR including P-glycoprotein and multidrug resistance protein 1 regulation through its canonical pathways. Aberrant activation of Wnt/β- catenin signaling leads to the induction of cancer MDR mainly through the overexpression and/or over-activation of MDR related transporters. Accordingly, Wnt/β-catenin signaling can be a potential target for modulating cancer MDR.
Collapse
Affiliation(s)
- Morteza Ghandadi
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Valadan
- Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran.,Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Hamidreza Mohammadi
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of toxicology and pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Akhtari
- Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran.,Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shabanali Khodashenas
- Department of Medical Biotechnology, Faculty of Medical Sciences, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sorour Ashari
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of toxicology and pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
158
|
Gajos-Michniewicz A, Czyz M. WNT Signaling in Melanoma. Int J Mol Sci 2020; 21:E4852. [PMID: 32659938 PMCID: PMC7402324 DOI: 10.3390/ijms21144852] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
WNT-signaling controls important cellular processes throughout embryonic development and adult life, so any deregulation of this signaling can result in a wide range of pathologies, including cancer. WNT-signaling is classified into two categories: β-catenin-dependent signaling (canonical pathway) and β-catenin-independent signaling (non-canonical pathway), the latter can be further divided into WNT/planar cell polarity (PCP) and calcium pathways. WNT ligands are considered as unique directional growth factors that contribute to both cell proliferation and polarity. Origin of cancer can be diverse and therefore tissue-specific differences can be found in WNT-signaling between cancers, including specific mutations contributing to cancer development. This review focuses on the role of the WNT-signaling pathway in melanoma. The current view on the role of WNT-signaling in cancer immunity as well as a short summary of WNT pathway-related drugs under investigation are also provided.
Collapse
Affiliation(s)
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92–215 Lodz, Poland;
| |
Collapse
|
159
|
Aghabozorgi AS, Ebrahimi R, Bahiraee A, Tehrani SS, Nabizadeh F, Setayesh L, Jafarzadeh-Esfehani R, Ferns GA, Avan A, Rashidi Z. The genetic factors associated with Wnt signaling pathway in colorectal cancer. Life Sci 2020; 256:118006. [PMID: 32593708 DOI: 10.1016/j.lfs.2020.118006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is a common cancer with poor prognosis and high mortality. There is growing information about the factors involved in the pathogenesis of CRC. However, the knowledge of the predisposing factors is limited. The development of CRC is strongly associated with the Wingless/Integrated (Wnt) signaling pathway. This pathway comprises several major target proteins, including LRP5/6, GSK3β, adenomatous polyposis coli (APC), axis inhibition protein (Axin), and β-catenin. Genetic variations in these components of the Wnt signaling pathway may lead to the activation of β-catenin, potentially increasing the proliferation of colorectal cells. Because of the potentially important role of the Wnt signaling pathway in CRC, we aimed to review the involvement of different mutations in the main downstream proteins of this pathway, including LRP5/6, APC, GSK3β, Axin, and β-catenin. Determination of the genetic risk factors involved in the progression of CRC may lead to novel approaches for the early diagnosis of CRC and the identification of potential therapeutic targets in the treatment of CRC.
Collapse
Affiliation(s)
- Amirsaeed Sabeti Aghabozorgi
- Medical Genetics Research Center, Basic Medical Sciences Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Bahiraee
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabizadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Leila Setayesh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Rashidi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
160
|
Delgado-Deida Y, Alula KM, Theiss AL. The influence of mitochondrial-directed regulation of Wnt signaling on tumorigenesis. Gastroenterol Rep (Oxf) 2020; 8:215-223. [PMID: 32665853 PMCID: PMC7333924 DOI: 10.1093/gastro/goaa025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are dynamic organelles that play a key role in integrating cellular signaling. Mitochondrial alterations are evident in all stages of tumorigenesis and targeting mitochondrial pathways has emerged as an anticancer therapeutic strategy. The Wnt-signaling pathway regulates many fundamental cellular functions such as proliferation, survival, migration, stem-cell maintenance, and mitochondrial metabolism and dynamics. Emerging evidence demonstrates that mitochondrial-induced regulation of Wnt signaling provides an additional mechanism to influence cell-fate decisions. Crosstalk between mitochondria and Wnt signaling presents a feedforward loop in which Wnt activation regulates mitochondrial function that, in turn, drives Wnt signaling. In this mini-review, we will discuss the recent evidence revealing the mitochondrial control of Wnt signaling and its implications for tumorigenesis and anticancer therapeutic targeting.
Collapse
Affiliation(s)
- Yaritza Delgado-Deida
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kibrom M Alula
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
161
|
Yu J, Navickas A, Asgharian H, Culbertson B, Fish L, Garcia K, Olegario JP, Dermit M, Dodel M, Hänisch B, Luo Y, Weinberg EM, Dienstmann R, Warren RS, Mardakheh FK, Goodarzi H. RBMS1 Suppresses Colon Cancer Metastasis through Targeted Stabilization of Its mRNA Regulon. Cancer Discov 2020; 10:1410-1423. [PMID: 32513775 DOI: 10.1158/2159-8290.cd-19-1375] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/27/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022]
Abstract
Identifying master regulators that drive pathologic gene expression is a key challenge in precision oncology. Here, we have developed an analytic framework, named PRADA, that identifies oncogenic RNA-binding proteins through the systematic detection of coordinated changes in their target regulons. Application of this approach to data collected from clinical samples, patient-derived xenografts, and cell line models of colon cancer metastasis revealed the RNA-binding protein RBMS1 as a suppressor of colon cancer progression. We observed that silencing RBMS1 results in increased metastatic capacity in xenograft mouse models, and that restoring its expression blunts metastatic liver colonization. We have found that RBMS1 functions as a posttranscriptional regulator of RNA stability by directly binding its target mRNAs. Together, our findings establish a role for RBMS1 as a previously unknown regulator of RNA stability and as a suppressor of colon cancer metastasis with clinical utility for risk stratification of patients. SIGNIFICANCE: By applying a new analytic approach to transcriptomic data from clinical samples and models of colon cancer progression, we have identified RBMS1 as a suppressor of metastasis and as a post-transcriptional regulator of RNA stability. Notably, RBMS1 silencing and downregulation of its targets are negatively associated with patient survival.See related commentary by Carter, p. 1261.This article is highlighted in the In This Issue feature, p. 1241.
Collapse
Affiliation(s)
- Johnny Yu
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Albertas Navickas
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Hosseinali Asgharian
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Bruce Culbertson
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Lisa Fish
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Kristle Garcia
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - John Paolo Olegario
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Maria Dermit
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Martin Dodel
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Benjamin Hänisch
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Yikai Luo
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Ethan M Weinberg
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rodrigo Dienstmann
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Robert S Warren
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Faraz K Mardakheh
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Hani Goodarzi
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California. .,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| |
Collapse
|
162
|
Mcgrath NA, Fu J, Gu SZ, Xie C. Targeting cancer stem cells in cholangiocarcinoma (Review). Int J Oncol 2020; 57:397-408. [PMID: 32468022 PMCID: PMC7307587 DOI: 10.3892/ijo.2020.5074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of cholangiocarcinoma has been increasing steadily over the past 50 years, but the survival rates remained low due to the disease being highly resistant to non-surgical treatment interventions. Cancer stem cell markers are expressed in cholangiocarcinoma, suggesting that they serve a significant role in the physiology of the disease. Cancer stem cells are frequently implicated in tumor relapse and acquired resistance to a number of therapeutic strategies, including chemotherapy, radiation and immune checkpoint inhibitors. Novel targeted therapies to eradicate cancer stem cells may assist in overcoming treatment resistance in cholangiocarcinoma and reduce the rates of relapse and recurrence. Several signaling pathways have been previously documented to regulate the development and survival of cancer stem cells, including Notch, janus kinase/STAT, Hippo/yes-associated protein 1 (YAP1), Wnt and Hedgehog signaling. Although pharmacological agents have been developed to target these pathways, only modest effects were reported in clinical trials. The Hippo/YAP1 signaling pathway has come to the forefront in the field of cancer stem cell research due to its reported involvement in epithelium-mesenchymal transition, cell adhesion, organogenesis and tumorigenesis. In the present article, recent findings in terms of cancer stem cell research in cholangiocarcinoma were reviewed, where the potential therapeutic targeting of cancer stem cells in this disease was discussed.
Collapse
Affiliation(s)
- Nicole A Mcgrath
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Jianyang Fu
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Sophie Z Gu
- Johns Hopkins University School of Medicine, Baltimore, MD 20215, USA
| | - Changqing Xie
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
163
|
Jiao Y, Zhou J, Jin Y, Yang Y, Song M, Zhang L, Zhou J, Zhang J. Long Non-coding RNA TDRKH-AS1 Promotes Colorectal Cancer Cell Proliferation and Invasion Through the β-Catenin Activated Wnt Signaling Pathway. Front Oncol 2020; 10:639. [PMID: 32670860 PMCID: PMC7326065 DOI: 10.3389/fonc.2020.00639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is a common cancer worldwide, with a lower 5-years survival rate. Recently, long non-coding RNAs (lncRNAs) have been well-studied as the oncogenes or the tumor suppressors in multiple malignancies, including CRC. However, their biological functions and potential mechanisms in human cancer remain unclear. Here, we evaluated the expression of TDRKH-AS1 in CRC tissues and identified its potential targets. We found that TDRKH-AS1 is upregulated in majority of CRC patients, which is also significantly correlated with their malignant characteristics and their dismal prognoses. The high expression of TDRKH-AS1 can promote cancer cell proliferation substantially and invasion based on in vitro experiments. We also recognized that the TDRKH-AS1 targets the β-catenin in the Wnt signaling pathway to exert its carcinogenic activity. TDRKH-AS1 could serve as a promising prognostic predictor and a potential therapeutic target for further early diagnoses and treatments via a non-invasive method.
Collapse
Affiliation(s)
- Yang Jiao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jialiang Zhou
- The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yecheng Jin
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingxin Yang
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingxu Song
- The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiayan Zhou
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, United States.,Department of Statistics, Eberly College of Science, The Pennsylvania State University, University Park, PA, United States
| | - Jiwei Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
164
|
Bertrand FE. The cross-talk of NOTCH and GSK-3 signaling in colon and other cancers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118738. [PMID: 32389646 DOI: 10.1016/j.bbamcr.2020.118738] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/14/2022]
Abstract
The GSK-3 kinases, GSK-3α and GSK-3β, have a central role in regulating multiple cellular processes such as glycogen synthesis, insulin signaling, cell proliferation and apoptosis. GSK-3β is the most well studied, and was originally described for its role in regulating glycogen synthase. GSK-3β has been studied as a participant in the oncogenic process in a variety of cancers due to its intersection with the PTEN/PI3K/AKT and RAS/RAF/MEK/ERK pathways. Dysregulated signaling through the Notch family of receptors can also promote oncogenesis. Normal Notch receptor signaling regulates cell fate determination in stem cell pools. GSK-3β and Notch share similar targets such β-catenin and the WNT pathway. WNT and β-catenin are involved in several oncogenic processes including those of the colon. In addition, GSK-3β may directly regulate aspects of Notch signaling. This review describes how crosstalk between GSK-3β and Notch can promote oncogenesis, using colon cancer as the primary example.
Collapse
Affiliation(s)
- Fred E Bertrand
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
165
|
Li X, Larsson P, Ljuslinder I, Öhlund D, Myte R, Löfgren-Burström A, Zingmark C, Ling A, Edin S, Palmqvist R. Ex Vivo Organoid Cultures Reveal the Importance of the Tumor Microenvironment for Maintenance of Colorectal Cancer Stem Cells. Cancers (Basel) 2020; 12:E923. [PMID: 32290033 PMCID: PMC7226030 DOI: 10.3390/cancers12040923] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease, with varying clinical presentations and patient prognosis. Different molecular subgroups of CRC should be treated differently and therefore, must be better characterized. Organoid culture has recently been suggested as a good model to reflect the heterogeneous nature of CRC. However, organoid cultures cannot be established from all CRC tumors. The study examines which CRC tumors are more likely to generate organoids and thus benefit from ex vivo organoid drug testing. Long-term organoid cultures from 22 out of 40 CRC tumor specimens were established. It was found that organoid cultures were more difficult to establish from tumors characterized as microsatellite instable (MSI), BRAF-mutated, poorly differentiated and/or of a mucinous type. This suggests that patients with such tumors are less likely to benefit from ex vivo organoid drug testing, but it may also suggest biological difference in tumor growth. RNA sequencing analysis of tumor sections revealed that the in vivo maintenance of these non-organoid-forming tumors depends on factors related to inflammation and pathogen exposure. Furthermore, using TCGA data we could show a trend towards a worse prognosis for patients with organoid-forming tumors, suggesting also clinical differences. Results suggest that organoids are more difficult to establish from tumors characterized as MSI, BRAF-mutated, poorly differentiated and/or of a mucinous type. We further suggest that the maintenance of cell growth of these tumors in vivo may be promoted by immune-related factors and other stromal components within the tumor microenvironment.
Collapse
Affiliation(s)
- Xingru Li
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| | - Pär Larsson
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, 90185 Umeå, Sweden; (I.L.); (D.O.); (R.M.)
| | - Daniel Öhlund
- Department of Radiation Sciences, Oncology, Umeå University, 90185 Umeå, Sweden; (I.L.); (D.O.); (R.M.)
- Wallenberg Center for Molecular Medicine, Umeå University, 90185 Umeå, Sweden
| | - Robin Myte
- Department of Radiation Sciences, Oncology, Umeå University, 90185 Umeå, Sweden; (I.L.); (D.O.); (R.M.)
| | - Anna Löfgren-Burström
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| | - Agnes Ling
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| |
Collapse
|
166
|
Huang L, Liu Z, Hu J, Luo Z, Zhang C, Wang L, Wang Z. MiR-377-3p suppresses colorectal cancer through negative regulation on Wnt/β-catenin signaling by targeting XIAP and ZEB2. Pharmacol Res 2020; 156:104774. [PMID: 32220639 DOI: 10.1016/j.phrs.2020.104774] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/16/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023]
Abstract
Aberrant activation of Wnt/β-catenin signaling is a common event in the development of colorectal cancer (CRC). It is important to identify new molecules and mechanisms that can negatively regulate Wnt/β-catenin signaling. MicroRNAs are considered as promising candidates for cancer diagnosis and therapy. In our study, we found that miR-377-3p was significantly decreased in CRC samples compared to the normal mucosa tissues, especially in the patients at stage III/IV. Functional studies showed that overexpression of miR-377-3p suppressed and silence of miR-377-3p enhanced the proliferation, migration and chemoresistance of CRC cells. Molecularly, miR-377-3p inhibited Wnt/β-catenin signaling by directly targeting ZEB2 and XIAP, which were the positive regulators of Wnt/β-catenin signaling. Overexpression of ZEB2/XIAP could counteract the tumor suppressing phenotypes induced by miR-377-3p. Therefore, we uncovered the anti-cancer role and the relevant mechanisms of miR-377-3p in CRC, which might provide novel targets for designing new anti-tumor strategies.
Collapse
Affiliation(s)
- Lifeng Huang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhibo Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia Hu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhen Luo
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Zhang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
167
|
Smyth P, Sessler T, Scott CJ, Longley DB. FLIP(L): the pseudo-caspase. FEBS J 2020; 287:4246-4260. [PMID: 32096279 PMCID: PMC7586951 DOI: 10.1111/febs.15260] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
Abstract
Possessing structural homology with their active enzyme counterparts but lacking catalytic activity, pseudoenzymes have been identified for all major enzyme groups. Caspases are a family of cysteine‐dependent aspartate‐directed proteases that play essential roles in regulating cell death and inflammation. Here, we discuss the only human pseudo‐caspase, FLIP(L), a paralog of the apoptosis‐initiating caspases, caspase‐8 and caspase‐10. FLIP(L) has been shown to play a key role in regulating the processing and activity of caspase‐8, thereby modulating apoptotic signaling mediated by death receptors (such as TRAIL‐R1/R2), TNF receptor‐1 (TNFR1), and Toll‐like receptors. In this review, these canonical roles of FLIP(L) are discussed. Additionally, a range of nonclassical pseudoenzyme roles are described, in which FLIP(L) functions independently of caspase‐8. These nonclassical pseudoenzyme functions enable FLIP(L) to play key roles in the regulation of a wide range of biological processes beyond its canonical roles as a modulator of cell death.
Collapse
Affiliation(s)
- Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Tamas Sessler
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Daniel B Longley
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| |
Collapse
|
168
|
Obatoclax, a Pan-BCL-2 Inhibitor, Downregulates Survivin to Induce Apoptosis in Human Colorectal Carcinoma Cells Via Suppressing WNT/β-catenin Signaling. Int J Mol Sci 2020; 21:ijms21051773. [PMID: 32150830 PMCID: PMC7084590 DOI: 10.3390/ijms21051773] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is a highly prevailing cancer and the fourth leading cause of cancer mortality worldwide. Aberrant expression of antiapoptotic BCL-2 family proteins is closely linked to neoplastic progression and chemoresistance. Obatoclax is a clinically developed drug, which binds antiapoptotic BCL-2, BCL-xL, and MCL-1 for inhibition to elicit apoptosis. Survivin is an antiapoptotic protein, whose upregulation correlates with pathogenesis, therapeutic resistance, and poor prognosis in CRC. Herein, we provide the first evidence delineating the functional linkage between Obatoclax and survivin in the context of human CRC cells. In detail, Obatoclax was found to markedly downregulate survivin. This downregulation was mainly achieved via transcriptional repression, as Obatoclax lowered the levels of both survivin mRNA and promoter activity, while blocking proteasomal degradation failed to prevent survivin from downregulation by Obatoclax. Notably, ectopic survivin expression curtailed Obatoclax-induced apoptosis and cytotoxicity, confirming an essential role of survivin downregulation in Obatoclax-elicited anti-CRC effect. Moreover, Obatoclax was found to repress hyperactive WNT/β-catenin signaling activity commonly present in human CRC cells, and, markedly, ectopic expression of dominant-active β-catenin mutant rescued the levels of survivin along with elevated cell viability. We further revealed that, depending on the cell context, Obatoclax suppresses WNT/β-catenin signaling in HCT 116 cells likely via inducing β-catenin destabilization, or by downregulating LEF1 in DLD-1 cells. Collectively, we for the first time define survivin downregulation as a novel, pro-apoptotic mechanism of Obatoclax as a consequence of Obatocalx acting as an antagonist to WNT/β-catenin signaling.
Collapse
|
169
|
Astaneh M, Ghafouri-Fard S, Fazeli Z, Taherian-Esfahani Z, Dashti S, Motevaseli E. Assessment of anti-cancer effects of koenimbine on colon cancer cells. Hum Antibodies 2020; 28:185-190. [PMID: 32116245 DOI: 10.3233/hab-200405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recent studies have highlighted the role of natural elements in reduction of cancer cell growth and apoptosis. Koenimbine, a natural product isolated from Murraya koenigii (L) Spreng is a substance with cytotoxic effects on cancer cells. AIM The effects of koenimbine on HT-29 and SW48 colon cancer cells were evaluated by MTT and Annexin V assays. Expression levels of Wnt/β-catenin pathway genes were quantified by real time PCR. RESULTS The IC50 values of koenimbine in HT-29 and SW48 was calculated to be 50 μg/ml based on the results of MTT assay. This value was 75 μg/ml in IEC-18 cells which were used as normal control. Annexin V assays revealed induction of cell apoptosis and necrosis in HT-29 and SW48 cells but not IEG18 cells by koenimbine. Koenimbin treatment resulted in significant down-regulation of CYCLD1 expression in SW48 cell line, but up-regulation of this gene in HT29 cell line. Expression of TBLR1, DKK1, GSK3B and β-catenin was significantly decreased after koenimbin treatment in HT-19 cell line. Moreover, expression of DKK1 and GSK3B was significantly decreased after koenimbin treatment in SW-40 cell line. TCF4 expression was not detected in any of cell lines either before or after treatment with koenimbin. CONCLUSION The current in vitro study showed the cytotoxic effects of koenimbin on two colon cancer cell lines and the effects of this substance on expression of selected genes from Wnt-β catenin pathway. Future in vivo studies are needed before suggestion of this substance as an anti-cancer drug.
Collapse
Affiliation(s)
- Maliheh Astaneh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Fazeli
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Taherian-Esfahani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
170
|
Jung YS, Park JI. Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Exp Mol Med 2020; 52:183-191. [PMID: 32037398 PMCID: PMC7062731 DOI: 10.1038/s12276-020-0380-6] [Citation(s) in RCA: 281] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023] Open
Abstract
Wnt/β-catenin signaling is implicated in many physiological processes, including development, tissue homeostasis, and tissue regeneration. In human cancers, Wnt/β-catenin signaling is highly activated, which has led to the development of various Wnt signaling inhibitors for cancer therapies. Nonetheless, the blockade of Wnt signaling causes side effects such as impairment of tissue homeostasis and regeneration. Recently, several studies have identified cancer-specific Wnt signaling regulators. In this review, we discuss the Wnt inhibitors currently being used in clinical trials and suggest how additional cancer-specific regulators could be utilized to treat Wnt signaling-associated cancer.
Collapse
Affiliation(s)
- Youn-Sang Jung
- 0000 0001 2291 4776grid.240145.6Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jae-Il Park
- 0000 0001 2291 4776grid.240145.6Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ,0000 0001 2291 4776grid.240145.6Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ,0000 0001 2291 4776grid.240145.6Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
171
|
Karin-Kujundzic V, Kardum V, Sola IM, Paic F, Skrtic A, Skenderi F, Serman A, Nikuseva-Martic T, Vranic S, Serman L. Dishevelled family proteins in serous ovarian carcinomas: a clinicopathologic and molecular study. APMIS 2020; 128:201-210. [PMID: 31755579 DOI: 10.1111/apm.13012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/14/2019] [Indexed: 12/28/2022]
Abstract
Dishevelled family proteins (DVL1, DVL2, and DVL3) are cytoplasmic mediators involved in canonical and non-canonical Wnt signaling that are important for embryonic development. Since Wnt signaling promotes cell proliferation and invasion, its increased activation is associated with cancer development as well. To get deeper insight into the behavior of Dishevelled proteins in cancer, we studied their expression in serous ovarian carcinomas [both low- (LGSC) and high-grade (HGSC)], and HGSC cell lines OVCAR5, OVCAR8, and OVSAHO. DVL protein expression in serous ovarian carcinomas tissues was analyzed using immunohistochemistry, while DVL protein and mRNA expressions in HGSC cell lines were analyzed using Western blot and quantitative real-time PCR. DVL1 protein expression was significantly higher in LGSC compared with normal ovarian tissue, while DVL3 was overexpressed in both LGSC and HGSC. DVL2 and DVL3 protein expression was higher in HGSC cell lines when compared with normal control cell line FNE1, while DVL1, DVL2, and DVL3 mRNA expression was significantly increased only in OVSAHO cell line. Survival analysis revealed no significant impact of DVL proteins on patients' outcome. Our data show an active involvement of Dishevelled family proteins in serous ovarian carcinomas. Further studies should confirm the clinical relevance of these observations.
Collapse
Affiliation(s)
- Valentina Karin-Kujundzic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vedran Kardum
- Department of Obstetrics and Gynecology, University Hospital ''Merkur'', Zagreb, Croatia
| | - Ida Marija Sola
- Department of Obstetrics and Gynecology, University Hospital ''Sestre Milosrdnice'', Zagreb, Croatia
| | - Frane Paic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Skrtic
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Pathology, University Hospital ''Merkur'', Zagreb, Croatia
| | - Faruk Skenderi
- Department of Pathology, Clinical Center, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Alan Serman
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Gynecology and Obstetrics, School of Medicine, University of Zagreb, Zagreb, Croatia.,Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Tamara Nikuseva-Martic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ljiljana Serman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
172
|
Bhat AA, Syed N, Therachiyil L, Nisar S, Hashem S, Macha MA, Yadav SK, Krishnankutty R, Muralitharan S, Al-Naemi H, Bagga P, Reddy R, Dhawan P, Akobeng A, Uddin S, Frenneaux MP, El-Rifai W, Haris M. Claudin-1, A Double-Edged Sword in Cancer. Int J Mol Sci 2020; 21:ijms21020569. [PMID: 31952355 PMCID: PMC7013445 DOI: 10.3390/ijms21020569] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Claudins, a group of membrane proteins involved in the formation of tight junctions, are mainly found in endothelial or epithelial cells. These proteins have attracted much attention in recent years and have been implicated and studied in a multitude of diseases. Claudins not only regulate paracellular transepithelial/transendothelial transport but are also critical for cell growth and differentiation. Not only tissue-specific but the differential expression in malignant tumors is also the focus of claudin-related research. In addition to up- or down-regulation, claudin proteins also undergo delocalization, which plays a vital role in tumor invasion and aggressiveness. Claudin (CLDN)-1 is the most-studied claudin in cancers and to date, its role as either a tumor promoter or suppressor (or both) is not established. In some cancers, lower expression of CLDN-1 is shown to be associated with cancer progression and invasion, while in others, loss of CLDN-1 improves the patient survival. Another topic of discussion regarding the significance of CLDN-1 is its localization (nuclear or cytoplasmic vs perijunctional) in diseased states. This article reviews the evidence regarding CLDN-1 in cancers either as a tumor promoter or suppressor from the literature and we also review the literature regarding the pattern of CLDN-1 distribution in different cancers, focusing on whether this localization is associated with tumor aggressiveness. Furthermore, we utilized expression data from The Cancer Genome Atlas (TCGA) to investigate the association between CLDN-1 expression and overall survival (OS) in different cancer types. We also used TCGA data to compare CLDN-1 expression in normal and tumor tissues. Additionally, a pathway interaction analysis was performed to investigate the interaction of CLDN-1 with other proteins and as a future therapeutic target.
Collapse
Affiliation(s)
- Ajaz A. Bhat
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Najeeb Syed
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Sabah Nisar
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Sheema Hashem
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Muzafar A. Macha
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India;
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Santosh K. Yadav
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
| | | | - Hamda Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar; (S.M.); (H.A.-N.)
| | - Puneet Bagga
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (P.B.); (R.R.)
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (P.B.); (R.R.)
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Anthony Akobeng
- Department of Pediatric Gastroenterology, Sidra Medicine, Doha 26999, Qatar;
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
| | | | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Mohammad Haris
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar; (S.M.); (H.A.-N.)
- Correspondence: ; Tel.: +974-4003-7407
| |
Collapse
|
173
|
Kalla D, Kind A, Schnieke A. Genetically Engineered Pigs to Study Cancer. Int J Mol Sci 2020; 21:E488. [PMID: 31940967 PMCID: PMC7013672 DOI: 10.3390/ijms21020488] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Recent decades have seen groundbreaking advances in cancer research. Genetically engineered animal models, mainly in mice, have contributed to a better understanding of the underlying mechanisms involved in cancer. However, mice are not ideal for translating basic research into studies closer to the clinic. There is a need for complementary information provided by non-rodent species. Pigs are well suited for translational biomedical research as they share many similarities with humans such as body and organ size, aspects of anatomy, physiology and pathophysiology and can provide valuable means of developing and testing novel diagnostic and therapeutic procedures. Porcine oncology is a new field, but it is clear that replication of key oncogenic mutation in pigs can usefully mimic several human cancers. This review briefly outlines the technology used to generate genetically modified pigs, provides an overview of existing cancer models, their applications and how the field may develop in the near future.
Collapse
Affiliation(s)
| | | | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany; (D.K.); (A.K.)
| |
Collapse
|
174
|
Phytochemicals and Gastrointestinal Cancer: Cellular Mechanisms and Effects to Change Cancer Progression. Biomolecules 2020; 10:biom10010105. [PMID: 31936288 PMCID: PMC7022462 DOI: 10.3390/biom10010105] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is a prevailing global health disease with a high incidence rate which varies by region. It is a huge economic burden on health care providers. GI cancer affects different organs in the body such as the gastric organs, colon, esophagus, intestine, and pancreas. Internal and external factors like smoking, obesity, urbanization, genetic mutations, and prevalence of Helicobacter pylori and Hepatitis B and Hepatitis C viral infections could increase the risk of GI cancer. Phytochemicals are non-nutritive bioactive secondary compounds abundantly found in fruits, grains, and vegetables. Consumption of phytochemicals may protect against chronic diseases like cardiovascular disease, neurodegenerative disease, and cancer. Multiple studies have assessed the chemoprotective effect of selected phytochemicals in GI cancer, offering support to their potential towards reducing the pathogenesis of the disease. The aim of this review was to summarize the current knowledge addressing the anti-cancerous effects of selected dietary phytochemicals on GI cancer and their molecular activities on selected mechanisms, i.e., nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), detoxification enzymes, adenosine monophosphate activated protein kinase (AMPK), wingless-related integration site/β-catenin (wingless-related integration site (Wnt) β-catenin, cell apoptosis, phosphoinositide 3-kinases (PI3K)/ protein kinase B AKT/ mammalian target of rapamycin (mTOR), and mitogen-activated protein kinase (MAPK). In this review phytochemicals were classified into four main categories: (i) carotenoids, including lutein, lycopene, and β-carotene; (ii) proanthocyanidins, including quercetin and ellagic acid; (iii) organosulfur compounds, including allicin, allyl propyl disulphide, asparagusic acid, and sulforaphane; and (iv) other phytochemicals including pectin, curcumins, p-coumaric acid and ferulic acid. Overall, phytochemicals improve cancer prognosis through the downregulation of β-catenin phosphorylation, therefore enhancing apoptosis, and upregulation of the AMPK pathway, which supports cellular homeostasis. Nevertheless, more studies are needed to provide a better understanding of the mechanism of cancer treatment using phytochemicals and possible side effects associated with this approach.
Collapse
|
175
|
Leman JKH, Munoz-Erazo L, Kemp RA. The Intestinal Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1226:1-22. [PMID: 32030672 DOI: 10.1007/978-3-030-36214-0_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumour microenvironment (TME) of intestinal tumours is highly complex and comprises a network of stromal cells, tumour cells, immune cells and fibroblasts, as well as microorganisms. The tumour location, environmental factors and the tumour cells themselves influence the cells within the TME. Immune cells can destroy tumour cells and are associated with better patient prognosis and response to therapy; however, immune cells are highly plastic and easily influenced to instead promote tumour growth. The interaction between local immune cells and the microbiome can lead to progression or regression of intestinal tumours. In this chapter, we will discuss how tumour development and progression can influence, and be influenced by, the microenvironment surrounding it, focusing on immune and fibroblastic cells, and the intestinal microbiota, particularly in the context of colorectal cancer.
Collapse
Affiliation(s)
- J K H Leman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - L Munoz-Erazo
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, Auckland, New Zealand
| | - R A Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
176
|
Foronda M, Tarumoto Y, Schatoff EM, Leach BI, Diaz BJ, Zimmerman J, Goswami S, Shusterman M, Vakoc CR, Dow LE. Tankyrase inhibition sensitizes cells to CDK4 blockade. PLoS One 2019; 14:e0226645. [PMID: 31891587 PMCID: PMC6938305 DOI: 10.1371/journal.pone.0226645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/30/2019] [Indexed: 12/17/2022] Open
Abstract
Tankyrase (TNKS) 1/2 are positive regulators of WNT signaling by controlling the activity of the ß-catenin destruction complex. TNKS inhibitors provide an opportunity to suppress hyperactive WNT signaling in tumors, however, they have shown limited anti-proliferative activity as a monotherapy in human cancer cell lines. Here we perform a kinome-focused CRISPR screen to identify potential effective drug combinations with TNKS inhibition. We show that the loss of CDK4, but not CDK6, synergizes with TNKS1/2 blockade to drive G1 cell cycle arrest and senescence. Through precise modelling of cancer-associated mutations using cytidine base editors, we show that this therapeutic approach is absolutely dependent on suppression of canonical WNT signaling by TNKS inhibitors and is effective in cells from multiple epithelial cancer types. Together, our results suggest that combined WNT and CDK4 inhibition might provide a potential therapeutic strategy for difficult-to-treat epithelial tumors.
Collapse
Affiliation(s)
- Miguel Foronda
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States of America
| | - Yusuke Tarumoto
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
| | - Emma M. Schatoff
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States of America
- Tri-Institutional MD-PhD program, Weill Cornell Medicine, New York, NY, United States of America
| | - Benjamin I. Leach
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States of America
| | - Bianca J. Diaz
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States of America
| | - Jill Zimmerman
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States of America
| | - Sukanya Goswami
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States of America
| | - Michael Shusterman
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States of America
| | | | - Lukas E. Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States of America
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States of America
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
177
|
Li W, Xu Y, Wang X, Cao G, Bu W, Wang X, Fang Z, Xu Y, Dong M, Tao Q. circCCT3 Modulates Vascular Endothelial Growth Factor A and Wnt Signaling to Enhance Colorectal Cancer Metastasis Through Sponging miR-613. DNA Cell Biol 2019; 39:118-125. [PMID: 31859543 DOI: 10.1089/dna.2019.5139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) has been suggested to be one of the leading cancer types all over the world. Till now, the molecular mechanism by which circCCT3 regulates CRC remains to be clarified. To detect mRNA and protein levels of various genes, Reverse Transcription-quantitative PCR and western blot were used in our study. Luciferase reporter assay was utilized to probe direct interaction between genes. We used transwell assay to assess the invasion ability of CRC cells. For apoptosis detection, immunofluorescence of CRC cells by Annexin V staining was performed. We carried out bioinformatic analysis to show higher expression of circCCT3 in human clinical CRC tumors. Low level of circCCT3 was closely associated with higher disease-free survival of CRC patients. Moreover, we found that circCCT3 was linked to advanced stage of CRC. miR-613 is the target of circCCT3 and responsible for circCCT3-modulated invasion and apoptosis of CRC cells. In addition, we identified WNT3 and vascular endothelial growth factor A (VEGFA) as downstream effectors of miR-613 in CRC cells. WNT3 and VEGFA overexpression resulted in partial rescue of miR-613-mediated phenotypes of CRC cells. In conclusion, we propose that circCCT3 contributes to CRC metastasis via miR-613/WNT3 or miR-613/VEGFA, promoting the development of therapeutical approaches for treating CRC.
Collapse
Affiliation(s)
- Weiliang Li
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Youqi Xu
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaodong Wang
- Department of Interventional Therapy, Peking University Cancer Hospital, Beijing, China
| | - Guang Cao
- Department of Interventional Therapy, Peking University Cancer Hospital, Beijing, China
| | - Wenjing Bu
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen Fang
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao Xu
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengjia Dong
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianyi Tao
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
178
|
Koveitypour Z, Panahi F, Vakilian M, Peymani M, Seyed Forootan F, Nasr Esfahani MH, Ghaedi K. Signaling pathways involved in colorectal cancer progression. Cell Biosci 2019; 9:97. [PMID: 31827763 PMCID: PMC6889432 DOI: 10.1186/s13578-019-0361-4] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of the worldwide cancer mortality. Different molecular mechanisms have been attributed to the development and progress of CRC. In this review, we will focus on the mitogen-activated protein kinase (MAPK) cascades downstream of the epidermal growth factor receptor (EGFR), Notch, PI3K/AKT pathway, transforming growth factor-β (TGF-β), and Wnt signaling pathways. Various mutations in the components of these signaling pathways have been linked to the development of CRC. Accordingly, numerous efforts have been carried out to target the signaling pathways to develop novel therapeutic approaches. Herein, we review the signaling pathways involved in the incidence and progression of CRC, and the strategies for the therapy targeting components of signaling pathways in CRC.
Collapse
Affiliation(s)
- Zahra Koveitypour
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Farnoush Panahi
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Mehrdad Vakilian
- 6Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,7Department of Cellular Biology, Genetics and Physiology, Faculty of Science, University of Malaga (UMA), Malaga, Spain
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, P.O. Box: 88137-33395, Shahrekord, Iran.,4Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box: 816513-1378, Isfahan, Iran
| | - Farzad Seyed Forootan
- 4Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box: 816513-1378, Isfahan, Iran.,Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Mohammad Hossein Nasr Esfahani
- 4Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box: 816513-1378, Isfahan, Iran
| | - Kamran Ghaedi
- 3Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.,4Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box: 816513-1378, Isfahan, Iran
| |
Collapse
|
179
|
Hon KW, Ab-Mutalib NS, Abdullah NMA, Jamal R, Abu N. Extracellular Vesicle-derived circular RNAs confers chemoresistance in Colorectal cancer. Sci Rep 2019; 9:16497. [PMID: 31712601 PMCID: PMC6848089 DOI: 10.1038/s41598-019-53063-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
Chemo-resistance is associated with poor prognosis in colorectal cancer (CRC), with the absence of early biomarker. Exosomes are microvesicles released by body cells for intercellular communication. Circular RNAs (circRNAs) are non-coding RNAs with covalently closed loops and enriched in exosomes. Crosstalk between circRNAs in exosomes and chemo-resistance in CRC remains unknown. This research aims to identify exosomal circRNAs associated with FOLFOX-resistance in CRC. FOLFOX-resistant HCT116 CRC cells (HCT116-R) were generated from parental HCT116 cells (HCT116-P) using periodic drug induction. Exosomes were characterized using transmission electron microscopy (TEM), Zetasizer and Western blot. Our exosomes were translucent cup-shaped structures under TEM with differential expression of TSG101, CD9, and CD63. We performed circRNAs microarray using exosomal RNAs from HCT116-R and HCT116-P cells. We validated our microarray data using serum samples. We performed drug sensitivity assay and cell cycle analysis to characterize selected circRNA after siRNA-knockdown. Using fold change >2 and p < 0.05, we identified 105 significantly upregulated and 34 downregulated circRNAs in HCT116-R exosomes. Knockdown of circ_0000338 improved the chemo-resistance of CRC cells. We have proposed that circ_0000338 may have dual regulatory roles in chemo-resistant CRC. Exosomal circ_0000338 could be a potential biomarker for further validation in CRC.
Collapse
Affiliation(s)
- Kha Wai Hon
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Syakima Ab-Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nik Muhd Aslan Abdullah
- Department of Oncology and Radiotherapy, UKM Medical Center, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
180
|
Najem SA, Khawaja G, Hodroj MH, Rizk S. Synergistic Effect of Epigenetic Inhibitors Decitabine and Suberoylanilide Hydroxamic Acid on Colorectal Cancer In vitro. Curr Mol Pharmacol 2019; 12:281-300. [DOI: 10.2174/1874467212666190313154531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 01/20/2023]
Abstract
Background:Colorectal Cancer (CRC) is a common cause of oncological deaths worldwide. Alterations of the epigenetic landscape constitute a well-documented hallmark of CRC phenotype. The accumulation of aberrant DNA methylation and histone acetylation plays a major role in altering gene activity and driving tumor onset, progression and metastasis.Objective:In this study, we evaluated the effect of Suberoylanilide Hydroxamic Acid (SAHA), a panhistone deacetylase inhibitor, and Decitabine (DAC), a DNA methyltransferase inhibitor, either alone or in combination, on Caco-2 human colon cancer cell line in vitro.Results:Our results showed that SAHA and DAC, separately, significantly decreased cell proliferation, induced apoptosis and cell cycle arrest of Caco-2 cell line. On the other hand, the sequential treatment of Caco-2 cells, first with DAC and then with SAHA, induced a synergistic anti-tumor effect with a significant enhancement of growth inhibition and apoptosis induction in Caco-2 cell line as compared to cells treated with either drug alone. Furthermore, the combination therapy upregulates protein expression levels of pro-apoptotic proteins Bax, p53 and cytochrome c, downregulates the expression of antiapoptotic Bcl-2 protein and increases the cleavage of procaspases 8 and 9; this suggests that the combination activates apoptosis via both the intrinsic and extrinsic pathways. Mechanistically, we demonstrated that the synergistic anti-neoplastic activity of combined SAHA and DAC involves an effect on PI3K/AKT and Wnt/β-catenin signaling.Conclusion:In conclusion, our results provide evidence for the profound anti-tumorigenic effect of sequentially combined SAHA and DAC in the CRC cell line and offer new insights into the corresponding underlined molecular mechanism.
Collapse
Affiliation(s)
- Sonia Abou Najem
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Ghada Khawaja
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Mohammad Hassan Hodroj
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Sandra Rizk
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
181
|
Cosin-Roger J, Ortiz-Masià MD, Barrachina MD. Macrophages as an Emerging Source of Wnt Ligands: Relevance in Mucosal Integrity. Front Immunol 2019; 10:2297. [PMID: 31608072 PMCID: PMC6769121 DOI: 10.3389/fimmu.2019.02297] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The Wnt signaling pathway is a conserved pathway involved in important cellular processes such as the control of embryonic development, cellular polarity, cellular migration, and cell proliferation. In addition to playing a central role during embryogenesis, this pathway is also an essential part of adult homeostasis. Indeed, it controls the proliferation of epithelial cells in different organs such as intestine, lung, and kidney, and guarantees the maintenance of the mucosa in physiological conditions. The origin of this molecular pathway is the binding between Wnt ligands (belonging to a family of 19 different homologous secreted glycoproteins) and their specific membrane receptors, from the Frizzled receptor family. This specific interaction triggers the activation of the signaling cascade, which in turn activates or suppresses the expression of different genes in order to change the behavior of the cell. On the other hand, alterations of this pathway have been described in pathological conditions such as inflammation, fibrosis, and cancer. In recent years, macrophages-among other cell types-have emerged as a potential source of Wnt ligands. Due to their high plasticity, macrophages, which are central to the innate immune response, are capable of adopting different phenotypes depending on their microenvironment. In the past, two different phenotypes were described: a proinflammatory phenotype-M1 macrophages-and an anti-inflammatory phenotype-M2 macrophages-and a selective expression of Wnt ligands has been associated with said phenotypes. However, nowadays it is assumed that macrophages in vivo move through a continual spectrum of functional phenotypes. In both physiological and pathological (inflammation, fibrosis and cancer) conditions, the accumulation and polarization of macrophages conditions the future of the tissue, facilitating various scenarios, such as resolution of inflammation, activation of fibrosis, and cancer development due to the modulation of the Wnt signaling pathway, in autocrine and paracrine manner. In this work, we provide an overview of studies that have explored the role of macrophages and how they act as a source of Wnt ligands and as mediators of mucosal integrity.
Collapse
Affiliation(s)
| | - Mª Dolores Ortiz-Masià
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Mª Dolores Barrachina
- Departamento de Farmacología and CIBER, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
182
|
Poel D, Boyd LN, Beekhof R, Schelfhorst T, Pham TV, Piersma SR, Knol JC, Jimenez CR, Verheul HM, Buffart TE. Proteomic Analysis of miR-195 and miR-497 Replacement Reveals Potential Candidates that Increase Sensitivity to Oxaliplatin in MSI/P53wt Colorectal Cancer Cells. Cells 2019; 8:cells8091111. [PMID: 31546954 PMCID: PMC6770888 DOI: 10.3390/cells8091111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/17/2022] Open
Abstract
Most patients with advanced colorectal cancer (CRC) eventually develop resistance to systemic combination therapy. miR-195-5p and miR-497-5p are downregulated in CRC tissues and associated with drug resistance. Sensitization to 5-FU, oxaliplatin, and irinotecan by transfection with miR-195-5p and miR-497-5p mimics was studied using cell viability and clonogenic assays in cell lines HCT116, RKO, DLD-1, and SW480. In addition, proteomic analysis of transfected cells was implemented to identify potential targets. Significantly altered proteins were subjected to STRING (protein-protein interaction networks) database analysis to study the potential mechanisms of drug resistance. Cell viability analysis of transfected cells revealed increased sensitivity to oxaliplatin in microsatellite instable (MSI)/P53 wild-type HCT116 and RKO cells. HCT116 transfected cells formed significantly fewer colonies when treated with oxaliplatin. In sensitized cells, proteomic analysis showed 158 and 202 proteins with significantly altered expression after transfection with miR-195-5p and miR-497-5p mimics respectively, of which CHUK and LUZP1 proved to be coinciding downregulated proteins. Resistance mechanisms of these proteins may be associated with nuclear factor kappa-B signaling and G1 cell-cycle arrest. In conclusion, miR-195-5p and miR-497-5p replacement enhanced sensitivity to oxaliplatin in treatment naïve MSI/P53 wild-type CRC cells. Proteomic analysis revealed potential miRNA targets associated with the cell-cycle which possibly bare a relation with chemotherapy sensitivity.
Collapse
Affiliation(s)
- Dennis Poel
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
- Department of Medical Oncology, Radboud University medical center, 6525GA Nijmegen, The Netherlands
| | - Lenka N.C. Boyd
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
| | - Robin Beekhof
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
| | - Tim Schelfhorst
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
| | - Thang V. Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
| | - Sander R. Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
| | - Jaco C. Knol
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
| | - Connie R. Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
| | - Henk M.W. Verheul
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
- Department of Medical Oncology, Radboud University medical center, 6525GA Nijmegen, The Netherlands
| | - Tineke E. Buffart
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081HV Amsterdam, The Netherlands; (D.P.); (R.B.); (T.S.); (T.V.P.); (S.R.P.); (J.C.K.); (C.R.J.)
- Antoni van Leeuwenhoek, Department of Gastrointestinal Oncology, 1066CX Amsterdam, The Netherlands
- Correspondence: ; Tel.: +20-5122-566
| |
Collapse
|
183
|
Kim D, Koh B, Kim KR, Kim KY, Jung WH, Kim HY, Kim S, Dal Rhee S. Anticancer effect of XAV939 is observed by inhibiting lactose dehydrogenase A in a 3-dimensional culture of colorectal cancer cells. Oncol Lett 2019; 18:4858-4864. [PMID: 31611996 PMCID: PMC6781734 DOI: 10.3892/ol.2019.10813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
XAV939, a tankyrase inhibitor, exerts an anticancer effect in 3-dimensional (3D) cultured SW480 cells, however this is not exhibited in 2-dimensional (2D) cultured SW480 cells. In the current study, XAV939 induced a 3.7-fold increase in cellular apoptosis in 3D culture but not in the 2D culture. However, no significant changes were indicated in cell cycle distribution in the 2D or 3D culture. Based on the observation that protein expression, which was associated with the glycolytic pathway, was increased in the 3D culture, the effect of XAV939 on the patterns of glycolytic protein expression was assessed. XAV939 was revealed to decrease lactose dehydrogenase A (LDHA) expression in 3D cultured SW480 cells, but only exerted a small effect in the 2D culture. The coadministration of XAV939 with the LDHA inhibitor FX11 decreased proliferation in 3D cultured SW480 cells compared with the single administration of FX11, while there was no additive effect in the 2D culture. The lactate assay also indicated that XAV939 decreased lactate secretion in the 3D cell culture but not in the 2D culture. These results suggest that XAV939 exerts an anticancer effect through inhibition of LDHA in the 3D culture.
Collapse
Affiliation(s)
- Dahee Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea.,Graduate School of New Drug Discovery and Development, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Byumseok Koh
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Kwang Rok Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Ki Young Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Won Hoon Jung
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Hi Youn Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sungsub Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sang Dal Rhee
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea.,Graduate School of New Drug Discovery and Development, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
184
|
Differential responses of epithelial cells from urinary and biliary tract to eggs of Schistosoma haematobium and S. mansoni. Sci Rep 2019; 9:10731. [PMID: 31341177 PMCID: PMC6656753 DOI: 10.1038/s41598-019-46917-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/28/2019] [Indexed: 01/09/2023] Open
Abstract
Chronic urogenital schistosomiasis can lead to squamous cell carcinoma of the bladder. The International Agency for Research on Cancer classifies the infection with S. haematobium as a group 1 carcinogen, a definitive cause of cancer. By contrast, hepatointestinal schistosomiasis due to the chronic infection with S. mansoni or S. japonicum associated with liver periportal fibrosis, does not apparently lead to malignancy. The effects of culturing human epithelial cells, HCV29, established from normal urothelium, and H69, established from cholangiocytes, in the presence of S. haematobium or S. mansoni eggs were investigated. Cell growth of cells co-cultured with schistosome eggs was monitored in real time, and gene expression analysis of oncogenesis, epithelial to mesenchymal transition and apoptosis pathways was undertaken. Schistosome eggs promoted proliferation of the urothelial cells but inhibited growth of cholangiocytes. In addition, the tumor suppressor P53 pathway was significantly downregulated when exposed to schistosome eggs, and downregulation of estrogen receptor was predicted in urothelial cells exposed only to S. haematobium eggs. Overall, cell proliferative responses were influenced by both the tissue origin of the epithelial cells and the schistosome species.
Collapse
|
185
|
Chang YS, Lee CC, Ke TW, Chang CM, Chao DS, Huang HY, Chang JG. Molecular characterization of colorectal cancer using whole-exome sequencing in a Taiwanese population. Cancer Med 2019; 8:3738-3747. [PMID: 31127692 PMCID: PMC6639182 DOI: 10.1002/cam4.2282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/14/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
Next‐generation sequencing (NGS) technology is currently used to establish mutational profiles in many heterogeneous diseases. The aim of this study was to evaluate the mutational spectrum in Taiwanese patients with colorectal cancer (CRC) to help clinicians identify the best treatment method. Whole‐exome sequencing was conducted in 32 surgical tumor tissues from patients with CRC. DNA libraries were generated using the Illumina TruSeq DNA Exome, and sequencing was performed on the Illumina NextSeq 500 system. Variants were annotated and compared to those obtained from publicly available databases. The analysis revealed frequent mutations in APC (59.38%), TP53 (50%), RAS (28.13%), FBXW7 (18.75%), RAF (9.38%), PIK3CA (9.38%), SMAD4 (9.38%), and SOX9 (9.38%). A mutation in TCF7L2 was also detected, but at lower frequencies. Two or more mutations were found in 22 (68.75%) samples. The mutation rates for the WNT, P53, RTK‐RAS, TGF‐β, and PI3K pathways were 78.13%, 56.25%, 40.63%, 18.75%, and 15.63%, respectively. RTK‐RAS pathway mutations were correlated with tumor size (P = 0.028). We also discovered 23 novel mutations in NRAS, PIK3CA, SOX9, APC, SMAD4, MSH3, MSH4, PMS1 PMS2, AXIN2, ERBB2, PIK3R1, TGFBR2, and ATM that were not reported in the COSMIC, The Cancer Genome Atlas, and dbSNP databases. In summary, we report the mutational landscape of CRC in a Taiwanese population. NGS is a cost‐effective and time‐saving method, and we believe that NGS will help clinicians to treat CRC patients in the near future.
Collapse
Affiliation(s)
- Ya-Sian Chang
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Chien-Chin Lee
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chieh-Min Chang
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Dy-San Chao
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hsi-Yuan Huang
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
186
|
Ismail NI, Othman I, Abas F, H Lajis N, Naidu R. Mechanism of Apoptosis Induced by Curcumin in Colorectal Cancer. Int J Mol Sci 2019; 20:E2454. [PMID: 31108984 PMCID: PMC6566943 DOI: 10.3390/ijms20102454] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the top three cancer with higher incident and mortality rate worldwide. It is estimated that about over than 1.1 million of death and 2.2 million new cases by the year 2030. The current treatment modalities with the usage of chemo drugs such as FOLFOX and FOLFIRI, surgery and radiotherapy, which are usually accompanied with major side effects, are rarely cured along with poor survival rate and at higher recurrence outcome. This trigger the needs of exploring new natural compounds with anti-cancer properties which possess fewer side effects. Curcumin, a common spice used in ancient medicine was found to induce apoptosis by targeting various molecules and signaling pathways involved in CRC. Disruption of the homeostatic balance between cell proliferation and apoptosis could be one of the promoting factors in colorectal cancer progression. In this review, we describe the current knowledge of apoptosis regulation by curcumin in CRC with regard to molecular targets and associated signaling pathways.
Collapse
Affiliation(s)
- Nor Isnida Ismail
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
- UniKL MESTECH, A1-1 Jalan TKS1, Taman Kajang Sentral, 43000 Kajang, Malaysia.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, UPM, 434000 Serdang, Malaysia.
| | - Nordin H Lajis
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| |
Collapse
|
187
|
Methotrexate-induced senescence of human colon cancer cells depends on p53 acetylation, but not genomic aberrations. Anticancer Drugs 2019; 30:374-382. [DOI: 10.1097/cad.0000000000000731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
188
|
Slaymi C, Vignal E, Crès G, Roux P, Blangy A, Raynaud P, Fort P. The atypical RhoU/Wrch1 Rho GTPase controls cell proliferation and apoptosis in the gut epithelium. Biol Cell 2019; 111:121-141. [PMID: 30834544 DOI: 10.1111/boc.201800062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND The mammalian gut epithelium displays among the highest rates of self-renewal, with a turnover time of less than 5 days. Renewal involves concerted proliferation at the bottom of the crypt, migration and differentiation along the crypt-villus axis and anoïkis/shedding in the luminal epithelium. Renewal is controlled by interplay between signalling pathways, among which canonical and non-canonical Wnt signals play prominent roles. Overall 92% of colon tumours show increased canonical Wnt signalling resulting from mutations, established as major driver steps towards carcinogenesis. RESULTS Here, we examined the physiological role of RhoU/Wrch1 in gut homeostasis. RhoU is an atypical Rho GTPase related to Cdc42/Rac1 and identified as a transcriptional target of non-canonical Wnt signalling. We found that RHOU expression is reduced in human colorectal tumour samples. We show that RhoU is mainly expressed in the differentiated compartment of the gut epithelium. Rhou specific invalidation in the mouse gut elicits cell hyperplasia and is associated in the colon with a highly disorganized luminal epithelium. Hyperplasia affects all cell types in the small intestine and colon and has a higher impact on goblet cells. Hyperplasia is associated with a reduction of apoptosis and an increased proliferation. RhoU knockdown in human DLD-1 colon cancer cells also elicits a higher growth index and reduces cell apoptosis. Last, loss of RhoU function in the mouse gut epithelium or in DLD-1 cells increases RhoA activity and the level of phosphorylated Myosin Light Chain-2, which may functionally link RhoU activity to apoptosis. CONCLUSION RhoU is mostly expressed in the differentiated compartment of the gut. It plays a role in homeostasis as its specific invalidation elicits hyperplasia of all cell types. This mainly results from a reduction of apoptosis, through actomyosin-dependent mechanisms. SIGNIFICANCE RhoU negatively controls cell growth in the intestinal epithelium. Since its expression is sensitive to non-canonical Wnt signals and is reduced in colorectal tumours, downregulating RhoU may thus have an instrumental role in tumour progression.
Collapse
Affiliation(s)
- Chaker Slaymi
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Emmanuel Vignal
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Gaëlle Crès
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Pierre Roux
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Anne Blangy
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Peggy Raynaud
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Philippe Fort
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| |
Collapse
|
189
|
Singh AP, Singh R, Verma SS, Rai V, Kaschula CH, Maiti P, Gupta SC. Health benefits of resveratrol: Evidence from clinical studies. Med Res Rev 2019; 39:1851-1891. [PMID: 30741437 DOI: 10.1002/med.21565] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/07/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
Resveratrol is a polyphenolic nutraceutical that exhibits pleiotropic activities in human subjects. The efficacy, safety, and pharmacokinetics of resveratrol have been documented in over 244 clinical trials, with an additional 27 clinical trials currently ongoing. Resveretrol is reported to potentially improve the therapeutic outcome in patients suffering from diabetes mellitus, obesity, colorectal cancer, breast cancer, multiple myeloma, metabolic syndrome, hypertension, Alzheimer's disease, stroke, cardiovascular diseases, kidney diseases, inflammatory diseases, and rhinopharyngitis. The polyphenol is reported to be safe at doses up to 5 g/d, when used either alone or as a combination therapy. The molecular basis for the pleiotropic activities of resveratrol are based on its ability to modulate multiple cell signaling molecules such as cytokines, caspases, matrix metalloproteinases, Wnt, nuclear factor-κB, Notch, 5'-AMP-activated protein kinase, intercellular adhesion molecule, vascular cell adhesion molecule, sirtuin type 1, peroxisome proliferator-activated receptor-γ coactivator 1α, insulin-like growth factor 1, insulin-like growth factor-binding protein 3, Ras association domain family 1α, pAkt, vascular endothelial growth factor, cyclooxygenase 2, nuclear factor erythroid 2 like 2, and Kelch-like ECH-associated protein 1. Although the clinical utility of resveratrol is well documented, the rapid metabolism and poor bioavailability have limited its therapeutic use. In this regard, the recently produced micronized resveratrol formulation called SRT501, shows promise. This review discusses the currently available clinical data on resveratrol in the prevention, management, and treatment of various diseases and disorders. Based on the current evidence, the potential utility of this molecule in the clinic is discussed.
Collapse
Affiliation(s)
- Akhand Pratap Singh
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Rachna Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sumit Singh Verma
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vipin Rai
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Catherine H Kaschula
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, South Africa
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Subash Chandra Gupta
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
190
|
Intestinal organoids: A new paradigm for engineering intestinal epithelium in vitro. Biomaterials 2019; 194:195-214. [DOI: 10.1016/j.biomaterials.2018.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/22/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022]
|
191
|
Pierre CC, Hercules SM, Yates C, Daniel JM. Dancing from bottoms up - Roles of the POZ-ZF transcription factor Kaiso in Cancer. Biochim Biophys Acta Rev Cancer 2018; 1871:64-74. [PMID: 30419310 DOI: 10.1016/j.bbcan.2018.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 12/11/2022]
Abstract
The POZ-ZF transcription factor Kaiso was discovered two decades ago as a binding partner for p120ctn. Since its discovery, roles for Kaiso in diverse biological processes (epithelial-to-mesenchymal transition, apoptosis, inflammation) and several signalling pathways (Wnt/β-catenin, TGFβ, EGFR, Notch) have emerged. While Kaiso's biological role in normal tissues has yet to be fully elucidated, Kaiso has been increasingly implicated in multiple human cancers including colon, prostate, ovarian, lung, breast and chronic myeloid leukemia. In the majority of human cancers investigated to date, high Kaiso expression correlates with aggressive tumor characteristics including proliferation and metastasis, and/or poor prognosis. More recently, interest in Kaiso stems from its apparent correlation with racial disparities in breast and prostate cancer incidence and survival outcomes in people of African Ancestry. This review discusses Kaiso's role in various cancers, and Kaiso's potential for driving racial disparities in incidence and/or outcomes in people of African ancestry.
Collapse
Affiliation(s)
- Christina C Pierre
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Shawn M Hercules
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Clayton Yates
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, USA
| | - Juliet M Daniel
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
192
|
Aghabozorgi AS, Bahreyni A, Soleimani A, Bahrami A, Khazaei M, Ferns GA, Avan A, Hassanian SM. Role of adenomatous polyposis coli (APC) gene mutations in the pathogenesis of colorectal cancer; current status and perspectives. Biochimie 2018; 157:64-71. [PMID: 30414835 DOI: 10.1016/j.biochi.2018.11.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/04/2018] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common forms of solid tumors in the world with high rates of mortality and morbidity. Most cases of CRCs are initiated by inactivating mutations in a tumor suppressor gene, adenomatous polyposis coli (APC), leading to constitutive activation of the Wnt signaling pathway. This review summarizes the roles of somatic and germline mutations of the APC gene in hereditary as well as sporadic forms of CRC. We also discuss the diagnostic and prognostic value of the APC gene in the pathogenesis of CRC for a better understanding of CRC disease.
Collapse
Affiliation(s)
- Amirsaeed Sabeti Aghabozorgi
- Department of Human Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amirhossein Bahreyni
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
193
|
Ganesh S, Shui X, Craig KP, Park J, Wang W, Brown BD, Abrams MT. RNAi-Mediated β-Catenin Inhibition Promotes T Cell Infiltration and Antitumor Activity in Combination with Immune Checkpoint Blockade. Mol Ther 2018; 26:2567-2579. [PMID: 30274786 PMCID: PMC6225018 DOI: 10.1016/j.ymthe.2018.09.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/01/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022] Open
Abstract
Wnt/β-catenin signaling mediates cancer immune evasion and resistance to immune checkpoint therapy, in part by blocking cytokines that trigger immune cell recruitment. Inhibition of β-catenin may be an effective strategy for increasing the low response rate to these effective medicines in numerous cancer populations. DCR-BCAT is a nanoparticle drug product containing a chemically optimized RNAi trigger targeting CTNNB1, the gene that encodes β-catenin. In syngeneic mouse tumor models, β-catenin inhibition with DCR-BCAT significantly increased T cell infiltration and potentiated the sensitivity of the tumors to checkpoint inhibition. The combination of DCR-BCAT and immunotherapy yielded significantly greater tumor growth inhibition (TGI) compared to monotherapy in B16F10 melanoma, 4T1 mammary carcinoma, Neuro2A neuroblastoma, and Renca renal adenocarcinoma. Response to the RNAi-containing combination therapy was not dependent on Wnt activation status of the tumor. Importantly, this drug combination was associated with elevated levels of biomarkers of T cell-mediated cytotoxicity. Finally, when CTLA-4 and PD-1 antibodies were combined with DCR-BCAT in MMTV-Wnt1 transgenic mice, a genetic model of spontaneous Wnt-driven tumors, complete regressions were achieved in the majority of treated subjects. These data support RNAi-mediated β-catenin inhibition as an effective strategy to increase response rates to cancer immunotherapy.
Collapse
MESH Headings
- Animals
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/pathology
- Combined Modality Therapy
- Female
- Humans
- Immunotherapy/methods
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice
- Mice, Transgenic
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- RNA Interference
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- T-Lymphocytes/immunology
- Wnt Signaling Pathway/genetics
- Wnt1 Protein/genetics
- beta Catenin/antagonists & inhibitors
- beta Catenin/genetics
Collapse
Affiliation(s)
- Shanthi Ganesh
- Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA.
| | - Xue Shui
- Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA
| | - Kevin P Craig
- Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA
| | - Jihye Park
- Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA
| | - Weimin Wang
- Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA
| | - Bob D Brown
- Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA
| | - Marc T Abrams
- Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA
| |
Collapse
|
194
|
Raji RJ, Sasikumar R, Jacob E. Multiple roles of Adenomatous Polyposis Coli gene in Wnt Signalling - a Computational Model. Biosystems 2018; 172:26-36. [PMID: 30110600 DOI: 10.1016/j.biosystems.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/23/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022]
Abstract
The Adenomatous Polyposis Coli (APC) gene is a multifunctional gene that plays a major role in regulating the Wnt signalling pathway. The Wnt pathway, when activated by Wnt signalling molecules, initiates cell division. Mutation of APC disrupts the regulation and causes continuous activation of the Wnt pathway even in the absence of Wnt signals, thus causing uncontrolled cell proliferation. APC regulates the Wnt pathway by controlling the formation of the nuclear complex β-catenin/TCF that initiates the transcription of the Wnt target genes. There are at least five mechanisms by which APC can regulate the formation of the β-catenin/TCF complex: This paper presents a computational model for the Wnt pathway that explicitly includes the above five roles of APC in regulating β-catenin/TCF formation. We use this computational model to perform in-silico experiments to study the effect of different functional losses of APC on the level of β-catenin/TCF complex. The simulations also demonstrate the different outcomes that could be expected when the system is governed by different hypotheses.
Collapse
Affiliation(s)
- Rejitha John Raji
- CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O, Trivandrum 695019, India.
| | - Roschen Sasikumar
- CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O, Trivandrum 695019, India
| | - Elizabeth Jacob
- CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O, Trivandrum 695019, India
| |
Collapse
|
195
|
Coopes A, Henry CE, Llamosas E, Ford CE. An update of Wnt signalling in endometrial cancer and its potential as a therapeutic target. Endocr Relat Cancer 2018; 25:ERC-18-0112. [PMID: 30093601 DOI: 10.1530/erc-18-0112] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022]
Abstract
Endometrial cancer is the most common gynaecological malignancy in developed nations, and its prevalence is rising as women defer or decide not to have children and as obesity rises, both key risk factors. Despite this, treatment options remain limited, particularly for advanced or refractory disease. New genomic analyses have revealed distinct mutational profiles with therapeutic and prognostic potential. Wnt signalling, which is pivotal in embryogenesis, healing and homeostasis, is of importance in the endometrium and has been linked to carcinogenesis. This review aims to update and discuss the current evidence for the role of β-catenin dependent and independent Wnt signalling, including the ROR receptors in the endometrium and its potential as a therapeutic target, in light of recent trials of Wnt-targeted therapy in multiple tumour types.
Collapse
Affiliation(s)
- Amy Coopes
- A Coopes, School of Women's and Children's Health, University of New South Wales Adult Cancer Program, Sydney, Australia
| | - Claire E Henry
- C Henry, School of Women's and Children's Health, University of New South Wales Adult Cancer Program, Sydney, Australia
| | - Estelle Llamosas
- E Llamosas, School of Women's and Children's Health, University of New South Wales Adult Cancer Program, Sydney, Australia
| | - Caroline Elizabeth Ford
- C Ford, School of Women's and Children's Health, University of New South Wales Adult Cancer Program, Sydney, Australia
| |
Collapse
|
196
|
Cheng H, Sun X, Li J, He P, Liu W, Meng X. Knockdown of Uba2 inhibits colorectal cancer cell invasion and migration through downregulation of the Wnt/β-catenin signaling pathway. J Cell Biochem 2018; 119:6914-6925. [PMID: 29744931 DOI: 10.1002/jcb.26890] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
Abstract
Colorectal cancer is a serious threat to human health, and has a high mortality rate. There is currently no effective therapy for end-stage colorectal cancer. In recent years, molecular targeted therapy has received increasing attention for cancer treatment. In particular, the role of Uba2, a vital component of SUMO-activating enzyme, has been highlighted, which plays important roles in the progression of certain cancers; however, its role in colorectal cancer remains unclear. Accordingly, the aim of this study was to evaluate the relationship between Uba2 and colorectal cancer. Uba2 expression was knocked down in two colorectal cancer cell lines, and gene microarray analysis was conducted, followed by proliferation, migration, and invasion assays. Uba2 knockdown influenced the expression of several genes, and significantly inhibited the proliferation, migration, and invasion of cancer cells. To determine the underlying mechanism, the expression of related signaling pathways and molecules was evaluated in the knockdown cell lines. Overall, the results suggest that Uba2 participates in the progression, invasion, and metastasis of colorectal cancer, and the possible mechanism is via regulating the Wnt signaling pathway and enhancing epithelial-mesenchymal transition behaviors of colorectal cancer cells. Therefore, Uba2 is expected to be an important oncoprotein and potential therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Hongjing Cheng
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| | - Xun Sun
- Department of Pathology, First Hospital of Jilin University, Changchun, China
| | - Ji Li
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| | - Ping He
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| | - Wanqi Liu
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| | - Xiangwei Meng
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
197
|
Wang Q, Zhou Y, Rychahou P, Harris JW, Zaytseva YY, Liu J, Wang C, Weiss HL, Liu C, Lee EY, Evers BM. Deptor Is a Novel Target of Wnt/β-Catenin/c-Myc and Contributes to Colorectal Cancer Cell Growth. Cancer Res 2018; 78:3163-3175. [PMID: 29666061 DOI: 10.1158/0008-5472.can-17-3107] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/27/2018] [Accepted: 04/11/2018] [Indexed: 11/16/2022]
Abstract
Activation of the Wnt/β-catenin signaling pathway drives colorectal cancer growth by deregulating expression of downstream target genes, including the c-myc proto-oncogene. The critical targets that mediate the functions of oncogenic c-Myc in colorectal cancer have yet to be fully elucidated. Previously, we showed that activation of PI3K/Akt/mTOR contributes to colorectal cancer growth and metastasis. Here, we show that Deptor, a suppressor of mTOR, is a direct target of Wnt/β-catenin/c-Myc signaling in colorectal cancer cells. Inhibition of Wnt/β-catenin or knockdown of c-Myc decreased, while activation of Wnt/β-catenin or overexpression of c-Myc increased the expression of Deptor. c-Myc bound the promoter of Deptor and transcriptionally regulated Deptor expression. Inhibition of Wnt/β-catenin/c-Myc signaling increased mTOR activation, and the combination of Wnt and Akt/mTOR inhibitors enhanced inhibition of colorectal cancer cell growth in vitro and in vivo Deptor expression was increased in colorectal cancer cells; knockdown of Deptor induced differentiation, decreased expression of B lymphoma Mo-MLV insertion region 1 (Bmi1), and decreased proliferation in colorectal cancer cell lines and primary human colorectal cancer cells. Importantly, our work identifies Deptor as a downstream target of the Wnt/β-catenin/c-Myc signaling pathway, acting as a tumor promoter in colorectal cancer cells. Moreover, we provide a molecular basis for the synergistic combination of Wnt and mTOR inhibitors in treating colorectal cancer with elevated c-Myc.Significance: The mTOR inhibitor DEPTOR acts as a tumor promoter and could be a potential therapeutic target in colorectal cancer. Cancer Res; 78(12); 3163-75. ©2018 AACR.
Collapse
Affiliation(s)
- Qingding Wang
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Yuning Zhou
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Piotr Rychahou
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Jennifer W Harris
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Yekaterina Y Zaytseva
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Chunming Liu
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky
| | - Eun Y Lee
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky
| | - B Mark Evers
- Department of Surgery, University of Kentucky, Lexington, Kentucky.
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
198
|
Li Q, Yang T, Li D, Ding F, Bai G, Wang W, Sun H. Knockdown of aquaporin-5 sensitizes colorectal cancer cells to 5-fluorouracil via inhibition of the Wnt-β-catenin signaling pathway. Biochem Cell Biol 2018; 96:572-579. [PMID: 29390193 DOI: 10.1139/bcb-2017-0162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aquaporin-5 (AQP5), a water channel protein, has been reported to possess oncogenic potential in multiple types of malignancies, including colorectal cancer (CRC). However, its effect on the chemosensitivity of CRC cells remains elusive. Hence, this study investigated the effect of AQP5 silencing in CRC cells on 5-fluorouracil (5-FU) sensitivity and attempted to elucidate the underlying mechanisms. A short hairpin RNA construct targeting AQP5 was transfected into HCT116 or HT29 cells to generate stable AQP5-silenced cell lines. The effects of AQP5 knockdown on cell viability, apoptosis, tumor growth, and 5-FU chemoresistance were evaluated. Relative protein levels of Wnt-β-catenin pathway effectors were also measured. The results showed that silencing of AQP5 increased the chemosensitivity of CRC cells to 5-FU, facilitated 5-FU-mediated apoptosis, suppressed tumor growth, and reduced 5-FU chemoresistance in vivo. Furthermore, the effect of AQP5 on 5-FU chemosensitivity was mediated by the Wnt-β-catenin pathway. Silencing of AQP5 inhibited Wnt-β-catenin signaling, whereas overexpression of the degradation-resistant mutant of β-catenin (S33Y) reversed apoptosis induced by AQP5 silencing. Taken together, these results suggest that AQP5 silencing enhances the sensitivity of CRC cells to 5-FU, and the underlying mechanism is related to inhibition of the Wnt-β-catenin pathway. AQP5 could be a useful therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Qing Li
- a College of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China; Department of Internal Medicine, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| | - Tao Yang
- b Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| | - Dongsheng Li
- b Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| | - Feng Ding
- b Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| | - Guang Bai
- b Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| | - Wei Wang
- b Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| | - Hongzhi Sun
- c Department of Pathophysiology, College of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| |
Collapse
|
199
|
Abstract
Wnt signals regulate cell proliferation, migration and differentiation during development, as well as synaptic transmission and plasticity in the adult brain. Abnormal Wnt signaling is central to a number of brain pathologies. We review here, the significance of this pathway focused in the contribution of the most frequent alterations in receptors, secretable modulators and downstream targets in Alzheimer's disease (AD) and Glioblastoma (GBM). β-catenin and GSK3 levels are pivotal in the neurodegeneration associated to AD contributing to memory deficits, tau phosphorylation, increased β-amyloid production and modulation of Apolipoprotein E in the brain. In consequence, β-catenin and GSK3 are targets for potential treatments in AD. Also, Wnt pathway components and secreted molecules interfering with this signaling contribute to the progression of tumoral cells. Wnt pathway activation is a bad prognosis in brain cancer; however, mutations in WNT or Frizzled (FZD) genes do not account for the cases of GBM. Instead, recent studies indicate that epigenetic modifications contribute to the development of GBMs opening novel strategies to study GBM progression.
Collapse
|