151
|
Yin F, Guo L, Meng CY, Liu YJ, Lu RF, Li P, Zhou YB. Transplantation of mesenchymal stem cells exerts anti-apoptotic effects in adult rats after spinal cord ischemia-reperfusion injury. Brain Res 2014; 1561:1-10. [DOI: 10.1016/j.brainres.2014.02.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 02/19/2014] [Accepted: 02/27/2014] [Indexed: 12/01/2022]
|
152
|
Sharma TP, McDowell CM, Liu Y, Wagner AH, Thole D, Faga BP, Wordinger RJ, Braun TA, Clark AF. Optic nerve crush induces spatial and temporal gene expression patterns in retina and optic nerve of BALB/cJ mice. Mol Neurodegener 2014; 9:14. [PMID: 24767545 PMCID: PMC4113182 DOI: 10.1186/1750-1326-9-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/18/2014] [Indexed: 12/18/2022] Open
Abstract
Background Central nervous system (CNS) trauma and neurodegenerative disorders trigger a cascade of cellular and molecular events resulting in neuronal apoptosis and regenerative failure. The pathogenic mechanisms and gene expression changes associated with these detrimental events can be effectively studied using a rodent optic nerve crush (ONC) model. The purpose of this study was to use a mouse ONC model to: (a) evaluate changes in retina and optic nerve (ON) gene expression, (b) identify neurodegenerative pathogenic pathways and (c) discover potential new therapeutic targets. Results Only 54% of total neurons survived in the ganglion cell layer (GCL) 28 days post crush. Using Bayesian Estimation of Temporal Regulation (BETR) gene expression analysis, we identified significantly altered expression of 1,723 and 2,110 genes in the retina and ON, respectively. Meta-analysis of altered gene expression (≥1.5, ≤-1.5, p < 0.05) using Partek and DAVID demonstrated 28 up and 20 down-regulated retinal gene clusters and 57 up and 41 down-regulated optic nerve clusters. Regulated gene clusters included regenerative change, synaptic plasticity, axonogenesis, neuron projection, and neuron differentiation. Expression of selected genes (Vsnl1, Syt1, Synpr and Nrn1) from retinal and ON neuronal clusters were quantitatively and qualitatively examined for their relation to axonal neurodegeneration by immunohistochemistry and qRT-PCR. Conclusion A number of detrimental gene expression changes occur that contribute to trauma-induced neurodegeneration after injury to ON axons. Nrn1 (synaptic plasticity gene), Synpr and Syt1 (synaptic vesicle fusion genes), and Vsnl1 (neuron differentiation associated gene) were a few of the potentially unique genes identified that were down-regulated spatially and temporally in our rodent ONC model. Bioinformatic meta-analysis identified significant tissue-specific and time-dependent gene clusters associated with regenerative changes, synaptic plasticity, axonogenesis, neuron projection, and neuron differentiation. These ONC induced neuronal loss and regenerative failure associated clusters can be extrapolated to changes occurring in other forms of CNS trauma or in clinical neurodegenerative pathological settings. In conclusion, this study identified potential therapeutic targets to address two key mechanisms of CNS trauma and neurodegeneration: neuronal loss and regenerative failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Abbot F Clark
- North Texas Eye Research Institute, Ft, Worth, TX USA.
| |
Collapse
|
153
|
Orts-Del’Immagine A, Kastner A, Tillement V, Tardivel C, Trouslard J, Wanaverbecq N. Morphology, distribution and phenotype of polycystin kidney disease 2-like 1-positive cerebrospinal fluid contacting neurons in the brainstem of adult mice. PLoS One 2014; 9:e87748. [PMID: 24504595 PMCID: PMC3913643 DOI: 10.1371/journal.pone.0087748] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/30/2013] [Indexed: 11/18/2022] Open
Abstract
The mammalian spinal cord and medulla oblongata harbor unique neurons that remain in contact with the cerebrospinal fluid (CSF-cNs). These neurons were shown recently to express a polycystin member of the TRP channels family (PKD2L1) that potentially acts as a chemo- or mechanoreceptor. Recent studies carried out in young rodents indicate that spinal CSF-cNs express immature neuronal markers that appear to persist even in adult cells. Nevertheless, little is known about the phenotype and morphological properties of medullar CSF-cNs. Using immunohistochemistry and confocal microscopy techniques on tissues obtained from three-month old PKD2L1:EGFP transgenic mice, we analyzed the morphology, distribution, localization and phenotype of PKD2L1(+) CSF-cNs around the brainstem and cervical spinal cord central canal. We show that PKD2L1(+) CSF-cNs are GABAergic neurons with a subependymal localization, projecting a dendrite towards the central canal and an axon-like process running through the parenchyma. These neurons display a primary cilium on the soma and the dendritic process appears to bear ciliary-like structures in contact with the CSF. PKD2L1(+) CSF-cNs present a conserved morphology along the length of the medullospinal central canal with a change in their density, localization and dendritic length according to the rostro-caudal axis. At adult stages, PKD2L1(+) medullar CSF-cNs appear to remain in an intermediate state of maturation since they still exhibit characteristics of neuronal immaturity (DCX positive, neurofilament 160 kDa negative) along with the expression of a marker representative of neuronal maturation (NeuN). In addition, PKD2L1(+) CSF-cNs express Nkx6.1, a homeodomain protein that enables the differentiation of ventral progenitors into somatic motoneurons and interneurons. The present study provides valuable information on the cellular properties of this peculiar neuronal population that will be crucial for understanding the physiological role of CSF-cNs in mammals and their link with the stem cells contained in the region surrounding the medullospinal central canal.
Collapse
Affiliation(s)
- Adeline Orts-Del’Immagine
- Aix-Marseille Université (AMU), Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) - EA 4674, Faculté des Sciences St. Jérôme, Marseille, France
| | - Anne Kastner
- Aix-Marseille Université (AMU), Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) - EA 4674, Faculté des Sciences St. Jérôme, Marseille, France
| | - Vanessa Tillement
- Aix-Marseille Université (AMU), Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) - EA 4674, Faculté des Sciences St. Jérôme, Marseille, France
| | - Catherine Tardivel
- Aix-Marseille Université (AMU), Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) - EA 4674, Faculté des Sciences St. Jérôme, Marseille, France
| | - Jérôme Trouslard
- Aix-Marseille Université (AMU), Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) - EA 4674, Faculté des Sciences St. Jérôme, Marseille, France
| | - Nicolas Wanaverbecq
- Aix-Marseille Université (AMU), Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) - EA 4674, Faculté des Sciences St. Jérôme, Marseille, France
- * E-mail:
| |
Collapse
|
154
|
Taha MF, Javeri A, Kheirkhah O, Majidizadeh T, Khalatbary AR. Neural differentiation of mouse embryonic and mesenchymal stem cells in a simple medium containing synthetic serum replacement. J Biotechnol 2014; 172:1-10. [DOI: 10.1016/j.jbiotec.2013.11.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/17/2013] [Accepted: 11/29/2013] [Indexed: 01/23/2023]
|
155
|
Dubrowinskaja N, Gebauer K, Peters I, Hennenlotter J, Abbas M, Scherer R, Tezval H, Merseburger AS, Stenzl A, Grünwald V, Kuczyk MA, Serth J. Neurofilament Heavy polypeptide CpG island methylation associates with prognosis of renal cell carcinoma and prediction of antivascular endothelial growth factor therapy response. Cancer Med 2014; 3:300-9. [PMID: 24464810 PMCID: PMC3987080 DOI: 10.1002/cam4.181] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/29/2013] [Accepted: 11/19/2013] [Indexed: 12/26/2022] Open
Abstract
Neurofilament Heavy polypeptid (NEFH) belongs to the group of type IV intermediate filament proteins. DNA methylation of the NEFH promoter and loss of expression have previously been shown to activate the AKT/β-catenin pathway in tumor cells. When identifying hypermethylation of the NEFH CpG island (CGI) in renal cell cancer (RCC) we asked whether methylation could provide clinical or prognostic information for RCC and/or predict therapy response in patients with metastatic RCC (mRCC) undergoing antiangiogenic therapy. Relative methylation of the NEFH CGI was analyzed in 132 RCC samples and 83 paired normal tissues using quantitative methylation-specific PCR. Results were statistically compared with tumor histology, clinicopathological parameters, progression-free survival (PFS) as well as with overall survival (OS) in a subset of 18 mRCC patients following antiangiogenic therapy regimens. The NEFH CGI methylation demonstrated a tumor-specific increase (P < 0.001), association with advanced disease (P < 0.001), and distant metastasis (P = 0.005). Higher relative methylation was also significantly associated with a poor PFS (HR = 8.6, P < 0.001) independent from the covariates age, gender, diameter of tumors, state of advanced disease, and local and distant metastasis. Median OS following targeted therapy was 29.8 months for patients with low methylation versus 9.8 months for the group with high methylation (P = 0.028). We identified NEFH methylation as a candidate epigenetic marker for prognosis of RCC patients as well as prediction of anti-vascular endothelial growth factor-based therapy response.
Collapse
|
156
|
|
157
|
Ma M. Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon. Neurobiol Dis 2013; 60:61-79. [PMID: 23969238 PMCID: PMC3882011 DOI: 10.1016/j.nbd.2013.08.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/17/2013] [Accepted: 08/08/2013] [Indexed: 12/21/2022] Open
Abstract
Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed.
Collapse
Affiliation(s)
- Marek Ma
- Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Resuscitation Science, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
158
|
CSF neurofilament light chain is elevated in OMS (decreasing with immunotherapy) and other pediatric neuroinflammatory disorders. J Neuroimmunol 2013; 266:75-81. [PMID: 24342231 DOI: 10.1016/j.jneuroim.2013.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/15/2013] [Accepted: 11/12/2013] [Indexed: 11/22/2022]
Abstract
Using a panel of seven brain cell-specific biomarkers in cerebrospinal fluid (CSF), pediatric opsoclonus-myoclonus syndrome (OMS) (n=234) was compared to pediatric non-inflammatory neurological controls (n=84) and other inflammatory neurological disorders (OIND) (n=44). Only CSF NFL was elevated in untreated OMS versus controls (+83%). It was 87% higher in OIND than in OMS. On combination treatment with front-loaded ACTH, IVIg, rituximab, median CSF NFL decreased by 60% to control levels. These biochemical data suggest neuronal/axonal injury in some children with OMS without indicators of astrogliosis, and reduction on sufficient immunotherapy.
Collapse
|
159
|
Long-term analyses of innervation and neuromuscular integrity in the Trembler-J mouse model of Charcot-Marie-Tooth disease. J Neuropathol Exp Neurol 2013; 72:942-54. [PMID: 24042197 DOI: 10.1097/nen.0b013e3182a5f96e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A large fraction of hereditary demyelinating neuropathies, classified as Charcot-Marie-Tooth disease type 1A, is associated with misexpression of peripheral myelin protein 22. In this study, we characterized morphologic and biochemical changes that occur with diseaseprogression in neuromuscular tissue of Trembler-J mice, a spontaneous rodent model of Charcot-Marie-Tooth disease type 1A. Using age-matched, 2- and 10-month-old, wild-type and Trembler-J mice, we observed neuromuscular deficits that progress from distal to proximal regions. The impairments in motor performance are underlined by degenerative events at distal nerve segments and structural alterations at nerve-muscle synapses. Furthermore, skeletal muscle of affected mice showed reduced myofiber diameter, increased expression of the muscle atrophy marker muscle ring-finger protein 1, and fiber type switching. A dietary intervention of intermittent fasting attenuated these progressive changes and supported distal nerve myelination and neuromuscular junction integrity. In addition to the well-characterized demyelination aspects of this model, our investigations identified distinct degenerative events in distal nerves and muscle of affected neuropathic mice. Therefore, therapeutic studies aimed at slowing or reversing the neuropathic features of these disorders should include the examination of muscle tissue, as well as neuromuscular contact sites.
Collapse
|
160
|
Novel treatment with neuroprotective and antiviral properties against a neuroinvasive human respiratory virus. J Virol 2013; 88:1548-63. [PMID: 24227863 DOI: 10.1128/jvi.02972-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human coronaviruses (HCoVs) are recognized respiratory pathogens with neuroinvasive and neurotropic properties in mice and humans. HCoV strain OC43 (HCoV-OC43) can infect and persist in human neural cells and activate neuroinflammatory and neurodegenerative mechanisms, suggesting that it could be involved in neurological disease of unknown etiology in humans. Moreover, we have shown that HCoV-OC43 is neurovirulent in susceptible mice, causing encephalitis, and that a viral mutant with a single point mutation in the viral surface spike (S) protein induces a paralytic disease that involves glutamate excitotoxicity in susceptible mice. Herein, we show that glutamate recycling via the glial transporter 1 protein transporter and glutamine synthetase are central to the dysregulation of glutamate homeostasis and development of motor dysfunctions and paralytic disease in HCoV-OC43-infected mice. Moreover, memantine, an N-methyl-d-aspartate receptor antagonist widely used in the treatment of neurological diseases in humans, improved clinical scores related to paralytic disease and motor disabilities by partially restoring the physiological neurofilament phosphorylation state in virus-infected mice. Interestingly, memantine attenuated mortality rates and body weight loss and reduced HCoV-OC43 replication in the central nervous system in a dose-dependent manner. This novel action of memantine on viral replication strongly suggests that it could be used as an antiviral agent to directly limit viral replication while improving neurological symptoms in various neurological diseases with a viral involvement. Mutations in the surface spike (S) protein of human respiratory coronavirus OC43 appear after persistent infection of human cells of the central nervous system, a possible viral adaptation to this environment. Furthermore, a single amino acid change in the viral S protein modulated virus-induced neuropathology in mice from an encephalitis to a neuropathology characterized by flaccid paralysis, which involves glutamate excitotoxicity. We now show that memantine, a drug that is used for alleviating symptoms associated with neuropathology, such as Alzheimer's disease, can partially restore the physiological state of infected mice by limiting both neurodegeneration and viral replication. This suggests that memantine could be used as an antiviral agent while improving neurological symptoms in various neurological diseases with a viral involvement.
Collapse
|
161
|
Liu CH, Chien CL. Molecular cloning and characterization of chicken neuronal intermediate filament protein α-internexin. J Comp Neurol 2013; 521:2147-64. [PMID: 23224860 DOI: 10.1002/cne.23278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/19/2012] [Accepted: 11/28/2012] [Indexed: 01/20/2023]
Abstract
α-Internexin is one of the neuronal intermediate filament (IF) proteins, which also include low-, middle-, and high-molecular-weight neurofilament (NF) triplet proteins, designated NFL, NFM, and NFH, respectively. The expression of α-internexin occurs in most neurons as they begin differentiation and precedes the expression of the NF triplet proteins in mammals. However, little is known about the gene sequence and physiological function of α-internexin in avians. In this study we describe the molecular cloning of the mRNA sequence encoding the chicken α-internexin (chkINA) protein from embryonic brains. The gene structure and predicted amino acid sequence of chkINA exhibited high similarity to those of its zebrafish, mouse, rat, bovine, and human homologs. Data from transient-transfection experiments show that the filamentous pattern of chkINA was found in transfected cells and colocalized with other endogenous IFs, as demonstrated via immunocytochemistry using a chicken-specific antibody. The expression of chkINA was detected at the early stage of development and increased during the developmental process of the chicken. chkINA was expressed widely in chicken brains and colocalized with NF triplet proteins in neuronal processes, as assessed using immunohistochemistry. We also found that chkINA was expressed abundantly in the developing cerebellum and was the major IF protein in the parallel processes of granule neurons. Thus, we suggest that chkINA is a neuron-specific IF protein that may be a useful marker for studies of chicken brain development.
Collapse
Affiliation(s)
- Chi-Hsiu Liu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan ROC
| | | |
Collapse
|
162
|
Vacca V, Marinelli S, Pieroni L, Urbani A, Luvisetto S, Pavone F. Higher pain perception and lack of recovery from neuropathic pain in females: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice. Pain 2013; 155:388-402. [PMID: 24231652 DOI: 10.1016/j.pain.2013.10.027] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/30/2013] [Accepted: 10/30/2013] [Indexed: 01/23/2023]
Abstract
In experimental and clinical pain studies, the sex of subjects was rarely taken into account, even if nociceptive inputs appear to be processed and modulated by partially distinct neural mechanisms in each sex. In this study we analysed, in male and female mice, behavioural and neuronal responses in developing, maintaining, and recovering from neuropathic pain. Experiments were carried out in adult CD1 mice by using Chronic Constriction Injury (CCI) as neuropathic pain model. We investigated the temporal trend of mechanical nociceptive threshold together with functional recovery of the injured paw, and the immunofluorescence staining of proteins associated with nerve injury and repair and with spinal gliosis, 7 and 121days after CCI. A proteomic analysis on proteins extracted from sciatic nerves was also performed. Male mice showed a gradual decrease of CCI-induced allodynia, the complete recovery occurring 81days after the sciatic nerve ligation. On the contrary, in female mice, allodynia was still present 121days after CCI. Sex-dependent differences also resulted from immunofluorescence experiments: in sciatic nerve, the expression of P0 and Neu200 is greater in neuropathic males than in neuropathic females, suggesting faster nerve regeneration. Proteomic analysis confirmed sex-related differences of proteins associated with nerve regenerative processes. In addition, the reactive gliosis induced by CCI at day 7, as revealed by colocalization of glial fibrillary acidic protein (astrocytes) and CD11b (microglia) with phosphorylated p38, disappeared 121 days after CCI in male but not in female mice. These results may have important therapeutic implications for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Valentina Vacca
- CNR - National Research Council, Cell Biology and Neurobiology Institute, Roma, Italy IRCCS Santa Lucia Foundation, Roma, Italy Department of Experimental Medicine and Surgery, Division of Biochemistry, University of "Tor Vergata", Roma, Italy
| | | | | | | | | | | |
Collapse
|
163
|
Neonatal hyperoxia exposure disrupts axon-oligodendrocyte integrity in the subcortical white matter. J Neurosci 2013; 33:8990-9002. [PMID: 23699510 DOI: 10.1523/jneurosci.5528-12.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pathological mechanisms underlying neurological deficits observed in individuals born prematurely are not completely understood. A common form of injury in the preterm population is periventricular white matter injury (PWMI), a pathology associated with impaired brain development. To mitigate or eliminate PWMI, there is an urgent need to understand the pathological mechanism(s) involved on a neurobiological, structural, and functional level. Recent clinical data suggest that a percentage of premature infants experience relative hyperoxia. Using a hyperoxic model of premature brain injury, we have previously demonstrated that neonatal hyperoxia exposure in the mouse disrupts development of the white matter (WM) by delaying the maturation of the oligodendroglial lineage. In the present study, we address the question of how hyperoxia-induced alterations in WM development affect overall WM integrity and axonal function. We show that neonatal hyperoxia causes ultrastructural changes, including: myelination abnormalities (i.e., reduced myelin thickness and abnormal extramyelin loops) and axonopathy (i.e., altered neurofilament phosphorylation, paranodal defects, and changes in node of Ranvier number and structure). This disruption of axon-oligodendrocyte integrity results in the lasting impairment of conduction properties in the adult WM. Understanding the pathology of premature PWMI injury will allow for the development of interventional strategies to preserve WM integrity and function.
Collapse
|
164
|
Ylikallio E, Pöyhönen R, Zimon M, De Vriendt E, Hilander T, Paetau A, Jordanova A, Lönnqvist T, Tyynismaa H. Deficiency of the E3 ubiquitin ligase TRIM2 in early-onset axonal neuropathy. Hum Mol Genet 2013; 22:2975-83. [PMID: 23562820 DOI: 10.1093/hmg/ddt149] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Inherited peripheral neuropathies are a heterogeneous group of disorders that can affect patients of all ages. Children with inherited neuropathy often develop severe disability, but the genetic causes of recessive early-onset axonal neuropathies are not fully known. We have taken a whole-exome sequencing approach to identify causative disease mutations in single patients with early-onset axonal neuropathy. Here, we report compound heterozygous mutations in the tripartite motif containing 2 (TRIM2) gene in a patient with childhood-onset axonal neuropathy, low weight and small muscle mass. We show that the patient fibroblasts are practically devoid of TRIM2, through mRNA and protein instability caused by the mutations. TRIM2 is an E3 ubiquitin ligase that ubiquitinates neurofilament light chain, a component of the intermediate filament in axons. Resembling the findings in our patient's sural nerve biopsy, Trim2-gene trap mice showed axonopathy with accumulations of neurofilaments inside axons. Our results suggest that loss-of-function mutations in TRIM2 are a cause of axonal neuropathy, which we propose to develop as a consequence of axonal accumulation of neurofilaments, secondary to lack of its ubiquitination by TRIM2.
Collapse
Affiliation(s)
- Emil Ylikallio
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
White JJ, Sillitoe RV. Postnatal development of cerebellar zones revealed by neurofilament heavy chain protein expression. Front Neuroanat 2013; 7:9. [PMID: 23675325 PMCID: PMC3648691 DOI: 10.3389/fnana.2013.00009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 04/24/2013] [Indexed: 11/13/2022] Open
Abstract
The cerebellum is organized into parasagittal zones that control sensory-motor behavior. Although the architecture of adult zones is well understood, very little is known about how zones emerge during development. Understanding the process of zone formation is an essential step toward unraveling how circuits are constructed to support specific behaviors. Therefore, we focused this study on postnatal development to determine the spatial and temporal changes that establish zonal patterns during circuit formation. We used a combination of wholemount and tissue section immunohistochemistry in mice to show that the cytoskeletal protein neurofilament heavy chain (NFH) is a robust marker for postnatal cerebellar zonal patterning. The patterned expression of NFH is initiated shortly after birth, and compared to the domains of several known zonal markers such as zebrin II, HSP25, neurogranin, and phospholipase Cβ4 (PLCβ4), NFH does not exhibit transient expression patterns that are typically remodeled between stages, and the adult zones do not emerge after a period of uniform expression in all lobules. Instead, we found that throughout postnatal development NFH gradually reveals distinct zones in each cerebellar lobule. The boundaries of individual NFH zones sharpen over time, as zones are refined during the second and third weeks after birth. Double labeling with neurogranin and PLCβ4 further revealed that although the postnatal expression of NFH is spatially and temporally unique, its pattern of zones respects a fundamental and well-known molecular topography in the cerebellum. The dynamics of NFH expression support the hypothesis that adult circuits are derived from an embryonic map that is refined into zones during the first 3-weeks of life.
Collapse
Affiliation(s)
- Joshua J White
- Department of Pathology and Immunology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital Houston, TX, USA ; Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital Houston, TX, USA
| | | |
Collapse
|
166
|
Neuronal intermediate filament α-internexin is expressed by neuronal lineages in the developing chicken retina. Exp Eye Res 2013; 110:18-25. [DOI: 10.1016/j.exer.2013.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/09/2013] [Accepted: 02/19/2013] [Indexed: 11/23/2022]
|
167
|
Llorens J. Toxic neurofilamentous axonopathies -- accumulation of neurofilaments and axonal degeneration. J Intern Med 2013; 273:478-89. [PMID: 23331301 DOI: 10.1111/joim.12030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A number of neurotoxic chemicals induce accumulation of neurofilaments in axonal swellings that appear at varying distances from the cell body. This pathology is associated with axonal degeneration of different degrees. The clinical manifestation is most commonly that of a mixed motor-sensory peripheral axonopathy with a disto-proximal pattern of progression, as in cases of chronic exposure to n-hexane and carbon disulphide. It has been demonstrated that protein adduct formation is a primary molecular mechanism of toxicity in these axonopathies, but how this mechanism leads to neurofilament accumulation and axonal degeneration remains unclear. Furthermore, little is known regarding the mechanisms of neurofilamentous axonopathy caused by 3,3'-iminodipropionitrile, an experimental toxin that induces proximal axon swelling that is strikingly similar to that found in early amyotrophic lateral sclerosis. Here, we review the available data and main hypotheses regarding the toxic axonopathies and compare them with the current knowledge of the biological basis of neurofilament transport. We also review recent studies addressing the question of how these axonopathies may cause axonal degeneration. Understanding the mechanisms underlying the toxic axonopathies may provide insight into the relationship between neurofilament behaviour and axonal degeneration, hopefully enabling the identification of new targets for therapeutic intervention. Because neurofilament abnormalities are a common feature of many neurodegenerative diseases, advances in this area may have a wider impact beyond toxicological significance.
Collapse
Affiliation(s)
- J Llorens
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain.
| |
Collapse
|
168
|
Gentil BJ, Mushynski WE, Durham HD. Heterogeneity in the properties of NEFL mutants causing Charcot-Marie-Tooth disease results in differential effects on neurofilament assembly and susceptibility to intervention by the chaperone-inducer, celastrol. Int J Biochem Cell Biol 2013; 45:1499-508. [PMID: 23618875 DOI: 10.1016/j.biocel.2013.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/05/2013] [Indexed: 11/25/2022]
Abstract
Aberrant aggregation of neurofilament proteins is a common feature of neurodegenerative diseases. For example, neurofilament light protein (NEFL) mutants causing Charcot-Marie-Tooth disease induce misassembly of neurofilaments. This study demonstrated that mutations in different functional domains of NEFL have different effects on filament assembly and susceptibility to interventions to restore function. The mouse NEFL mutants, NEFL(Q333P) and NEFL(P8R), exhibited different assembly properties in SW13-cells, cells lacking endogenous intermediate filaments, indicating different consequences of these mutations on the biochemical properties of NEFL. The p.Q333P mutation caused reversible misfolding of the protein. NEFL(Q333P) could be refolded and form coil-coiled dimers, in vitro using chaotropic agent, and in cultured cells by induction of HSPA1 and HSPB1. Celastrol, an inducer of chaperone proteins, induced HSPA1 expression in motor neurons and prevented the formation of neurofilament inclusions and mitochondrial shortening induced by expression of NEFL(Q333P), but not in sensory neurons. Conversely, celastrol had a protective effect against the toxicity of NEFL(P8R), a mutant which is sensitive to HSBP1 but not HSPA1 chaperoning, only in large-sized sensory neurons, not in motor neurons. Importantly, sensory and motor neurons do not respond identically to celastrol and different chaperones are upregulated by the same treatment. Thus, effective therapy of CMT not only depends on the identity of the mutated gene, but the consequences of the specific mutation on the properties of the protein and the neuronal population targeted.
Collapse
Affiliation(s)
- Benoit J Gentil
- Department of Neurology/Neurosurgery and Montreal Neurological Institute, Montreal, QC, Canada.
| | | | | |
Collapse
|
169
|
Park E, Eisen R, Kinio A, Baker AJ. Electrophysiological white matter dysfunction and association with neurobehavioral deficits following low-level primary blast trauma. Neurobiol Dis 2013; 52:150-9. [PMID: 23238347 DOI: 10.1016/j.nbd.2012.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/02/2012] [Accepted: 12/03/2012] [Indexed: 01/31/2023] Open
Affiliation(s)
- Eugene Park
- Keenan Research Centre in the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, ON, Canada.
| | | | | | | |
Collapse
|
170
|
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY 10962, USA.
| | | | | | | |
Collapse
|
171
|
Merlin isoform 2 in neurofibromatosis type 2-associated polyneuropathy. Nat Neurosci 2013; 16:426-33. [PMID: 23455610 DOI: 10.1038/nn.3348] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/30/2013] [Indexed: 11/09/2022]
Abstract
The autosomal dominant disorder neurofibromatosis type 2 (NF2) is a hereditary tumor syndrome caused by inactivation of the NF2 tumor suppressor gene, encoding merlin. Apart from tumors affecting the peripheral and central nervous systems, most NF2 patients develop peripheral neuropathies. This peripheral nerve disease can occur in the absence of nerve-damaging tumors, suggesting an etiology that is independent of gross tumor burden. We discovered that merlin isoform 2 (merlin-iso2) has a specific function in maintaining axonal integrity and propose that reduced axonal NF2 gene dosage leads to NF2-associated polyneuropathy. We identified a merlin-iso2-dependent complex that promotes activation of the GTPase RhoA, enabling downstream Rho-associated kinase to promote neurofilament heavy chain phosphorylation. Merlin-iso2-deficient mice exhibited impaired locomotor capacities, delayed sensory reactions and electrophysiological signs of axonal neuropathy. Sciatic nerves from these mice and sural nerve biopsies from NF2 patients revealed reduced phosphorylation of the neurofilament H subunit, decreased interfilament spacings and irregularly shaped axons.
Collapse
|
172
|
Spatiotemporal resolution of BDNF neuroprotection against glutamate excitotoxicity in cultured hippocampal neurons. Neuroscience 2013; 237:66-86. [PMID: 23384605 DOI: 10.1016/j.neuroscience.2013.01.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/28/2013] [Indexed: 02/02/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) protects hippocampal neurons from glutamate excitotoxicity as determined by analysis of chromatin condensation, through activation of extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3-K) signaling pathways. However, it is still unknown whether BDNF also prevents the degeneration of axons and dendrites, and the functional demise of synapses, which would be required to preserve neuronal activity. Herein, we have studied the time-dependent changes in several neurobiological markers, and the regulation of proteolytic mechanisms in cultured rat hippocampal neurons, through quantitative western blot and immunocytochemistry. Calpain activation peaked immediately after the neurodegenerative input, followed by a transient increase in ubiquitin-conjugated proteins and increased abundance of cleaved-caspase-3. Proteasome and calpain inhibition did not reproduce the protective effect of BDNF and caspase inhibition in preventing chromatin condensation. However, proteasome and calpain inhibition did protect the neuronal markers for dendrites (MAP-2), axons (Neurofilament-H) and the vesicular glutamate transporters (VGLUT1-2), whereas caspase inhibition was unable to mimic the protective effect of BDNF on neurites and synaptic markers. BDNF partially prevented the downregulation of synaptic activity measured by the KCl-evoked glutamate release using a Förster (Fluorescence) resonance energy transfer (FRET) glutamate nanosensor. These results translate a time-dependent activation of proteases and spatial segregation of these mechanisms, where calpain activation is followed by proteasome deregulation, from neuronal processes to the soma, and finally by caspase activation in the cell body. Moreover, PI3-K and PLCγ small molecule inhibitors significantly blocked the protective action of BDNF, suggesting an activity-dependent mechanism of neuroprotection. Ultimately, we hypothesize that neuronal repair after a degenerative insult is initiated at the synaptic level.
Collapse
|
173
|
Fressinaud C, Eyer J. Axoskeletal proteins prevent oligodendrocyte from toxic injury by upregulating survival, proliferation, and differentiation in vitro. Neurochem Int 2013; 62:306-13. [DOI: 10.1016/j.neuint.2012.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022]
|
174
|
Lee J, Kim S, Chang R, Jayanthi L, Gebremichael Y. Effects of molecular model, ionic strength, divalent ions, and hydrophobic interaction on human neurofilament conformation. J Chem Phys 2013; 138:015103. [DOI: 10.1063/1.4773297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
175
|
|
176
|
Heimfarth L, Loureiro SO, Dutra MF, Petenuzzo L, de Lima BO, Fernandes CG, da Rocha JBT, Pessoa-Pureur R. Disrupted cytoskeletal homeostasis, astrogliosis and apoptotic cell death in the cerebellum of preweaning rats injected with diphenyl ditelluride. Neurotoxicology 2013. [DOI: 10.1016/j.neuro.2012.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
177
|
Cassereau J, Nicolas G, Lonchampt P, Pinier M, Barthelaix A, Eyer J, Letournel F. Axonal regeneration is compromised in NFH-LacZ transgenic mice but not in NFH-GFP mice. Neuroscience 2013; 228:101-8. [DOI: 10.1016/j.neuroscience.2012.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 11/26/2022]
|
178
|
Jayanthi L, Stevenson W, Kwak Y, Chang R, Gebremichael Y. Conformational properties of interacting neurofilaments: Monte Carlo simulations of cylindrically grafted apposing neurofilament brushes. J Biol Phys 2012; 39:343-62. [PMID: 23860913 DOI: 10.1007/s10867-012-9293-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/04/2012] [Indexed: 10/27/2022] Open
Abstract
Neurofilaments are essential cytoskeletal filaments that impart mechanical stability to axons. They are mostly assembled from three neurofilament proteins that form the core of the filament and its sidearms. Adjacent neurofilaments interact with each other through their apposing sidearms and attain unique conformations depending on the ionic condition, phosphorylation state, and interfilament separations. To understand the conformational properties of apposing sidearms under various conditions and gain insight into interfilament interactions, we performed Monte Carlo simulations of neurofilament pairs. We employed a sequence-based coarse-grained model of apposing NF sidearms that are end-tethered to cylindrical geometries according to the stoichiometry of the three neurofilament subunits. Monte Carlo simulations were conducted under different conditions such as phosphorylation state, ionic condition, and interfilament separations. Under salt-free conditions, apposing sidearms are found to adopt mutually excluding stretched but bent away conformations that are reminiscent of a repulsive type of interaction. Under physiological conditions, apposing sidearms are found to be in a coiled conformation, suggesting a short-range steric repulsive type of interaction. Increased sidearm mutual interpenetration and a simultaneous decrease in the individual brush heights were observed as the interfilament separation was reduced from 60 to 40 nm. The observed conformations suggest entropic interaction as a likely mechanism for sidearm-mediated interfilament interactions under physiological conditions.
Collapse
Affiliation(s)
- Lakshmi Jayanthi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
179
|
Berges R, Balzeau J, Takahashi M, Prevost C, Eyer J. Structure-function analysis of the glioma targeting NFL-TBS.40-63 peptide corresponding to the tubulin-binding site on the light neurofilament subunit. PLoS One 2012; 7:e49436. [PMID: 23152907 PMCID: PMC3494675 DOI: 10.1371/journal.pone.0049436] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 10/08/2012] [Indexed: 11/23/2022] Open
Abstract
We previously reported that a 24 amino acid peptide (NFL-TBS.40-63) corresponding to the tubulin-binding site located on the light neurofilament subunit, selectively enters in glioblastoma cells where it disrupts their microtubule network and inhibits their proliferation. Here, we analyzed the structure-function relationships using an alanine-scanning strategy, in order to identify residues essential for these biological activities. We showed that the majority of modified peptides present a decreased or total loss to penetrate in these cells, or to alter microtubules. Correspondingly, circular dichroism measurements showed that this peptide forms either β-sheet or α-helix structures according to the solvent and that alanine substitution modified or destabilized the structure, in relation with changes in the biological activities. Moreover, substitution of serine residues by phosphoserine or aspartic acid concomitantly decreased the cell penetrating activity and the structure stability. These results indicate the importance of structure for the activities, including selectivity to glioblastoma cells of this peptide, and its regulation by phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | - Joel Eyer
- Laboratoire de Neurobiologie & Transgenèse, UPRES EA 3143, INSERM, Centre Hospitalier Universitaire, Angers, France
- * E-mail:
| |
Collapse
|
180
|
Brown A, Jung P. A critical reevaluation of the stationary axonal cytoskeleton hypothesis. Cytoskeleton (Hoboken) 2012; 70:1-11. [PMID: 23027591 DOI: 10.1002/cm.21083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/13/2012] [Accepted: 09/24/2012] [Indexed: 01/05/2023]
Abstract
Neurofilaments are transported along axons in a rapid intermittent and bidirectional manner but there is a long-standing controversy about whether this applies to all axonal neurofilaments. Some have proposed that only a small proportion of axonal neurofilaments are mobile and that most are deposited into a persistently stationary and extensively cross-linked cytoskeleton that remains fixed in place for many months without movement, turning over very slowly. In contrast, others have proposed that this hypothesis is based on a misinterpretation of the experimental data and that, in fact, all axonal neurofilaments move. These contrary perspectives have distinct implications for our understanding of how neurofilaments are organized and reorganized in axons both in health and disease. Here, we discuss the history and substance of this controversy. We show that the published data on the kinetics and distribution of neurofilaments along axons favor a simple "stop and go" transport model in which axons contain a single population of neurofilaments that all move in a stochastic, bidirectional and intermittent manner. Based on these considerations, we propose a dynamic view of the neuronal cytoskeleton in which all neurofilaments cycle repeatedly between moving and pausing states throughout their journey along the axon. The filaments move infrequently, but the average pause duration is on the order of hours rather than weeks or months. Against this fluid backdrop, the action of molecular motors on neurofilaments can have dramatic effects on neurofilament organization that would not be possible if the neurofilaments were extensively cross-linked into a truly stationary network.
Collapse
Affiliation(s)
- Anthony Brown
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
181
|
Gold M, Pul R, Bach JP, Stangel M, Dodel R. Pathogenic and physiological autoantibodies in the central nervous system. Immunol Rev 2012; 248:68-86. [PMID: 22725955 DOI: 10.1111/j.1600-065x.2012.01128.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this article, we review the current knowledge on pathological and physiological autoantibodies directed toward structures in the central nervous system (CNS) with an emphasis on their regulation and origin. Pathological autoantibodies in the CNS that are associated with autoimmunity often lead to severe neurological deficits via inflammatory processes such as encephalitis. In some instances, however, autoantibodies function as a marker for diagnostic purposes without contributing to the pathological process and/or disease progression. The existence of naturally occurring physiological autoantibodies has been known for a long time, and their role in maintaining homeostasis is well established. Within the brain, naturally occurring autoantibodies targeting aggregated proteins have been detected and might be promising candidates for new therapeutic approaches for neurodegenerative disorders. Further evidence has demonstrated the existence of naturally occurring antibodies targeting antigens on neurons and oligodendrocytes that promote axonal outgrowth and remyelination. The numerous actions of physiological autoantibodies as well as their regulation and origin are summarized in this review.
Collapse
Affiliation(s)
- Maike Gold
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | | | | | | | | |
Collapse
|
182
|
Zanatta L, Goulart PB, Gonçalves R, Pierozan P, Winkelmann-Duarte EC, Woehl VM, Pessoa-Pureur R, Silva FRMB, Zamoner A. 1α,25-Dihydroxyvitamin D3 mechanism of action: Modulation of L-type calcium channels leading to calcium uptake and intermediate filament phosphorylation in cerebral cortex of young rats. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1708-19. [DOI: 10.1016/j.bbamcr.2012.06.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 12/22/2022]
|
183
|
Redler RL, Dokholyan NV. The complex molecular biology of amyotrophic lateral sclerosis (ALS). PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:215-62. [PMID: 22482452 DOI: 10.1016/b978-0-12-385883-2.00002-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder that causes selective death of motor neurons followed by paralysis and death. A subset of ALS cases is caused by mutations in the gene for Cu, Zn superoxide dismutase (SOD1), which impart a toxic gain of function to this antioxidant enzyme. This neurotoxic property is widely believed to stem from an increased propensity to misfold and aggregate caused by decreased stability of the native homodimer or a tendency to lose stabilizing posttranslational modifications. Study of the molecular mechanisms of SOD1-related ALS has revealed a complex array of interconnected pathological processes, including glutamate excitotoxicity, dysregulation of neurotrophic factors and axon guidance proteins, axonal transport defects, mitochondrial dysfunction, deficient protein quality control, and aberrant RNA processing. Many of these pathologies are directly exacerbated by misfolded and aggregated SOD1 and/or cytosolic calcium overload, suggesting the primacy of these events in disease etiology and their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rachel L Redler
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
184
|
Guzmán-Soto I, Salinas E, Hernández-Jasso I, Quintanar JL. Leuprolide acetate, a GnRH agonist, improves experimental autoimmune encephalomyelitis: a possible therapy for multiple sclerosis. Neurochem Res 2012; 37:2190-7. [PMID: 22832949 DOI: 10.1007/s11064-012-0842-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/29/2012] [Accepted: 07/12/2012] [Indexed: 12/13/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH), a well known hypothalamic neuropeptide, has been reported to possess neurotrophic properties. Leuprolide acetate, a synthetic analogue of GnRH is considered to be a very safe and tolerable drug and it has been used for diverse clinical applications, including the treatment of prostate cancer, endometriosis, uterine fibroids, central precocious puberty and in vitro fertilization techniques. The present study was designed to determine whether Leuprolide acetate administration, exerts neurotrophic effects on clinical signs, body weight gain, neurofilaments (NFs) and myelin basic protein (MBP) expression, axonal morphometry and cell infiltration in spinal cord of experimental autoimmune encephalomyelitis (EAE) rats. In this work, we have found that Leuprolide acetate treatment decreases the severity of clinical signs of locomotion, induces a significantly greater body weight gain, increases the MBP and NFs expression, axonal area and cell infiltration in EAE animals. These results suggest the use of this agonist as a potential therapeutic approach for multiple sclerosis.
Collapse
Affiliation(s)
- Irene Guzmán-Soto
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, C.P. 20131 Aguascalientes, Mexico
| | | | | | | |
Collapse
|
185
|
Lu CH, Petzold A, Kalmar B, Dick J, Malaspina A, Greensmith L. Plasma neurofilament heavy chain levels correlate to markers of late stage disease progression and treatment response in SOD1(G93A) mice that model ALS. PLoS One 2012; 7:e40998. [PMID: 22815892 PMCID: PMC3397981 DOI: 10.1371/journal.pone.0040998] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/15/2012] [Indexed: 12/13/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder characterised by progressive degeneration of motor neurons leading to death, typically within 3–5 years of symptom onset. The diagnosis of ALS is largely reliant on clinical assessment and electrophysiological findings. Neither specific investigative tools nor reliable biomarkers are currently available to enable an early diagnosis or monitoring of disease progression, hindering the design of treatment trials. Methodology/Principal Findings In this study, using the well-established SOD1G93A mouse model of ALS and a new in-house ELISA method, we have validated that plasma neurofilament heavy chain protein (NfH) levels correlate with both functional markers of late stage disease progression and treatment response. We detected a significant increase in plasma levels of phosphorylated NfH during disease progression in SOD1G93A mice from 105 days onwards. Moreover, increased plasma NfH levels correlated with the decline in muscle force, motor unit survival and, more significantly, with the loss of spinal motor neurons in SOD1 mice during this critical period of decline. Importantly, mice treated with the disease modifying compound arimoclomol had lower plasma NfH levels, suggesting plasma NfH levels could be validated as an outcome measure for treatment trials. Conclusions/Significance These results show that plasma NfH levels closely reflect later stages of disease progression and therapeutic response in the SOD1G93A mouse model of ALS and may potentially be a valuable biomarker of later disease progression in ALS.
Collapse
Affiliation(s)
- Ching-Hua Lu
- Sobell Department of Motor Neuroscience and Movement Disorders, MRC Centre for Neuromuscular Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
- Trauma and Neuroscience Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Axel Petzold
- Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
- VU Medical Centre, Dept. of Neurology, Amsterdam, The Netherlands
| | - Bernadett Kalmar
- Sobell Department of Motor Neuroscience and Movement Disorders, MRC Centre for Neuromuscular Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
| | - James Dick
- Sobell Department of Motor Neuroscience and Movement Disorders, MRC Centre for Neuromuscular Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Andrea Malaspina
- Trauma and Neuroscience Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- North-East London and Essex MND Care and Research Centre, London, United Kingdom
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, MRC Centre for Neuromuscular Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
186
|
Kreutzer M, Seehusen F, Kreutzer R, Pringproa K, Kummerfeld M, Claus P, Deschl U, Kalkul A, Beineke A, Baumgärtner W, Ulrich R. Axonopathy is associated with complex axonal transport defects in a model of multiple sclerosis. Brain Pathol 2012; 22:454-71. [PMID: 21988534 PMCID: PMC8092950 DOI: 10.1111/j.1750-3639.2011.00541.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 09/08/2011] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease characterized by myelin and axonal pathology. In a viral model of MS, we tested whether axonopathy initiation and development are based on an impaired transport of neurofilaments. Spinal cords of Theiler's murine encephalomyelitis virus (TMEV)-infected and mock-infected mice and TMEV infected neuroblastoma N1E-115 cells were analyzed by microarray analysis, light microscopy and electron and laser confocal microscopy. In vivo axonal accumulation of non-phosphorylated neurofilaments after TMEV infection revealed a temporal development caused by the impairments of the axonal traffic consisting of the downregulation of kinesin family member 5A, dynein cytoplasmic heavy chain 1, tau-1 and β-tubulin III expression. In addition, alterations of the protein metabolism were also noticed. In vitro, the TMEV-infected N1E-115 cells developed tandem-repeated swellings similar to in vivo alterations. Furthermore, the hypothesis of an underlying axonal self-destruction program involving nicotinamide adenine dinucleotide depletion was supported by molecular findings. The obtained data indicate that neurofilament accumulation in TME is mainly the result of dysregulation of their axonal transport machinery and impairment of neurofilament phosphorylation and protein metabolism. The present findings allow a more precise understanding of the complex interactions responsible for initiation and development of axonopathies in inflammatory degenerative diseases.
Collapse
Affiliation(s)
- Mihaela Kreutzer
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Frauke Seehusen
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Robert Kreutzer
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Kidsadagorn Pringproa
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Maren Kummerfeld
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Peter Claus
- Center for Systems Neuroscience, Hannover, Germany
- Department of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Ulrich Deschl
- Boehringer Ingelheim Pharma GmbH&Co KG, Department of Non‐Clinical Drug Safety, Biberach (Riß), Germany
| | - Arno Kalkul
- Boehringer Ingelheim Pharma GmbH&Co KG, Department of Non‐Clinical Drug Safety, Biberach (Riß), Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
187
|
Taylor NJ, Wang L, Brown A. Neurofilaments are flexible polymers that often fold and unfold, but they move in a fully extended configuration. Cytoskeleton (Hoboken) 2012; 69:535-44. [PMID: 22693112 DOI: 10.1002/cm.21039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 01/29/2023]
Abstract
Time-lapse imaging of neurofilaments in axons of cultured nerve cells has demonstrated that these cytoskeletal polymers move along microtubule tracks in both anterograde and retrograde directions, powered by microtubule motors. The filaments exhibit short bouts of rapid intermittent movement interrupted by prolonged pauses, and the average velocity is slow because they spend most of their time pausing. Here, we show that axonal neurofilaments are also very flexible and frequently exhibit complex and dynamic folding and unfolding behaviors while they are pausing. Remarkably, however, when the filaments move in a sustained manner, we find that they always adopt an unfolded, that is, fully extended configuration, and this applies to movement in both anterograde and retrograde directions. Given the flexibility of neurofilament polymers and the apparent ease with which they can fold back on themselves, the fact that they move in a fully extended configuration suggests that moving neurofilaments may be pulled from their leading end. Thus, we speculate that motors may bind to the leading ends of neurofilaments polymers during both anterograde and retrograde motion.
Collapse
Affiliation(s)
- Nicholas J Taylor
- Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
188
|
Tortelli R, Ruggieri M, Cortese R, D'Errico E, Capozzo R, Leo A, Mastrapasqua M, Zoccolella S, Leante R, Livrea P, Logroscino G, Simone IL. Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur J Neurol 2012; 19:1561-7. [DOI: 10.1111/j.1468-1331.2012.03777.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/24/2012] [Indexed: 12/13/2022]
Affiliation(s)
- R. Tortelli
- Department of Neurosciences and Sense Organs; University of Bari; Policlinico Bari Italy
| | - M. Ruggieri
- Department of Neurosciences and Sense Organs; University of Bari; Policlinico Bari Italy
| | - R. Cortese
- Department of Neurosciences and Sense Organs; University of Bari; Policlinico Bari Italy
| | - E. D'Errico
- Department of Neurosciences and Sense Organs; University of Bari; Policlinico Bari Italy
| | - R. Capozzo
- Department of Neurosciences and Sense Organs; University of Bari; Policlinico Bari Italy
| | - A. Leo
- Department of Neurosciences and Sense Organs; University of Bari; Policlinico Bari Italy
| | - M. Mastrapasqua
- Department of Neurosciences and Sense Organs; University of Bari; Policlinico Bari Italy
| | - S. Zoccolella
- Department of Neurosciences and Sense Organs; University of Bari; Policlinico Bari Italy
| | - R. Leante
- Department of Neurosciences and Sense Organs; University of Bari; Policlinico Bari Italy
| | - P. Livrea
- Department of Neurosciences and Sense Organs; University of Bari; Policlinico Bari Italy
| | - G. Logroscino
- Department of Neurosciences and Sense Organs; University of Bari; Policlinico Bari Italy
| | - I. L. Simone
- Department of Neurosciences and Sense Organs; University of Bari; Policlinico Bari Italy
| |
Collapse
|
189
|
Gentil BJ, Cooper L. Molecular basis of axonal dysfunction and traffic impairments in CMT. Brain Res Bull 2012; 88:444-53. [PMID: 22595495 DOI: 10.1016/j.brainresbull.2012.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 05/01/2012] [Accepted: 05/04/2012] [Indexed: 12/17/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common inherited neurological disorders. It comprises a group of diseases caused by mutations in genes involved in Schwann cells homeostasis and neuronal function that affect the peripheral nerves. So far mutations in more than 33 genes have been identified causing either the demyelinating form (CMT1) or the axonal form (CMT2). Genes involving a large variety of unrelated functions may lead to the same phenotype when mutated. Our review will focus on the common link between genes causing axonal phenotypes like MFN2, KIF1B, DYNC1H1, Rab7, TRPV4, ARSs, NEFL, HSPB1, MPZ, and HSPB8. While KIF1B and DYNC1H1, two genes coding for molecular motors, are directly linked to axonal transport, the involvement of the other CMT2-causing genes in this function is less obvious. However, the last years have seen a growing list of evidence demonstrating that intracellular trafficking and mitochondrial dynamics might be dysfunctional in CMT2, and these mechanisms might present a common link between dissimilar CMT2-causing genes. The involvement of impaired transport in the pathogenesis of other rare neurological diseases or recessive CMT2 is also discussed.
Collapse
Affiliation(s)
- Benoit J Gentil
- Department of Neurology/Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4 Canada.
| | | |
Collapse
|
190
|
Garcia PC, Real CC, Ferreira AF, Alouche SR, Britto LR, Pires RS. Different protocols of physical exercise produce different effects on synaptic and structural proteins in motor areas of the rat brain. Brain Res 2012; 1456:36-48. [DOI: 10.1016/j.brainres.2012.03.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/13/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
|
191
|
Calderón-Vallejo D, Quintanar JL. Gonadotropin-releasing hormone treatment improves locomotor activity, urinary function and neurofilament protein expression after spinal cord injury in ovariectomized rats. Neurosci Lett 2012; 515:187-90. [DOI: 10.1016/j.neulet.2012.03.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/02/2012] [Accepted: 03/18/2012] [Indexed: 11/29/2022]
|
192
|
Rejdak K, Kuhle J, Rüegg S, Lindberg RLP, Petzold A, Sulejczak D, Papuc E, Rejdak R, Stelmasiak Z, Grieb P. Neurofilament heavy chain and heat shock protein 70 as markers of seizure-related brain injury. Epilepsia 2012; 53:922-7. [PMID: 22509781 DOI: 10.1111/j.1528-1167.2012.03459.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Status epilepticus (SE) has deleterious effects on brain tissue, but whether brief recurrent seizures may also damage neurons represents a matter of controversy. Therefore, it remains a central area of epilepsy research to identify individuals at risk where disease progression can be potentially prevented. Biomarkers may serve as tools for such identification. Thus the present study aimed at analyzing the levels of heat shock protein 70 (HSP-70, also designated as HSPA1A) and neurofilament heavy chain protein (NfH(SMI35) ) in cerebrospinal fluid (CSF) of patients with seizures of different severity. METHODS Forty-one patients were included, of whom 20 patients had a single generalized tonic-clonic seizure (GTCS) episode (SS), 11 had repetitive GTCS (RS), and 10 experienced convulsive SE. The control group consisted of 18 subjects. HSP-70 levels were measured using a conventional enzyme-linked immunosorbent assay (ELISA), whereas the NfH(SMI35) protein levels were detected by an electrochemiluminescence (ECL) immunoassay. KEY FINDINGS Patients with SE (p < 0.001) and RS (p < 0.05) had significantly higher NfH(SMI35) levels than controls, and SE was associated with increased concentrations when compared with SS (p < 0.001). NfH(SMI35) levels in SS did not differ from controls. Patients with SE had significantly raised HSP-70 levels compared to RS (p < 0.05), SS (p < 0.05), and controls (p < 0.001). SS and RS did not differ from each or from controls. Levels of NfH(SMI35) and HSP-70 showed a significant correlation (r = 0.34; p = 0.007) in the group of all study subjects, which was not apparent when controls and patients with seizures were considered separately. The correlation between NfH(SMI35) and HSP-70 tended to be inverse in patients with SE, but it did not reach statistical significance (r = -0.3; p > 0.05). SIGNIFICANCE Studying biochemical markers as additional quantitative tools for the measurement of neuronal damage (especially subclinical), complementary to available techniques of imaging, and clinical assessment might prove useful for identifying patients at risk of accumulating neuronal injury resulting from uncontrolled seizures. NfH(SMI35) and HSP-70 are of potential value as sensitive and specific biomarkers of seizure-related pathologic events. Future longitudinal studies are needed to monitor such patients by correlating biochemical, neuroimaging, and clinical methods of assessment.
Collapse
Affiliation(s)
- Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Jaczewskiego 8, Lublin, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Axonal transport of neurofilaments: a single population of intermittently moving polymers. J Neurosci 2012; 32:746-58. [PMID: 22238110 DOI: 10.1523/jneurosci.4926-11.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Studies on mouse optic nerve have led to the controversial proposal that only a small proportion of neurofilaments are transported in axons and that the majority are deposited into a persistently stationary and extensively cross-linked cytoskeletal network that remains fixed in place for months without movement. We have used computational modeling to address this issue, taking advantage of the wealth of published kinetic and morphometric data available for neurofilaments in the mouse visual system. We show that the transport kinetics and distribution of neurofilaments in mouse optic nerve can all be explained fully by a "stop-and-go" model of neurofilament transport, in which axons contain a single population of neurofilaments that all move stochastically in a rapid, intermittent, and bidirectional manner. Importantly, we find that the transport kinetics are not consistent with deposition of neurofilaments into a persistently stationary phase, and that deposition models cannot account for the observed distribution of neurofilaments along mouse optic nerve axons. Finally, we show that the apparent existence of a stationary neurofilament network in mouse optic nerve is most likely an experimental artifact due to contamination of the neurofilament transport kinetics with cytosolic proteins that move at faster rates. Thus, there is no evidence for the deposition of axonally transported neurofilaments into a persistently stationary neurofilament network in optic nerve axons. We conclude that all of the neurofilaments move and that they do so with a single broad and continuous distribution of average rates that is dictated by their intermittent and stochastic motile behavior.
Collapse
|
194
|
Kang JH. Salsolinol, a tetrahydroisoquinoline-derived neurotoxin, induces oxidative modification of neurofilament-L: protection by histidyl dipeptides. BMB Rep 2012; 45:114-9. [DOI: 10.5483/bmbrep.2012.45.2.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
195
|
Cantuti-Castelvetri L, Zhu H, Givogri MI, Chidavaenzi RL, Lopez-Rosas A, Bongarzone ER. Psychosine induces the dephosphorylation of neurofilaments by deregulation of PP1 and PP2A phosphatases. Neurobiol Dis 2012; 46:325-35. [PMID: 22326830 DOI: 10.1016/j.nbd.2012.01.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 01/16/2012] [Accepted: 01/26/2012] [Indexed: 11/25/2022] Open
Abstract
Patients with Krabbe disease, a genetic demyelinating syndrome caused by deficiency of galactosyl-ceramidase and the resulting accumulation of galactosyl-sphingolipids, develop signs of a dying-back axonopathy compounded by a deficiency of large-caliber axons. Here, we show that axonal caliber in Twitcher mice, an animal model for Krabbe disease, is impaired in peripheral axons and is accompanied by a progressive reduction in the abundance and phosphorylation of the three neurofilament (NF) subunits. These changes correlate with an increase in the density of NFs per cross-sectional area in numerous mutant peripheral axons and abnormal increases in the activity of two serine/threonine phosphatases (PP1 and PP2A) in mutant tissue. Similarly, acutely isolated mutant cortical neurons show abnormal phosphorylation of NFs. Psychosine, the neurotoxin accumulated in Krabbe disease, was sufficient to induce abnormal dephosphorylation of NF subunits in a normal motor neuron cell line as well as in acutely isolated normal cortical neurons. This in vitro effect was mediated by PP1 and PP2A, which specifically dephosphorylated NFs. These results demonstrate that the reduced caliber observed in some axons in Krabbe disease involves abnormal dephosphorylation of NFs. We propose that a psychosine-driven pathogenic mechanism through deregulated phosphotransferase activities may be involved in this process.
Collapse
|
196
|
Al-Hasani OH, Smith C. Traumatic white matter injury and toxic leukoencephalopathies. Expert Rev Neurother 2012; 11:1315-24. [PMID: 21864077 DOI: 10.1586/ern.11.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
White matter injury may be secondary to a range of neurodegenerative disorders, such as the common dementing disorders of the elderly, or may be a consequence of specific white matter disorders, such as multiple sclerosis and the rare leukodystrophies. This article will focus on two relatively common primary groups of disorders of the white matter, traumatic white matter injury and toxic leukoencephalopathies. Traumatic axonal injury may be focal or diffuse, and is associated with a clinical spectrum ranging from concussion through to coma and death. The molecular mechanisms underlying axonal degeneration secondary to traumatic axonal degeneration are being elucidated and may give an insight into potential therapeutic targets. Toxic leukoencephalopathy may be secondary to exposure to a wide range of compounds, including chemotherapeutic drugs. These toxins may produce white matter injury through a range of mechanisms, and the potential toxic effects of compounds need to be considered when assessing a patient with a nonspecific leukoencephalopathy.
Collapse
Affiliation(s)
- Omer Hussain Al-Hasani
- University Department of Pathology, University of Edinburgh, Wilkie Building, Teviot Place, Edinburgh, EH8 9AG, UK
| | | |
Collapse
|
197
|
Neurofilament heavy chain expression reveals a unique parasagittal stripe topography in the mouse cerebellum. THE CEREBELLUM 2012; 10:409-21. [PMID: 20127431 DOI: 10.1007/s12311-010-0156-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the general uniformity in cellular composition of the adult cerebellum (Cb), the expression of proteins such as ZebrinII/AldolaseC and the small heat shock protein HSP25 reveal striking patterns of parasagittal Purkinje cell (PC) stripes. Based on differences in the stripe configuration within subsets of lobules, the Cb can be further divided into four anterior-posterior transverse zones: anterior zone (AZ) = lobules I-V, central zone (CZ) = lobules VI-VII, posterior zone (PZ) = lobules VIII and anterior IX, and the nodular zone (NZ) = lobules posterior IX-X. Here we used whole-mount and tissue section immunohistochemistry to show that neurofilament heavy chain (NFH) expression alone divides all lobules of the mouse Cb into a complex series of parasagittal stripes of PCs. We revealed that the striped pattern of NFH in the vermis of the AZ and PZ was complementary to ZebrinII and phospholipase C ß3 (PLCß3), and corresponded to phospholipase C ß4 (PLCß4). In the CZ and NZ the stripe pattern of NFH was complementary to HSP25 and corresponded to PLCß3. The boundaries of the NFH stripes were not always sharply delineated. Instead, a gradual decrease in NFH expression was observed toward the edges of particular stripes, resulting in domains comprised of overlapping expression patterns. Furthermore, the terminal field distributions of mossy and climbing fibers had a complex but consistent topographical alignment with NFH stripes. In summary, NFH expression reveals an exquisite level of Cb stripe complexity that respects the transverse zone divisions and delineates an intricately patterned target field for Cb afferents.
Collapse
|
198
|
Olea E, Gaytan SP, Obeso A, Gonzalez C, Pasaro R. Interactions between postnatal sustained hypoxia and intermittent hypoxia in the adulthood to alter brainstem structures and respiratory function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 758:225-31. [PMID: 23080166 DOI: 10.1007/978-94-007-4584-1_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neural plasticity is defined as a persistent change in the morphology and/or function based on prior experiences. Plasticity is well evident when the triggering experience occurs early in life, but in the case of respiratory control plasticity, it also can be triggered in adult life. We have combined a 10 days postnatal hypoxic (PH) (0-10 days of age;11% O(2)) and a 15 days intermittent hypoxia (IH) exposures in the adulthood (90-105 days of age; 5% O(2), 40 s/20% O(2), 80 s; 8 h/day) to test if early PH interacts with IH of the adulthood to generate detrimental plastic changes. After recording of ventilatory parameters, the brains were studied immunocytochemically for localization of the organization pattern of non-phosphorylated subunit of neurofilament H (NFH) and tyrosine hydroxylase (TH) expression in the nucleus tractus solitarius (Sol) and caudal (CVL) and rostral ventrolateral reticular (RVL) nuclei, areas related to central cardio-respiratory regulation. In comparison to control, PH male rats (but not females) at 1 month of age hyperventilated at rest, in response to moderate hypoxia (12% O(2)) and 5% CO(2), the effect being due to increased tidal volume. At 3.5 months sex differences in ventilation disappeared and it was indistinguishable between control and PH. IH tended to decrease ventilation in both control (C) and PH animals. PH augmented PENH values in air and in hypoxic conditions when compared with C group. IH in both groups, tended to decrease the PENH value, being statistically different in PH+IH. Results also show an increment of disorganization of NFH-positive labeled structures at the level of Sol and CVL/RVL nuclei in PH, IH and HP+HI groups. PH rats showed differences in the number of TH-positive neurons at the level of CVL/RVL nuclei, which was increased in the PH and PH+IH groups with respect to C one. In conclusion, PH alters the central morpho-physiological organization and the catecholaminergic components of cardio-respiratory nuclei, whose effects were enhanced after a period of IH in the adulthood.
Collapse
Affiliation(s)
- Elena Olea
- Department of Biochemistry and Molecular Biology, University of Valladolid School of Medicine, Spain
| | | | | | | | | |
Collapse
|
199
|
Fressinaud C, Berges R, Eyer J. Axon cytoskeleton proteins specifically modulate oligodendrocyte growth and differentiation in vitro. Neurochem Int 2012; 60:78-90. [DOI: 10.1016/j.neuint.2011.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/26/2011] [Accepted: 10/26/2011] [Indexed: 12/19/2022]
|
200
|
Yuan L, Zheng YF, Zhu J, Wang L, Brown A. Object tracking with particle filtering in fluorescence microscopy images: application to the motion of neurofilaments in axons. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:117-30. [PMID: 21859599 PMCID: PMC3434708 DOI: 10.1109/tmi.2011.2165554] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Neurofilaments are long flexible cytoplasmic protein polymers that are transported rapidly but intermittently along the axonal processes of nerve cells. Current methods for studying this movement involve manual tracking of fluorescently tagged neurofilament polymers in videos acquired by time-lapse fluorescence microscopy. Here, we describe an automated tracking method that uses particle filtering to implement a recursive Bayesian estimation of the filament location in successive frames of video sequences. To increase the efficiency of this approach, we take advantage of the fact that neurofilament movement is confined within the boundaries of the axon. We use piecewise cubic spline interpolation to model the path of the axon and then we use this model to limit both the orientation and location of the neurofilament in the particle tracking algorithm. Based on these two spatial constraints, we develop a prior dynamic state model that generates significantly fewer particles than generic particle filtering, and we select an adequate observation model to produce a robust tracking method. We demonstrate the efficacy and efficiency of our method by performing tracking experiments on real time-lapse image sequences of neurofilament movement, and we show that the method performs well compared to manual tracking by an experienced user. This spatially constrained particle filtering approach should also be applicable to the movement of other axonally transported cargoes.
Collapse
Affiliation(s)
- Liang Yuan
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yuan F. Zheng
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, 43210 USA
| | - Junda Zhu
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Lina Wang
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210 USA
| | - A. Brown
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210 USA
| |
Collapse
|