151
|
Flejter WL, McDaniel LD, Johns D, Friedberg EC, Schultz RA. Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: involvement of the human ERCC2 DNA repair gene. Proc Natl Acad Sci U S A 1992; 89:261-5. [PMID: 1729695 PMCID: PMC48216 DOI: 10.1073/pnas.89.1.261] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cultured cells from individuals afflicted with the genetically heterogeneous autosomal recessive disorder xeroderma pigmentosum (XP) exhibit sensitivity to UV radiation and defective nucleotide excision repair. Complementation of these mutant phenotypes after the introduction of single human chromosomes from repair-proficient cells into XP cells has provided a means of mapping the genes involved in this disease. We now report the phenotypic correction of XP cells from genetic complementation group D (XP-D) by a single human chromosome designated Tneo. Detailed molecular characterization of Tneo revealed a rearranged structure involving human chromosomes 16 and 19, including the excision repair cross-complementing 2 (ERCC2) gene from the previously described human DNA repair gene cluster at 19q13.2-q13.3. Direct transfer of a cosmid bearing the ERCC2 gene conferred UV resistance to XP-D cells.
Collapse
Affiliation(s)
- W L Flejter
- Division of Human Genetics, University of Maryland, Baltimore 21201
| | | | | | | | | |
Collapse
|
152
|
Barnes DE, Kodama K, Tynan K, Trask BJ, Christensen M, De Jong PJ, Spurr NK, Lindahl T, Mohrenweiser HW. Assignment of the gene encoding DNA ligase I to human chromosome 19q13.2-13.3. Genomics 1992; 12:164-6. [PMID: 1733856 DOI: 10.1016/0888-7543(92)90422-o] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The gene encoding DNA ligase I has been mapped on human chromosome 19 by analysis of rodent-human somatic cell hybrids informative for this chromosome and by two-color fluorescence in situ hybridization. The DNA ligase I gene (LIG1) is localized to 19q13.2-13.3 and is distal to ERCC1, the most telomeric of three DNA repair genes on this chromosome.
Collapse
Affiliation(s)
- D E Barnes
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Bailly V, Sung P, Prakash L, Prakash S. DNA.RNA helicase activity of RAD3 protein of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1991; 88:9712-6. [PMID: 1719538 PMCID: PMC52789 DOI: 10.1073/pnas.88.21.9712] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The RAD3 gene of Saccharomyces cerevisiae is required for excision repair of UV-damaged DNA and is essential for cell viability. The RAD3 protein exhibits a remarkable degree of sequence homology to the human excision repair protein ERCC2. The RAD3 protein is a single-stranded DNA-dependent ATPase and a DNA helicase capable of denaturing long regions of duplex DNA. Here, we demonstrate that RAD3 also possesses a potent DNA.RNA helicase activity similar in efficiency to its DNA helicase activity. The rad3 Arg-48 mutant protein, which binds but does not hydrolyze ATP, lacks the DNA.RNA unwinding activity, indicating a dependence on ATP hydrolysis. RAD3 does not show any RNA-dependent NTPase activity and, as expected, does not unwind duplex RNA. This observation suggests that RAD3 translocates on DNA in unwinding DNA.RNA duplexes. That the rad3 Arg-48 mutation inactivates the DNA and DNA.RNA helicase activities and confers a substantial reduction in the incision of UV-damaged DNA suggests a role for these activities in incision. We discuss how RAD3 helicase activities could function in tracking of DNA in search of damage sites and effect enhanced excision repair of actively transcribed genes.
Collapse
Affiliation(s)
- V Bailly
- Department of Biophysics, University of Rochester School of Medicine, NY 14642
| | | | | | | |
Collapse
|
154
|
Belt PB, van Oosterwijk MF, Odijk H, Hoeijmakers JH, Backendorf C. Induction of a mutant phenotype in human repair proficient cells after overexpression of a mutated human DNA repair gene. Nucleic Acids Res 1991; 19:5633-7. [PMID: 1945841 PMCID: PMC328968 DOI: 10.1093/nar/19.20.5633] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antisense and mutated cDNA of the human excision repair gene ERCC-1 were overexpressed in repair proficient HeLa cells by means of an Epstein-Barr-virus derived cDNA expression vector. Whereas antisense RNA did not influence the survival of the transfected cells, a mutated cDNA generating an ERCC-1 protein with two extra amino acids in a conserved region of its C-terminal part resulted in a significant sensitization of the HeLa transfectants to mitomycin C-induced damage. These results suggest that overexpression of the mutated ERCC-1 protein interferes with proper functioning of the excision repair pathway in repair proficient cells and is compatible with a model in which the mutated ERCC-1 protein competes with the wild-type polypeptide for a specific step in the repair process or for occupation of a site in a repair complex. Apparently, this effect is more pronounced for mitomycin C induced crosslink repair than for UV-induced DNA damage.
Collapse
Affiliation(s)
- P B Belt
- Department of Biochemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
155
|
Angulo JF, Rouer E, Mazin A, Mattei MG, Tissier A, Horellou P, Benarous R, Devoret R. Identification and expression of the cDNA of KIN17, a zinc-finger gene located on mouse chromosome 2, encoding a new DNA-binding protein. Nucleic Acids Res 1991; 19:5117-23. [PMID: 1923796 PMCID: PMC328864 DOI: 10.1093/nar/19.19.5117] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report the cloning of KIN17 cDNA, 1414 bp long with an ORF of 391 residues showing a zinc finger and nuclear localization signals. By recloning the cDNA into an appropriate vector, we produced kin17 protein in E. coli, purified it partially and shown that kin17 protein binds to double-stranded DNA. The KIN17 gene was localized by cytogenetic mapping in mouse chromosome 2, band A. Genomic sequences homologous to KIN17 cDNA were detected also in rat and human DNAs. KIN17 mRNA is highly expressed in rodent transformed AtT-20 neuroendocrine cells whereas it can be detected only in the total RNA of mouse embryos and various normal adult tissues by reverse transcription and PCR amplification. The mouse nuclear kin17 protein was identified by a local small structural similarity with E.coli recA protein. Kin17 and recA have only 39 amino acid residues in a region that might be involved in DNA-binding.
Collapse
Affiliation(s)
- J F Angulo
- Groupe d'Etude Mutagénèse et Cancérogénèse, Laboratoire d'Enzymologie, CNRS, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
The fission yeast Schizosaccharomyces pombe serves as an excellent alternative and complementary model system for the analysis of genes and gene products involved in DNA repair. This brief review outlines the advantages of S. pombe and describes the radiation-sensitive mutants available for the analysis of DNA repair and recombination mechanisms in this organism. The progress in the cloning and characterization of representative genes is also described.
Collapse
Affiliation(s)
- S Subramani
- Department of Biology, University of California, San Diego, La Jolla 92093
| |
Collapse
|
157
|
Broughton BC, Barbet N, Murray J, Watts FZ, Koken MH, Lehmann AR, Carr AM. Assignment of ten DNA repair genes from Schizosaccharomyces pombe to chromosomal NotI restriction fragments. MOLECULAR & GENERAL GENETICS : MGG 1991; 228:470-2. [PMID: 1896014 DOI: 10.1007/bf00260641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ten DNA repair (rad) genes from the fission yeast, Schizosaccharomyces pombe were mapped to the 17 NotI fragments of the three chromosomes. Nine of the genes map to chromosome I, but there is no evidence for significant clustering.
Collapse
Affiliation(s)
- B C Broughton
- MRC Cell Mutation Unit, University of Sussex, Brighton, UK
| | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
Mutants of the fission yeast Schizosaccharomyces pombe which are sensitive to UV and/or gamma-irradiation have been assigned to 23 complementation groups, which can be assigned to three phenotypic groups. We have cloned genes which correct the deficiency in mutants corresponding to 12 of the complementation groups. Three genes in the excision-repair pathway have a high degree of sequence conservation with excision-repair genes from the evolutionarily distant budding yeast Saccharomyces cerevisiae. In contrast, those genes in the recombination repair pathway which have been characterised so far, show little homology with any previously characterised genes.
Collapse
Affiliation(s)
- A R Lehmann
- MRC Cell Mutation Unit, School of Biology, Sussex University, Falmer, Brighton, Great Britain
| | | | | | | |
Collapse
|
159
|
Walter RB, Harless J, Svensson RT, Kallman KD, Morizot DC, Nairn RS. Linkage assignment of a DNA sequence (ERCC2L1) homologous to a human DNA repair gene in Xiphophorus fishes: implications for the evolutionary derivation of human chromosome 19. Genomics 1991; 10:1083-6. [PMID: 1680795 DOI: 10.1016/0888-7543(91)90204-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fish gene mapping studies have identified several syntenic groups showing conservation over more than 400 million years of vertebrate evolution. In particular, Xiphophorus linkage group IV has been identified as a homolog of human chromosomes 15 and 19. During mammalian evolution, loci coding for glucosephosphate isomerase, peptidase D, muscle creatine kinase, and several DNA repair genes (ERCC1, ERCC2, and XRCC1) appear as a conserved syntenic group on human chromosome 19. When X. clemenciae and X. milleri PstI endonuclease-digested genomic DNA was used in Southern analysis with a human ERCC2 DNA repair gene probe, a strongly cross-hybridizing restriction fragment length polymorphism was observed. Backcrosses to X. clemenciae from X. milleri x X. clemenciae F1 hybrids allowed tests for linkage of the ERCC2-like polymorphism to markers covering a large proportion of the genome. Statistically significant evidence for linkage was found only for ERCC2L1 and CKM (muscle creatine kinase), with a total of 41 parents and 2 recombinants (4.7% recombination, chi 2 = 35.37, P less than 0.001); no evidence for linkage to GPI and PEPD in linkage group IV was detected. The human chromosome 19 synteny of ERCC2 and CKM thus appears to be conserved in Xiphophorus, while other genes located nearby on human chromosome 19 are in a separate linkage group in this fish. If Xiphophorus gene arrangements prove to be primitive, human chromosome 19 may have arisen from chromosome fusion or translocation events at some point since divergence of mammals and fishes from a common ancestor.
Collapse
Affiliation(s)
- R B Walter
- Department of Biology, Southwest Texas State University, San Marcos 78666-4616
| | | | | | | | | | | |
Collapse
|
160
|
Abstract
Eukaryotic cells are able to mount several genetically complex cellular responses to DNA damage. The yeast Saccharomyces cerevisiae is a genetically well characterized organism that is also amenable to molecular and biochemical studies. Hence, this organism has provided a useful and informative model for dissecting the biochemistry and molecular biology of DNA repair in eukaryotes.
Collapse
Affiliation(s)
- E C Friedberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235
| |
Collapse
|
161
|
Abstract
Important aspects of the DNA repair mechanisms in mammalian, and especially human, cells are reviewed. The DNA repair processes are essential in the maintenance of the integrity of the DNA and in the defense against cancer. It has recently been discovered that the DNA repair efficiency differs in different regions of the genome and that active genes are preferentially repaired. There is mounting evidence that DNA repair processes play a role in the development of drug resistance by tumor cells. We will discuss such data as well as further approaches to clarify the relationship between DNA repair and antineoplastic drug resistance. Specifically, there is an increasing need to investigate the intragenomic heterogeneity of DNA repair and correlate the repair efficiency in specific genes to aspects of drug resistance. We also discuss the therapeutic potential of inhibiting the DNA repair processes and thereby possibly overcoming drug resistance.
Collapse
Affiliation(s)
- R K Burt
- Clinical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | | | | |
Collapse
|
162
|
Buckler AJ, Chang DD, Graw SL, Brook JD, Haber DA, Sharp PA, Housman DE. Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. Proc Natl Acad Sci U S A 1991; 88:4005-9. [PMID: 1850845 PMCID: PMC51582 DOI: 10.1073/pnas.88.9.4005] [Citation(s) in RCA: 292] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have developed a method, exon amplification, for fast and efficient isolation of coding sequences from complex mammalian genomic DNA. This method is based on the selection of RNA sequences, exons, which are flanked by functional 5' and 3' splice sites. Fragments of cloned genomic DNA are inserted into an intron, which is flanked by 5' and 3' splice sites of the human immunodeficiency virus 1 tat gene contained within the plasmid pSPL1. COS-7 cells are transfected with these constructs, and the resulting RNA transcripts are processed in vivo. Splice sites of exons contained within the inserted genomic fragment are paired with splice sites of the flanking tat intron. The resulting mature RNA contains the previously unidentified exons, which can then be amplified via RNA-based PCR and cloned. Using this method, we have isolated exon sequences from cloned genomic fragments of the murine Na,K-ATPase alpha 1-subunit gene. We have also screened randomly selected genomic clones known to be derived from a segment of human chromosome 19 and have isolated exon sequences of the DNA repair gene ERCC1. The sensitivity and ease of the exon amplification method permit screening of 20-40 kilobase pairs of genomic DNA in a single transfection. This approach will be extremely useful for rapid identification of mammalian exons and the genes from which they are derived as well as for the generation of chromosomal transcription maps.
Collapse
Affiliation(s)
- A J Buckler
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | | | | | |
Collapse
|
163
|
Differential introduction of DNA damage and repair in mammalian genes transcribed by RNA polymerases I and II. Mol Cell Biol 1991. [PMID: 2005908 DOI: 10.1128/mcb.11.4.2245] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a general quantitative method for comparing the levels of drug-induced DNA crosslinking in specific mammalian genes. We observed a dramatic difference between the efficiency of the removal of both psoralen monoadducts and interstrand crosslinks from the rRNA genes and the efficiency of their removal from the dihydrofolate reductase (DHFR) gene in cultured human and hamster cells. While 90% of the interstand crosslinks were removed from the human DHFR gene in 48 h, less than 25% repair occurred in the rRNA genes. Similarly, in Chinese hamster ovary cells, 85% repair of interstrand crosslinks occurred within 8 h in the DHFR gene versus only 20% repair in the rRNA genes. The preferential repair of the DHFR gene relative to that of the rRNA genes was also observed for psoralen monoadducts in cells from both mammalian species. In human-mouse hybrid cells, the active mouse rRNA genes were five times more susceptible to psoralen modification than are the silent rRNA human genes, but adduct removal was similarly inefficient for both classes. We conclude that the repair of chemical damage such as psoralen photoadducts in an expressed mammalian gene may depend upon the class of transcription to which it belongs.
Collapse
|
164
|
Vos JM, Wauthier EL. Differential introduction of DNA damage and repair in mammalian genes transcribed by RNA polymerases I and II. Mol Cell Biol 1991; 11:2245-52. [PMID: 2005908 PMCID: PMC359922 DOI: 10.1128/mcb.11.4.2245-2252.1991] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have developed a general quantitative method for comparing the levels of drug-induced DNA crosslinking in specific mammalian genes. We observed a dramatic difference between the efficiency of the removal of both psoralen monoadducts and interstrand crosslinks from the rRNA genes and the efficiency of their removal from the dihydrofolate reductase (DHFR) gene in cultured human and hamster cells. While 90% of the interstand crosslinks were removed from the human DHFR gene in 48 h, less than 25% repair occurred in the rRNA genes. Similarly, in Chinese hamster ovary cells, 85% repair of interstrand crosslinks occurred within 8 h in the DHFR gene versus only 20% repair in the rRNA genes. The preferential repair of the DHFR gene relative to that of the rRNA genes was also observed for psoralen monoadducts in cells from both mammalian species. In human-mouse hybrid cells, the active mouse rRNA genes were five times more susceptible to psoralen modification than are the silent rRNA human genes, but adduct removal was similarly inefficient for both classes. We conclude that the repair of chemical damage such as psoralen photoadducts in an expressed mammalian gene may depend upon the class of transcription to which it belongs.
Collapse
Affiliation(s)
- J M Vos
- Lineberger Comprehensive Cancer Research Center, University of North Carolina School of Medicine, Chapel Hill 27599-7295
| | | |
Collapse
|
165
|
Shutler G, MacKenzie AE, Brunner H, Wieringa B, de Jong P, Lohman FP, Leblond S, Bailly J, Korneluk RG. Physical and genetic mapping of a novel chromosome 19 ERCC1 marker showing close linkage with myotonic dystrophy. Genomics 1991; 9:500-4. [PMID: 1674498 DOI: 10.1016/0888-7543(91)90416-c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent genetic linkage analyses have mapped the myotonic dystrophy locus to the region of 19q13.2-13.3 lying distal to the gene for creatine kinase subunit M (CKM). The human excision repair gene ERCC1 has also been mapped to this region of chromosome 19. A novel polymorphic DNA marker, pEO.8, has been isolated from a chromosome 19 ERCC1-containing cosmid that maps to a 300-kb NotI fragment encompassing both CKM and ERCC1. Genetic linkage analysis reveals close linkage between pEO.8 and myotonic dystrophy (DM) (zmax = 19.3, theta max = 0.01). Analysis of two key recombinant events suggests a mapping of DM distal to pEO.8 and CKM.
Collapse
Affiliation(s)
- G Shutler
- Division of Genetic, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Angulo JF, Rouer E, Benarous R, Devoret R. Identification of a mouse cDNA fragment whose expressed polypeptide reacts with anti-recA antibodies. Biochimie 1991; 73:251-6. [PMID: 1715759 DOI: 10.1016/0300-9084(91)90210-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have previously reported the in vivo detection of a mouse nuclear protein that cross-reacts with antibodies raised against E coli recA protein. Here, we characterize monospecific anti-recA antibodies, their use for the immunological screening of a cDNA expression library and the isolation of a mouse cDNA fragment which codes for a polypeptide recognized by anti-recA antibodies. The cDNA fragment is 601 nucleotide long and was called KIN17(601). It contains an open reading frame coding for a 200 amino acid polypeptide. In kin17(200) polypeptide, there are amino acids identical to those that form one of the major antigenic determinants of recA protein. Kin17(200) polypeptide also displays a significant similarity with the helix 1 motif of several homeoproteins.
Collapse
Affiliation(s)
- J F Angulo
- Groupe d'Etude Mutagenèse et Cancérogenèse, CNRS, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
167
|
Molecular cloning of the human XRCC1 gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol Cell Biol 1991. [PMID: 2247054 DOI: 10.1128/mcb.10.12.6160] [Citation(s) in RCA: 234] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the cloning and function of the human XRCC1 gene, which is the first mammalian gene isolated that affects cellular sensitivity to ionizing radiation. The CHO mutant EM9 has 10-fold-higher sensitivity to ethyl methanesulfonate, 1.8-fold-higher sensitivity to ionizing radiation, a reduced capacity to rejoin single-strand DNA breaks, and a 10-fold-elevated level of sister chromatid exchange compared with the CHO parental cells. The complementing human gene was cloned from a cosmid library of a tertiary transformant. Two cosmid clones produced transformants that showed approximately 100% correction of the repair defect in EM9 cells, as determined by the kinetics of strand break repair, cell survival, and the level of sister chromatid exchange. A nearly full-length clone obtained from the pcD2 human cDNA expression library gave approximately 80% correction of EM9, as determined by the level of sister chromatid exchange. Based on an analysis of the nucleotide sequence of the cDNA insert compared with that of the 5' end of the gene from a cosmid clone, the cDNA clone appeared to be missing approximately 100 bp of transcribed sequence, including 26 nucleotides of coding sequence. The cDNA probe detected a single transcript of approximately 2.2 kb in HeLa polyadenylated RNA by Northern (RNA) blot hybridization. From the open reading frame and the positions of likely start sites for transcription and translation, the size of the putative XRCC1 protein is 633 amino acids (69.5 kDa). The size of the XRCC1 gene is 33 kb, as determined by localizing the endpoints on a restriction endonuclease site map of one cosmid clone. The deduced amino acid sequence did not show significant homology with any protein in the protein sequence data bases examined.
Collapse
|
168
|
Bohr VA. Gene specific damage and repair after treatment of cells with UV and chemotherapeutical agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 283:225-33. [PMID: 2068987 DOI: 10.1007/978-1-4684-5877-0_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have previously demonstrated preferential DNA repair of active genes in mammalian cells. The methodology involves the use of a specific endonuclease or other more direct approaches to create nicks at sites of damage followed by quantitative Southern analysis and probing for specific genes. Initially, we used pyrimidine dimer specific endonuclease to detect pyrimidine dimers after UV irradiation. We now also use the bacterial enzyme ABC excinuclease to examine the DNA damage and repair of a number of adducts other than pyrimidine dimers in specific genes. We can detect gene specific alkylation damage by creating nicks via depurination and alkaline hydrolysis. In our assay for preferential repair, we compare the efficiency of repair in the DHFR gene to that in the 3' flanking, non-coding region to the gene. In CHO cells, UV induced pyrimidine dimers are efficiently repaired from the active DHFR gene, but not from the inactive region. We have demonstrated that the 6-4 photoproducts are also preferentially repaired and that they are removed faster from the regions studied than pyrimidine dimers. Using similar approaches, we find that DNA adducts and crosslinks caused by cisplatinum are preferentially repaired in the active gene compared to the inactive regions and to the inactive c-fos oncogene. Also, nitrogen mustard and methylnitrosurea damage is preferentially repaired whereas dimethylsulphate damage is not. NAAAF adducts do not appear to be preferentially repaired in this system.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- V A Bohr
- Division of Cancer Treatment, National Cancer Institute, NIH, Bethesda, Maryland 20892
| |
Collapse
|
169
|
|
170
|
Abstract
A number of changes have been detected in cisplatin-resistant cells, some of which are likely to be directly involved in the mechanism of resistance. The four most cited mechanisms are reduced accumulation, increased glutathione, increased metallothionein, and enhanced DNA repair. Of these mechanisms, reduced accumulation is probably the most common. Detoxification by glutathione or metallothionein may occur in some circumstances, but the evidence is often ambivalent. Enhanced DNA repair has been observed in several cases, but, to date, few cell lines have been adequately investigated for such changes. These observations demonstrate that multiple mechanisms of resistance exist, and often several may occur in the same cell line. To understand the significance of specific mechanisms, many laboratories are attempting to obtain genetic probes. These probes will then be used to clarify the mechanisms of resistance in fresh clinical samples and hopefully will facilitate improvements in therapeutic response.
Collapse
|
171
|
Vlček D, Podstavková S, Miadoková E, Vlčková V. The repair systems in green algae as compared with the present knowledge in heterotrophic microorganisms. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/s0003-9365(11)80018-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
172
|
|
173
|
Abstract
The UV-sensitive, nucleotide excision repair-deficient Chinese hamster mutant cell line UV61 was used to identify and clone a correcting human gene, ERCC-6. UV61, belonging to rodent complementation group 6, is only moderately UV sensitive in comparison with mutant lines in groups 1 to 5. It harbors a deficiency in the repair of UV-induced cyclobutane pyrimidine dimers but permits apparently normal repair of (6-4) photoproducts. Genomic (HeLa) DNA transfections of UV61 resulted, with a very low efficiency, in six primary and four secondary UV-resistant transformants having regained wild-type UV survival. Southern blot analysis revealed that five primary and only one secondary transformant retained human sequences. The latter line was used to clone the entire 115-kb human insert. Coinheritance analysis demonstrated that five of the other transformants harbored a 100-kb segment of the cloned human insert. Since it is extremely unlikely that six transformants all retain the same stretch of human DNA by coincidence, we conclude that the ERCC-6 gene resides within this region and probably covers most of it. The large size of the gene explains the extremely low transfection frequency and makes the gene one of the largest cloned by genomic DNA transfection. Four transformants did not retain the correcting ERCC-6 gene and presumably have reverted to the UV-resistant phenotype. One of these appeared to have amplified an endogenous, mutated CHO ERCC-6 allele, indicating that the UV61 mutation is leaky and can be overcome by gene amplification.
Collapse
|
174
|
Mudgett JS, MacInnes MA. Isolation of the functional human excision repair gene ERCC5 by intercosmid recombination. Genomics 1990; 8:623-33. [PMID: 2276736 DOI: 10.1016/0888-7543(90)90248-s] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complete human nucleotide exicision repair gene ERCC5 was isolated as a functional gene on overlapping cosmids. ERCC5 corrects the excision repair deficiency of Chinese hamster ovary cell line UV135, of complementation group 5. Cosmids that contained human sequences were obtained from a UV-resistant cell line derived from UV135 cells transformed with human genomic DNA. Individually, none of the cosmids complemented the UV135 repair defect; cosmid groups were formed to represent putative human genomic regions, and specific pairs of cosmids that effectively transformed UV135 cells to UV resistance were identified. Analysis of transformants derived from the active cosmid pairs showed that the functional 32-kbp ERCC5 gene was reconstructed by homologous intercosmid recombination. The cloned human sequences exhibited 100% concordance with the locus designated genetically as ERCC5 located on human chromosome 13q. Cosmid-transformed UV135 host cells repaired cytotoxic damage to levels about 70% of normal and repaired UV-irradiated shuttle vector DNA to levels about 82% of normal.
Collapse
Affiliation(s)
- J S Mudgett
- Genetics Group, Life Sciences Division, Los Alamos National Laboratory, New Mexico 87545
| | | |
Collapse
|
175
|
Thompson LH, Brookman KW, Jones NJ, Allen SA, Carrano AV. Molecular cloning of the human XRCC1 gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol Cell Biol 1990; 10:6160-71. [PMID: 2247054 PMCID: PMC362891 DOI: 10.1128/mcb.10.12.6160-6171.1990] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We describe the cloning and function of the human XRCC1 gene, which is the first mammalian gene isolated that affects cellular sensitivity to ionizing radiation. The CHO mutant EM9 has 10-fold-higher sensitivity to ethyl methanesulfonate, 1.8-fold-higher sensitivity to ionizing radiation, a reduced capacity to rejoin single-strand DNA breaks, and a 10-fold-elevated level of sister chromatid exchange compared with the CHO parental cells. The complementing human gene was cloned from a cosmid library of a tertiary transformant. Two cosmid clones produced transformants that showed approximately 100% correction of the repair defect in EM9 cells, as determined by the kinetics of strand break repair, cell survival, and the level of sister chromatid exchange. A nearly full-length clone obtained from the pcD2 human cDNA expression library gave approximately 80% correction of EM9, as determined by the level of sister chromatid exchange. Based on an analysis of the nucleotide sequence of the cDNA insert compared with that of the 5' end of the gene from a cosmid clone, the cDNA clone appeared to be missing approximately 100 bp of transcribed sequence, including 26 nucleotides of coding sequence. The cDNA probe detected a single transcript of approximately 2.2 kb in HeLa polyadenylated RNA by Northern (RNA) blot hybridization. From the open reading frame and the positions of likely start sites for transcription and translation, the size of the putative XRCC1 protein is 633 amino acids (69.5 kDa). The size of the XRCC1 gene is 33 kb, as determined by localizing the endpoints on a restriction endonuclease site map of one cosmid clone. The deduced amino acid sequence did not show significant homology with any protein in the protein sequence data bases examined.
Collapse
Affiliation(s)
- L H Thompson
- Biomedical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550
| | | | | | | | | |
Collapse
|
176
|
Troelstra C, Odijk H, de Wit J, Westerveld A, Thompson LH, Bootsma D, Hoeijmakers JH. Molecular cloning of the human DNA excision repair gene ERCC-6. Mol Cell Biol 1990; 10:5806-13. [PMID: 2172786 PMCID: PMC361360 DOI: 10.1128/mcb.10.11.5806-5813.1990] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The UV-sensitive, nucleotide excision repair-deficient Chinese hamster mutant cell line UV61 was used to identify and clone a correcting human gene, ERCC-6. UV61, belonging to rodent complementation group 6, is only moderately UV sensitive in comparison with mutant lines in groups 1 to 5. It harbors a deficiency in the repair of UV-induced cyclobutane pyrimidine dimers but permits apparently normal repair of (6-4) photoproducts. Genomic (HeLa) DNA transfections of UV61 resulted, with a very low efficiency, in six primary and four secondary UV-resistant transformants having regained wild-type UV survival. Southern blot analysis revealed that five primary and only one secondary transformant retained human sequences. The latter line was used to clone the entire 115-kb human insert. Coinheritance analysis demonstrated that five of the other transformants harbored a 100-kb segment of the cloned human insert. Since it is extremely unlikely that six transformants all retain the same stretch of human DNA by coincidence, we conclude that the ERCC-6 gene resides within this region and probably covers most of it. The large size of the gene explains the extremely low transfection frequency and makes the gene one of the largest cloned by genomic DNA transfection. Four transformants did not retain the correcting ERCC-6 gene and presumably have reverted to the UV-resistant phenotype. One of these appeared to have amplified an endogenous, mutated CHO ERCC-6 allele, indicating that the UV61 mutation is leaky and can be overcome by gene amplification.
Collapse
Affiliation(s)
- C Troelstra
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
The homology between mouse chromosome 7 and human chromosomes 11, 15, and 19 was examined using interspecific backcross animals derived from mating C3H/HeJ-gld/gld and Mus spretus mice. In an earlier study, we reported on the linkage relationships of 16 loci on mouse chromosome 7 and the homologous relationship between this chromosome and the myotonic dystrophy gene region on human chromosome 19. Segregation analyses were used to extend the gene linkage relationships on mouse chromosome 7 by an additional 21 loci. Seven of these genes (Cyp2a, D19F11S1h, Myod-1, Otf-2, Rnu1p70, Rnu2pa, and Xrcc-1) were previously unmapped in the mouse. Several potential mouse chromosome 7 genes (Mel, Hkr-1, Icam-1, Pvs) did not segregate with chromosome 7 markers, and provisional chromosomal assignments were made. This study establishes a detailed molecular genetic linkage map of mouse chromosome 7 that will be useful as a framework for determining linkage relationships of additional molecular markers and for identifying homologous disease genes in mice and humans.
Collapse
Affiliation(s)
- A M Saunders
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
178
|
Weeda G, van Ham RC, Vermeulen W, Bootsma D, van der Eb AJ, Hoeijmakers JH. A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome. Cell 1990; 62:777-91. [PMID: 2167179 DOI: 10.1016/0092-8674(90)90122-u] [Citation(s) in RCA: 328] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human gene ERCC-3 specifically corrects the defect in an early step of the DNA excision repair pathway of UV-sensitive rodent mutants of complementation group 3. The predicted 782 amino acid ERCC-3 protein harbors putative nucleotide, chromatin, and helix-turn-helix DNA binding domains and seven consecutive motifs conserved between two superfamilies of DNA and RNA helicases, strongly suggesting that it is a DNA repair helicase. ERCC-3-deficient rodent mutants phenotypically resemble the human repair syndrome xeroderma pigmentosum (XP). ERCC-3 specifically corrects the excision defect in one of the eight XP complementation groups, XP-B. The sole XP-B patient presents an exceptional conjunction of two rare repair disorders: XP and Cockayne's syndrome. This patient's DNA contains a C----A transversion in the splice acceptor sequence of the last intron of the only ERCC-3 allele that is detectably expressed, leading to a 4 bp insertion in the mRNA and an inactivating frameshift in the C-terminus of the protein. Because XP is associated with predisposition to skin cancer, ERCC-3 can be considered a tumor-preventing gene.
Collapse
Affiliation(s)
- G Weeda
- Laboratory for Molecular Carcinogenesis, Sylvius Laboratory, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
179
|
Bohr VA. DNA repair at the level of the gene: molecular and clinical considerations. J Cancer Res Clin Oncol 1990; 116:384-91. [PMID: 2202730 DOI: 10.1007/bf01612922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DNA repair is an important process. It is as essential for the cell as is transcription and replication. There is evidence that deficient DNA repair processes lead to human disease including cancer, and recent progress in the field of DNA repair is likely to expand our knowledge about these relationships considerably. One recent advance is our capability to analyze the fine structure of DNA damage and repair by measuring the formation of lesions and their repair in specific, important genes in rodent and human cells. Such studies are leading to increased understanding of the molecular and clinical aspects of DNA repair.
Collapse
Affiliation(s)
- V A Bohr
- Division of Cancer Treatment, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
180
|
Molecular cloning and biological characterization of the human excision repair gene ERCC-3. Mol Cell Biol 1990. [PMID: 2111438 DOI: 10.1128/mcb.10.6.2570] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report we present the cloning, partial characterization, and preliminary studies of the biological activity of a human gene, designated ERCC-3, involved in early steps of the nucleotide excision repair pathway. The gene was cloned after genomic DNA transfection of human (HeLa) chromosomal DNA together with dominant marker pSV3gptH to the UV-sensitive, incision-defective Chinese hamster ovary (CHO) mutant 27-1. This mutant belongs to complementation group 3 of repair-deficient rodent mutants. After selection of UV-resistant primary and secondary 27-1 transformants, human sequences associated with the induced UV resistance were rescued in cosmids from the DNA of a secondary transformant by using a linked dominant marker copy and human repetitive DNA as probes. From coinheritance analysis of the ERCC-3 region in independent transformants, we deduce that the gene has a size of 35 to 45 kilobases, of which one essential segment has so far been refractory to cloning. Conserved unique human sequences hybridizing to a 3.0-kilobase mRNA were used to isolate apparently full-length cDNA clones. Upon transfection to 27-1 cells, the ERCC-3 cDNA, inserted in a mammalian expression vector, induced specific and (virtually) complete correction of the UV sensitivity and unscheduled DNA synthesis of mutants of complementation group 3 with very high efficiency. Mutant 27-1 is, unlike other mutants of complementation group 3, also very sensitive toward small alkylating agents. This unique property of the mutant is not corrected by introduction of the ERCC-3 cDNA, indicating that it may be caused by an independent second mutation in another repair function. By hybridization to DNA of a human x rodent hybrid cell panel, the ERCC-3 gene was assigned to chromosome 2, in agreement with data based on cell fusion (L. H. Thompson, A. V. Carrano, K. Sato, E. P. Salazar, B. F. White, S. A. Stewart, J. L. Minkler, and M. J. Siciliano, Somat. Cell. Mol. Genet. 13:539-551, 1987).
Collapse
|
181
|
Rydberg B, Spurr N, Karran P. cDNA cloning and chromosomal assignment of the human O6-methylguanine-DNA methyltransferase. cDNA expression in Escherichia coli and gene expression in human cells. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38885-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
182
|
Weeda G, van Ham RC, Masurel R, Westerveld A, Odijk H, de Wit J, Bootsma D, van der Eb AJ, Hoeijmakers JH. Molecular cloning and biological characterization of the human excision repair gene ERCC-3. Mol Cell Biol 1990; 10:2570-81. [PMID: 2111438 PMCID: PMC360615 DOI: 10.1128/mcb.10.6.2570-2581.1990] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this report we present the cloning, partial characterization, and preliminary studies of the biological activity of a human gene, designated ERCC-3, involved in early steps of the nucleotide excision repair pathway. The gene was cloned after genomic DNA transfection of human (HeLa) chromosomal DNA together with dominant marker pSV3gptH to the UV-sensitive, incision-defective Chinese hamster ovary (CHO) mutant 27-1. This mutant belongs to complementation group 3 of repair-deficient rodent mutants. After selection of UV-resistant primary and secondary 27-1 transformants, human sequences associated with the induced UV resistance were rescued in cosmids from the DNA of a secondary transformant by using a linked dominant marker copy and human repetitive DNA as probes. From coinheritance analysis of the ERCC-3 region in independent transformants, we deduce that the gene has a size of 35 to 45 kilobases, of which one essential segment has so far been refractory to cloning. Conserved unique human sequences hybridizing to a 3.0-kilobase mRNA were used to isolate apparently full-length cDNA clones. Upon transfection to 27-1 cells, the ERCC-3 cDNA, inserted in a mammalian expression vector, induced specific and (virtually) complete correction of the UV sensitivity and unscheduled DNA synthesis of mutants of complementation group 3 with very high efficiency. Mutant 27-1 is, unlike other mutants of complementation group 3, also very sensitive toward small alkylating agents. This unique property of the mutant is not corrected by introduction of the ERCC-3 cDNA, indicating that it may be caused by an independent second mutation in another repair function. By hybridization to DNA of a human x rodent hybrid cell panel, the ERCC-3 gene was assigned to chromosome 2, in agreement with data based on cell fusion (L. H. Thompson, A. V. Carrano, K. Sato, E. P. Salazar, B. F. White, S. A. Stewart, J. L. Minkler, and M. J. Siciliano, Somat. Cell. Mol. Genet. 13:539-551, 1987).
Collapse
Affiliation(s)
- G Weeda
- Laboratory for Molecular Carcinogenesis, Sylvius Laboratory, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Weber CA, Salazar EP, Stewart SA, Thompson LH. ERCC2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J 1990; 9:1437-47. [PMID: 2184031 PMCID: PMC551832 DOI: 10.1002/j.1460-2075.1990.tb08260.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Human ERCC2 genomic clones give efficient, stable correction of the nucleotide excision repair defect in UV5 Chinese hamster ovary cells. One clone having a breakpoint just 5' of classical promoter elements corrects only transiently, implicating further flanking sequences in stable gene expression. The nucleotide sequences of a cDNA clone and genomic flanking regions were determined. The ERCC2 translated amino acid sequence has 52% identity (73% homology) with the yeast nucleotide excision repair protein RAD3. RAD3 is essential for cell viability and encodes a protein that is a single-stranded DNA dependent ATPase and an ATP dependent helicase. The similarity of ERCC2 and RAD3 suggests a role for ERCC2 in both cell viability and DNA repair and provides the first insight into the biochemical function of a mammalian nucleotide excision repair gene.
Collapse
Affiliation(s)
- C A Weber
- Biomedical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | | | | | | |
Collapse
|
184
|
Smerdon MJ, Bedoyan J, Thoma F. DNA repair in a small yeast plasmid folded into chromatin. Nucleic Acids Res 1990; 18:2045-51. [PMID: 2186374 PMCID: PMC330681 DOI: 10.1093/nar/18.8.2045] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The question of whether excision repair of yeast plasmids accurately reflects the repair of yeast genomic chromatin has yielded conflicting answers. These conflicts could have arisen from differences in the conformation of plasmid molecules used during these studies. We have examined excision repair of UV photoproducts in a small (2619 bp) autonomously replicating plasmid (YRp-TRURAP), known to be folded into chromatin with positioned nucleosomes in vivo, in the yeast Saccharomyces cerevisiae. A quantitative assay was used to measure the yield of cyclobutane pyrimidine dimers (PD) in plasmid DNA by measuring the fraction of Form I molecules resistant to T4 endonuclease V. After a UV dose of 100 J/m2, which yields 1.2 PD/plasmid in irradiated cells, radiation insensitive (wt) cells repair approximately 70% of the PD in TRURAP chromatin in 2 hr (a rate comparable to that of genomic chromatin). On the other hand, no measurable repair occurs in TRURAP chromatin in radiation sensitive cells (rad1) during the same time period. Thus, this small plasmid contains sufficient chromatin structure in vivo to reflect the incompetent repair of genomic chromatin seen in a rad mutant, while maintaining the competent repair level in wt cells.
Collapse
Affiliation(s)
- M J Smerdon
- Biochemistry/Biophysics Program, Washington State University, Pullman 99164-4660
| | | | | |
Collapse
|
185
|
Bardwell L, Burtscher H, Weiss WA, Nicolet CM, Friedberg EC. Characterization of the RAD10 gene of Saccharomyces cerevisiae and purification of Rad10 protein. Biochemistry 1990; 29:3119-26. [PMID: 2110825 DOI: 10.1021/bi00464a031] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The RAD10 gene of Saccharomyces cerevisiae is one of at least five genes required for damage-specific incision of DNA during nucleotide excision repair. This gene was previously cloned and sequenced [Weiss, W. A., & Friedberg, E. C. (1985) EMBO J. 4, 1575-1582; Reynolds et al. (1985) EMBO J. 4, 3549-3552]. In the present studies, we have mapped one major and three minor transcriptional start sites in the RAD10 gene. The locations of these sites relative to the translational start codon are remarkably similar to those previously identified in the yeast RAD2 gene [Nicolet et al. (1985) Gene 36, 225-234]. The two genes also share common sequences in these regions. However, in contrast to RAD2 [Robinson et al. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 1842-1846], RAD10 is not induced following exposure of cells to the DNA-damaging agent 4-nitroquinoline 1-oxide. Native RAD10 protein and also two different Rad10 fusion proteins are rapidly degraded in most Escherichia coli strains. However, following overexpression of the cloned RAD10 gene in yeast, native Rad10 protein was purified to greater than 90% homogeneity. A catalytic function has not been identified for the purified protein. RAD10 cells (untransformed with the cloned gene) contain fewer than 500 molecules per cell. This is similar to the levels of the UvrA, UvrB, and UvrC nucleotide excision repair proteins in E. coli.
Collapse
Affiliation(s)
- L Bardwell
- Department of Pathology, Stanford University School of Medicine, California 94305
| | | | | | | | | |
Collapse
|
186
|
Major GN, Gardner EJ, Carne AF, Lawley PD. Purification to homogeneity and partial amino acid sequence of a fragment which includes the methyl acceptor site of the human DNA repair protein for O6-methylguanine. Nucleic Acids Res 1990; 18:1351-9. [PMID: 2109306 PMCID: PMC330497 DOI: 10.1093/nar/18.6.1351] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
DNA repair by O6-methylguanine-DNA methyltransferase (O6-MT) is accomplished by removal by the enzyme of the methyl group from premutagenic O6-methylguanine-DNA, thereby restoring native guanine in DNA. The methyl group is transferred to an acceptor site cysteine thiol group in the enzyme, which causes the irreversible inactivation of O6-MT. We detected a variety of different forms of the methylated, inactivated enzyme in crude extracts of human spleen of molecular weights higher and lower than the usually observed 21-24kDa for the human O6-MT. Several apparent fragments of the methylated form of the protein were purified to homogeneity following reaction of partially-purified extract enzyme with O6-[3H-CH3]methylguanine-DNA substrate. One of these fragments yielded amino acid sequence information spanning fifteen residues, which was identified as probably belonging to human methyltransferase by virtue of both its significant sequence homology to three procaryote forms of O6-MT encoded by the ada, ogt (both from E. coli) and dat (B. subtilis) genes, and sequence position of the radiolabelled methyl group which matched the position of the conserved procaryote methyl acceptor site cysteine residue. Statistical prediction of secondary structure indicated good homologies between the human fragment and corresponding regions of the constitutive form of O6-MT in procaryotes (ogt and dat gene products), but not with the inducible ada protein, indicating the possibility that we had obtained partial amino acid sequence for a non-inducible form of the human enzyme. The identity of the fragment sequence as belonging to human methyltransferase was more recently confirmed by comparison with cDNA-derived amino acid sequence from the cloned human O6-MT gene from HeLa cells (1). The two sequences compared well, with only three out of fifteen amino acids being different (and two of them by only one nucleotide in each codon).
Collapse
Affiliation(s)
- G N Major
- Alkylation Carcinogenesis Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | | | | | | |
Collapse
|
187
|
Abstract
One of the best-studied DNA repair pathways is nucleotide excision repair, a process consisting of DNA damage recognition, incision, excision, repair resynthesis, and DNA ligation. Escherichia coli has served as a model organism for the study of this process. Recently, many of the proteins that mediate E. coli nucleotide excision have been purified to homogeneity; this had led to a molecular description of this repair pathway. One of the key repair enzymes of this pathway is the UvrABC nuclease complex. The individual subunits of this enzyme cooperate in a complex series of partial reactions to bind to and incise the DNA near a damaged nucleotide. The UvrABC complex displays a remarkable substrate diversity. Defining the structural features of DNA lesions that provide the specificity for damage recognition by the UvrABC complex is of great importance, since it represents a unique form of protein-DNA interaction. Using a number of in vitro assays, researchers have been able to elucidate the action mechanism of the UvrABC nuclease complex. Current research is devoted to understanding how these complex events are mediated within the living cell.
Collapse
Affiliation(s)
- B Van Houten
- Department of Pathology, University of Vermont, Burlington 05405
| |
Collapse
|
188
|
Evidence that xeroderma pigmentosum cells from complementation group E are deficient in a homolog of yeast photolyase. Mol Cell Biol 1990. [PMID: 2689872 DOI: 10.1128/mcb.9.11.5105] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xeroderma pigmentosum (XP) patients are deficient in the excision repair of damaged DNA. Recognition of the DNA lesion appears to involve a nuclear factor that is defective in complementation group E (XPE binding factor). We have now identified a factor in the yeast Saccharomyces cerevisiae that shares many properties with XPE binding factor, including cellular location, abundance, magnesium dependence, and relative affinities for multiple forms of damaged DNA. Yeast binding activity is dependent on photolyase, which catalyzes the photoreactivation of pyrimidine dimers. These results suggest that yeast photolyase may also function as an auxiliary protein in excision repair. Furthermore, XPE binding factor appears to be the human homolog of yeast photolyase.
Collapse
|
189
|
Interactions between yeast photolyase and nucleotide excision repair proteins in Saccharomyces cerevisiae and Escherichia coli. Mol Cell Biol 1990. [PMID: 2689865 DOI: 10.1128/mcb.9.11.4767] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PHR1 gene of Saccharomyces cerevisiae encodes a DNA photolyase that catalyzes the light-dependent repair of pyrimidine dimers. In the absence of photoreactivating light, this enzyme binds to pyrimidine dimers but is unable to repair them. We have assessed the effect of bound photolyase on the dark survival of yeast cells carrying mutations in genes that eliminate either nucleotide excision repair (RAD2) or mutagenic repair (RAD18). We found that a functional PHR1 gene enhanced dark survival in a rad18 background but failed to do so in a rad2 or rad2 rad18 background and therefore conclude that photolyase stimulates specifically nucleotide excision repair of dimers in S. cerevisiae. This effect is similar to the effect of Escherichia coli photolyase on excision repair in the bacterium. However, despite the functional and structural similarities between yeast photolyase and the E. coli enzyme and complementation of the photoreactivation deficiency of E. coli phr mutants by PHR1, yeast photolyase failed to enhance excision repair in the bacterium. Instead, Phr1 was found to be a potent inhibitor of dark repair in recA strains but had no effect in uvrA strains. The results of in vitro experiments indicate that inhibition of nucleotide excision repair results from competition between yeast photolyase and ABC excision nuclease for binding at pyrimidine dimers. In addition, the A and B subunits of the excision nuclease, when allowed to bind to dimers before photolyase, suppressed photoreactivation by Phr1. We propose that enhancement of nucleotide excision repair by photolyases is a general phenomenon and that photolyase should be considered an accessory protein in this pathway.
Collapse
|
190
|
Abstract
DNA repair studies used to be confined to measurements representing an average over the entire mammalian genome. It is now possible to study repair processes at subgenomic levels including specific genes. We will describe such results and discuss the impact they may have on our understanding of important oncological processes. Also, we will describe and discuss some clinical conditions that may have some effect in DNA damage processing.
Collapse
Affiliation(s)
- V A Bohr
- National Cancer Institute, Laboratory of Molecular Pharmacology, Division of Cancer Treatment, NIH, Bethesda, Maryland 20892
| | | |
Collapse
|
191
|
Hartshorn JN, Scicchitano DA, Robison SH. Measurements of genomic and gene-specific DNA repair of alkylation damage in cultured human T-lymphocytes. BASIC LIFE SCIENCES 1990; 53:233-49. [PMID: 2126430 DOI: 10.1007/978-1-4613-0637-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
192
|
Identification and preliminary characterization of an O6-methylguanine DNA repair methyltransferase in the yeast Saccharomyces cerevisiae. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40188-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
193
|
Perez RP, Hamilton TC, Ozols RF. Resistance to alkylating agents and cisplatin: insights from ovarian carcinoma model systems. Pharmacol Ther 1990; 48:19-27. [PMID: 2274575 DOI: 10.1016/0163-7258(90)90015-t] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The curative potential of chemotherapy for ovarian cancer is frequently not realized due to platinum and alkylating agent resistance. Mechanisms which may contribute to the resistant phenotype include alterations in drug transport, increased levels of sulfhydryl molecules (and/or related enzymes), and enhanced DNA repair. We have developed several ovarian cancer cell lines resistant to platinum compounds and alkylating agents. Increased levels of glutathione and enhanced DNA repair are major determinants of chemoresistance in these cells. Modulation of these processes with buthionine sulfoximine (BSO), aphidicolin, arc-C, etc. partially reverses in vitro resistance. Similar clinical treatment strategies are under investigation.
Collapse
Affiliation(s)
- R P Perez
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | | | |
Collapse
|
194
|
Friedberg EC, Henning K, Lambert C, Saxon PJ, Schultz RA, Sekhon GS, Stanbridge EJ. Microcell-mediated chromosome transfer: a strategy for studying the genetics and molecular pathology of human hereditary diseases with abnormal responses to DNA damage. BASIC LIFE SCIENCES 1990; 52:257-67. [PMID: 2183771 DOI: 10.1007/978-1-4615-9561-8_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- E C Friedberg
- Department of Pathology, Stanford University School of Medicine, California 94305
| | | | | | | | | | | | | |
Collapse
|
195
|
Patterson M, Chu G. Evidence that xeroderma pigmentosum cells from complementation group E are deficient in a homolog of yeast photolyase. Mol Cell Biol 1989; 9:5105-12. [PMID: 2689872 PMCID: PMC363662 DOI: 10.1128/mcb.9.11.5105-5112.1989] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Xeroderma pigmentosum (XP) patients are deficient in the excision repair of damaged DNA. Recognition of the DNA lesion appears to involve a nuclear factor that is defective in complementation group E (XPE binding factor). We have now identified a factor in the yeast Saccharomyces cerevisiae that shares many properties with XPE binding factor, including cellular location, abundance, magnesium dependence, and relative affinities for multiple forms of damaged DNA. Yeast binding activity is dependent on photolyase, which catalyzes the photoreactivation of pyrimidine dimers. These results suggest that yeast photolyase may also function as an auxiliary protein in excision repair. Furthermore, XPE binding factor appears to be the human homolog of yeast photolyase.
Collapse
Affiliation(s)
- M Patterson
- Department of Medicine, Stanford University School of Medicine, California 94305
| | | |
Collapse
|
196
|
Thompson LH, Bachinski LL, Stallings RL, Dolf G, Weber CA, Westerveld A, Siciliano MJ. Complementation of repair gene mutations on the hemizygous chromosome 9 in CHO: a third repair gene on human chromosome 19. Genomics 1989; 5:670-9. [PMID: 2591959 DOI: 10.1016/0888-7543(89)90107-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A human DNA repair gene, ERCC2 (Excision Repair Cross Complementing 2), was assigned to human chromosome 19 using hybrid clone panels in two different procedures. One set of cell hybrids was constructed by selecting for functional complementation of the DNA repair defect in mutant CHO UV5 after fusion with human lymphocytes. In the second analysis, DNAs from an independent hybrid panel were digested with restriction enzymes and analyzed by Southern blot hybridization using DNA probes for the three DNA repair genes that are located on human chromosome 19: ERCC1, ERCC2, and X-Ray Repair Cross Complementing 1 (XRCC1). The results from hybrids retaining different portions of this chromosome showed that ERCC2 is distal to XRCC1 and in the same region of the chromosome 19 long arm (q13.2-q13.3) as ERCC1, but on different MluI macrorestriction fragments. Similar experiments using a hybrid clone panel containing segregating Chinese hamster chromosomes revealed the hamster homologs of the three repair genes to be part of a highly conserved linkage group on Chinese hamster chromosome number 9. The known hemizygosity of hamster chromosome 9 in CHO cells can account for the high frequency at which genetically recessive mutations are recovered in these three genes in CHO cells. Thus, the conservation of linkage of the repair genes explains the seemingly disproportionate number of repair genes identified on human chromosome 19.
Collapse
Affiliation(s)
- L H Thompson
- Biomedical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550
| | | | | | | | | | | | | |
Collapse
|
197
|
Sancar GB, Smith FW. Interactions between yeast photolyase and nucleotide excision repair proteins in Saccharomyces cerevisiae and Escherichia coli. Mol Cell Biol 1989; 9:4767-76. [PMID: 2689865 PMCID: PMC363625 DOI: 10.1128/mcb.9.11.4767-4776.1989] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The PHR1 gene of Saccharomyces cerevisiae encodes a DNA photolyase that catalyzes the light-dependent repair of pyrimidine dimers. In the absence of photoreactivating light, this enzyme binds to pyrimidine dimers but is unable to repair them. We have assessed the effect of bound photolyase on the dark survival of yeast cells carrying mutations in genes that eliminate either nucleotide excision repair (RAD2) or mutagenic repair (RAD18). We found that a functional PHR1 gene enhanced dark survival in a rad18 background but failed to do so in a rad2 or rad2 rad18 background and therefore conclude that photolyase stimulates specifically nucleotide excision repair of dimers in S. cerevisiae. This effect is similar to the effect of Escherichia coli photolyase on excision repair in the bacterium. However, despite the functional and structural similarities between yeast photolyase and the E. coli enzyme and complementation of the photoreactivation deficiency of E. coli phr mutants by PHR1, yeast photolyase failed to enhance excision repair in the bacterium. Instead, Phr1 was found to be a potent inhibitor of dark repair in recA strains but had no effect in uvrA strains. The results of in vitro experiments indicate that inhibition of nucleotide excision repair results from competition between yeast photolyase and ABC excision nuclease for binding at pyrimidine dimers. In addition, the A and B subunits of the excision nuclease, when allowed to bind to dimers before photolyase, suppressed photoreactivation by Phr1. We propose that enhancement of nucleotide excision repair by photolyases is a general phenomenon and that photolyase should be considered an accessory protein in this pathway.
Collapse
Affiliation(s)
- G B Sancar
- Department of Biochemistry, University of North Carolina, Chapel Hill 27599-7260
| | | |
Collapse
|
198
|
Lieberman HB, Riley R, Martel M. Isolation and initial characterization of a Schizosaccharomyces pombe mutant exhibiting temperature-dependent radiation sensitivity due to a mutation in a previously unidentified rad locus. MOLECULAR & GENERAL GENETICS : MGG 1989; 218:554-8. [PMID: 2586486 DOI: 10.1007/bf00332423] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have isolated a mutant of the yeast Schizosaccharomyces pombe which exhibits sensitivity to UV light when grown at either 30 degrees or 37 degrees C, as compared to the parental wild-type strain. This increased sensitivity is more pronounced when cells are grown at 37 degrees C. The mutant is also sensitive to 18 MeV electrons at the high temperature. Tetrad analysis of spores generated by crossing the mutant and a Rad+ strain revealed that sensitivity to both types of radiation cosegregate 2:2, relative to wild-type resistance, indicating that a single altered chromosomal locus is responsible for the radiation sensitivities observed. In addition, analysis of spores resulting from crosses between the mutant and all other known S. pombe rad mutants indicates that the temperature-dependent sensitivity described in this report is mediated by a mutation in a previously unidentified rad locus.
Collapse
Affiliation(s)
- H B Lieberman
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | | | | |
Collapse
|
199
|
Tang MS, Bohr VA, Zhang XS, Pierce J, Hanawalt PC. Quantification of Aminofluorene Adduct Formation and Repair in Defined DNA sequences in Mammalian Cells Using the UVRABC Nuclease. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71700-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
200
|
Conserved pattern of antisense overlapping transcription in the homologous human ERCC-1 and yeast RAD10 DNA repair gene regions. Mol Cell Biol 1989. [PMID: 2471070 DOI: 10.1128/mcb.9.4.1794] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report that the genes for the homologous Saccharomyces cerevisiae RAD10 and human ERCC-1 DNA excision repair proteins harbor overlapping antisense transcription units in their 3' regions. Since naturally occurring antisense transcription is rare in S. cerevisiae and humans (this is the first example in human cells), our findings indicate that antisense transcription in the ERCC-1-RAD10 gene regions represents an evolutionarily conserved feature.
Collapse
|