151
|
Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU. Identification of in vivo substrates of the chaperonin GroEL. Nature 1999; 402:147-54. [PMID: 10647006 DOI: 10.1038/45977] [Citation(s) in RCA: 376] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The chaperonin GroEL has an essential role in mediating protein folding in the cytosol of Escherichia coli. Here we show that GroEL interacts strongly with a well-defined set of approximately 300 newly translated polypeptides, including essential components of the transcription/translation machinery and metabolic enzymes. About one third of these proteins are structurally unstable and repeatedly return to GroEL for conformational maintenance. GroEL substrates consist preferentially of two or more domains with alphabeta-folds, which contain alpha-helices and buried beta-sheets with extensive hydrophobic surfaces. These proteins are expected to fold slowly and be prone to aggregation. The hydrophobic binding regions of GroEL may be well adapted to interact with the non-native states of alphabeta-domain proteins.
Collapse
Affiliation(s)
- W A Houry
- Department of Cellular Biochemistry, Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | |
Collapse
|
152
|
Abstract
The physiological roles of the molecular chaperones trigger factor and DnaK in de novo protein folding have been unclear, but two new studies have shown that they perform essential, yet partially redundant, functions in chaperoning nascent protein chains in bacteria.
Collapse
Affiliation(s)
- N Pfanner
- Institut für Biochemie und Molekularbiologie Universität Freiburg Hermann-Herder-Strasse 7, D-79104, Freiburg, Germany.
| |
Collapse
|
153
|
Burda MR, Miller S. Folding of coliphage T4 short tail fiber in vitro. Analysing the role of a bacteriophage-encoded chaperone. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:771-8. [PMID: 10504409 DOI: 10.1046/j.1432-1327.1999.00782.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The morphogenesis of the Escherichia coli bacteriophage T4 depends on the presence of helper proteins which are not components of the mature virion. Two bacteriophage-encoded proteins, p57 and p38, are required for the assembly of the bacteriophage T4 tail fibers. In the absence of p57, two polypeptides of the long fiber (p34 and p37) and that of the short tail fiber (p12) fail to trimerize. Instead they form water-insoluble aggregates. Co-expression of the genes 12 and 57 in vivo caused the formation of only trimeric, water-soluble p12. The function of g57 cannot be replaced by overexpression of the host proteins GroEL/ES or parvulin. The mechanism of action of this helper protein has remained unknown, mainly because it has not been possible to determine its activity in vitro. Purified p12, denatured in 7 M urea, trimerized spontaneously in a slow reaction (half-time approximately 6 h) and with low yield. Upon renaturation, p12 forms native SDS-resistant trimers as indicated by spectroscopic and hydrodynamic measurements. Addition of p57 increased the rate of folding threefold and nearly doubled the yield. These experiments demonstrate that p57 acts as a molecular chaperone during folding of T4 tail fibers.
Collapse
Affiliation(s)
- M R Burda
- Institut fr Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | |
Collapse
|
154
|
Tsai CJ, Maizel JV, Nussinov R. Distinguishing between sequential and nonsequentially folded proteins: implications for folding and misfolding. Protein Sci 1999; 8:1591-604. [PMID: 10452603 PMCID: PMC2144423 DOI: 10.1110/ps.8.8.1591] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We describe here an algorithm for distinguishing sequential from nonsequentially folding proteins. Several experiments have recently suggested that most of the proteins that are synthesized in the eukaryotic cell may fold sequentially. This proposed folding mechanism in vivo is particularly advantageous to the organism. In the absence of chaperones, the probability that a sequentially folding protein will misfold is reduced significantly. The problem we address here is devising a procedure that would differentiate between the two types of folding patterns. Footprints of sequential folding may be found in structures where consecutive fragments of the chain interact with each other. In such cases, the folding complexity may be viewed as being lower. On the other hand, higher folding complexity suggests that at least a portion of the polypeptide backbone folds back upon itself to form three-dimensional (3D) interactions with noncontiguous portion(s) of the chain. Hence, we look at the mechanism of folding of the molecule via analysis of its complexity, that is, through the 3D interactions formed by contiguous segments on the polypeptide chain. To computationally splice the structure into consecutively interacting fragments, we either cut it into compact hydrophobic folding units or into a set of hypothetical, transient, highly populated, contiguous fragments ("building blocks" of the structure). In sequential folding, successive building blocks interact with each other from the amino to the carboxy terminus of the polypeptide chain. Consequently, the results of the parsing differentiate between sequentially vs. nonsequentially folded chains. The automated assessment of the folding complexity provides insight into both the likelihood of misfolding and the kinetic folding rate of the given protein. In terms of the funnel free energy landscape theory, a protein that truly follows the mechanism of sequential folding, in principle, encounters smoother free energy barriers. A simple sequentially folded protein should, therefore, be less error prone and fold faster than a protein with a complex folding pattern.
Collapse
Affiliation(s)
- C J Tsai
- Laboratory of Experimental and Computational Biology, NCI-FCRDC, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
155
|
Abstract
Previous genetic and biochemical analyses have established that the bacteriophage T4-encoded Gp31 is a cochaperonin that interacts with Escherichia coli's GroEL to ensure the timely and accurate folding of Gp23, the bacteriophage-encoded major capsid protein. The heptameric Gp31 cochaperonin, like the E. coli GroES cochaperonin, interacts with GroEL primarily through its unstructured mobile loop segment. Upon binding to GroEL, the mobile loop adopts a structured, beta-hairpin turn. In this article, we present extensive genetic data that strongly substantiate and extend these biochemical studies. These studies begin with the isolation of mutations in gene 31 based on the ability to plaque on groEL44 mutant bacteria, whose mutant product interacts weakly with Gp31. Our genetic system is unique because it also allows for the direct selection of revertants of such gene 31 mutations, based on their ability to plaque on groEL515 mutant bacteria. Interestingly, all of these revertants are pseudorevertants because the original 31 mutation is maintained. In addition, we show that the classical tsA70 mutation in gene 31 changes a conserved hydrophobic residue in the mobile loop to a hydrophilic one. Pseudorevertants of tsA70, which enable growth at the restrictive temperatures, acquire the same mutation previously shown to allow plaque formation on groEL44 mutant bacteria. Our genetic analyses highlight the crucial importance of all three highly conserved hydrophobic residues of the mobile loop of Gp31 in the productive interaction with GroEL.
Collapse
Affiliation(s)
- A Richardson
- Université de Genève, Département de Biochimie Médicale, Centre Médical Universitaire, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
156
|
Walker DC, Girgis HS, Klaenhammer TR. The groESL chaperone operon of Lactobacillus johnsonii. Appl Environ Microbiol 1999; 65:3033-41. [PMID: 10388700 PMCID: PMC91453 DOI: 10.1128/aem.65.7.3033-3041.1999] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Lactobacillus johnsonii VPI 11088 groESL operon was localized on the chromosome near the insertion element IS1223. The operon was initially cloned as a series of three overlapping PCR fragments, which were sequenced and used to design primers to amplify the entire operon. The amplified fragment was used as a probe to recover the chromosomal copy of the groESL operon from a partial library of L. johnsonii VPI 11088 (NCK88) DNA, cloned in the shuttle vector pTRKH2. The 2,253-bp groESL fragment contained three putative open reading frames, two of which encoded the ubiquitous GroES and GroEL chaperone proteins. Analysis of the groESL promoter region revealed three transcription initiation sites, as well as three sets of inverted repeats (IR) positioned between the transcription and translation start sites. Two of the three IR sets bore significant homology to the CIRCE elements, implicated in negative regulation of the heat shock response in many bacteria. Northern analysis and primer extension revealed that multiple temperature-sensitive promoters preceded the groESL chaperone operon, suggesting that stress protein production in L. johnsonii is strongly regulated. Maximum groESL transcription activity was observed following a shift to 55 degrees C, and a 15 to 30-min exposure of log-phase cells to this temperature increased the recovery of freeze-thawed L. johnsonii VPI 11088. These results suggest that a brief, preconditioning heat shock can be used to trigger increased chaperone production and provide significant cross-protection from the stresses imposed during the production of frozen culture concentrates.
Collapse
Affiliation(s)
- D C Walker
- Departments of Microbiology, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh, North Carolina 27695-7624, USA
| | | | | |
Collapse
|
157
|
Striebel HM, Kalousek F. Eukaryotic precursor proteins are processed by Escherichia coli outer membrane protein OmpP. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:832-9. [PMID: 10411646 DOI: 10.1046/j.1432-1327.1999.00446.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A new specific endopeptidase that cleaves eukaryotic precursor proteins has been found in Escherichia coli K but not in E. coli B strains. After purification, protein sequencing and Western blotting, the endopeptidase was shown to be identical with E. coli outer membrane protein OmpP [Kaufmann, A., Stierhof, Y.-D. & Henning, U. (1994) J. Bacteriol. 176, 359-367]. Further characterization of enzymatic properties of the new peptidase was performed. Comparison of the cleavage specificities of the newly found endopeptidase and that of rat mitochondrial processing peptidase (MPP) showed that patterns of proteolytic cleavage on the investigated precursor proteins by both enzymes are similar. By using three mitochondrial precursor proteins, the specificity assigned to OmpP previously, a cleavage position between two basic amino-acid residues, was extended to a three amino-acid recognition sequence. Positions +1 to +3 of this extended recognition site consist of an amino-acid residue with a small aliphatic side chain such as alanine or serine, a large hydrophobic residue such as leucine or valine followed by an arginine residue. Additionally, structural motifs of the substrate seem to be required for OmpP cleavage.
Collapse
Affiliation(s)
- H M Striebel
- Yale University School of Medicine, Department of Genetics, New Haven, CT, USA.
| | | |
Collapse
|
158
|
Tovar J, Fischer A, Clark CG. The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 1999; 32:1013-21. [PMID: 10361303 DOI: 10.1046/j.1365-2958.1999.01414.x] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ultrastructural analysis of Entamoeba histolytica reveals that this intestinal human pathogen lacks recognizable mitochondria, but the presence in its genome of genes encoding proteins of mitochondrial origin suggests the existence of a mitochondrially derived compartment. We have cloned the full-length E. histolytica gene encoding one such protein, chaperonin CPN60, and have characterized its structure and expression. Using an affinity-purified antibody raised against recombinant protein, we have localized native E. histolytica CPN60 to a previously undescribed organelle of putative mitochondrial origin, the mitosome. Most cells contain only one mitosome, as determined by immunofluorescence studies. Entamoeba histolytica CPN60 has an amino-terminal extension reminiscent of known mitochondrial and hydrogenosomal targeting signals. Deletion of the first 15 amino acids of CPN60 leads to an accumulation of the truncated protein in the cytoplasm. However, this mutant phenotype can be reversed by replacement of the deleted amino acids with a mitochondrial targeting signal from Trypanosoma cruzi HSP70. The observed functional conservation between mitochondrial import in trypanosomes and mitosome import in Entamoeba is strong evidence that the E. histolytica organelle housing chaperonin CPN60 represents a mitochondrial remnant.
Collapse
Affiliation(s)
- J Tovar
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | | | |
Collapse
|
159
|
Hayer-Hartl MK, Ewalt KL, Hartl FU. On the role of symmetrical and asymmetrical chaperonin complexes in assisted protein folding. Biol Chem 1999; 380:531-40. [PMID: 10384959 DOI: 10.1515/bc.1999.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The cylindrical chaperonin GroEL of E. coli and its ring-shaped cofactor GroES cooperate in mediating the ATP-dependent folding of a wide range of polypeptides in vivo and in vitro. By binding to the ends of the GroEL cylinder, GroES displaces GroEL-bound polypeptide into an enclosed folding cage, thereby preventing protein aggregation during folding. The dynamic interaction of GroEL and GroES is regulated by the GroEL ATPase and involves the formation of asymmetrical GroEL:GroES1 and symmetrical GroEL: GroES2 complexes. The proposed role of the symmetrical complex as a catalytic intermediate of the chaperonin mechanism has been controversial. It has also been suggested that the formation of GroEL:GroES2 complexes allows the folding of two polypeptide molecules per GroEL reaction cycle, one in each ring of GroEL. By making use of a procedure to stabilize chaperonin complexes by rapid crosslinking for subsequent analysis by native PAGE, we have quantified the occurrence of GroEL:GroES1 and GroEL:GroES2 complexes in active refolding reactions under a variety of conditions using mitochondrial malate dehydrogenase (mMDH) as a substrate. Our results show that the symmetrical complexes are neither required for chaperonin function nor does their presence significantly increase the rate of mMDH refolding. In contrast, chaperonin-assisted folding is strictly dependent on the formation of asymmetrical GroEL:GroES1 complexes. These findings support the view that GroEL:GroES2 complexes have no essential role in the chaperonin mechanism.
Collapse
Affiliation(s)
- M K Hayer-Hartl
- Max-Planck-Institut für Biochemie, Department of Cellular Biochemistry, Martinsried, Germany
| | | | | |
Collapse
|
160
|
Ayed A, Duckworth HW. A stable intermediate in the equilibrium unfolding of Escherichia coli citrate synthase. Protein Sci 1999; 8:1116-26. [PMID: 10338022 PMCID: PMC2144337 DOI: 10.1110/ps.8.5.1116] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Urea-induced unfolding of Escherichia coli citrate synthase occurs in two phases, as monitored by circular dichroism at 222 nm (measuring secondary structure) or by tryptophan fluorescence. In this paper we characterize the intermediate state, which retains about 40% of the ellipticity of the native state, and is stable between 2.5 M and 5.5 M urea, approximately. This intermediate binds significant amounts of the probe for hydrophobic surfaces, anilinonaphthalene sulfonate, but forms aggregates at least as high as an octamer, as shown by transverse urea gradient polyacrylamide electrophoresis. Thermal denaturation of E. coli citrate synthase also produces an intermediate at temperatures near 60 degrees C, which also retains about 40% of the native ellipticity and forms aggregates, as measured by electrospray-ionization/time-of-flight mass spectrometry. We have used a collection of "cavity-forming" mutant proteins, in which bulky buried hydrophobic residues are replaced by alanines, to explore the nature of the intermediate state further. A certain amount of these mutant proteins shows a destabilized intermediate, as measured by the urea concentration range in which the intermediate is observed. These mutants are found in parts of the citrate synthase sequence that, in a native state, form helices G, M, N, Q, R, and S. From this and other evidence, it is argued that the intermediate state is an aggregated state in which these six helices, or parts of them, remain folded, and that formation of this intermediate is also likely to be a key step in the folding of E. coli citrate synthase.
Collapse
Affiliation(s)
- A Ayed
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
161
|
Abstract
The folding of most newly synthesized proteins in the cell requires the interaction of a variety of protein cofactors known as molecular chaperones. These molecules recognize and bind to nascent polypeptide chains and partially folded intermediates of proteins, preventing their aggregation and misfolding. There are several families of chaperones; those most involved in protein folding are the 40-kDa heat shock protein (HSP40; DnaJ), 60-kDa heat shock protein (HSP60; GroEL), and 70-kDa heat shock protein (HSP70; DnaK) families. The availability of high-resolution structures has facilitated a more detailed understanding of the complex chaperone machinery and mechanisms, including the ATP-dependent reaction cycles of the GroEL and HSP70 chaperones. For both of these chaperones, the binding of ATP triggers a critical conformational change leading to release of the bound substrate protein. Whereas the main role of the HSP70/HSP40 chaperone system is to minimize aggregation of newly synthesized proteins, the HSP60 chaperones also facilitate the actual folding process by providing a secluded environment for individual folding molecules and may also promote the unfolding and refolding of misfolded intermediates.
Collapse
Affiliation(s)
- A L Fink
- Department of Chemistry and Biochemistry, The University of California, Santa Cruz, California, USA
| |
Collapse
|
162
|
Abstract
Hsp33, a member of a newly discovered heat shock protein family, was found to be a very potent molecular chaperone. Hsp33 is distinguished from all other known molecular chaperones by its mode of functional regulation. Its activity is redox regulated. Hsp33 is a cytoplasmically localized protein with highly reactive cysteines that respond quickly to changes in the redox environment. Oxidizing conditions like H2O2 cause disulfide bonds to form in Hsp33, a process that leads to the activation of its chaperone function. In vitro and in vivo experiments suggest that Hsp33 protects cells from oxidants, leading us to conclude that we have found a protein family that plays an important role in the bacterial defense system toward oxidative stress.
Collapse
Affiliation(s)
- U Jakob
- Department of Biology, University of Michigan, Ann Arbor 48109-1048, USA.
| | | | | | | |
Collapse
|
163
|
Siegers K, Waldmann T, Leroux MR, Grein K, Shevchenko A, Schiebel E, Hartl FU. Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system. EMBO J 1999; 18:75-84. [PMID: 9878052 PMCID: PMC1171104 DOI: 10.1093/emboj/18.1.75] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The functional coupling of protein synthesis and chaperone-assisted folding in vivo has remained largely unexplored. Here we have analysed the chaperonin-dependent folding pathway of actin in yeast. Remarkably, overexpression of a heterologous chaperonin which traps non-native polypeptides does not interfere with protein folding in the cytosol, indicating a high-level organization of folding reactions. Newly synthesized actin avoids the chaperonin trap and is effectively channelled from the ribosome to the endogenous chaperonin TRiC. Efficient actin folding on TRiC is critically dependent on the hetero-oligomeric co-chaperone GimC. By interacting with folding intermediates and with TRiC, GimC accelerates actin folding at least 5-fold and prevents the premature release of non-native protein from TRiC. We propose that TRiC and GimC form an integrated 'folding compartment' which functions in cooperation with the translation machinery. This compartment sequesters newly synthesized actin and other aggregation-sensitive polypeptides from the crowded macromolecular environment of the cytosol, thereby allowing their efficient folding.
Collapse
Affiliation(s)
- K Siegers
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD, UK
| | | | | | | | | | | | | |
Collapse
|
164
|
Bulatnikov IG, Polyakova OV, Asryants RA, Nagradova NK, Muronetz VI. Participation of chaperonin GroEL in the folding of D-glyceraldehyde-3-phosphate dehydrogenase. An approach based on the use of different oligomeric forms of the enzyme immobilized on sepharose. JOURNAL OF PROTEIN CHEMISTRY 1999; 18:79-87. [PMID: 10071932 DOI: 10.1023/a:1020603717781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The binding of denatured B. stearothermophilus D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to the E. coli chaperonin GroEL was investigated in two systems: (1) GroEL immobilized on Sepharose via a single subunit was titrated with urea-denatured soluble GAPDH and (2) a Sepharose-bound denatured GAPDH monomer was titrated with soluble GroEL. Similar apparent KD values for the complex GroEL x GAPDH were obtained in both cases (0.04 and 0.03 microM, respectively), the stoichiometry being 1.0 mol chaperonin per GAPDH subunit in the system with the immobilized GroEL and 0.2 mol chaperonin per Sepharose-bound GAPDH monomer. Addition of GroEL and Mg x ATP to a reactivation mixture increased the yield of reactivation of both E. coli and B. stearothermophilus GAPDHs. Incubation of the Sepharose-bound catalytically active tetrameric and dimeric GAPDH forms with the protein fraction of a wild-type E. coli cell extract resulted in the binding of GroEL to the dimer and no interaction with the tetrameric form. These data suggest that GroEL may be capable of interacting with the interdimeric contact regions of the folded GAPDH dimers.
Collapse
Affiliation(s)
- I G Bulatnikov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow
| | | | | | | | | |
Collapse
|
165
|
Roobol A, Carden MJ. Subunits of the eukaryotic cytosolic chaperonin CCT do not always behave as components of a uniform hetero-oligomeric particle. Eur J Cell Biol 1999; 78:21-32. [PMID: 10082421 DOI: 10.1016/s0171-9335(99)80004-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The chaperonin CCT is an hetero-oligomeric molecular chaperone complex. Studies in yeast suggest each of its eight gene products are required for its major identified functions in producing native tubulins and actins. However, it is unclear whether these eight components always form a single particle, covering all functions, or else can also exist as heterogeneous mixtures and/or free subunits in cells. Using mouse P19 embryonal carcinoma cells, which divide rapidly, yet in retinoic acid adopt a neuronal phenotype, admixed with occasional (approximately 10%) fibroblast-like cells, together with a panel of peptide-specific antibodies raised to 7 of the 8 CCT subunits we show that; (1) adoption of a post mitotic phenotype is accompanied by reduced CCT protein expression, significantly more so for CCTbeta, CCTdelta, CCTepsilon, and CCTtheta than for CCTalpha (TCP-1), CCTgamma and CCTzeta; (2) CCTalpha is detected preferentially over other subunits in neurites of P19 neurons; (3) small amounts of CCTalpha and gamma are localised in nuclei (i.e. are not exclusively cytoplasmic), selectively so compared with other subunits; (4) numerous cytosolic foci exist in the cytoplasm which, when detected by double immunofluorescence can contain only one of the subunits probed for; (5) while a "core" chaperonin particle can be immunoprecipitated under native conditions, epitope access is modified both by nucleotides and by non-CCT co-precipitating proteins. Collectively, these findings indicate that CCT subunits are not only components of the hetero-oligomeric chaperonin particle but exist as significant populations of free subunits or smaller oligomers in cells.
Collapse
Affiliation(s)
- A Roobol
- Research School of Biosciences, University of Kent at Canterbury, UK
| | | |
Collapse
|
166
|
Ben-Zvi AP, Chatellier J, Fersht AR, Goloubinoff P. Minimal and optimal mechanisms for GroE-mediated protein folding. Proc Natl Acad Sci U S A 1998; 95:15275-80. [PMID: 9860959 PMCID: PMC28033 DOI: 10.1073/pnas.95.26.15275] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/1998] [Indexed: 11/18/2022] Open
Abstract
We have analyzed the effects of different components of the GroE chaperonin system on protein folding by using a nonpermissive substrate (i.e., one that has very low spontaneous refolding yield) for which rate data can be acquired. In the absence of GroES and nucleotides, the rate of GroEL-mediated refolding of heat- and DTT-denatured mitochondrial malate dehydrogenase was extremely low, but some three times higher than the spontaneous rate. This GroEL-mediated rate was increased 17-fold by saturating concentrations of ATP, 11-fold by ADP and GroES, and 465-fold by ATP and GroES. Optimal refolding activity was observed when the dissociation of GroES from the chaperonin complex was dramatically reduced. Although GroEL minichaperones were able to bind denatured mitochondrial malate dehydrogenase, they were ineffective in enhancing the refolding rate. The spectrum of mechanisms for GroE-mediated protein folding depends on the nature of the substrate. The minimal mechanism for permissive substrates (i.e., having significant yields of spontaneous refolding), requires only binding to the apical domain of GroEL. Slow folding rates of nonpermissive substrates are limited by the transitions between high- and low-affinity states of GroEL alone. The optimal mechanism, which requires holoGroEL, physiological amounts of GroES, and ATP hydrolysis, is necessary for the chaperonin-mediated folding of nonpermissive substrates at physiologically relevant rates under conditions in which retention of bound GroES prevents the premature release of aggregation-prone folding intermediates from the chaperonin complex. The different mechanisms are described in terms of the structural features of mini- and holo-chaperones.
Collapse
Affiliation(s)
- A P Ben-Zvi
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | |
Collapse
|
167
|
Abstract
Recent structural and functional studies have greatly advanced our understanding of the mechanism by which chaperonins (Cpn60) mediate protein folding, the final step in the accurate expression of genetic information. Escherichia coli GroEL has a symmetric double-toroid architecture, which binds nonnative polypeptide substrates on the hydrophobic walls of its central cavity. The asymmetric binding of ATP and cochaperonin GroES to GroEL triggers a major conformational change in the cis ring, creating an enlarged chamber into which the bound nonnative polypeptide is released. The structural changes that create the cis assembly also change the lining of the cavity wall from hydrophobic to hydrophilic, conducive to folding into the native state. ATP hydrolysis in the cis ring weakens it and primes the release of products. When ATP and GroES bind to the trans ring, it forms a stronger assembly, which disassembles the cis complex through negative cooperativity between rings. The opposing function of the two rings operates as if the system had two cylinders, one expelling the products of the reaction as the other loads up the reactants. One cycle of the reaction gives the polypeptide about 15 s to fold at the cost of seven ATP molecules. For some proteins, several cycles of GroEL assistance may be needed in order to achieve their native states.
Collapse
Affiliation(s)
- Z Xu
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, 260 Whitney Avenue, New Haven, Connecticut, 06520-8114, USA
| | | |
Collapse
|
168
|
Grallert H, Rutkat K, Buchner J. GroEL traps dimeric and monomeric unfolding intermediates of citrate synthase. J Biol Chem 1998; 273:33305-10. [PMID: 9837903 DOI: 10.1074/jbc.273.50.33305] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The prokaryotic molecular chaperone GroE is increasingly expressed under heat shock conditions. GroE protects cells by preventing the irreversible aggregation of thermally unfolding proteins. Here, the interaction of GroE with thermally unfolding citrate synthase (CS) was dissected into several steps that occur before irreversible aggregation, and the conformational states of the unfolding protein recognized by GroEL were determined. The kinetic analysis of CS unfolding revealed the formation of inactive dimeric and monomeric intermediates. GroEL binds both intermediates without affecting the unfolding pathway. Furthermore, the dimeric intermediates are not protected against dissociation in the presence of GroEL. Monomeric CS is stably associated with GroEL, thus preventing further irreversible unfolding steps and subsequent aggregation. During refolding, monomeric CS is encapsulated inside the cavity of GroEL. GroES complexes. Taken together our results suggest that for protection of cells against heat stress both the ability of GroEL to interact with a large variety of nonnative conformations of proteins and the active, GroES-dependent refolding of highly unfolded species are important.
Collapse
Affiliation(s)
- H Grallert
- Institut für Biophysik & Physikalische Biochemie, Universität Regensburg, 93040 Regensburg, Germany
| | | | | |
Collapse
|
169
|
Weber F, Keppel F, Georgopoulos C, Hayer-Hartl MK, Hartl FU. The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding. NATURE STRUCTURAL BIOLOGY 1998; 5:977-85. [PMID: 9808043 DOI: 10.1038/2952] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two models are being considered for the mechanism of chaperonin-assisted protein folding in E. coli: (i) GroEL/GroES act primarily by enclosing substrate polypeptide in a folding cage in which aggregation is prevented during folding. (ii) GroEL mediates the repetitive unfolding of misfolded polypeptides, returning them onto a productive folding track. Both models are not mutually exclusive, but studies with the polypeptide-binding domain of GroEL have suggested that unfolding is the primary mechanism, enclosure being unnecessary. Here we investigate the capacity of the isolated apical polypeptide-binding domain to functionally replace the complete GroEL/GroES system. We show that the apical domain binds aggregation-sensitive polypeptides but cannot significantly assist their refolding in vitro and fails to replace the groEL gene or to complement defects of groEL mutants in vivo. A single-ring version of GroEL cannot substitute for GroEL. These results strongly support the view that sequestration of aggregation-prone intermediates in a folding cage is an important element of the chaperonin mechanism.
Collapse
Affiliation(s)
- F Weber
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | |
Collapse
|
170
|
Kim S, Schilke B, Craig EA, Horwich AL. Folding in vivo of a newly translated yeast cytosolic enzyme is mediated by the SSA class of cytosolic yeast Hsp70 proteins. Proc Natl Acad Sci U S A 1998; 95:12860-5. [PMID: 9789005 PMCID: PMC23633 DOI: 10.1073/pnas.95.22.12860] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The nature of chaperone action in the eukaryotic cytosol that assists newly translated cytosolic proteins to reach the native state has remained poorly defined. Actin, tubulin, and Galpha transducin are assisted by the cytosolic chaperonin, CCT, but many other proteins, for example, ornithine transcarbamoylase (OTC), a cytosolic homotrimeric enzyme of yeast, do not require CCT action. Here, we observe that yeast cytosolic OTC is assisted to its native state by the SSA class of yeast cytosolic Hsp70 proteins. In vitro, refolding of OTC diluted from denaturant was assisted by crude yeast cytosol and ATP and found to be directed by SSA1/2. In vivo, when OTC was induced in a temperature-sensitive SSA-deficient strain, it exhibited reduced specific activity, and nonnative subunits were detected in the soluble fraction. These findings indicate that, in vivo, the Hsp70 system assists in folding at least some newly translated cytosolic enzymes, most likely functioning in a posttranslational manner.
Collapse
Affiliation(s)
- S Kim
- Department of Genetics, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
171
|
Dubaquié Y, Looser R, Fünfschilling U, Jenö P, Rospert S. Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but non-identical requirement for hsp60 and hsp10. EMBO J 1998; 17:5868-76. [PMID: 9774331 PMCID: PMC1170914 DOI: 10.1093/emboj/17.20.5868] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mechanism of chaperonin-assisted protein folding has been mostly analyzed in vitro using non-homologous substrate proteins. In order to understand the relative importance of hsp60 and hsp10 in the living cell, homologous substrate proteins need to be identified and analyzed. We have devised a novel screen to test the folding of a large variety of homologous substrates in the mitochondrial matrix in the absence or presence of functional hsp60 or hsp10. The identified substrates have an Mr of 15-90 kDa and fall into three groups: (i) proteins that require both hsp60 and hsp10 for correct folding; (ii) proteins that completely fail to fold after inactivation of hsp60 but are unaffected by the inactivation of hsp10; and (iii) newly imported hsp60 itself, which is more severely affected by inactivation of hsp10 than by inactivation of pre-existing hsp60. The majority of the identified substrates are group I proteins. For these, the lack of hsp60 function has a more pronounced effect than inactivation of hsp10. We suggest that homologous substrate proteins have differential chaperonin requirements, indicating that hsp60 and hsp10 do not always act as a single functional unit in vivo.
Collapse
Affiliation(s)
- Y Dubaquié
- Biozentrum der Universität Basel, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
172
|
Chatellier J, Hill F, Lund PA, Fersht AR. In vivo activities of GroEL minichaperones. Proc Natl Acad Sci U S A 1998; 95:9861-6. [PMID: 9707566 PMCID: PMC21427 DOI: 10.1073/pnas.95.17.9861] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/1998] [Indexed: 11/18/2022] Open
Abstract
Fragments encompassing the apical domain of GroEL, called minichaperones, facilitate the refolding of several proteins in vitro without requiring GroES, ATP, or the cage-like structure of multimeric GroEL. We have identified the smallest minichaperone that is active in vitro in chaperoning the refolding of rhodanese and cyclophilin A: GroEL(193-335). This finding raises the question of whether the minichaperones are active under more stringent conditions in vivo. The smallest minichaperones complement two temperature-sensitive Escherichia coli groEL alleles, EL44 and EL673, at 43 degreesC. Although they cannot replace GroEL in cells in which the chromosomal groEL gene has been deleted by P1 transduction, GroEL(193-335) enhances the colony-forming ability of such cells when limiting amounts of GroEL are expressed from a tightly regulated plasmid. Surprisingly, we found that overexpression of GroEL prevents plaque formation by bacteriophage lambda and inhibits replication of the lambda origin-dependent plasmid, Lorist6. The minichaperones also inhibit Lorist6 replication, but less markedly. The complex quaternary structure of GroEL, its central cavity, and the structural allosteric changes that take place on the binding of nucleotides and GroES are not essential for all of its functions in vivo.
Collapse
Affiliation(s)
- J Chatellier
- Cambridge Centre for Protein Engineering and Cambridge University Chemical Laboratory, Medical Research Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | |
Collapse
|
173
|
Hesterkamp T, Bukau B. Role of the DnaK and HscA homologs of Hsp70 chaperones in protein folding in E.coli. EMBO J 1998; 17:4818-28. [PMID: 9707441 PMCID: PMC1170811 DOI: 10.1093/emboj/17.16.4818] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Folding of newly synthesized cytosolic proteins has been proposed to require assistance by Hsp70 chaperones. We investigated whether two Hsp70 homologs of Escherichia coli, DnaK and HscA, have this role in vivo. Double mutants lacking dnaK and hscA were viable and lacked defects in protein folding at intermediate temperature. After heat shock, a subpopulation of pre-existing proteins slowly aggregated in mutants lacking DnaK, but not HscA, whereas the bulk of newly synthesized proteins displayed wild-type solubility. For thermolabile firefly luciferase, DnaK was dispensable for de novo folding at 30 degrees C, but essential for aggregation prevention during heat shock and subsequent refolding. DnaK and HscA are thus not strictly essential for folding of newly synthesized proteins. DnaK instead has functions in refolding of misfolded proteins that are essential under stress.
Collapse
Affiliation(s)
- T Hesterkamp
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann Herder Strasse 7, D-79104 Freiburg, Germany
| | | |
Collapse
|
174
|
Abstract
The molecular chaperones are a diverse set of protein families required for the correct folding, transport and degradation of other proteins in vivo. There has been great progress in understanding the structure and mechanism of action of the chaperonin family, exemplified by Escherichia coli GroEL. The chaperonins are large, double-ring oligomeric proteins that act as containers for the folding of other protein subunits. Together with its co-protein GroES, GroEL binds non-native polypeptides and facilitates their refolding in an ATP-dependent manner. The action of the ATPase cycle causes the substrate-binding surface of GroEL to alternate in character between hydrophobic (binding/unfolding) and hydrophilic (release/folding). ATP binding initiates a series of dramatic conformational changes that bury the substrate-binding sites, lowering the affinity for non-native polypeptide. In the presence of ATP, GroES binds to GroEL, forming a large chamber that encapsulates substrate proteins for folding. For proteins whose folding is absolutely dependent on the full GroE system, ATP binding (but not hydrolysis) in the encapsulating ring is needed to initiate protein folding. Similarly, ATP binding, but not hydrolysis, in the opposite GroEL ring is needed to release GroES, thus opening the chamber. If the released substrate protein is still not correctly folded, it will go through another round of interaction with GroEL.
Collapse
Affiliation(s)
- N A Ranson
- Department of Crystallography, Birkbeck College London, Malet Street, London WC1E 7HX,
| | | | | |
Collapse
|
175
|
Eisenstein E, Reddy P, Fisher MT. Overexpression, purification, and properties of GroES from Escherichia coli. Methods Enzymol 1998; 290:119-35. [PMID: 9534155 DOI: 10.1016/s0076-6879(98)90011-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- E Eisenstein
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville 20850, USA
| | | | | |
Collapse
|
176
|
Buchner J, Grallert H, Jakob U. Analysis of chaperone function using citrate synthase as nonnative substrate protein. Methods Enzymol 1998; 290:323-38. [PMID: 9534173 DOI: 10.1016/s0076-6879(98)90029-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J Buchner
- Institüt für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | | | |
Collapse
|
177
|
Ditzel L, Löwe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 1998; 93:125-38. [PMID: 9546398 DOI: 10.1016/s0092-8674(00)81152-6] [Citation(s) in RCA: 315] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have determined to 2.6 A resolution the crystal structure of the thermosome, the archaeal group II chaperonin from T. acidophilum. The hexadecameric homolog of the eukaryotic chaperonin CCT/TRiC shows an (alphabeta)4(alphabeta)4 subunit assembly. Domain folds are homologous to GroEL but form a novel type of inter-ring contact. The domain arrangement resembles the GroEL-GroES cis-ring. Parts of the apical domains form a lid creating a closed conformation. The lid substitutes for a GroES-like cochaperonin that is absent in the CCT/TRiC system. The central cavity has a polar surface implicated in protein folding. Binding of the transition state analog Mg-ADP-AIF3 suggests that the closed conformation corresponds to the ATP form.
Collapse
Affiliation(s)
- L Ditzel
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
178
|
Abstract
Genetic and biochemical work has highlighted the biological importance of the GroEL/GroES (Hsp60/Hsp10; cpn60/cpn10) chaperone machine in protein folding. GroEL's donut-shaped structure has attracted the attention of structural biologists because of its elegance as well as the secrets (substrates) it can hide. The recent determination of the GroES and GroEL/GroES structures provides a glimpse of their plasticity, revealing dramatic conformational changes that point to an elaborate mechanism, coupling ATP hydrolysis to substrate release by GroEL.
Collapse
Affiliation(s)
- A Richardson
- Département de Biochimie Médicale, Université de Genève, Switzerland.
| | | | | |
Collapse
|
179
|
Grimaud R, Toussaint A. Assembly of both the head and tail of bacteriophage Mu is blocked in Escherichia coli groEL and groES mutants. J Bacteriol 1998; 180:1148-53. [PMID: 9495752 PMCID: PMC107001 DOI: 10.1128/jb.180.5.1148-1153.1998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/1996] [Accepted: 12/18/1997] [Indexed: 02/06/2023] Open
Abstract
Like several other Escherichia coli bacteriophages, transposable phage Mu does not develop normally in groE hosts (M. Pato, M. Banerjee, L. Desmet, and A. Toussaint, J. Bacteriol. 169:5504-5509, 1987). We show here that lysates obtained upon induction of groE Mu lysogens contain free inactive tails and empty heads. GroEL and GroES are thus essential for the correct assembly of both Mu heads and Mu tails. Evidence is presented that groE mutations inhibit processing of the phage head protein gpH as well as the formation of a 25S complex suspected to be an early Mu head assembly intermediate.
Collapse
Affiliation(s)
- R Grimaud
- Unité Transposition Bactérienne, Université Libre de Bruxelles, Rhode St Genèse, Belgium.
| | | |
Collapse
|
180
|
Netzer WJ, Hartl FU. Protein folding in the cytosol: chaperonin-dependent and -independent mechanisms. Trends Biochem Sci 1998; 23:68-73. [PMID: 9538692 DOI: 10.1016/s0968-0004(97)01171-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent findings suggest that a combination of chaperonin-assisted and unassisted mechanisms operate in protein folding in the cytosol. While nascent chain-binding chaperones, such as Hsp70, could have a general role in maintaining the folding competence of translating polypeptide chains, the contribution of the cylindrical chaperonin complexes to overall folding is limited to a subset of aggregation-sensitive polypeptides. The majority of bacterial proteins are relatively small and they are synthesized rapidly and folded independently of the chaperonin GroEL in a posttranslational manner. Eukaryotes have a proportionally larger number of multi-domain proteins than bacteria. The individual domains of these proteins can be folded cotranslationally and sequentially. The use of this mechanism explains how large proteins fold independently of a chaperonin and could have been crucial in the evolution of a wide array of modular polypeptides in eukaryotes.
Collapse
Affiliation(s)
- W J Netzer
- Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | | |
Collapse
|
181
|
Lund PA. The Roles of Molecular Chaperones in the Bacterial Cell. Mol Microbiol 1998. [DOI: 10.1007/978-3-642-72071-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
182
|
Leroux MR, Candido EP. Subunit characterization of the Caenorhabditis elegans chaperonin containing TCP-1 and expression pattern of the gene encoding CCT-1. Biochem Biophys Res Commun 1997; 241:687-92. [PMID: 9434769 DOI: 10.1006/bbrc.1997.7889] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The chaperonin containing TCP-1 (CCT) from the free-living nematode Caenorhabditis elegans was purified and shown to contain at least seven subunit species ranging from 52-65 kDa. SDS-gel electrophoresis and Western blot analyses with antibodies against C. elegans CCT-1 and CCT-5 and an antibody which recognizes a conserved region in vertebrate CCT subunits confirm that the subunit compositions of CCTs from distantly related organisms (C. elegans and bovine species) are remarkably similar. Surprisingly, the co-purified HSP60 chaperonin present in the C. elegans CCT preparation has the greatest binding activity for denatured actin. Expression of a reporter gene under the control of the C. elegans cct-1 promoter is found to be mainly restricted to neuronal and muscle tissues, an observation which is consistent with the participation of CCT in actin and tubulin folding.
Collapse
Affiliation(s)
- M R Leroux
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
183
|
Aoki K, Taguchi H, Shindo Y, Yoshida M, Ogasahara K, Yutani K, Tanaka N. Calorimetric observation of a GroEL-protein binding reaction with little contribution of hydrophobic interaction. J Biol Chem 1997; 272:32158-62. [PMID: 9405415 DOI: 10.1074/jbc.272.51.32158] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Binding of Escherichia coli chaperonin, GroEL, to substrate proteins with non-native structure, reduced alpha-lactalbumin (rLA) and denatured pepsin, were analyzed by isothermal titration calorimetry at various temperatures in the presence of salt (0.2 M KCl). Both proteins bound to GroEL with 1:1 stoichiometry and micromolar affinity at all temperatures tested. However, thermodynamic properties of their binding to GroEL are remarkably different from each other. While heat capacity changes (DeltaCp) of rLA-GroEL binding showed large negative values, -4.19 kJ mol-1 K-1, that of denatured pepsin-GroEL binding was only -0.2 kJ mol-1 K-1. These values strongly indicate that the hydrophobic interaction is a major force of rLA-GroEL binding but not so for denatured pepsin-GroEL binding. When salt was omitted from the solution, the affinity and DeltaCp of the rLA-GroEL binding reaction were not significantly changed whereas denatured pepsin lost affinity to GroEL. Thus, in the non-native protein-GroEL binding reaction, thermodynamic properties, as well as the effect of salt, differ from protein to protein and hydrophobic interaction may not always be a major driving force.
Collapse
Affiliation(s)
- K Aoki
- Tokyo Institute of Technology, Research Laboratory of Resources Utilization, R-1, 4259 Nagatsuta, Yokohama 226, Japan
| | | | | | | | | | | | | |
Collapse
|
184
|
Nathan DF, Vos MH, Lindquist S. In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc Natl Acad Sci U S A 1997; 94:12949-56. [PMID: 9371781 PMCID: PMC24244 DOI: 10.1073/pnas.94.24.12949] [Citation(s) in RCA: 275] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the highly concentrated environment of the cell, polypeptide chains are prone to aggregation during synthesis (as nascent chains await the emergence of the remainder of their folding domain), translocation, assembly, and exposure to stresses that cause previously folded proteins to unfold. A large and diverse group of proteins, known as chaperones, transiently associate with such folding intermediates to prevent aggregation, but in many cases the specific functions of individual chaperones are still not clear. In vivo, Hsp90 (heat shock protein 90) plays a role in the maturation of components of signal transduction pathways but also exhibits chaperone activity with diverse proteins in vitro, suggesting a more general function. We used a unique temperature-sensitive mutant of Hsp90 in Saccharomyces cerevisiae, which rapidly and completely loses activity on shift to high temperatures, to examine the breadth of Hsp90 functions in vivo. The data suggest that Hsp90 is not required for the de novo folding of most proteins, but it is required for a specific subset of proteins that have greater difficulty reaching their native conformations. Under conditions of stress, Hsp90 does not generally protect proteins from thermal inactivation but does enhance the rate at which a heat-damaged protein is reactivated. Thus, although Hsp90 is one of the most abundant chaperones in the cell, its in vivo functions are highly restricted.
Collapse
Affiliation(s)
- D F Nathan
- Department of Molecular Genetics and Cell Biology and Howard Hughes Medical Institute, The University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
185
|
Bross P, Andresen BS, Gregersen N. Impaired folding and subunit assembly as disease mechanism: the example of medium-chain acyl-CoA dehydrogenase deficiency. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 58:301-37. [PMID: 9308370 DOI: 10.1016/s0079-6603(08)60040-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rapid progress in DNA technology has entailed the possibility of readily detecting mutations in disease genes. In contrast to this, techniques to characterize the effects of mutations are still very time consuming. It has turned out that many of the mutations detected in disease genes are missense mutations. Characterization of the effect of these mutations is particularly important in order to establish that they are disease causing and to estimate their severity. We use the experiences with investigation of medium-chain acyl-CoA dehydrogenase deficiency as an example to illustrate that (i) impaired folding is a common effect of missense mutations occurring in genetic diseases, (ii) increasing the level of available chaperones may augment the level of functional mutant protein in vivo, and (iii) one mutation may have multiple effects. The interplay between the chaperones assisting folding and proteases that attack folding intermediates is decisive for how large a proportion of a mutant polypeptide impaired in folding acquires the functional structure. This constitutes a protein quality control system, and the handling of a given mutant protein by this system may vary due to environmental conditions or genetic variability in its components. The possibility that intraindividual differences in the handling of mutant proteins may be a mechanism accounting for phenotypic variability is discussed.
Collapse
Affiliation(s)
- P Bross
- Center for Medical Molecular Biology, Aarhus University Hospital, Denmark
| | | | | |
Collapse
|
186
|
Affiliation(s)
- R J Ellis
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
187
|
Checa SK, Viale AM. The 70-kDa heat-shock protein/DnaK chaperone system is required for the productive folding of ribulose-biphosphate carboxylase subunits in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:848-55. [PMID: 9342238 DOI: 10.1111/j.1432-1033.1997.00848.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have studied the in vivo requirements of the DnaK chaperone system for the folding of recombinant ribulose-bisphosphate carboxylase/oxygenase in Escherichia coli. Expression of functional dimeric or hexadecameric ribulose-bisphosphate carboxylase from different bacterial sources (including purple bacteria and cyanobacteria) was severely impaired in E. coli dnaK, dnaJ, or grpE mutants. These enzymes were synthesized mostly in soluble, fully enzymatically active forms in wild-type E. coli cells cultured in the temperature range 20-42 degrees C, but aggregated extensively in dnaK null mutants. Co-expression of dnaK, but not groESL, markedly reduced the aggregation of ribulose-bisphosphate carboxylase subunits in dnaK null mutants and restored the enzyme activity to levels found in isogenic wild-type strains. Ribulose-bisphosphate carboxylase expression in wild-type E. coli cells growing at 30 degrees C promoted an enhanced synthesis of stress proteins, apparently by sequestering DnaK from its negative regulatory role in this response. The overall results indicate that the DnaK chaperone system assists in vivo the folding pathway of ribulose-bisphosphate carboxylase large subunits, most probably at its very early stages.
Collapse
Affiliation(s)
- S K Checa
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | | |
Collapse
|
188
|
Lüneberg E, Müller D, Steinmetz I, Frosch M. Monoclonal antibody against species-specific epitope of Pseudomonas aeruginosa Hsp60 protein cross-reacts with Pseudomonas stutzeri and other Pseudomonas species. FEMS Microbiol Lett 1997; 154:131-7. [PMID: 9297831 DOI: 10.1111/j.1574-6968.1997.tb12634.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In a previous study, we determined the epitope of the Pseudomonas aeruginosa Hsp60 heat shock protein which is recognized by the specific monoclonal antibody (MAb) 2528. Subsequent investigations revealed a weak cross-reactivity of MAb 2528 with P. stutzeri, P. alcaligenes, P. mendocina and P. pseudoalcaligenes. To elucidate the molecular structure for these cross-reactions, we cloned the P. stutzeri hsp60 gene in Escherichia coli and determined the nucleotide sequence of the gene. In addition, the hsp60 gene of further Pseudomonas species was amplified and sequenced and amino acid substitutions within the epitope recognized by MAb 2528 were determined. The decapeptide QADIEARVLQ is unique to the P. aeruginosa Hsp60 protein, and cross-reaction of MAb 2528 reflects the phylogenetic relationship of Pseudomonas species as P. aeruginosa and all four cross-reacting species constitute a DNA homology group within the rRNA group I of the family Pseudomonadaceae, which belong to the gamma-subclass of the Proteobacteria.
Collapse
Affiliation(s)
- E Lüneberg
- Institut für Medizinische Mikrobiologie, Medizinische Hochschule Hannover, Germany.
| | | | | | | |
Collapse
|
189
|
Abstract
The involvement of two types of molecular chaperone in folding newly synthesized proteins can be rationalized in terms of the crowded nature of the intracellular environment. Recent work sheds light on how these chaperones recognise their substrates and protect them from the problems of macromolecular crowding.
Collapse
Affiliation(s)
- R J Ellis
- Department of Biological Sciences, University of Warwick Coventry, CV4 7AL, UK.
| |
Collapse
|
190
|
Xu Z, Horwich AL, Sigler PB. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 1997; 388:741-50. [PMID: 9285585 DOI: 10.1038/41944] [Citation(s) in RCA: 910] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chaperonins assist protein folding with the consumption of ATP. They exist as multi-subunit protein assemblies comprising rings of subunits stacked back to back. In Escherichia coli, asymmetric intermediates of GroEL are formed with the co-chaperonin GroES and nucleotides bound only to one of the seven-subunit rings (the cis ring) and not to the opposing ring (the trans ring). The structure of the GroEL-GroES-(ADP)7 complex reveals how large en bloc movements of the cis ring's intermediate and apical domains enable bound GroES to stabilize a folding chamber with ADP confined to the cis ring. Elevation and twist of the apical domains double the volume of the central cavity and bury hydrophobic peptide-binding residues in the interface with GroES, as well as between GroEL subunits, leaving a hydrophilic cavity lining that is conducive to protein folding. An inward tilt of the cis equatorial domain causes an outward tilt in the trans ring that opposes the binding of a second GroES. When combined with new functional results, this negative allosteric mechanism suggests a model for an ATP-driven folding cycle that requires a double toroid.
Collapse
Affiliation(s)
- Z Xu
- The Howard Hughes Medical Institute, The Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
191
|
Ewalt KL, Hendrick JP, Houry WA, Hartl FU. In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 1997; 90:491-500. [PMID: 9267029 DOI: 10.1016/s0092-8674(00)80509-7] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The quantitative contribution of chaperonin GroEL to protein folding in E. coli was analyzed. A diverse set of newly synthesized polypeptides, predominantly between 10-55 kDa, interacts with GroEL, accounting for 10%-15% of all cytoplasmic protein under normal growth conditions, and for 30% or more upon exposure to heat stress. Most proteins leave GroEL rapidly within 10-30 s. We distinguish three classes of substrate proteins: (I) proteins with a chaperonin-independent folding pathway; (II) proteins, more than 50% of total, with an intermediate chaperonin dependence for which normally only a small fraction transits GroEL; and (III) a set of highly chaperonin-dependent proteins, many of which dissociate slowly from GroEL and probably require sequestration of aggregation-sensitive intermediates within the GroEL cavity for successful folding.
Collapse
Affiliation(s)
- K L Ewalt
- Howard Hughes Medical Institute and Cellular Biochemistry and Biophysics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
192
|
Hunt JF, van der Vies SM, Henry L, Deisenhofer J. Structural adaptations in the specialized bacteriophage T4 co-chaperonin Gp31 expand the size of the Anfinsen cage. Cell 1997; 90:361-71. [PMID: 9244309 DOI: 10.1016/s0092-8674(00)80343-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Gp31 protein from bacteriophage T4 functionally substitutes for the bacterial co-chaperonin GroES in assisted protein folding reactions both in vitro and in vivo. But Gp31 is required for the folding and/or assembly of the T4 major capsid protein Gp23, and this requirement cannot be satisfied by GroES. The 2.3 A crystal structure of Gp31 shows that its tertiary and quaternary structures are similar to those of GroES despite the existence of only 14% sequence identity between the two proteins. However, Gp31 shows a series of structural adaptations which will increase the size and the hydrophilicity of the "Anfinsen cage," the enclosed cavity within the GroEL/GroES complex that is the location of the chaperonin-assisted protein folding reaction.
Collapse
Affiliation(s)
- J F Hunt
- Howard Hughes Medical Institute and Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas 75235-9050, USA
| | | | | | | |
Collapse
|
193
|
Netzer WJ, Hartl FU. Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature 1997; 388:343-9. [PMID: 9237751 DOI: 10.1038/41024] [Citation(s) in RCA: 317] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The evolution of complex genomes requires that new combinations of pre-existing protein domains successfully fold into modular polypeptides. During eukaryotic translation model two-domain polypeptides fold efficiently by sequential and co-translational folding of their domains. In contrast, folding of the same proteins in Escherichia coli is posttranslational, and leads to intramolecular misfolding of concurrently folding domains. Sequential domain folding in eukaryotes may have been critical in the evolution of modular polypeptides, by increasing the probability that random gene-fusion events resulted in immediately foldable protein structures.
Collapse
Affiliation(s)
- W J Netzer
- Cellular Biochemistry & Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
194
|
Ivic A, Olden D, Wallington EJ, Lund PA. Deletion of Escherichia coli groEL is complemented by a Rhizobium leguminosarum groEL homologue at 37 degrees C but not at 43 degrees C. Gene X 1997; 194:1-8. [PMID: 9266666 DOI: 10.1016/s0378-1119(97)00087-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacterial Cpn60 proteins (homologues to the Escherichia coli GroEL protein) are often examined for function by testing their ability to complement a temperature sensitive mutation in the E. coli groEL gene. Such tests suffer from two drawbacks: the Cpn600 protein may come from a strain with a lower optimum growth temperature than E. coli, and the requirements for successful complementation in E. coli are likely to be more stringent at 43 degrees C than at lower temperatures. Here we describe the construction of a strain of E. coli where the chromosomal gene for the essential molecular chaperone GroEL has been deleted, with GroEL being expressed from a tightly regulated plasmid borne copy of the gene. The deletion can be transduced into strains expressing heterologous Cpn60 proteins, to test for complementation at any temperature. We show that a Cpn60 protein from the bacterium Rhizobium leguminosarum can function to allow E. coli growth at 37 degrees C but not at 43 degrees C. By switching off the plasmid borne groEL gene, the effects of progressive depletion of GroEL protein from E. coli cells can also be monitored at any temperature.
Collapse
Affiliation(s)
- A Ivic
- School of Biological Sciences, University of Birmingham, UK
| | | | | | | |
Collapse
|
195
|
Thomas JG, Ayling A, Baneyx F. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. To fold or to refold. Appl Biochem Biotechnol 1997; 66:197-238. [PMID: 9276922 DOI: 10.1007/bf02785589] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The high-level expression of recombinant gene products in the gram-negative bacterium Escherichia coli often results in the misfolding of the protein of interest and its subsequent degradation by cellular proteases or its deposition into biologically inactive aggregates known as inclusion bodies. It has recently become clear that in vivo protein folding is an energy-dependent process mediated by two classes of folding modulators. Molecular chaperones, such as the DnaK-DnaJ-GrpE and GroEL-GroES systems, suppress off-pathway aggregation reactions and facilitate proper folding through ATP-coordinated cycles of binding and release of folding intermediates. On the other hand, folding catalysts (foldases) accelerate rate-limiting steps along the protein folding pathway such as the cis/trans isomerization of peptidyl-prolyl bonds and the formation and reshuffling of disulfide bridges. Manipulating the cytoplasmic folding environment by increasing the intracellular concentration of all or specific folding modulators, or by inactivating genes encoding these proteins, holds great promise in facilitating the production and purification of heterologous proteins. Purified folding modulators and artificial systems that mimic their mode of action have also proven useful in improving the in vitro refolding yields of chemically denatured polypeptides. This review examines the usefulness and limitations of molecular chaperones and folding catalysts in both in vivo and in vitro folding processes.
Collapse
Affiliation(s)
- J G Thomas
- University of Washington, Department of Chemical Engineering, Seattle 98195-1750, USA
| | | | | |
Collapse
|
196
|
Abstract
At present, it is still enigmatic how the reaction cycle by which the Escherichia coli GroE chaperones mediate protein folding in the cell is coordinated with respect to the sequential order of binding and release of GroES, nucleotide, and nonnative protein. It is generally assumed that the asymmetric GroEL.GroES complex is the acceptor state for substrate protein. Nevertheless, this species is poorly understood in its binding characteristics for nucleotide and nonnative protein. We show here that this species has a high affinity binding site for nonnative protein. In addition to this, binding of nucleotide to one GroEL ring is strongly favored by GroES binding to the other ring. However, the slow rate of release of substrate protein from the unproductive trans-position kinetically favors the binding of a second GroES, thereby forming a symmetric GroEL14.(GroES7)2 complex and simultaneously ensuring that substrate protein is sequestered in a position underneath GroES. Our results demonstrate that the intrinsic binding characteristics of the trans-bullet complex determine the sequence of events during the reaction cycle.
Collapse
Affiliation(s)
- H Sparrer
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, 93040 Regensburg, Germany
| | | |
Collapse
|
197
|
Abstract
I. Architecture of GroEL and GroES and the reaction pathway A. Architecture of the chaperonins B. Reaction pathway of GroEL-GroES-mediated folding II. Polypeptide binding A. A parallel network of chaperones binding polypeptides in vivo B. Polypeptide binding in vitro 1. Role of hydrophobicity in recognition 2. Homologous proteins with differing recognition-differences in primary structure versus effects on folding pathway 3. Conformations recognized by GroEL a. Refolding studies b. Binding of metastable intermediates c. Conformations while stably bound at GroEL 4. Binding constants and rates of association 5. Conformational changes in the substrate protein associated with binding by GroEL a. Observations b. Kinetic versus thermodynamic action of GroEL in mediating unfolding c. Crossing the energy landscape in the presence of GroEL III. ATP binding and hydrolysis-driving the reaction cycle IV. GroEL-GroES-polypeptide ternary complexes-the folding-active cis complex A. Cis and trans ternary complexes B. Symmetric complexes C. The folding-active intermediate of a chaperonin reaction-cis ternary complex D. The role of the cis space in the folding reaction E. Folding governed by a "timer" mechanism F. Release of nonnative polypeptides during the GroEL-GroES reaction G. Release of both native and nonnative forms under physiologic conditions H. A role for ATP binding, as well as hydrolysis, in the folding cycle V. Concluding remarks.
Collapse
Affiliation(s)
- W A Fenton
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
198
|
Yigit H, Reznikoff WS. Examination of the Tn5 transposase overproduction phenotype in Escherichia coli and localization of a suppressor of transposase overproduction killing that is an allele of rpoH. J Bacteriol 1997; 179:1704-13. [PMID: 9045832 PMCID: PMC178885 DOI: 10.1128/jb.179.5.1704-1713.1997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tn5 transposase (Tnp) overproduction is lethal to Escherichia coli. Tnp overproduction causes cell filamentation, abnormal chromosome segregation, and an increase in anucleated cell formation. There are two simple explanations for the observed phenotype: induction of the SOS response or of the heat shock response. The data presented here show that overproduction of Tnp neither induces an SOS response nor a strong heat shock response. However, our experiments do indicate that induction of some sigma32-programmed function(s) (either due to an rpoH mutation, a deletion of dnaK, or overproduction of sigma32) suppresses Tnp overproduction killing. This effect is not due to overproduction of DnaK, DnaJ, or GroELS. In addition, Tnp but not deltall Tnp (whose overproduction does not kill the host cells) associates with the inner cell membrane, suggesting a possible correlation between cell killing and Tnp membrane association. These observations will be discussed in the context of a model proposing that Tnp overproduction titrates an essential host factor(s) involved in an early cell division step and/or chromosome segregation.
Collapse
Affiliation(s)
- H Yigit
- Department of Biochemistry, University of Wisconsin--Madison, 53706, USA
| | | |
Collapse
|
199
|
Sparrer H, Rutkat K, Buchner J. Catalysis of protein folding by symmetric chaperone complexes. Proc Natl Acad Sci U S A 1997; 94:1096-100. [PMID: 9037012 PMCID: PMC19750 DOI: 10.1073/pnas.94.4.1096] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The GroE chaperones of Escherichia coli assist protein folding under physiological and heat shock conditions in an ATP-dependent way. Although a number of details of assisted folding have been elucidated, the molecular mechanism of the GroE cycle remains unresolved. Here we present an experimental system that allows the direct analysis of the GroE-mediated folding cycle under stringent conditions. We demonstrate that the GroE proteins efficiently catalyze the folding of kinetically trapped folding intermediates of a mutant of maltose-binding protein (MBP Y283D) in an ATP-dependent way. GroES plays a key role in this reaction cycle, accelerating the folding of the substrate protein MBP Y283D up to 50-fold. Interestingly, catalysis of the folding reaction requires the formation of symmetrical football-shaped GroEL x GroES2 particles and the intermediate release of the nonnative protein from the chaperone complex. Our results show that, in the presence of GroES, the complex architecture of the GroEL toroids allows maintenance of two highly interregulated rings simultaneously active in protein folding.
Collapse
Affiliation(s)
- H Sparrer
- Institut für Biophysik & Physikalische Biochemie, Universität Regensburg, Germany
| | | | | |
Collapse
|
200
|
Ryan MT, Naylor DJ, Høj PB, Clark MS, Hoogenraad NJ. The role of molecular chaperones in mitochondrial protein import and folding. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 174:127-93. [PMID: 9161007 DOI: 10.1016/s0074-7696(08)62117-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molecular chaperones play a critical role in many cellular processes. This review concentrates on their role in targeting of proteins to the mitochondria and the subsequent folding of the imported protein. It also reviews the role of molecular chaperons in protein degradation, a process that not only regulates the turnover of proteins but also eliminates proteins that have folded incorrectly or have aggregated as a result of cell stress. Finally, the role of molecular chaperones, in particular to mitochondrial chaperonins, in disease is reviewed. In support of the endosymbiont theory on the origin of mitochondria, the chaperones of the mitochondrial compartment show a high degree of similarity to bacterial molecular chaperones. Thus, studies of protein folding in bacteria such as Escherichia coli have proved to be instructive in understanding the process in the eukaryotic cell. As in bacteria, the molecular chaperone genes of eukaryotes are activated by a variety of stresses. The regulation of stress genes involved in mitochondrial chaperone function is reviewed and major unsolved questions regarding the regulation, function, and involvement in disease of the molecular chaperones are identified.
Collapse
Affiliation(s)
- M T Ryan
- School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia
| | | | | | | | | |
Collapse
|