151
|
Downen M, Amaral TD, Hua LL, Zhao ML, Lee SC. Neuronal death in cytokine-activated primary human brain cell culture: role of tumor necrosis factor-? Glia 1999. [DOI: 10.1002/(sici)1098-1136(199911)28:2<114::aid-glia3>3.0.co;2-o] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
152
|
Piehl F, Lundberg C, Khademi M, Bucht A, Dahlman I, Lorentzen JC, Olsson T. Non-MHC gene regulation of nerve root injury induced spinal cord inflammation and neuron death. J Neuroimmunol 1999; 101:87-97. [PMID: 10580817 DOI: 10.1016/s0165-5728(99)00136-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Spinal ventral root avulsion leads to an inflammatory response around lesioned motoneurons and the subsequent degeneration of a large proportion of the neurons. We demonstrate here differences in the regulation of cytokine mRNAs, microglia/macrophage activation, MHC expression and nerve cell survival in the two inbred rat strains DA and ACI. These strains have similar major MHC haplotypes, but differ in their non-MHC background genes. T cells were rare in the lesioned segments and depletion of T cells did not affect the response. Thus, non-MHC gene(s) regulate the inflammation and neuron death after nerve trauma by mechanisms not involving antigen-specific immune responses.
Collapse
Affiliation(s)
- F Piehl
- Department of Medicine, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
153
|
Weidenfeld J, Feldman S, DeKeyser FG, Ovadia H. Effect of exogenous nitric oxide and inhibitors of nitric oxide synthase on the hypothalamic pituitary adrenal axis responses to neural stimuli. Neuroendocrinology 1999; 70:153-9. [PMID: 10516477 DOI: 10.1159/000054471] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been shown that the hypothalamic-pituitary-adrenal (HPA) axis responses to immune-derived stimuli in particular can be modulated by nitric oxide (NO). In the present study we examined the effect of endogenous and exogenous NO on the HPA axis responses to neural stimuli which are not related to immune functions. Intracerebroventricular injection of NOR-3, a donor of NO, had no effect on basal HPA axis activity but significantly attenuated the secretion of median eminence (ME) CRH-41 as well as the serum ACTH and corticosterone (CS) in response to acute photic stimulation in a dose-dependent manner. Intracerebroventricular administration of N-omega-nitro-L-arginine methyl ester (L-NAME), a general NOS inhibitor, significantly enhanced ACTH and CS responses to this stress but did not change the basal levels of these hormones. On the other hand, i.c.v. injection of aminoguanidine, an inhibitor of inducible NO synthase (NOS) but not of neuronal NOS, did not affect the HPA axis responses to photic stimulation. These results suggest that: (1) NO is involved in modulation of the HPA axis responses to neural stimuli which are not dependent on immune factors, (2) the effect of NO is mediated by inhibition of hypothalamic ME CRH-41 secretion, and (3) this effect is probably mediated by neuronal NOS and not by inducible NOS.
Collapse
Affiliation(s)
- J Weidenfeld
- Department of Neurology, Bikur Cholim Hospital, Jerusalem, Israel
| | | | | | | |
Collapse
|
154
|
Gp-41-mediated astrocyte inducible nitric oxide synthase mRNA expression: involvement of interleukin-1beta production by microglia. J Neurosci 1999. [PMID: 10414975 DOI: 10.1523/jneurosci.19-15-06468.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanisms underlying human immunodeficiency virus-1 encephalopathy are not completely known; however, recent studies suggest that the viral protein gp41 may be neurotoxic via activation of inducible nitric oxide synthase (iNOS) in glial cells. In the present study, we investigated the NO-generating activity of primary human fetal astrocytes in response to gp41 and the relationship to microglial cell production of interleukin-1 (IL-1). Gp41 failed to trigger iNOS mRNA expression in highly enriched (>99%) astrocyte or microglial cell cultures. However, gp41-treated microglia released a factor(s) that triggered iNOS mRNA expression and NO production in astrocytes. Because IL-1 receptor antagonist protein blocked gp41-induced NO production, a pivotal role was suggested for microglial cell IL-1 production in astrocyte iNOS expression. Also, gp41 induced IL-1beta mRNA expression and IL-1 production in microglial cell but not astrocyte cultures. Using specific inhibitors, we found that gp41-induced IL-1beta production in microglia was mediated via a signaling pathway involving protein-tyrosine kinase. These data support the hypothesis that gp41 induces astrocyte NO production indirectly by triggering upregulation of microglial cell IL-1 expression.
Collapse
|
155
|
Hartlage-Rübsamen M, Lemke R, Schliebs R. Interleukin-1β, inducible nitric oxide synthase, and nuclear factor-κB are induced in morphologically distinct microglia after rat hippocampal lipopolysaccharide/interferon-γ injection. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19990801)57:3<388::aid-jnr11>3.0.co;2-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
156
|
Casamenti F, Prosperi C, Scali C, Giovannelli L, Colivicchi MA, Faussone-Pellegrini MS, Pepeu G. Interleukin-1beta activates forebrain glial cells and increases nitric oxide production and cortical glutamate and GABA release in vivo: implications for Alzheimer's disease. Neuroscience 1999; 91:831-42. [PMID: 10391466 DOI: 10.1016/s0306-4522(98)00680-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Interleukin-1beta (10 U) was injected into the nucleus basalis of adult male Wistar rats. The inflammation-induced changes in glial cell morphology and expression of inducible nitric oxide synthase in the injected area, the release of acetylcholine, GABA and glutamate from the ipsilateral cortex, the production of nitrite levels in the injected area and ipsilateral cortex, and changes in motor activity were investigated. Saline-injected rats were used as control. Interleukin-1beta induced an activation of both microglia and astrocytes which was already evident 24 h after injection. Seven days after injection, many reactive microglial cells and astrocytes were seen in the injected area and in other brain regions of the same hemisphere. Microglia reaction, but not astrocyte activation, disappeared 30 days post-injection. Seven days after interleukin-1beta injection, many cells immunopositive for inducible nitric oxide synthase were found surrounding the injection site. Inducible nitric oxide synthase-positive cells were identified, by double staining immunohistochemistry, in the reactive microglial cells and, by electron microscope examination, in the perineuronal subpopulation of resident activated microglia. Microdialysis investigations revealed a transient increase in reactive nitrogen intermediates (at seven days post-injection), a delayed (at 30 days post-injection) increase in GABA and glutamate release, and no changes in acetylcholine release in the ipsilateral cortex in interleukin-1beta, but not saline, injected rats. Inhibition of inducible nitric oxide synthase expression by N(G)-nitro-L-arginine methyl ester administration prevented the increase in nitrogen intermediates and GABA release, but not in glutamate release. Our findings suggest that an inflammatory reaction of the basal forebrain facilitates GABA release through the production of nitric oxide.
Collapse
Affiliation(s)
- F Casamenti
- Department of Pharmacology, University of Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
157
|
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system. The primary pathological target in multiple sclerosis is myelin. Most MS patients follow a relapsing-remitting (RR-MS) course for 10 to 15 years that transforms into a chronic or secondary progressive disease (SP-MS). This review summarizes studies from our laboratory that implicate activated microglia and astrocytes in early stages of myelin destruction in MS brain. In addition, we review evidence that indicates that axonal transection is a major pathological process in multiple sclerosis. Our data support the hypothesis that neurological disability in RR-MS is due to inflammatory demyelination while axonal loss plays a significant role in the irreversible neurological decline in SP-MS. Further elucidation of the pathological targets and pathological mechanisms of tissue destruction in MS brain will help identify new therapeutics.
Collapse
Affiliation(s)
- B D Trapp
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, OH 44195, USA.
| | | | | | | |
Collapse
|
158
|
Nath A, Conant K, Chen P, Scott C, Major EO. Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon. J Biol Chem 1999; 274:17098-102. [PMID: 10358063 DOI: 10.1074/jbc.274.24.17098] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pathological correlates of dementia due to human immunodeficiency virus (HIV) infection are glial cell activation and cytokine dysregulation. These findings occur in the setting of small numbers of productively infected cells within the brain. We determined whether exposure of susceptible cells to Tat protein of HIV could result in the production of select proinflammatory cytokines. In a dose-responsive manner, Tat induced interleukin (IL)-1beta production in monocytic cells, while astrocytic cells showed an increase in mRNA for IL-1beta, but had a translation block for IL-1beta protein production. Conversely, IL-6 protein and mRNA productions were strongly induced in astrocytic cells and minimally in monocytic cells. IL-1beta and IL-6 production were independent of tumor necrosis factor-alpha production. An exposure to Tat for a few minutes was sufficient for sustained releases of cytokines for several hours. This prolonged cytokine production is likely maintained by a positive feed back loop of Tat-induced nuclear factor kappaB activation and cytokine production that is independent of extracellular calcium. Thus a transient exposure may be sufficient to initiate a cascade of events resulting in cerebral dysfunction and a "hit and run" approach may be in effect. Hence cross-sectional measurement of viral load in the brain may not be a useful indicator of the role of viral products in the neuropathogenesis of HIV dementia.
Collapse
Affiliation(s)
- A Nath
- Departments of Neurology, Microbiology, and Immunology, University of Kentucky, Lexington, Kentucky 40536-0284, USA.
| | | | | | | | | |
Collapse
|
159
|
Widenka DC, Medele RJ, Stummer W, Bise K, Steiger HJ. Inducible nitric oxide synthase: a possible key factor in the pathogenesis of chronic vasospasm after experimental subarachnoid hemorrhage. J Neurosurg 1999; 90:1098-104. [PMID: 10350258 DOI: 10.3171/jns.1999.90.6.1098] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The role of nitric oxide (NO) in the pathogenesis of cerebral vasospasm after subarachnoid hemorrhage (SAH) is not well understood. Nitric oxide is a well-established vasodilatory substance; however, in SAH, NO may become a major source for the production of injurious free-radical species, leading to chronic cerebral vasospasm. Reactive overproduction of NO to counteract vascular narrowing might potentiate the detrimental effects of NO. The focus of the present study is to determine the extent of reactive induction of inducible nitric oxide synthase (iNOS) after experimental SAH. METHODS Chronic vasospasm was induced in male Wistar rats by an injection of autologous blood (100 microl) into the cisterna magna followed by a second injection 24 hours later. A control group of 10 animals was treated with injections of 0.9% sodium chloride solution. Vasospasm was verified by pressure-controlled angiography after retrograde cannulation of the external carotid artery 7 days later. In 11 of 15 animals radiographic evidence of cerebral vasospasm was seen. The animals were perfusion fixed and their brains were removed for immunohistochemical assessment. With the aid of a microscope, staining for iNOS was quantified in 40-microm floating coronal sections. Immunohistochemical staining for iNOS was markedly more intense in animals with significant angiographic evidence of vasospasm. Virtually no staining was observed in control animals. Seven days after the second experimental SAH, labeling of iNOS was found in endothelial cells, in vascular smooth-muscle cells, and, above all, in adventitial cells. Some immunohistochemical staining of iNOS was observed in rod cells (activated microglia), in glial networks, and in neurons. CONCLUSIONS The present study demonstrates induction of iNOS after experimental SAH.
Collapse
Affiliation(s)
- D C Widenka
- Department of Neurosurgery and Institute of Neuropathology, Klinikum Grosshadern, Ludwig-Maximilians University Munich, Germany
| | | | | | | | | |
Collapse
|
160
|
Boven LA, Middel J, Portegies P, Verhoef J, Jansen GH, Nottet HS. Overexpression of nerve growth factor and basic fibroblast growth factor in AIDS dementia complex. J Neuroimmunol 1999; 97:154-62. [PMID: 10408969 DOI: 10.1016/s0165-5728(99)00044-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although neurotrophic factors are currently considered as treatment for neurodegenerative diseases, little is still known about their presence in the central nervous system under pathological conditions. We investigated the expression of the neurotrophic molecules NGF, bFGF, BDNF and IGF-1 in brain tissue of patients suffering from AIDS dementia complex. In contrast to IGF-1 and BDNF, NGF and bFGF mRNA levels were significantly elevated. Strong NGF immunoreactivity was found in perivascular areas and was colocalized with infiltrating macrophages, whereas intense bFGF staining was found in cells with characteristic astrocytic morphology. These data suggest that the induction of NGF and bFGF alone appears to be insufficient as a compensatory mechanism to prevent ADC.
Collapse
Affiliation(s)
- L A Boven
- Eijkman-Winkler Institute, Neuroimmunology Section, Utrecht University, The Netherlands.
| | | | | | | | | | | |
Collapse
|
161
|
McLarnon JG, Zhang L, Goghari V, Lee YB, Walz W, Krieger C, Kim SU. Effects of ATP and elevated K+ on K+ currents and intracellular Ca2+ in human microglia. Neuroscience 1999; 91:343-52. [PMID: 10336083 DOI: 10.1016/s0306-4522(98)00491-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have used whole-cell patch-clamp recordings and calcium microfluorescence measurements to study the effects of ATP and elevated external K+ on properties of human microglia. The application of ATP (at 0.1 mM) led to the activation of a transient inward non-selective cationic current at a cell holding potential of -60 mV and a delayed, transient expression of an outward K+ current activated with depolarizing steps applied from holding level. The ATP response included an increase in inward K+ conductance and a depolarizing shift in reversal potential as determined using a voltage ramp waveform applied from -120 to -50 mV. Fura-2 microspectrofluorescence measurements showed intracellular calcium to be increased following the application of ATP. This response was characterized by an initial transient phase, which persisted in Ca2+-free media and was due to release of Ca2+ from intracellular storage sites. The response had a later plateau phase, consistent with Ca2+ influx. In addition, ATP-induced changes in intracellular Ca2+ exhibited prominent desensitization. Elevated external K+ (at 40 mM) increased inward K+ conductance and shifted the reversal potential in the depolarizing direction, with no effect on outward K+ current or the level of internal Ca2+. The results of these experiments show the differential responses of human microglia to ATP and elevated K+, two putative factors associated with neuronal damage in the central nervous system.
Collapse
Affiliation(s)
- J G McLarnon
- Department of Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
162
|
Hewett JA, Hewett SJ, Winkler S, Pfeiffer SE. Inducible nitric oxide synthase expression in cultures enriched for mature oligodendrocytes is due to microglia. J Neurosci Res 1999; 56:189-98. [PMID: 10494107 DOI: 10.1002/(sici)1097-4547(19990415)56:2<189::aid-jnr8>3.0.co;2-b] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Expression of inducible nitric oxide (NO) synthase (NOS-2) occurs during inflammation in the central nervous system (CNS) and has been linked to demyelination accompanying certain CNS inflammatory diseases. Although astrocytes and microglia are thought to be the major sources of NOS-2 expression in the CNS in vivo, recent evidence suggested that the myelin-producing oligodendrocytes (OLs) themselves can express NOS-2 in culture. Given the potentially important pathological implications of this finding, the purpose of this study was to examine further the expression of NOS-2 by OLs in vitro. After exposure to lipopolysaccharide (LPS) and interferon-gamma (IFNgamma), primary cultures enriched for mature OLs released NO in a time-dependent manner, although the amount varied considerably between different culture preparations. Increased NO production was accompanied by expression of NOS-2 mRNA and protein, as determined by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. Immunofluorescence analysis revealed that the cell-type expressing NOS-2 in these cultures was galactocerebroside (Gal C)-negative but CD11b-positive. Further, NO production could be attenuated in cultures treated with the microglial/macrophage toxin, leucine methyl ester, prior to LPS/IFNgamma stimulation. Thus, microglia were the source of NOS-2 catalytic activity in these cultures. The present results indicate that LPS and IFNgamma are not effective stimuli for induction of NOS-2 in OLs in primary cell culture.
Collapse
Affiliation(s)
- J A Hewett
- Department of Pharmacology, University of Connecticut Health Center, Farmington 06107-6215, USA.
| | | | | | | |
Collapse
|
163
|
Boven LA, Gomes L, Hery C, Gray F, Verhoef J, Portegies P, Tardieu M, Nottet HSLM. Increased Peroxynitrite Activity in AIDS Dementia Complex: Implications for the Neuropathogenesis of HIV-1 Infection. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.7.4319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Oxidative stress is suggested to be involved in several neurodegenerative diseases. One mechanism of oxidative damage is mediated by peroxynitrite, a neurotoxic reaction product of superoxide anion and nitric oxide. Expression of two cytokines and two key enzymes that are indicative of the presence of reactive oxygen intermediates and peroxynitrite was investigated in brain tissue of AIDS patients with and without AIDS dementia complex and HIV-seronegative controls. RNA expression of IL-1β, IL-10, inducible nitric oxide synthase, and superoxide dismutase (SOD) was found to be significantly higher in demented compared with nondemented patients. Immunohistochemical analysis showed that SOD was expressed in CD68-positive microglial cells while inducible nitric oxide synthase was detected in glial fibrillary acidic protein (GFAP)-positive astrocytes and in equal amounts in microglial cells. Approximately 70% of the HIV p24-Ag-positive macrophages did express SOD, suggesting a direct HIV-induced intracellular event. HIV-1 infection of macrophages resulted in both increased superoxide anion production and elevated SOD mRNA levels, compared with uninfected macrophages. Finally, we show that nitrotyrosine, the footprint of peroxynitrite, was found more intense and frequent in brain sections of demented patients compared with nondemented patients. These results indicate that, as a result of simultaneous production of superoxide anion and nitric oxide, peroxynitrite may contribute to the neuropathogenesis of HIV-1 infection.
Collapse
Affiliation(s)
- Leonie A. Boven
- *Eijkman-Winkler Institute, Section of Neuroimmunology, Utrecht University, Utrecht, The Netherlands
| | - Lucio Gomes
- *Eijkman-Winkler Institute, Section of Neuroimmunology, Utrecht University, Utrecht, The Netherlands
| | - Christiane Hery
- †Laboratoire Universitaire “Virus, neurone et immunité,” Université Paris-Sud, Paris, France
| | - Françoise Gray
- ‡Laboratory of Neuropathology, Faculté de Médecine Paris-Ouest, Garches, France
| | - Jan Verhoef
- *Eijkman-Winkler Institute, Section of Neuroimmunology, Utrecht University, Utrecht, The Netherlands
| | - Peter Portegies
- §Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc Tardieu
- †Laboratoire Universitaire “Virus, neurone et immunité,” Université Paris-Sud, Paris, France
| | - Hans S. L. M. Nottet
- *Eijkman-Winkler Institute, Section of Neuroimmunology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
164
|
Human Immunodeficiency Virus-1–Infected Macrophages Induce Inducible Nitric Oxide Synthase and Nitric Oxide (NO) Production in Astrocytes: Astrocytic NO as a Possible Mediator of Neural Damage in Acquired Immunodeficiency Syndrome. Blood 1999. [DOI: 10.1182/blood.v93.6.1843.406k40_1843_1850] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO) plays an important role in normal neural cell function. Dysregulated or overexpression of NO contributes to neurologic damage associated with various pathologies, including human immunodeficiency virus (HIV)-associated neurological disease. Previous studies suggest that HIV-infected monocyte-derived macrophages (MDM) produce low levels of NO in vitro and that inducible nitric oxide synthase (iNOS) is expressed in the brain of patients with neurologic disease. However, the levels of NO could not account for the degree of neural toxicity observed. In this study, we found that induction of iNOS with concomitant production of NO occurred in primary human astrocytes, but not in MDM, when astrocytes were cocultured with HIV-1–infected MDM. This coincided with decreased HIV replication in infected MDM. Supernatants from cocultures of infected MDM and astrocytes also stimulated iNOS/NO expression in astrocytes, but cytokines known to induce iNOS expression (interferon-γ, interleukin-1β, and tumor necrosis factor-) were not detected. In addition, the recombinant HIV-1 envelope protein gp41, but not rgp120, induced iNOS in cocultures of uninfected MDM and astrocytes. This suggests that astrocytes may be an important source of NO production due to dysregulated iNOS expression and may constitute one arm of the host response resulting in suppression of HIV-1 replication in the brain. It also leads us to speculate that neurologic damage observed in HIV disease may ensue from prolonged, high level production of NO.
Collapse
|
165
|
Martínez I, Puerta C, Redondo C, García-Merino A. Type IV phosphodiesterase inhibition in experimental allergic encephalomyelitis of Lewis rats: sequential gene expression analysis of cytokines, adhesion molecules and the inducible nitric oxide synthase. J Neurol Sci 1999; 164:13-23. [PMID: 10385042 DOI: 10.1016/s0022-510x(99)00050-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Type IV phosphodiesterase inhibitors are able to suppress EAE. To investigate the effects of this therapy in the central nervous system, we serially analyzed from days 7 to 17 postinoculation the gene expression pattern of tumor necrosis factor (TNF), lymphotoxin, interferon-gamma, interleukin-1beta, the inducible nitric oxide synthase (iNOs), interleukin-10, the vascular cell adhesion molecule-1 (VCAM-1) and the intercellular adhesion molecule-1 (ICAM-1) in the spinal cord of Lewis rats with actively induced EAE, treated with Rolipram. Treated rats had a delayed and milder disease, and reduced numbers of infiltrates in the nervous tissue. The gene expression profile was similar to that of untreated rats, although delayed, with no evidence of IL-10 upregulation during the observation period. The delayed inflammation was not associated with changes in the expression of VCAM-1 and ICAM-1. In peripheral blood mononuclear cells, TNF mRNA levels were decreased and interleukin-10 was unchanged. This therapy did not alter the proliferative ability of T lymphocytes against myelin basic protein. The encephalitogenic potential of splenocytes from treated animals was also unaffected. The high levels of both iNOs mRNA and nitric oxide (NO) found before the appearance of clinical signs, suggests that NO generation might be a contributing factor to the therapeutic benefit achieved by Rolipram in the rat.
Collapse
Affiliation(s)
- I Martínez
- Department of Neurology, Clínica Puerta de Hierro, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
166
|
Feinstein DL, Reis DJ, Regunathan S. Inhibition of astroglial nitric oxide synthase type 2 expression by idazoxan. Mol Pharmacol 1999; 55:304-8. [PMID: 9927622 DOI: 10.1124/mol.55.2.304] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Binding of idazoxan (IDA) to imidazoline receptors of the I2 subtype in astrocytes influences astroglial gene expression as evidenced by increased expression of glial fibrillary acidic protein and mRNA. To determine whether IDA affected glial inflammatory gene expression, we tested the effects of IDA on astroglial nitric oxide synthase type-2 (NOS-2) expression. NOS-2 was induced in primary rat astrocytes and C6 glioma cells by incubation with 1 microgram/ml lipopolysaccharide (LPS) plus three cytokines (tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma) or three cytokines alone. Cells were incubated with 1-100 microM IDA, and at 24 h NOS-2 expression assessed. In astrocytes and C6 cells, preincubation with IDA dose-dependently inhibited nitrite accumulation (IC50 approximately 25 microM), accompanied by a reduction in NOS-2 protein levels and L-citrulline synthesis activity in cell lysates. IDA also inhibited nitrite production in LPS stimulated RAW 264.7 macrophages. In astrocytes, but not C6 cells, longer preincubation times with IDA yielded significantly greater suppression, and maximal suppression (>90%) was achieved after a 8 h preincubation in 100 microM IDA. The degree of inhibition was diminished whether IDA was added after LPS plus cytokine mixture. In contrast to NE, continuous incubation with IDA was required to achieve suppression. IDA reduced induction of NOS-2 protein levels, steady state NOS-2 mRNA levels, and activity of a NOS-2 promoter construct stably transfected in C6 cells. These results show that IDA inhibits NOS-2 activity and protein expression in glial cells and macrophages, and suggest that this occurs by decreasing transcription from the NOS-2 promoter.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Animals, Newborn
- Arginine/drug effects
- Arginine/metabolism
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytes/enzymology
- Cell Line
- Cell-Free System/drug effects
- Cell-Free System/enzymology
- Chloramphenicol O-Acetyltransferase/drug effects
- Chloramphenicol O-Acetyltransferase/genetics
- Chloramphenicol O-Acetyltransferase/metabolism
- Citrulline/drug effects
- Citrulline/metabolism
- Cytokines/pharmacology
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Enzymologic/drug effects
- Idazoxan/pharmacology
- Lipopolysaccharides/pharmacology
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type I
- Nitrites/metabolism
- Norepinephrine/pharmacology
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Recombinant Fusion Proteins/drug effects
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Time Factors
- Tumor Cells, Cultured/cytology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/enzymology
Collapse
Affiliation(s)
- D L Feinstein
- Division of Neurobiology, Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York, USA
| | | | | |
Collapse
|
167
|
Hewett SJ. Interferon-gamma reduces cyclooxygenase-2-mediated prostaglandin E2 production from primary mouse astrocytes independent of nitric oxide formation. J Neuroimmunol 1999; 94:134-43. [PMID: 10376946 DOI: 10.1016/s0165-5728(98)00240-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) and prostaglandins (PGs) modulate inflammatory and immune responses in the central nervous system (CNS). Both NO and PG synthesis have been described in appropriately stimulated astrocytes. In other systems, both positive and negative modulation of cyclooxygenase (COX) activity, hence PG synthesis, have been described by NO. Since interferon (IFN)-gamma is known to upregulate the production of NO from astrocytes, the present study was designed to investigate the effect of IFNgamma on PG production from activated astrocytes and to determine whether this effect is mediated by NO. Astrocytic PG production was induced by exposure of murine cortical cultures to lipopolysaccharide (LPS). This induction was time- and concentration-dependent, and prevented by inhibitors of transcription and translation, as well as the selective COX-2 inhibitor, NS-398. LPS-induced expression of COX-2 mRNA and protein was confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. Exposure of LPS-treated astrocytes to IFNgamma resulted in a concentration-dependent decrease in PGE2 accumulation which was accompanied by a striking parallel increase in NO formation. However, the NOS inhibitors, N(G)-nitro-L-arginine or N6-(1-iminoethyl)-lysine, failed to reverse the IFNgamma-mediated diminution of LPS-induced PGE2 production, indicating that the IFN-gamma-mediated reduction in COX-2-dependent PGE2 production occurred independent of NO formation. Additional experiments demonstrated that IFN-gamma acted mainly by downregulating the expression of COX-2 protein. Present results indicate that PG and NO synthesis in mouse cortical astrocytes in vitro are under the direct reciprocal control of IFNgamma.
Collapse
Affiliation(s)
- S J Hewett
- Department of Pharmacology, University of Connecticut Health Center, Farmington 06030-6125, USA.
| |
Collapse
|
168
|
Abstract
Given at the Meeting of the Physiological Society held at the University of Southampton on 10 September 1998
Collapse
Affiliation(s)
- N J Rothwell
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
169
|
Molina-Holgado F, Hernanz A, De la Fuente M, Guaza C. N-Acetyl-cysteine inhibition of encephalomyelitis Theiler's virus-induced nitric oxide and tumour necrosis factor-alpha production by murine astrocyte cultures. Biofactors 1999; 10:187-93. [PMID: 10609881 DOI: 10.1002/biof.5520100215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The pathological mechanisms that cause central nervous system (CNS) dysfunction in most neurological diseases are not well established. Theiler's murine encephalomyelitis virus (TMEV) is known to interact with cells of the CNS and its intracerebral inoculation to susceptible mice strains causes neurological disorders resembling multiple sclerosis (MS). In this study, we reported that primary astrocyte cultures from SJL/J susceptible mice when infected with TMEV released important amounts of nitrites (NO2-) to the culture medium, as measured in the supernatants 24 hours after infection. In addition, we observed an increment in the production of tumour necrosis factor alpha (TNF-alpha) by susceptible SJL/J strain derived astrocytes infected with TMEV. The treatment with the thiolic antioxidant N-acetyl-cysteine partially suppressed the virus-stimulated production of nitric oxide and TNF-alpha, in a dose response fashion. These results indicate that during viral infection astrocytes are an important cellular source of nitric oxide and TNF-alpha, substances which play important roles during CNS inflammatory events. The effects of the antioxidant N-acetyl-cysteine, modulating the production of the above compounds by TMEV-infected astrocytes may be a significant factor in preventing CNS demyelination.
Collapse
|
170
|
Zhao ML, Liu JS, He D, Dickson DW, Lee SC. Inducible nitric oxide synthase expression is selectively induced in astrocytes isolated from adult human brain. Brain Res 1998; 813:402-5. [PMID: 9838203 DOI: 10.1016/s0006-8993(98)01023-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inducible nitric oxide synthase (iNOS) expression has been shown to be differentially regulated among different cell types and species. In cultures of primary human fetal glial cells, we have shown that astrocytes rather than microglia express iNOS. In the present study, we extended these findings to primary cultures of astrocytes and microglia derived from adult human brains. Mixed cultures of adult brain tissue were stimulated with IL-1beta and IFNgamma, a combination known to induce iNOS maximally in human fetal cells, and the expression of iNOS was determined by immunocytochemistry. Cell types were determined by morphology as well as immunocytochemistry for GFAP (astrocytes) and CD68 (microglia). The results showed that in cultures of adult human glia, iNOS was expressed following stimulation with cytokines, and the expression was restricted to astrocytes. Astrocyte iNOS immunoreactivity was detected both in the cytosol and in a discrete paranuclear region, a pattern noted in human fetal astrocytes. These results demonstrate that the ability to express iNOS is common to both fetal and adult human astrocytes.
Collapse
Affiliation(s)
- M L Zhao
- Department of Pathology (Neuropathology) F-717, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
171
|
Wang JY, Wang JY, Wang JY, Shum AY, Hwang CP. Ethanol modulates induction of nitric oxide synthase in glial cells by endotoxin. Life Sci 1998; 63:1571-83. [PMID: 9808068 DOI: 10.1016/s0024-3205(98)00424-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although ethanol has long been recognized as an immunosuppressant, the effects of ethanol on immune functions in the central nervous system (CNS) have not been well characterized. Glial cells function as immune effector cells within the CNS. Nitric oxide (NO), generated by inducible NO synthase (iNOS) of activated glial cells, appears to participate in the immune defense and the pathogenesis of brain injury and several neurologic diseases. The goal of the present study was to examine the effects of ethanol on NO production and mRNA expression of iNOS following its induction by bacterial endotoxin lipopolysaccharide (LPS) in cultured glial cells. After incubation of mixed glia with LPS for 24 hr, the levels of nitrite in the culture medium were assayed by Griess reaction. We found that LPS (10-500 ng/ml) induced a concentration-dependent increase in the production of NO which was abolished by the selective iNOS inhibitor aminoguanidine. While ethanol treatment (25 to 400 mM, 24 hr exposure) had no direct effect on basal NO production, it significantly suppressed the LPS-induced increase of nitrite levels in a concentration-dependent manner. Using a semiquantitative reverse transcriptase polymerase chain reaction, we found that while ethanol by itself was unable to induce iNOS mRNA, it nevertheless suppressed LPS-induced iNOS mRNA expression. Our results that ethanol had no direct effect on NO production but inhibited LPS-induced NO, indicated an immunomodulatory role by ethanol. These findings suggest that ethanol may ameliorate the consequences of overwhelming NO generation through iNOS induction in glial cells following infection, inflammation or CNS injuries.
Collapse
Affiliation(s)
- J Y Wang
- Department of Physiology, National Defense Medical Center, Taipei, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
172
|
Abstract
Evidence exists that complement activation is involved in the pathogenesis of Alzheimer's disease (AD). It has been previously demonstrated that central nervous system (CNS) resident cells can synthesize complement proteins. Two key proteins in the complement pathway are the complement C4 and C9 proteins. Using reverse transcription-polymerase chain reaction, ELISA, immunocytochemical and immunoblot techniques, we showed that primary human astrocytes constitutively expressed complement C4 mRNA and protein, and that this was increased when cells were treated with interferon-gamma, but inhibited when cells were treated with interleukin-1beta (IL-1beta). C4 immunoreactivity could be localized to GFAP-positive astrocytes when protein secretion was inhibited. These results indicated that astrocytes could be a source of complement C4 in the human CNS. In addition it was shown that stimulated astrocytes could also express complement C9 mRNA, though C9 protein was not detectable in culture supernatants.
Collapse
Affiliation(s)
- D G Walker
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
173
|
|
174
|
Muñoz-Fernández MA, Fresno M. The role of tumour necrosis factor, interleukin 6, interferon-gamma and inducible nitric oxide synthase in the development and pathology of the nervous system. Prog Neurobiol 1998; 56:307-40. [PMID: 9770242 DOI: 10.1016/s0301-0082(98)00045-8] [Citation(s) in RCA: 286] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proinflammatory cytokines, tumour necrosis factor (TNF)-alpha, interferon (IFN)-gamma and interleukin (IL)-6, have multiple effects in the central nervous system (CNS) not strictly cytotoxic being involved in controlling neuronal and glial activation, proliferation, differentiation and survival, thus influencing neuronal and glial plasticity, degeneration as well as development and regeneration of the nervous system. Moreover, they can contribute to CNS disorders, including multiple sclerosis. Alzheimer's disease and human immunodeficiency virus-associated dementia complex. Recent results with deficient mice in the expression of those cytokines indicate that they are in general more sensible to insults resulting in neural damage. Some of the actions induced by TNF-alpha, and IFN-gamma, including both beneficial and detrimental, are mediated by inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO) production. NO produced by iNOS may be beneficial by promoting the differentiation and survival of neurons. IL-6 does not induce iNOS, explaining why this cytokine is less often involved in this dual role protection pathology. Some of the proinflammatory as well as the neurotrophic effects of those cytokines also involve upregulation of cell adhesion molecules (CAM). Those apparently conflicting results may be reconciled considering that proinflammatory cytokines are involved in promoting the disease, mostly by inducing expression of CAM leading to alteration of the blood-brain barrier integrity, whereas they have a protective role once disease is established due to its immunosuppressive or neurotrophic role. Understanding the dichotomy pathogenesis/neuroprotection of those cytokines may provide a rationale for better therapeutic strategies.
Collapse
Affiliation(s)
- M A Muñoz-Fernández
- Division of Immunology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | |
Collapse
|
175
|
Halonen SK, Chiu F, Weiss LM. Effect of cytokines on growth of Toxoplasma gondii in murine astrocytes. Infect Immun 1998; 66:4989-93. [PMID: 9746608 PMCID: PMC108619 DOI: 10.1128/iai.66.10.4989-4993.1998] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/1998] [Accepted: 07/06/1998] [Indexed: 11/20/2022] Open
Abstract
Cytokines play a significant role in the regulation of Toxoplasma gondii in the central nervous system. Cytokine-activated microglia are important host defense cells in central nervous system infections. Recent evidence indicates that astrocytes can also be activated by cytokines to inhibit intracellular pathogens. In this study, we examined the effect of gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and IL-1 on the growth of T. gondii in a primary murine astrocyte culture. Pretreatment of astrocytes with IFN-gamma resulted in 65% inhibition of T. gondii growth. Neither TNF-alpha, IL-1, nor IL-6 alone had any effect on T. gondii growth. IFN-gamma in combination with either TNF-alpha, IL-1, or IL-6 caused a 75 to 80% inhibition of growth. While nitric oxide was produced by astrocytes treated with these cytokines, inhibition of T. gondii growth was not reversed by the addition of the nitric oxide synthase inhibitor NG-monomethyl-L-arginine. Furthermore, IFN-gamma in combination with IL-1, IL-6, or TNF-alpha also induced inhibition in astrocytes derived from syngeneic mice deficient in the enzyme inducible nitric oxide synthase. This finding suggests that the mechanism of cytokine inhibition is not nitric oxide mediated. Similarly, the addition of tryptophan had no effect on inhibition, indicating that the mechanism was not mediated via induction of the enzyme indoleamine 2, 3-dioxygenase. The mechanism of inhibition remains to be elucidated. Results from this study demonstrate that cytokine-activated astrocytes are capable of significantly inhibiting the growth of T. gondii. These data indicate that astrocytes may be important host defense cells in controlling toxoplasmosis in the brain.
Collapse
Affiliation(s)
- S K Halonen
- Departments of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
176
|
Mackenzie CR, Willberg CB, Däubener W. Inhibition of group B streptococcal growth by IFN gamma-activated human glioblastoma cells. J Neuroimmunol 1998; 89:191-7. [PMID: 9726842 DOI: 10.1016/s0165-5728(98)00138-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Group B streptococci are the most important bacteria inducing neonatal septicemia and meningitis. The aim of this study was to assess the role of IFNgamma in the induction of anti-microbial effector mechanisms in human brain tumor cells. Different human glioblastoma/astrocytoma cell lines, stimulated with IFNgamma, restricted the growth of group B streptococci. In addition, we found that TNF alpha is able to enhance the IFNgamma-mediated anti-microbial effect. In contrast to group B streptococci, other bacteria which are also capable of inducing meningitis, like E. coli and all but one of the tested Streptococcus pneumoniae strains, were not influenced by the IFNgamma treated cells. We found that the IFNgamma or the IFNgamma/TNF alpha induced activation of indoleamine 2,3-dioxygenase is responsible for the inhibition of streptococcal growth, since the addition of supplemental L-tryptophan completely blocks the IFNgamma induced bacteriostasis.
Collapse
Affiliation(s)
- C R Mackenzie
- Institut für Medizinische Mikrobiologie und Virologie, Heinrich-Heine Universität, Düsseldorf, Germany.
| | | | | |
Collapse
|
177
|
Murphy GM, Yang L, Cordell B. Macrophage colony-stimulating factor augments beta-amyloid-induced interleukin-1, interleukin-6, and nitric oxide production by microglial cells. J Biol Chem 1998; 273:20967-71. [PMID: 9694846 DOI: 10.1074/jbc.273.33.20967] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Alzheimer's disease (AD), a chronic cerebral inflammatory state is thought to lead to neuronal injury. Microglia, intrinsic cerebral immune effector cells, are likely to be key in the pathophysiology of this inflammatory state. We showed that macrophage colony-stimulating factor, a microglial activator found at increased levels in the central nervous system in AD, dramatically augments beta-amyloid peptide (betaAP)-induced microglial production of interleukin-1, interleukin-6, and nitric oxide. In contrast, granulocyte macrophage colony-stimulating factor, another hematopoietic cytokine found in the AD brain, did not augment betaAP-induced microglial secretory activity. These results indicate that increased macrophage colony-stimulating factor levels in AD could magnify betaAP-induced microglial inflammatory cytokine and nitric oxide production, which in turn could intensify the cerebral inflammatory state by activating astrocytes and additional microglia, as well as directly injuring neurons.
Collapse
Affiliation(s)
- G M Murphy
- Neuroscience Research Laboratories, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305-5485, USA.
| | | | | |
Collapse
|
178
|
Lokensgard JR, Chao CC, Gekker G, Hu S, Peterson PK. Benzodiazepines, glia, and HIV-1 neuropathogenesis. Mol Neurobiol 1998; 18:23-33. [PMID: 9824847 DOI: 10.1007/bf02741458] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the precise mechanisms whereby HIV-1 infection induces neurodegeneration have yet to be determined, a great deal of evidence has incriminated glial cells and the production of proinflammatory mediators in this pathologic process. For this reason, ideal therapeutic agents for the treatment of AIDS dementia would attenuate HIV-1 neuropathogenesis through both direct inhibition of viral expression and suppression of brain cell-produced immune mediators. Benzodiazepines (BDZs), such as Valium, are extensively prescribed drugs for anxiety disorders, which readily cross the blood-brain barrier and have demonstrated immunomodulatory properties. BDZs bind to primary human microglial cells, the principal site of HIV-1 replication in the brain, and inhibit lipopolysaccharide (LPS) induced tumour necrosis factor (TNF-alpha) production by these cells in a concentration-dependent manner. Treatment of HIV-1-infected primary human microglial, as well as mixed glial/neuronal, cell cultures with BDZs inhibits the expression of HIV-1 p24 antigen. BDZ-induced inhibition of HIV-1 expression in chronically infected promonocytic (U1) cells has been found to be associated with decreased activation of the nuclear transcription factor kappa B (NF-kappa B). Because HIV-1 expression is critically dependent on the cellular transcription machinery, inhibition of the activation of transcription factors, which participate in both HIV-1 expression and the production of neurotoxic immune mediators, by BDZ analogs may provide new therapeutic options for AIDS dementia.
Collapse
Affiliation(s)
- J R Lokensgard
- Institute for Brain and Immune Disorders, Minneapolis Medical Research Foundation, MN, USA
| | | | | | | | | |
Collapse
|
179
|
Turner DA, Buhl EH, Hailer NP, Nitsch R. Morphological features of the entorhinal-hippocampal connection. Prog Neurobiol 1998; 55:537-62. [PMID: 9670217 DOI: 10.1016/s0301-0082(98)00019-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The goal of this review in an overview of the structural elements of the entorhinal-hippocampal connection. The development of the dendrites of hippocampal neurons will be outlined in relation to afferent pathway specificity and the mature dendritic structure compared. Interneurons will be contrasted to pyramidal cells in terms of processing of physiological signals and convergence and divergence in control of hippocampal circuits. Mechanisms of axonal guidance and target recognition, target structures, the involvement of receptor distribution on hippocampal dendrites and the involvement of non-neuronal cellular elements in the establishment of specific connections will be presented. Mechanisms relevant for the maintenance of shape and morphological specializations of hippocampal dendrites will be reviewed. One of the significant contexts in which to view these structural elements is the degree of plasticity in which they participate, during development and origination of dendrites, mature synaptic plasticity and after lesions, when the cells must continue to maintain and reconstitute function, to remain part of the circuitry in the hippocampus. This review will be presented in four main sections: (1) interneurons-development, role in synchronizing influence and hippocampal network functioning; (2) principal cells in CA1, CA3 and dentate gyrus regions-their development, function in terms of synaptic integration, differentiating structure and alterations with lesions; (3) glia and glia/neuronal interactions-response to lesions and developmental guidance mechanisms; and (4) network and circuit aspects of hippocampal morphology and functioning. Finally, the interwoven role of these various elements participating in hippocampal network function will be discussed.
Collapse
Affiliation(s)
- D A Turner
- Neurosurgery and Neurobiology, Duke University Medical Center 27710, USA.
| | | | | | | |
Collapse
|
180
|
Oleszak EL, Zaczynska E, Bhattacharjee M, Butunoi C, Legido A, Katsetos CD. Inducible nitric oxide synthase and nitrotyrosine are found in monocytes/macrophages and/or astrocytes in acute, but not in chronic, multiple sclerosis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1998; 5:438-45. [PMID: 9665945 PMCID: PMC95596 DOI: 10.1128/cdli.5.4.438-445.1998] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have examined the localization of inducible nitric oxide synthase (iNOS) and nitrotyrosine (the product of nitration of tyrosine by peroxynitrite, a highly reactive derivative of nitric oxide [NO]) in demyelinating lesions from (i) two young adult patients with acute multiple sclerosis (MS), (ii) a child with MS (consistent with diffuse sclerosis), and (iii) five adult patients with chronic MS. Previous reports have suggested a possible correlation between iNOS, peroxynitrite, related nitrogen-derived oxidants, and the demyelinating processes in MS. We have demonstrated iNOS-immunoreactive cells in both acute-MS and diffuse-sclerosis-type lesions. In acute-MS lesions, iNOS was localized in both monocytes/macrophages and reactive astrocytes. However, foamy (myelin-laden) macrophages and the majority of reactive astrocytes were iNOS negative. In specimens from the childhood MS patient, iNOS protein was present only in a subpopulation of reactive or hypertrophic astrocytes. In contrast, no iNOS staining was detected in chronic-MS lesions. Immunohistochemical staining of acute-MS lesions with an antibody to nitrotyrosine revealed codistribution of iNOS- and nitrotyrosine-positive cells, although nitrotyrosine staining was more widespread in cells of the monocyte/macrophage lineage. In diffuse-sclerosis-type lesions, nitrotyrosine staining was present in hypertrophic astrocytes, whereas it was absent in chronic-MS lesions. These results suggest that NO and nitrogen-derived oxidants may play a role in the initiation of demyelination in acute-MS lesions but not in the later phase of the disease.
Collapse
Affiliation(s)
- E L Oleszak
- Fels Institute for Cancer Research and Molecular Biology, Department of Biochemistry and Neurology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | |
Collapse
|
181
|
Giovannoni G, Heales SJ, Land JM, Thompson EJ. The potential role of nitric oxide in multiple sclerosis. Mult Scler 1998; 4:212-6. [PMID: 9762676 DOI: 10.1177/135245859800400323] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nitric oxide (.NO) and its reactive derivative peroxynitrite (ONOO-) have been implicated in the pathogenesis of multiple sclerosis (MS). They are cytotoxic to oligodendrocytes and neurones in culture by inhibiting the mitochondrial respiratory chain (complexes II/III and IV) and inhibiting certain key intracellular enzymes. Recently .NO has been implicated as a possible aetiological factor in reversible conduction block in demyelinated axons. Inducible nitric oxide synthase (iNOS) is upregulated in the central nervous system of animals with experimental allergic encephalomyelitis (EAE) and in patients with MS. In some EAE models inhibiting iNOS activity decreases disease severity whilst in other models disease activity is exacerbated. Raised levels of nitrate and nitrite, stable end-products of .NO/ONOO-, are found in the cerebrospinal fluid, serum and urine of patients with MS. CSF levels of nitrate and nitrite correlate with blood-brain-barrier dysfunction, which suggests that .NO may play a role in inflammatory blood-brain-barrier dysfunction. In a longitudinal study on 24 patients with relapsing remitting and secondary progressive MS, raised serum nitrate and nitrite levels correlated with a relapsing course and infrequent relapses. However, no correlation was found between raised serum levels of nitrate and nitrite and MRI activity, disease progression, or the development of cerebral atrophy. In autoimmune mediated CNS demyelinating disease .NO may be a double-edged sword, mediating tissue damage on the one hand and on the other hand modulating complex immunological functions which may be protective.
Collapse
Affiliation(s)
- G Giovannoni
- Department of Neuroimmunology, National Hospital for Neurology and Neurosurgery, London
| | | | | | | |
Collapse
|
182
|
Giovannoni G, Miller RF, Heales SJ, Land JM, Harrison MJ, Thompson EJ. Elevated cerebrospinal fluid and serum nitrate and nitrite levels in patients with central nervous system complications of HIV-1 infection: a correlation with blood-brain-barrier dysfunction. J Neurol Sci 1998; 156:53-8. [PMID: 9559987 DOI: 10.1016/s0022-510x(98)00021-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As nitric oxide (.NO) is hypothesised to play a role in the immunopathogenesis of neurological complications associated with inflammation, we compared levels of cerebrospinal fluid (CSF) and serum .NO metabolites in 24 patients with HIV-1 infection, to those in 58 non-HIV infected patients with neurological disorders. Levels of .NO metabolites were correlated with blood-brain-barrier dysfunction. CSF and serum nitrate and nitrite levels were measured by the nitrate reductase and Griess reaction methods. The .NO metabolites, nitrate and nitrite, were raised in the CSF and serum of patients with AIDS and central nervous system complications, when compared to non-HIV infected patients with inflammatory and non-inflammatory neurological disorders (median nitrate and nitrite: CSF=18.3 microM vs. 11.1 microM vs. 7.0 microM, P<0.001, and serum=53.8 microM vs. 50.3 microM vs. 41.4 microM, P=0.04, respectively). CSF nitrate and nitrite levels correlated with the albumin quotient. This study supports the evidence that .NO is a potential mediator of blood-brain-barrier breakdown in inflammatory diseases of the central nervous system.
Collapse
Affiliation(s)
- G Giovannoni
- Department of Neuroimmunology, The Natioinal Hospital for Neurology and Neurosurgery, London, UK.
| | | | | | | | | | | |
Collapse
|
183
|
Abstract
In the central nervous system (CNS), nitric oxide (NO) is thought to be involved in a variety of functions including synaptic plasticity, long term potentiation, and neurotoxicity. The aim of the present study was to investigate the expression of nitric oxide synthase (NOS) in the mouse CNS, following surgical injury to the hippocampus. NOS expression was assessed by histochemical detection of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase) activity and immunohistochemistry of the inducible NOS (iNOS). Two days after injury to the CA1 hippocampal field, NADPH-diaphorase activity was detected in pyramidal and granular neurons and also in glial cells in the hippocampus, in contrast to the non-injured one where NADPH-diaphorase staining was observed only in a few interneurons. NADPH-diaphorase histochemistry combined with immunolabelling for GFAP and F4/80 demonstrated that these glial cells were astrocytes and microglia. This pattern of NOS expression is induced specifically after a hippocampal injury since lesion to the prefrontal or cerebellar cortex leads to NOS activity only in monocytes/macrophages like cells. Despite the large expression of NOS detected by NADPH-diaphorase histochemistry after lesioning the hippocampus, immunostaining for iNOS was confined to microglia. The fact that induction of high levels of NOS activity are detected in glial cells after a lesion to the hippocampus could be accounted for by the sensitivity of this structure to a high release of glutamate.
Collapse
Affiliation(s)
- T Stojkovic
- Laboratoire de Neurobiologie Cellulaire, Moléculaire et Clinique, Hôpital de la Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
184
|
Hua LL, Liu JS, Brosnan CF, Lee SC. Selective inhibition of human glial inducible nitric oxide synthase by interferon-beta: implications for multiple sclerosis. Ann Neurol 1998; 43:384-7. [PMID: 9506556 DOI: 10.1002/ana.410430317] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nitric oxide generated from the inducible nitric oxide synthase (iNOS) has been implicated in the pathogenesis of multiple sclerosis. Because significant species- and cell-specific differences exist in the expression of iNOS, we used primary human glial cell cultures to screen for an inhibitor of iNOS expression. Remarkably, among numerous soluble factors tested, interferon-beta (IFN-beta) alone showed a selective and potent inhibition of interleukin-1beta/interferon-gamma (IL-1beta/IFN-gamma)-induced iNOS expression in astrocytes. Inhibition of iNOS may provide a mechanism by which IFN-beta can ameliorate inflammation and cytotoxicity in the central nervous system of patients with multiple sclerosis.
Collapse
Affiliation(s)
- L L Hua
- Department of Pathology (Neuropathology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
185
|
Guthikonda P, Baker J, Mattson DH. Interferon-beta-1-b (IFN-B) decreases induced nitric oxide (NO) production by a human astrocytoma cell line. J Neuroimmunol 1998; 82:133-9. [PMID: 9585809 DOI: 10.1016/s0165-5728(97)00172-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inducible nitric oxide synthase (iNOS) is expressed by astrocytes in demyelinating regions of multiple sclerosis (MS) brain plaques, suggesting that NO contributes to MS pathology. Since the immunosuppressive cytokine IFN-B ameliorates MS disease activity, it is of interest to assess the modulatory role of IFN-B on NO production. We studied the effects of IFN-B, as well as dexamethasone, IL-10, and transforming growth factor-beta (TGF-B), on cytokine-induced NO production by the human astrocytoma cell line, A172. L-NMMA and aminoguanidine, competitive inhibitors of iNOS suppressed NO production as measured by the NO byproduct, nitrite, as did IFN-B. Dexamethasone enhanced NO production, and IFN-B decreased the amount of the enhancement. Neither IL-10 nor TGF-B inhibited nitrite production. The therapeutic effect of IFN-B in MS may be partly due to suppression of pathogenic NO production.
Collapse
Affiliation(s)
- P Guthikonda
- Student School of Dentistry, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
186
|
Giovannoni G. Cerebrospinal fluid and serum nitric oxide metabolites in patients with multiple sclerosis. Mult Scler 1998; 4:27-30. [PMID: 9532589 DOI: 10.1177/135245859800400107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitric oxide is hypothesised to play a role in the immunopathogenesis of multiple sclerosis. Raised cerebrospinal fluid and serum levels of the nitric oxide metabolites nitrate and nitrite have been described in patients with multiple sclerosis. Cerebrospinal fluid and serum nitrate and nitrite were measured in patients with multiple sclerosis, inflammatory and non-inflammatory neurological diseases, and correlated with the albumin quotient, an index of blood-brain-barrier dysfunction. Patients undergoing diagnostic lumbar and vene puncture were prospectively recruited, clinical data were obtained from the hospital records, and the CSF and serum nitrate and nitrite levels were measured by the nitrate reductase and Griess reaction methods. Nitrate and nitrite, were raised in the CSF and serum of patients with multiple sclerosis and other inflammatory neurological diseases compared to patients with non-inflammatory neurological disorders (median nitrate and nitrite: cerebrospinal fluid = 10.3 microM vs 15.4 microM vs 6.6 microM, P < 0.001, and serum = 49.0 microM vs 46.4 microM vs 38.8 microM, P = 0.02, respectively). CSF nitrate and nitrite levels correlated with the albumin quotient (n = 59, r = 0.42, P < 0.001). This study provides further evidence for a role of nitric oxide in the immunopathogenesis of multiple sclerosis and supports a role for nitric oxide as a possible mediator of inflammatory blood-brain-barrier dysfunction.
Collapse
Affiliation(s)
- G Giovannoni
- Department of Clinical Neurology, Institute of Neurology, London, UK
| |
Collapse
|
187
|
Ling ZD, Potter ED, Lipton JW, Carvey PM. Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Exp Neurol 1998; 149:411-23. [PMID: 9500954 DOI: 10.1006/exnr.1998.6715] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat progenitor cells from the germinal region of the fetal mesencephalon were isolated and expanded in media containing the mitogen epidermal growth factor. These cells remained mitotically active (up to 8 months), were immunoreactive for the progenitor cell marker nestin, and were readily infected with the BAG alpha retrovirus. When incubated in complete media containing serum in poly-L-lysine-coated plates, these cells spontaneously converted to neurons and glia but rarely expressed the dopamine (DA) neuron phenotype. Nineteen different cytokines were screened for their ability to induce the DA phenotype and only interleukin (IL)-1 was found to induce the expression of the DA neuron marker tyrosine hydroxylase (TH). The addition of IL-1, IL-11, leukemia inhibitory factor (LIF), and glial cell line-derived neurotrophic factor (GDNF) were found to further increase the number of TH immunoreactive (TH-ir) cells. The addition of mesencephalic membrane fragments and striatal culture-conditioned media along with the cytokine mixture induced the expression of morphologically mature TH-ir cells that were also immunoreactive for dopa-decarboxylase, the DA transporter, and DA itself. The DA neuron cell counts were approximately 20-25% of the overall cell population and 50% of the neurofilament population. Astrocytes and oligodendrocytes were also present. These data suggest that hematopoietic cytokines participate in the development of the DA neuron phenotype. Parallels between the function of hematopoietic cytokines in bone marrow and the central nervous system may exist and be useful in understanding the factors which regulate the differentiation of neurons in the brain.
Collapse
Affiliation(s)
- Z D Ling
- Department of Pharmacology, Rush-Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
188
|
Scorziello A, Florio T, Bajetto A, Schettini G. Intracellular signalling mediating HIV-1 gp120 neurotoxicity. Cell Signal 1998; 10:75-84. [PMID: 9481481 DOI: 10.1016/s0898-6568(97)00093-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During the last few years several studies have been undertaken to characterise the role of gp120, the HIV-1 envelope glycoprotein, in the pathogenesis of neurological defects associated with AIDS. However, neurons did not appear to be the main target of the virus, since the widespread neuronal damage is not associated with a productive viral infection in neurons. The current opinion supports the hypothesis that an indirect mechanism exists to explain the neuronal cell death which occurs in patients infected by HIV-1. In particular, several reports suggest that gp120 may be the main candidate as mediator of the neurological deficits during HIV-1 infection and demonstrate that this molecule affects neuronal survival through a direct interaction with non-neuronal cell types such as monocytes, macrophages/microglia and astrocytes.
Collapse
Affiliation(s)
- A Scorziello
- Institute of Pharmacology, Medical School, University of Genova, Italy
| | | | | | | |
Collapse
|
189
|
Faraci FM, Heistad DD. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev 1998; 78:53-97. [PMID: 9457169 DOI: 10.1152/physrev.1998.78.1.53] [Citation(s) in RCA: 580] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several new concepts have emerged in relation to mechanisms that contribute to regulation of the cerebral circulation. This review focuses on some physiological mechanisms of cerebral vasodilatation and alteration of these mechanisms by disease states. One mechanism involves release of vasoactive factors by the endothelium that affect underlying vascular muscle. These factors include endothelium-derived relaxing factor (nitric oxide), prostacyclin, and endothelium-derived hyperpolarizing factor(s). The normal vasodilator influence of endothelium is impaired by some disease states. Under pathophysiological conditions, endothelium may produce potent contracting factors such as endothelin. Another major mechanism of regulation of cerebral vascular tone relates to potassium channels. Activation of potassium channels appears to mediate relaxation of cerebral vessels to diverse stimuli including receptor-mediated agonists, intracellular second messenger, and hypoxia. Endothelial- and potassium channel-based mechanisms are related because several endothelium-derived factors produce relaxation by activation of potassium channels. The influence of potassium channels may be altered by disease states including chronic hypertension, subarachnoid hemorrhage, and diabetes.
Collapse
Affiliation(s)
- F M Faraci
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, USA
| | | |
Collapse
|
190
|
Vincent VA, Tilders FJ, Van Dam AM. Production, regulation and role of nitric oxide in glial cells. Mediators Inflamm 1998; 7:239-55. [PMID: 9792334 PMCID: PMC1781853 DOI: 10.1080/09629359890929] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- V A Vincent
- Research Institute Neurosciences Free University, Medical Faculty, Department of Pharmacology, Amsterdam, The Netherlands
| | | | | |
Collapse
|
191
|
Gremo F, Sogos V, Ennas MG, Meloni A, Persichini T, Colasanti M, Lauro GM. Features and functions of human microglia cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 429:79-97. [PMID: 9413567 DOI: 10.1007/978-1-4757-9551-6_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- F Gremo
- Department of Cytomorphology, School of Medicine, Cagliari, Italy
| | | | | | | | | | | | | |
Collapse
|
192
|
Dzenko KA, Weltzien RB, Pachter JS. Suppression of A beta-induced monocyte neurotoxicity by antiinflammatory compounds. J Neuroimmunol 1997; 80:6-12. [PMID: 9413254 DOI: 10.1016/s0165-5728(97)00128-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous work from this laboratory has demonstrated that prior exposure of peripheral blood monocytes (PBM) to aggregated beta-amyloid peptide (A beta), the major protein comprising the amyloid plaques characteristically present in the brain of Alzheimer disease (AD)-afflicted individuals, activates these cells to a neurotoxic state when co-cultured with brain tissue. In this report we extend these findings to further show that such A beta-induced PBM neurotoxicity can be inhibited by three differentially-acting antiinflammatory drugs, indomethacin, dexamethasone, and colchicine, which are typically used clinically to treat peripheral inflammatory disease. In addition, evidence is presented that these toxic effects are initiated, in large part, by soluble factors released from A beta-stimulated PBM. Our results suggest a rationale for antiinflammatory therapy in the treatment of AD.
Collapse
Affiliation(s)
- K A Dzenko
- Department of Pharmacology, University of Connecticut Health Center, Farmington 06030, USA
| | | | | |
Collapse
|
193
|
Cross AH, Manning PT, Stern MK, Misko TP. Evidence for the production of peroxynitrite in inflammatory CNS demyelination. J Neuroimmunol 1997; 80:121-30. [PMID: 9413267 DOI: 10.1016/s0165-5728(97)00145-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Peroxynitrite, which is generated by the reaction of nitric oxide (NO) with superoxide, is a strong oxidant that can damage subcellular organelles, membranes and enzymes through its actions on proteins, lipids, and DNA, including the nitration of tyrosine residues of proteins. Detection of nitrotyrosine (NT) serves as a biochemical marker of peroxynitrite-induced damage. In the present studies, NT was detected by immunohistochemistry in CNS tissues from mice with acute experimental autoimmune encephalomyelitis (EAE). NT immunoreactivity was displayed by many mononuclear inflammatory cells, including CD4+ cells. It was also observed in astrocytes near EAE lesions. Immunostaining for the inducible isoform of NO synthase (iNOS) was also observed, particularly during acute EAE. These data strongly suggest that peroxynitrite formation is a major consequence of NO produced via iNOS, and implicate this powerful oxidant in the pathogenesis of EAE.
Collapse
Affiliation(s)
- A H Cross
- Department of Neurology and Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
194
|
Abstract
Astrocytes under pathological conditions become activated and produce a variety of cytokines and low molecular weight signal molecules. Previously we demonstrated that activated astrocytes release nitric oxide which can downregulate the expression of nitric oxide synthase (NOS)-2 in co-cultured cerebral endothelium, and also release a transcriptionally regulated factor that can induce NOS-2 expression in endothelium (Borgerding and Murphy: J Neurochem 65:1342, 1995). The activity of this NOS-2-inducing factor was impeded by inhibitors of tyrosine kinases and NF-kappaB activation. Tumor necrosis factor (TNF alpha) alone, or in combination with IL-6, induced NOS-2 expression in endothelial cells. A neutralizing antibody against TNF alpha attenuated the NOS-2 expression in endothelial cells exposed to activated astrocytes. These results imply that cytokine-activated astrocytes release TNF alpha which can induce NOS-2 expression in endothelium and suggest that activated astrocytes within the CNS may induce expression of NOS-2 in cells of the adjacent microvasculature. The ensuing alterations in blood-brain barrier properties may be either beneficial or detrimental.
Collapse
Affiliation(s)
- R A Shafer
- Department of Pharmacology, University of Iowa College of Medicine, Iowa City 52242, USA
| | | |
Collapse
|
195
|
Geiger KD, Nash TC, Sawyer S, Krahl T, Patstone G, Reed JC, Krajewski S, Dalton D, Buchmeier MJ, Sarvetnick N. Interferon-gamma protects against herpes simplex virus type 1-mediated neuronal death. Virology 1997; 238:189-97. [PMID: 9400592 DOI: 10.1006/viro.1997.8841] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Host inflammatory mediators, such as interferons, play a protective role in infection, but the mechanism is undefined and may differ between tissue compartments. To determine whether interferon-gamma (IFN-gamma) elicitation prevents destructive encephalitis in herpes simplex virus type 1 (HSV-1) infection of the central nervous system, IFN-gamma-knockout (GKO) mice were challenged intravitreally with HSV-1 strain F, inciting infection of the eyes and the brain. Indeed, the GKO mice showed encephalitis with ataxia, whereas nontransgenic controls remained asymptomatic. Morphology and digoxigenin labeling of DNA fragments revealed increased apoptosis in the brains of GKO mice compared with controls, although viral replication was not influenced at early stages of infection. Greater numbers of apoptotic cells in the brains of GKO mice correlated with neurological symptoms, as well as lower expression of the protective protooncogene bcl-2. Thus, IFN-gamma inhibits apoptosis, affording neuronal protection from destructive encephalitis during viral infection of the central nervous system.
Collapse
Affiliation(s)
- K D Geiger
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Yoon BH, Romero R, Kim CJ, Koo JN, Choe G, Syn HC, Chi JG. High expression of tumor necrosis factor-alpha and interleukin-6 in periventricular leukomalacia. Am J Obstet Gynecol 1997; 177:406-11. [PMID: 9290459 DOI: 10.1016/s0002-9378(97)70206-0] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Periventricular leukomalacia, a common neonatal brain white matter lesion, is a major risk factor for cerebral palsy. Subclinical chorioamnionitis is a risk factor for the development of periventricular leukomalacia, and inflammatory cytokines have been implicated as central mediators of brain injury in this disorder. To elucidate the relationship between the local expression of cytokines and periventricular leukomalacia, we studied neonatal brains to determine whether high expression of tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 was observed in these lesions. STUDY DESIGN Immunohistochemical staining for cytokines (tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6) was performed in 10% formalin-fixed, paraffin-embedded brain sections of 17 cases with periventricular leukomalacia. Specimens were obtained from autopsies performed between 1987 and 1994. Brain sections from 17 cases of neonatal deaths without periventricular leukomalacia lesions matched for gestational age at birth, duration of postnatal survival, and presence or absence of infection-related morbidity were used as controls. RESULTS The expression of tumor necrosis factor-alpha, interleukin-1 beta, or interleukin-6 was demonstrated in 88% (15/17) of cases with and in 18% (3/17) of cases without periventricular leukomalacia (p < 0.001). Cytokines were expressed mainly in hypertrophic astrocytes and microglial cells. The expression of tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 was identified in 82% (14/17), 29% (5/17), and 71% (12/17) of cases of periventricular leukomalacia, respectively. However, a significantly lower proportion of cases without periventricular leukomalacia expressed tumor necrosis factor-alpha (18%, 3/17) and interleukin-6 (6%, 1/17) than those with the disorder (p < 0.005 for each). CONCLUSIONS Expression of tumor necrosis factor-alpha and interleukin-6 was observed more frequently in brain lesions with periventricular leukomalacia than in those without periventricular leukomalacia. These findings provide strong support for the hypothesis that proinflammatory cytokines play a role in the genesis of periventricular leukomalacia.
Collapse
Affiliation(s)
- B H Yoon
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Korea
| | | | | | | | | | | | | |
Collapse
|
197
|
Arnhold S, Andressen C, Bloch W, Mai JK, Addicks K. NO synthase-II is transiently expressed in embryonic mouse olfactory receptor neurons. Neurosci Lett 1997; 229:165-8. [PMID: 9237484 DOI: 10.1016/s0304-3940(97)00457-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Among three NO synthase (NOS) isoforms only the inducible NOS-II was localized in developing olfactory receptor neurons of the mouse. First NOS-II immunoreactive receptor cells including their processes were detected by embryonic day 11 when the olfactory pit starts to invaginate. Cellular staining lasted until embryonic day 16, and was reduced during the next few days. At embryonic day 20 no reactivity was found in the olfactory epithelium, whereas centripetal nerve fibers remained positive. This transient expression of NOS-II implies a role for the differentiation of early olfactory receptor neurons and synaptic plasticity.
Collapse
Affiliation(s)
- S Arnhold
- Department of Anatomy, Universität zu Köln, Germany.
| | | | | | | | | |
Collapse
|
198
|
Peuchen S, Bolaños JP, Heales SJ, Almeida A, Duchen MR, Clark JB. Interrelationships between astrocyte function, oxidative stress and antioxidant status within the central nervous system. Prog Neurobiol 1997; 52:261-81. [PMID: 9247965 DOI: 10.1016/s0301-0082(97)00010-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Astrocytes have, until recently, been thought of as the passive supporting elements of the central nervous system. However, recent developments suggest that these cells actually play a crucial and vital role in the overall physiology of the brain. Astrocytes selectively express a host of cell membrane and nuclear receptors that are responsive to various neuroactive compounds. In addition, the cell membrane has a number of important transporters for these compounds. Direct evidence for the selective co-expression of neurotransmitters, transporters on both neurons and astrocytes, provides additional evidence for metabolic compartmentation within the central nervous system. Oxidative stress as defined by the excessive production of free radicals can alter dramatically the function of the cell. The free radical nitric oxide has attracted a considerable amount of attention recently, due to its role as a physiological second messenger but also because of its neurotoxic potential when produced in excess. We provide, therefore, an in-depth discussion on how this free radical and its metabolites affect the intra and intercellular physiology of the astrocyte(s) and surrounding neurons. Finally, we look at the ways in which astrocytes can counteract the production of free radicals in general by using their antioxidant pathways. The glutathione antioxidant system will be the focus of attention, since astrocytes have an enormous capacity for, and efficiency built into this particular system.
Collapse
Affiliation(s)
- S Peuchen
- Department of Neurochemistry, Institute of Neurology, London, U.K.
| | | | | | | | | | | |
Collapse
|
199
|
Abstract
To evaluate the hypothesis that the proinflammatory cytokines IL-1, IL-6, and tumor necrosis factor-alpha might be the link between prenatal intrauterine infection (IUI) and neonatal brain damage, the authors review the relevant epidemiologic and cytokine literature. Maternal IUI appears to increase the risk of preterm delivery, which in turn is associated with an increased risk of intraventricular hemorrhage, neonatal white matter damage, and subsequent cerebral palsy. IL-1, IL-6, and TNF-alpha have been found associated with IUI, preterm birth, neonatal infections. and neonatal brain damage. Unifying models not only postulate the presence of cytokines in the three relevant maternal/fetal compartments (uterus, fetal circulation, and fetal brain) and the ability of the cytokines to cross boundaries (placenta and blood-brain barrier) between these compartments, but also postulate how proinflammatory cytokines might lead to IVH and neonatal white matter damage during prenatal maternal infection. Interrupting the proinflammatory cytokine cascade might prevent later disability in those born near the end of the second trimester.
Collapse
Affiliation(s)
- O Dammann
- Department of Neurology, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
200
|
Krobert K, Lopez-Colberg I, Cunningham LA. Astrocytes promote or impair the survival and function of embryonic ventral mesencephalon co-grafts: effects of astrocyte age and expression of recombinant brain-derived neurotrophic factor. Exp Neurol 1997; 145:511-23. [PMID: 9217087 DOI: 10.1006/exnr.1997.6483] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intrastriatal grafting of dopamine-rich embryonic ventral mesencephalon (VM) is a potential therapeutic treatment for Parkinson's disease. However, it has been suggested that the efficacy of this procedure might be improved by enhancing the survival and/or degree of neurite outgrowth by the grafted VM, since these parameters are currently suboptimal. In the present study, we tested the ability of astrocytes retrovirally transduced to produce recombinant brain-derived neurotrophic factor (BDNF) to enhance the survival and/or function of embryonic VM in the unilateral 6-hydroxydopamine (6-OHDA) lesioned rat, a well-characterized rodent model of Parkinson's disease. In culture, primary astrocytes derived from Postnatal Day 0 (P0) rat striatum and transduced with the BDNF vector increased the survival of Embryonic Day 15 (E15) dopaminergic VM neurons by approximately threefold and reduced the loss of dopaminergic neurons following 6-OHDA treatment by approximately 20%. The cultured astrocytes were then mixed 1:1 with freshly dissociated E15 VM and co-grafted into the dopamine-denervated striatum. Unexpectedly, the control nontransduced astrocytes reduced the survival of dopaminergic neurons by 60% and restricted the pattern of neurite outgrowth by the co-grafted VM, compared to grafts of VM alone at 7 weeks postgrafting. These effects were paralleled by an attenuated rate and degree of behavioral recovery. The detrimental effects of the control astrocytes were partially reversed when the astrocytes were transduced to express BDNF, although dopaminergic neuron survival was still reduced by 30% compared to that within VM-only grafts. To begin to assess whether the detrimental effects of the astrocytes were related to the maturational state of the cultured astrocytes, astrocytes were obtained from E18 striatum and maintained in short-term culture (9 days vs several weeks for P0 cultures) prior to co-grafting with VM. Interestingly, the younger astrocytes did not reduce graft survival and allowed for better graft integration. These results suggest that primary astrocytes maintained in long-term culture are detrimental to embryonic neural grafts, an effect that is not completely overcome by expression of recombinant BDNF, and that astrocyte age may be an important consideration in the use of these cells as CNS gene delivery vehicles.
Collapse
Affiliation(s)
- K Krobert
- Department of Pharmacology, University of New Mexico School of Medicine, Albuquerque 87131, USA
| | | | | |
Collapse
|