151
|
Khan L, Soliman H, Sahgal A, Perry J, Xu W, Tsao MN. External beam radiation dose escalation for high grade glioma. Cochrane Database Syst Rev 2016:CD011475. [PMID: 27541334 DOI: 10.1002/14651858.cd011475.pub2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The incidence of high grade glioma (HGG) is approximately 5 per 100,000 person-years in Europe and North America. OBJECTIVES To assess the effects of postoperative external beam radiation dose escalation in adults with HGG. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2015, Issue 9), MEDLINE (1977 to October 2015) and Embase (1980 to end October 2015) for relevant randomised phase III trials. SELECTION CRITERIA We included adults with a pathological diagnosis of HGG randomised to the following external beam radiation regimens.1. Daily conventionally fractionated radiation therapy versus no radiation therapy.2. Hypofractionated radiation therapy versus daily conventionally fractionated radiation therapy.3. Hyperfractionated radiation therapy versus daily conventionally fractionated radiation therapy.4. Accelerated radiation therapy versus daily conventionally fractionated radiation therapy. DATA COLLECTION AND ANALYSIS The primary outcomes were overall survival and adverse effects. The secondary outcomes were progression-free survival and quality of life. We used the standard methodological procedures expected by Cochrane. We used the GRADE approach, as outlined by Cochrane, to interpret the overall quality of the evidence from included studies. MAIN RESULTS We included 11 randomised controlled trials (RCTs) with a total of 2062 participants and 1537 in the relevant arms for this review. There was an overall survival benefit for HGG participants receiving postoperative radiotherapy compared to the participants receiving postoperative supportive care. For the four pooled RCTs (397 participants), the overall hazard ratio (HR) for survival was 2.01 (95% confidence interval (CI) 1.58 to 2.55, P < 0.00001), moderate GRADE quality evidence favouring postoperative radiotherapy. Although these trials may not have completely reported adverse effects, they did not note any significant toxicity attributable to radiation. Progression free survival and quality of life could not be pooled due to lack of data.Overall survival was similar between hypofractionated versus conventional radiotherapy in five trials (943 participants), where the HR was 0.95 (95% CI 0.78 to 1.17, P = 0.63), very low GRADE quality evidence. The trials reported that hypofractionated and conventional radiotherapy were well tolerated with mild acute adverse effects. These trials only reported one patient in the hypofractionated arm developing symptomatic radiation necrosis that required surgery. Progression free survival and quality of life could not be pooled due to the lack of data.Overall survival was also similar between hypofractionated versus conventional radiotherapy in the subset of two trials (293 participants) which included 60 years and older participants with glioblastoma. For this category, the HR was 1.16 (95% CI 0.92 to 1.46, P = 0.21), high GRADE quality evidence.There were two trials which compared hyperfractionated radiation therapy versus conventional radiation and one trial which compared accelerated radiation therapy versus conventional radiation. However, the results could not be pooled.The conventionally fractionated radiation therapy regimens were 4500 to 6000 cGy given in 180 to 200 cGy daily fractions, over 5 to 6 weeks.All these trials generally included participants with World Health Organization (WHO) performance status from 0 to 2 and Karnofsky performance status of 50 and higher.The risk of selection bias was generally low among these randomized trials. The number of participants lost to follow-up for the outcome of overall survival was low. Attrition, performance, detection and reporting bias for the outcome of overall survival was low. There was unclear attrition, performance, detection and reporting bias relating to the outcomes of adverse effects, progression free survival and quality of life. AUTHORS' CONCLUSIONS Postoperative conventional daily radiotherapy improves survival for adults with good performance status and HGG as compared to no postoperative radiotherapy.Hypofractionated radiation therapy has similar efficacy for survival as compared to conventional radiotherapy, particularly for individuals aged 60 and older with glioblastoma.There is insufficient data regarding hyperfractionation versus conventionally fractionated radiation (without chemotherapy) and for accelerated radiation versus conventionally fractionated radiation (without chemotherapy).There are HGG subsets who have poor prognosis even with treatment (e.g. glioblastoma histology, older age and poor performance status). These poor prognosis HGG individuals have generally been excluded from the randomised trials based on poor performance status. No randomised trial has compared comfort measures or best supportive care with an active intervention using radiotherapy or chemotherapy in these poor prognosis patients.
Collapse
Affiliation(s)
- Luluel Khan
- Radiation Oncology, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada, M4N 3M5
| | | | | | | | | | | |
Collapse
|
152
|
Harat M, Małkowski B, Makarewicz R. Pre-irradiation tumour volumes defined by MRI and dual time-point FET-PET for the prediction of glioblastoma multiforme recurrence: A prospective study. Radiother Oncol 2016; 120:241-7. [PMID: 27378734 DOI: 10.1016/j.radonc.2016.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/07/2016] [Accepted: 06/12/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND PURPOSE The diagnostic accuracy of magnetic resonance imaging (MRI) for glioblastoma multiforme (GBM) is suboptimal. We analysed pre-treatment MRI- and dual time-point 18F-fluoroethylthyrosine-PET (FET-PET)-based target volumes and GBM recurrence patterns following radiotherapy with temozolomide. MATERIALS AND METHODS Thirty-four patients with primary GBM were treated according to MRI-based treatment volumes (GTVRM). Patients underwent dual time-point FET-PET scans prior to treatment, and biological tumour volumes (GTVPET) were contoured but not used for target definition. Progressions were classified based on location of primary GTVs. Volume and uniformity of MRI- vs. FET-PET/CT-derived GTVs and progression patterns assessed by MRI were analysed. RESULTS FET-based GTVs measured 10min after radionuclide injection (a.r.i.; median 37.3cm(3)) were larger than GTVs measured 60min a.r.i. (median 27.7cm(3)). GTVPET volumes were significantly larger than corresponding MRI-based GTVs. MRI and PET concordance for the identification of glioblastoma GTVs was poor (mean uniformity index 0.4). 74% of failures were inside primary GTVPET volumes, with no solitary progressions inside the MRI-defined margin +20mm but outside the GTVPET detected. CONCLUSIONS The size and geometry of GTVs differed in the majority of patients. The GTVPET volume depends on time after radionuclide injection. FET-PET better defined failure site than MRI alone.
Collapse
Affiliation(s)
- Maciej Harat
- Department of Radiotherapy, The Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland; Department of Oncology and Brachytherapy, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland.
| | - Bogdan Małkowski
- Department of Positron Emission Tomography and Molecular Imaging, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland; Department of Nuclear Medicine, The Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland
| | - Roman Makarewicz
- Department of Oncology and Brachytherapy, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland; Department of Oncology and Brachytherapy, The Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland
| |
Collapse
|
153
|
Lee J, Cho J, Chang JH, Suh CO. Re-Irradiation for Recurrent Gliomas: Treatment Outcomes and Prognostic Factors. Yonsei Med J 2016; 57:824-830. [PMID: 27189273 PMCID: PMC4951456 DOI: 10.3349/ymj.2016.57.4.824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/11/2015] [Accepted: 10/23/2015] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate the efficacy of re-irradiation in patients with recurrent gliomas and to identify subgroups for whom re-irradiation for recurrent gliomas is most beneficial. MATERIALS AND METHODS We retrospectively reviewed 36 patients with recurrent or progressive gliomas who received re-irradiation between January 1996 and December 2011. Re-irradiation was offered to recurrent glioma patients with good performance or at least 6 months had passed after initial radiotherapy (RT), with few exceptions. RESULTS Median doses of re-irradiation and initial RT were 45.0 Gy and 59.4 Gy, respectively. The median time interval between initial RT and re-irradiation was 30.5 months. Median overall survival (OS) and the 12-month OS rate were 11 months and 41.7%, respectively. In univariate analysis, Karnofsky performance status (KPS) ≥70 (p<0.001), re-irradiation dose ≥45 Gy (p=0.040), and longer time interval between initial RT and re-irradiation (p=0.040) were associated with improved OS. In multivariate analysis, KPS (p=0.030) and length of time interval between initial RT and re-irradiation (p=0.048) were important predictors of OS. A radiographically suspected mixture of radiation necrosis and progression after re-irradiation was seen in 5 patients. CONCLUSION Re-irradiation in conjunction with surgery could be a salvage treatment for selected recurrent glioma patients with good performance status and recurrence over a long time.
Collapse
Affiliation(s)
- Jeongshim Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.
| | - Chang Ok Suh
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
154
|
Cabrera AR, Kirkpatrick JP, Fiveash JB, Shih HA, Koay EJ, Lutz S, Petit J, Chao ST, Brown PD, Vogelbaum M, Reardon DA, Chakravarti A, Wen PY, Chang E. Radiation therapy for glioblastoma: Executive summary of an American Society for Radiation Oncology Evidence-Based Clinical Practice Guideline. Pract Radiat Oncol 2016; 6:217-225. [DOI: 10.1016/j.prro.2016.03.007] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
|
155
|
Manon R, Hui S, Chinnaiyan P, Suh J, Chang E, Timmerman R, Phan S, Das R, Mehta M. The Impact of Mid-Treatment MRI on Defining Boost Volumes in the Radiation Treatment of Glioblastoma Multiforme. Technol Cancer Res Treat 2016; 3:303-7. [PMID: 15161323 DOI: 10.1177/153303460400300308] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Radiation therapy is a central modality in the treatment of glioblastoma multiforme (GBM). Integral to adequate radiation therapy delivery is the appropriate determination of tumor volume and extent at the time treatment is being delivered. As a matter of routine practice, radiation therapy treatment fields are designed based on tumor volumes evident on preoperative or immediate post-operative MRIs; another MRI is generally not obtained for planning boost fields. In some instances the time interval from surgery to radiotherapy initiation is up to 5 weeks and the boost or “cone-down phase” commences 4–5 weeks later. The contrast enhanced T1 MRI may not be a totally reliable indicator of active tumor, especially in regions where such blood-brain barrier breakdown has not occurred. Moreover, these volumes may change during the course of treatment. This may lead to a geographic miss when mid-treatment boost volumes are designed based on a pre-radiotherapy MRI. The goal of this study is to examine how a mid-treatment MRI impacts the delineation and definition of the boost volume in GBM patients in comparison to the pre-treatment MRI scan, particularly when the tumor-specific agent Motexafin-Gadolinium is used.
Collapse
Affiliation(s)
- Rafael Manon
- University of Wisconsin, Department of Radiation Oncology, K4/B100, 600 Highland Ave, Madison, WI 53792, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Sun B, Wan Z, Shen J, Ni L, Chen J, Cui M, Ni H, Shi W, Shi J. DNA hypomethylation of CD133 promoter is associated with recurrent glioma. Oncol Rep 2016; 36:1062-8. [DOI: 10.3892/or.2016.4880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/06/2016] [Indexed: 11/05/2022] Open
|
157
|
Zhou X, Liao X, Zhang B, He H, Shui Y, Xu W, Jiang C, Shen L, Wei Q. Recurrence patterns in patients with high-grade glioma following temozolomide-based chemoradiotherapy. Mol Clin Oncol 2016; 5:289-294. [PMID: 27446566 PMCID: PMC4950878 DOI: 10.3892/mco.2016.936] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 05/20/2016] [Indexed: 11/09/2022] Open
Abstract
There is currently no consensus regarding the optimal radiation volume for high-grade glioma (HGG). The brain volume irradiated is associated with the extent of radiation neurotoxicity. When reducing the treatment volume, the risk of geographic tumor miss should be considered. In such cases, the recurrence patterns and, particularly, the rate of marginal tumor recurrence, are important indices for determining the optimal radiation volume. In the present study, a smaller-target delineation protocol with limited margins was adopted. The postoperative enhancing tumor and resection cavity were defined as gross tumor volume (GTV); 1 and 2 cm were added to the GTV to create clinical target volume (CTV1 and CTV2), which received 60 and 54 Gy, respectively. At a median follow-up of 14 months, 54 HGG patients developed tumor recurrence. The median overall and progression-free survival were 14 and 10.5 months, respectively. A total of 34 patients developed central recurrence, 8 presented with in-field recurrence, 2 developed marginal recurrence, 2 had distant recurrence and 11 patients developed cerebrospinal fluid dissemination, 2 of whom developed central recurrence, with 1 patient simultaneously developing marginal recurrence. Local recurrence (central and in-field) was found to be the main recurrence pattern. As the rate of marginal recurrence was low (<5%), it appears that the smaller irradiated volume in the present study was appropriate. However, clinical trials investigating limited irradiation volume are required to validate our findings.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaofang Liao
- Department of Radiation Oncology, Quzhou Central Hospital, Quzhou, Zhejiang 324000, P.R. China
| | - Bicheng Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Huijuan He
- Department of Radiation Oncology, Quzhou Central Hospital, Quzhou, Zhejiang 324000, P.R. China
| | - Yongjie Shui
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Wenhong Xu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Chaogen Jiang
- Department of Radiology, Quzhou Central Hospital, Quzhou, Zhejiang 324000, P.R. China
| | - Li Shen
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
158
|
Zhao F, Li M, Kong L, Zhang G, Yu J. Delineation of radiation therapy target volumes for patients with postoperative glioblastoma: a review. Onco Targets Ther 2016; 9:3197-204. [PMID: 27313465 PMCID: PMC4892826 DOI: 10.2147/ott.s104241] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma is the most aggressive and lethal primary malignancy of the brain, and radiotherapy (RT) is a fundamental part of its treatment. However, the optimal radiation treatment conditions are still a matter of debate, and there is no clear consensus concerning the inclusion of peritumoral edema in the clinical target volume calculation. Target delineation calculations that use postoperative residual tumor and cavity volumes plus 2 cm margins result in smaller volumes of normal brain receiving high-dose irradiation, compared to calculations that include expanded edema. Smaller RT fields may be more appropriate than larger RT fields, possibly reducing the risk of late neurological deterioration, especially in patients with significant peritumoral edema. This review focuses on the factors influencing target delineation, such as peritumoral edema, failure patterns, and prognostic factors (clinical and pathological characteristics) of patients with glioblastoma. Based on this information, we make three suggestions for radiation oncologists to refer to in daily practice. Further study is necessary to investigate the unresolved problems related to routine clinical application of RT.
Collapse
Affiliation(s)
- Fen Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China; Key Laboratory of Radiation Oncology Shandong Province, Jinan, Shandong, People's Republic of China
| | - Minghuan Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China; Key Laboratory of Radiation Oncology Shandong Province, Jinan, Shandong, People's Republic of China
| | - Li Kong
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China; Key Laboratory of Radiation Oncology Shandong Province, Jinan, Shandong, People's Republic of China
| | - Guoli Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China; Key Laboratory of Radiation Oncology Shandong Province, Jinan, Shandong, People's Republic of China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China; Key Laboratory of Radiation Oncology Shandong Province, Jinan, Shandong, People's Republic of China
| |
Collapse
|
159
|
Abstract
Anaplastic astrocytoma (AA) is a diffusely infiltrating, malignant, astrocytic, primary brain tumor. AA is currently defined by histology although future classification schemes will include molecular alterations. AA can be separated into subgroups, which share similar molecular profiles, age at diagnosis and median survival, based on 1p/19q co-deletion status and IDH mutation status. AA with co-deletion of chromosomes 1p and 19q and IDH mutation have the best prognosis. AA with IDH mutation and no 1p/19q co-deletion have intermediate prognosis and AA with wild-type IDH have the worst prognosis and share many molecular alterations with glioblastoma. Treatment of noncodeleted AA based on preliminary results from the CATNON clinical trial consists of maximal safe resection followed by radiotherapy with post-radiotherapy temozolomide (TMZ) chemotherapy. The role of concurrent TMZ and whether IDH1 subgroups benefit from TMZ is currently being evaluated in the recently completed randomized, prospective Phase III clinical trial, CATNON.
Collapse
Affiliation(s)
- Sean A Grimm
- Northwestern Medicine Brain & Spine Tumor Center, Warrenville, IL 60555, USA
| | - Marc C Chamberlain
- Department of Neurology & Neurological Surgery, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109-1023, USA
| |
Collapse
|
160
|
Moghaddasi L, Bezak E, Harriss-Phillips W. Monte-Carlo model development for evaluation of current clinical target volume definition for heterogeneous and hypoxic glioblastoma. Phys Med Biol 2016; 61:3407-26. [PMID: 27046324 DOI: 10.1088/0031-9155/61/9/3407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Clinical target volume (CTV) determination may be complex and subjective. In this work a microscopic-scale tumour model was developed to evaluate current CTV practices in glioblastoma multiforme (GBM) external radiotherapy. Previously, a Geant4 cell-based dosimetry model was developed to calculate the dose deposited in individual GBM cells. Microscopic extension probability (MEP) models were then developed using Matlab-2012a. The results of the cell-based dosimetry model and MEP models were combined to calculate survival fractions (SF) for CTV margins of 2.0 and 2.5 cm. In the current work, oxygenation and heterogeneous radiosensitivity profiles were incorporated into the GBM model. The genetic heterogeneity was modelled using a range of α/β values (linear-quadratic model parameters) associated with different GBM cell lines. These values were distributed among the cells randomly, taken from a Gaussian-weighted sample of α/β values. Cellular oxygen pressure was distributed randomly taken from a sample weighted to profiles obtained from literature. Three types of GBM models were analysed: homogeneous-normoxic, heterogeneous-normoxic, and heterogeneous-hypoxic. The SF in different regions of the tumour model and the effect of the CTV margin extension from 2.0-2.5 cm on SFs were investigated for three MEP models. The SF within the beam was increased by up to three and two orders of magnitude following incorporation of heterogeneous radiosensitivities and hypoxia, respectively, in the GBM model. However, the total SF was shown to be overdominated by the presence of tumour cells in the penumbra region and to a lesser extent by genetic heterogeneity and hypoxia. CTV extension by 0.5 cm reduced the SF by a maximum of 78.6 ± 3.3%, 78.5 ± 3.3%, and 77.7 ± 3.1% for homogeneous and heterogeneous-normoxic, and heterogeneous hypoxic GBMs, respectively. Monte-Carlo model was developed to quantitatively evaluate SF for genetically heterogeneous and hypoxic GBM with two CTV margins and three MEP distributions. The results suggest that photon therapy may not provide cure for hypoxic and genetically heterogeneous GBM. However, the extension of the CTV margin by 0.5 cm could be beneficial to delay the recurrence time for this tumour type due to significant increase in tumour cell irradiation.
Collapse
Affiliation(s)
- L Moghaddasi
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA, Australia. School of Chemistry & Physics, University of Adelaide, Adelaide, SA, Australia
| | | | | |
Collapse
|
161
|
Li YM, Suki D, Hess K, Sawaya R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection? J Neurosurg 2016; 124:977-88. [DOI: 10.3171/2015.5.jns142087] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECT
Glioblastoma multiforme (GBM) is the most common and deadliest primary brain tumor. The value of extent of resection (EOR) in improving survival in patients with GBM has been repeatedly confirmed, with more extensive resections providing added advantages. The authors reviewed the survival of patients with significant EORs and assessed the relative benefit/risk of resecting 100% of the MRI region showing contrast-enhancement with or without additional resection of the surrounding FLAIR abnormality region, and they assessed the relative benefit/risk of performing this additional resection.
METHODS
The study cohort included 1229 patients with histologically verified GBM in whom ≥ 78% resection was achieved at The University of Texas MD Anderson Cancer Center between June 1993 and December 2012. Patients with > 1 tumor and those 80 years old or older were excluded. The survival of patients having 100% removal of the contrast-enhancing tumor, with or without additional resection of the surrounding FLAIR abnormality region, was compared with that of patients undergoing 78% to < 100% EOR of the enhancing mass. Within the first subgroup, the survival durations of patients with and without resection of the surrounding FLAIR abnormality were subsequently compared. The data on patients and their tumor characteristics were collected prospectively. The incidence of 30-day postoperative complications (overall and neurological) was noted.
RESULTS
Complete resection of the T1 contrast-enhancing tumor volume was achieved in 876 patients (71%). The median survival time for these patients (15.2 months) was significantly longer than that for patients undergoing less than complete resection (9.8 months; p < 0.001). This survival advantage was achieved without an increase in the risk of overall or neurological postoperative deficits and after correcting for established prognostic factors including age, Karnofsky Performance Scale score, preoperative contrast-enhancing tumor volume, presence of cyst, and prior treatment status (HR 1.53, 95% CI 1.33–1.77, p < 0.001). The effect remained essentially unchanged when data from previously treated and previously untreated groups of patients were analyzed separately. Additional analyses showed that the resection of ≥ 53.21% of the surrounding FLAIR abnormality beyond the 100% contrast-enhancing resection was associated with a significant prolongation of survival compared with that following less extensive resections (median survival times 20.7 and 15.5 months, respectively; p < 0.001). In the multivariate analysis, the previously treated group with < 53.21% resection had significantly shorter survival than the 3 other groups (that is, previously treated patients who underwent FLAIR resection ≥ 53.21%, previously untreated patients who underwent FLAIR resection < 53.21%, and previously untreated patients who underwent FLAIR resection ≥ 53.21%); the previously untreated group with ≥ 53.21% resection had the longest survival.
CONCLUSIONS
What is believed to be the largest single-center series of GBM patients with extensive tumor resections, this study supports the established association between EOR and survival and presents additional data that pushing the boundary of a conventional 100% resection by the additional removal of a significant portion of the FLAIR abnormality region, when safely feasible, may result in the prolongation of survival without significant increases in overall or neurological postoperative morbidity. Additional supportive evidence is warranted.
Collapse
Affiliation(s)
- Yan Michael Li
- Departments of 1Neurosurgery and
- 2Department of Neurosurgery and Oncology, University of Rochester Medical Center School of Medicine and Dentistry, Rochester, New York
| | | | - Kenneth Hess
- 3Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | | |
Collapse
|
162
|
Buglione M, Pedretti S, Poliani PL, Liserre R, Gipponi S, Spena G, Borghetti P, Pegurri L, Saiani F, Spiazzi L, Tesini G, Uccelli C, Triggiani L, Magrini SM. Pattern of relapse of glioblastoma multiforme treated with radical radio-chemotherapy: Could a margin reduction be proposed? J Neurooncol 2016; 128:303-12. [PMID: 27025858 DOI: 10.1007/s11060-016-2112-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/23/2016] [Indexed: 11/25/2022]
Abstract
To analyse the pattern of recurrence of patients treated with Stupp protocol in relation to technique, to compare in silico plans with reduced margin (1 cm) with the original ones and to analyse toxicity. 105 patients were treated: 85 had local recurrence and 68 of them were analysed. Recurrence was considered in field, marginal and distant if >80 %, 20-80 % or <20 % of the relapse volume was included in the 95 %-isodose. In silico plans were retrospectively recalculated using the same technique, fields angles and treatment planning system of the original ones. The pattern of recurrence was in field, marginal and distant in 88, 10 and 2 % respectively and was similar in in silico plans. The margin reduction appears to spare 100 cc of healthy brain by 57 Gy-volume (p = 0.02). The target coverage was worse in standard plans (pt student < 0.001), especially if the tumour was near to organs at risk (pχ2 < 0.001). PTV coverage was better with IMRT and helical-IMRT, than conformal-3D (pAnova test = 0.038). This difference was no more significant with in silico planning. A higher incidence of asthenia and leuko-encephalopathy was observed in patients with greater percentage of healthy brain included in 57 Gy-volume. No differences in the pattern of recurrence according to margins were found. The margin reduction determines sparing of healthy brain and could possibly reduce the incidence of late toxicity. Margin reduction could allow to use less sophisticated techniques, ensuring appropriate target coverage, and the choice of more costly techniques could be reserved to selected cases.
Collapse
Affiliation(s)
- Michela Buglione
- Radiation Oncology Department, University and Spedali Civili, P.le Spedali Civili 1, Brescia, Italy.
| | - Sara Pedretti
- Radiation Oncology Department, University and Spedali Civili, P.le Spedali Civili 1, Brescia, Italy
| | - Pietro Luigi Poliani
- Pathology Department, University and Spedali Civili, P.le Spedali Civili 1, Brescia, Italy
| | - Roberto Liserre
- Neuroradiology Department, University and Spedali Civili, P.le Spedali Civili 1, Brescia, Italy
| | - Stefano Gipponi
- Neurology Department, University and Spedali Civili, P.le Spedali Civili 1, Brescia, Italy
| | - Giannantonio Spena
- Neurosurgery Department, University and Spedali Civili, P.le Spedali Civili 1, Brescia, Italy
| | - Paolo Borghetti
- Radiation Oncology Department, University and Spedali Civili, P.le Spedali Civili 1, Brescia, Italy
| | - Ludovica Pegurri
- Radiation Oncology Department, University and Spedali Civili, P.le Spedali Civili 1, Brescia, Italy
| | - Federica Saiani
- Medical Physics Department, Spedali Civili, P.le Spedali Civili 1, Brescia, Italy
| | - Luigi Spiazzi
- Medical Physics Department, Spedali Civili, P.le Spedali Civili 1, Brescia, Italy
| | - Giulia Tesini
- Medical Physics Department, Spedali Civili, P.le Spedali Civili 1, Brescia, Italy
| | - Chiara Uccelli
- Medical Physics Department, Spedali Civili, P.le Spedali Civili 1, Brescia, Italy
| | - Luca Triggiani
- Radiation Oncology Department, University and Spedali Civili, P.le Spedali Civili 1, Brescia, Italy
| | - Stefano Maria Magrini
- Radiation Oncology Department, University and Spedali Civili, P.le Spedali Civili 1, Brescia, Italy
| |
Collapse
|
163
|
Jia A, Pannullo SC, Minkowitz S, Taube S, Chang J, Parashar B, Christos P, Wernicke AG. Innovative Hypofractionated Stereotactic Regimen Achieves Excellent Local Control with No Radiation Necrosis: Promising Results in the Management of Patients with Small Recurrent Inoperable GBM. Cureus 2016; 8:e536. [PMID: 27096136 PMCID: PMC4835149 DOI: 10.7759/cureus.536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Management of recurrent glioblastoma multiforme (GBM) remains a challenge. Several institutions reported that a single fraction of ≥ 20 Gy for small tumor burden results in excellent local control; however, this is at the expense of a high incidence of radiation necrosis (RN). Therefore, we developed a hypofractionation pattern of 33 Gy/3 fractions, which is a radiobiological equivalent of 20 Gy, with the aim to lower the incidence of RN. We reviewed records of 21 patients with recurrent GBM treated with hypofractionated stereotactic radiation therapy (HFSRT) to their 22 respective lesions. Sixty Gy fractioned external beam radiotherapy was performed as first-line treatment. Median time from primary irradiation to HFSRT was 9.6 months (range: 3.1 – 68.1 months). In HFSRT, a median dose of 33 Gy in 11 Gy fractions was delivered to the 80% isodose line that encompassed the target volume. The median tumor volume was 1.07 cm3 (range: 0.11 – 16.64 cm3). The median follow-up time after HFSRT was 9.3 months (range: 1.7 – 33.6 months). Twenty-one of 23 lesions treated (91.3%) achieved local control while 2/23 (8.7%) progressed. Median time to progression outside of the treated site was 5.2 months (range: 2.2 – 9.6 months). Progression was treated with salvage chemotherapy. Five of 21 patients (23.8%) were alive at the end of this follow-up; two patients remain disease-free. The remaining 16/21 patients (76.2%) died of disease. Treatment was well tolerated by all patients with no acute CTC/RTOG > Grade 2. There was 0% incidence of RN. A prospective trial will be underway to validate these promising results.
Collapse
Affiliation(s)
- Angela Jia
- Stich Radiation Oncology, NewYork-Presbyterian/Weill Cornell Medical Center
| | - Susan C Pannullo
- Neurological Surgery, NewYork-Presbyterian/Weill Cornell Medical Center
| | | | - Shoshana Taube
- Stich Radiation Oncology, NewYork-Presbyterian/Weill Cornell Medical Center
| | - Jenghwa Chang
- Stich Radiation Oncology, NewYork-Presbyterian/Weill Cornell Medical Center
| | - Bhupesh Parashar
- Stich Radiation Oncology, NewYork-Presbyterian/Weill Cornell Medical Center
| | - Paul Christos
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, NewYork-Presbyterian/Weill Cornell Medical Center
| | | |
Collapse
|
164
|
Survival in glioblastoma: a review on the impact of treatment modalities. Clin Transl Oncol 2016; 18:1062-1071. [PMID: 26960561 DOI: 10.1007/s12094-016-1497-x] [Citation(s) in RCA: 466] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/27/2016] [Indexed: 12/17/2022]
Abstract
Glioblastoma (GBM) is the most common and lethal tumor of the central nervous system. The natural history of treated GBM remains very poor with 5-year survival rates of 5 %. Survival has not significantly improved over the last decades. Currently, the best that can be offered is a modest 14-month overall median survival in patients undergoing maximum safe resection plus adjuvant chemoradiotherapy. Prognostic factors involved in survival include age, performance status, grade, specific markers (MGMT methylation, mutation of IDH1, IDH2 or TERT, 1p19q codeletion, overexpression of EGFR, etc.) and, likely, the extent of resection. Certain adjuncts to surgery, especially cortical mapping and 5-ALA fluorescence, favor higher rates of gross total resection with apparent positive impact on survival. Recurrent tumors can be offered re-intervention, participation in clinical trials, anti-angiogenic agent or local electric field therapy, without an evident impact on survival. Molecular-targeted therapies, immunotherapy and gene therapy are promising tools currently under research.
Collapse
|
165
|
Susheela SP, Revannasiddaiah S. Radiotherapy to volumes defined by metabolic imaging in gliomas: time to abandon monstrous margins? ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:55. [PMID: 26904577 DOI: 10.3978/j.issn.2305-5839.2016.01.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The survival in patients with high grade gliomas (HGG) remains poor even after the adoption post-operative radiotherapy (RT) to magnetic resonance imaging (MRI) based volumes. Despite delivery of 'standardized' doses of radiation, recurrence is the norm, rather than the exception. Recurrences occur both within, and outside of the volume of irradiation, leading us to two questions-firstly concerning the adequacy of the dose of radiation used, and secondly about the current methods of treatment volume delineation. The emergence of newer radiopharmaceuticals for use in positron emission tomography (PET) have kindled the hope of more precise volume localizations for post-operative RT, and it is likely that these new radiopharmaceuticals can help us define accurate areas at highest risk of recurrence and thus allow us to use increased doses of radiation with confidence.
Collapse
Affiliation(s)
- Sridhar P Susheela
- 1 Department of Radiation Oncology, HealthCare Global, Bangalore Institute of Oncology, Bengaluru, India ; 2 Department of Radiation Oncology, Government Medical College-Haldwani, Nainital, Uttarakhand, India
| | - Swaroop Revannasiddaiah
- 1 Department of Radiation Oncology, HealthCare Global, Bangalore Institute of Oncology, Bengaluru, India ; 2 Department of Radiation Oncology, Government Medical College-Haldwani, Nainital, Uttarakhand, India
| |
Collapse
|
166
|
Is a modification of the radiotherapeutic target volume necessary after resection of glioblastomas with opening of the ventricles? J Neurooncol 2016; 127:581-7. [PMID: 26830090 DOI: 10.1007/s11060-016-2068-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
Abstract
Extensive surgical resection of centrally localized, newly diagnosed glioblastoma can lead to opening ventricles and therefore carries a potential risk of spreading tumor cells into the cebrospinal fluid. However, whether ventricle opening consequently implies a greater frequency of distant tumor recurrence after radiation therapy-and, therefore, reduced survival-remains unknown. Therefore, is an adaption of target volumes in radiation therapy necessary to account for a potential tumor cell spread into the ventricle system? The present study assessed the resection statuses of 311 primary-glioblastoma patients who underwent radiation therapy. Overall, in 78 cases (25.1 %) the ventricle system was opened during surgical resection. This study assessed the connection between ventricle opening and progression-free survival, overall survival, and distant and multifocal recurrence. OS rates of patients that underwent gross total resection were superior to patients with subtotal resection (p = 0.002). PFS (p = 0.53) and OS (p = 0.18) did not differ due to ventricle opening during surgical resection. However, in a subsample of STR cases increased survival was observed when the ventricle system was opened (16.8 vs. 14.3 months; p = 0.03). The occurrence of distant (p = 0.75) and contralateral recurrence (p = 0.87) was not influenced by ventricle opening. Newly diagnosed glioblastoma patients whose ventricle systems were opened during microsurgical resection did not experience decreased survival or show increased likelihoods of distant and contralateral progressions following radiation therapy. In short, patients profit from surgical resections that are as extensive as reasonably possible, even if this entails ventricle opening. Thus, additional inclusion of the ventricles in the radiation therapy target volume after ventricle opening does not seem to be indicated.
Collapse
|
167
|
Hau E, Shen H, Clark C, Graham PH, Koh ES, L McDonald K. The evolving roles and controversies of radiotherapy in the treatment of glioblastoma. J Med Radiat Sci 2016; 63:114-23. [PMID: 27350891 PMCID: PMC4914819 DOI: 10.1002/jmrs.149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/25/2015] [Accepted: 10/06/2015] [Indexed: 12/22/2022] Open
Abstract
Numerous randomised controlled trials have demonstrated the benefit of radiation therapy in patients with newly diagnosed glioblastoma and it has been the cornerstone of treatment for decades. The aims of this review are to (1) Briefly outline the historical studies which resulted in radiation being the current standard of care as used in the Stupp et al. trial (2) Discuss the evolving role of radiation therapy in the management of elderly patients (3) Review the current evidence and ongoing studies of radiation use in the recurrent/salvage setting and (4) Discuss the continuing controversies of volume delineation in the planning of radiation delivery.
Collapse
Affiliation(s)
- Eric Hau
- Cure Brain Cancer Foundation Biomarkers and Translational Research Laboratory Prince of Wales Clinical School UNSW Sydney New South Wales Australia; Cancer Care Centre St George Hospital Sydney New South Wales Australia
| | - Han Shen
- Targeted Therapies Group Children's Cancer Institute Australia Lowy Cancer Research Centre Sydney New South Wales Australia
| | - Catherine Clark
- Cancer Care Centre St George Hospital Sydney New South Wales Australia
| | - Peter H Graham
- St George Cancer Care Centre Kogarah Sydney New South Wales Australia
| | - Eng-Siew Koh
- Liverpool Cancer Care Centre Liverpool Hospital Sydney New South Wales Australia; University of New South Wales Sydney New South Wales Australia
| | - Kerrie L McDonald
- Cure Brain Cancer Foundation Biomarkers and Translational Research Laboratory Prince of Wales Clinical School UNSW Sydney New South Wales Australia
| |
Collapse
|
168
|
Niyazi M, Brada M, Chalmers AJ, Combs SE, Erridge SC, Fiorentino A, Grosu AL, Lagerwaard FJ, Minniti G, Mirimanoff RO, Ricardi U, Short SC, Weber DC, Belka C. ESTRO-ACROP guideline “target delineation of glioblastomas”. Radiother Oncol 2016; 118:35-42. [DOI: 10.1016/j.radonc.2015.12.003] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/13/2015] [Indexed: 11/26/2022]
|
169
|
Dev A, Srivastava AK, Choudhury SR, Karmakar S. Nano-curcumin influences blue light photodynamic therapy for restraining glioblastoma stem cells growth. RSC Adv 2016. [DOI: 10.1039/c6ra20269a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nano-curcumin based blue light photodynamic therapy has therapeutic potential in the arsenal of glioblastoma cancer stem cells recurrence.
Collapse
Affiliation(s)
- A. Dev
- Institute of Nano Science and Technology
- Mohali
- India
| | | | | | - S. Karmakar
- Institute of Nano Science and Technology
- Mohali
- India
| |
Collapse
|
170
|
Abstract
Although resection remains the mainstay in the treatment of gliomas, microscopically complete resection of most central nervous system tumors remains challenging, and is, in fact, rarely accomplished. Considering their invasive nature, gross total resections to clearly negative margins often do or would require removal or transection of functional brain, with likely serious neurologic deficits. Consequently, radiotherapy has emerged as an indispensable component of therapy. It is delivered primarily by external-beam radiotherapy or brachytherapy techniques. Herein, we present the biologic principles, techniques, and applications of radiotherapy in glioma treatment today.
Collapse
Affiliation(s)
- James W Snider
- Department of Radiation Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Minesh Mehta
- Department of Radiation Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA.
| |
Collapse
|
171
|
Redmond KJ, Mehta M. Stereotactic Radiosurgery for Glioblastoma. Cureus 2015; 7:e413. [PMID: 26848407 PMCID: PMC4725736 DOI: 10.7759/cureus.413] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and one of the most aggressive of all human cancers. GBM tumors are highly infiltrative and relatively resistant to conventional therapies. Aggressive management of GBM using a combination of surgical resection, followed by fractionated radiotherapy and chemotherapy has been shown to improve overall survival; however, GBM tumors recur in the majority of patients and the disease is most often fatal. There is a need to develop new treatment regimens and technological innovations to improve the overall survival of GBM patients. The role of stereotactic radiosurgery (SRS) for the treatment of GBM has been explored and is controversial. SRS utilizes highly precise radiation techniques to allow dose escalation and delivery of ablative radiation doses to the tumor while minimizing dose to the adjacent normal structures. In some studies, SRS with concurrent chemotherapy has shown improved local control with acceptable toxicities in select GBM patients. However, because GBM is a highly infiltrative disease, skeptics argue that local therapies, such as SRS, do not improve overall survival. The purpose of this article is to review the literature regarding SRS in both newly diagnosed and recurrent GBM, to describe SRS techniques, potential eligible SRS candidates, and treatment-related toxicities. In addition, this article will propose promising areas for future research for SRS in the treatment of GBM.
Collapse
Affiliation(s)
- Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Minesh Mehta
- Department of Radiation Oncology, University of Maryland
| |
Collapse
|
172
|
Beccaria K, Canney M, Goldwirt L, Fernandez C, Piquet J, Perier MC, Lafon C, Chapelon JY, Carpentier A. Ultrasound-induced opening of the blood-brain barrier to enhance temozolomide and irinotecan delivery: an experimental study in rabbits. J Neurosurg 2015; 124:1602-10. [PMID: 26566207 DOI: 10.3171/2015.4.jns142893] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The blood-brain barrier (BBB) limits the intracerebral penetration of drugs and brain tumor treatment efficacy. The effect of ultrasound-induced BBB opening on the intracerebral concentration of temozolomide (TMZ) and irinotecan (CPT-11) was assessed. METHODS This study was performed using 34 healthy New Zealand rabbits. Half had unilateral BBB opening, and half served as controls. Sonications were performed by pulsing a 1.05-MHz planar ultrasound transducer with a duty cycle of 2.5% and an in situ acoustic pressure level of 0.6 MPa after injection of a microbubble ultrasound contrast agent. Drugs were injected either 5 minutes before (ChemoPreUS) or 15 minutes after (ChemoPostUS) the ultrasound sonication. The plasma and intracerebral concentrations of both drugs were quantified using ultra-performance liquid chromatography. RESULTS The mean intracerebral tissue-to-plasma drug concentration ratio in the control hemispheres was 34% for TMZ and 2% for CPT-11. After BBB opening, these values increased by up to 21% for TMZ and up to 178% for CPT-11. Intracerebral concentrations of drugs were enhanced in regions where the BBB was opened compared with the contralateral hemisphere (p < 0.01 and p < 0.0001 for CPT-11, p = 0.02 and p = 0.03 for TMZ, in ChemoPreUS and ChemoPostUS, respectively) and compared with the control group (p < 0.001 and p < 0.0001 for CPT-11, p < 0.01 and p = 0.02 for TMZ, in ChemoPreUS and ChemoPostUS, respectively). The intracerebral distribution of drugs was heterogeneous, depending on the distance from the ultrasound source. CONCLUSIONS Ultrasound-induced opening of the BBB significantly enhances the intracerebral concentration of both TMZ and CPT-11 in rabbits.
Collapse
Affiliation(s)
- Kevin Beccaria
- CarThera Research Team, Brain and Spine Institute, Paris;,Department of Neurosurgery, Assistance Publique-Hopitaux de Paris, Necker Enfants Malades Hospital, Paris
| | - Michael Canney
- CarThera Research Team, Brain and Spine Institute, Paris
| | - Lauriane Goldwirt
- Clinical Pharmacy Department, College of Pharmacy, Paris Sud University, Chatenay Malabry
| | - Christine Fernandez
- Clinical Pharmacy Department, College of Pharmacy, Paris Sud University, Chatenay Malabry
| | - Julie Piquet
- Laboratory of Biosurgical Research, University of Paris Descartes, Sorbonne Paris Cite, Paris
| | - Marie-Cécile Perier
- INSERM U970, Centre de recherche cardiovasculaire de Paris-Epidémiologie cardiovasculaire, Paris
| | | | | | - Alexandre Carpentier
- Assistance Publique-Hopitaux de Paris, Pitie Salpetriere Hospital, Department of Neurosurgery, Paris; and.,Paris 6 Sorbonne University, School of Medicine, Paris, France
| |
Collapse
|
173
|
Tryptophan PET predicts spatial and temporal patterns of post-treatment glioblastoma progression detected by contrast-enhanced MRI. J Neurooncol 2015; 126:317-25. [PMID: 26514361 DOI: 10.1007/s11060-015-1970-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 10/25/2015] [Indexed: 10/22/2022]
Abstract
Amino acid PET is increasingly utilized for the detection of recurrent gliomas. Increased amino acid uptake is often observed outside the contrast-enhancing brain tumor mass. In this study, we evaluated if non-enhancing PET+ regions could predict spatial and temporal patterns of subsequent MRI progression in previously treated glioblastomas. Twelve patients with a contrast-enhancing area suspicious for glioblastoma recurrence on MRI underwent PET scanning with the amino acid radiotracer alpha-[(11)C]-methyl-L-tryptophan (AMT). Brain regions showing increased AMT uptake in and outside the contrast-enhancing volume were objectively delineated to include high uptake consistent with glioma (as defined by previous studies). Volume and tracer uptake of such non-enhancing PET+ regions were compared to spatial patterns and timing of subsequent progression of the contrast-enhancing lesion, as defined by serial surveillance MRI. Non-enhancing PET+ volumes varied widely across patients and extended up to 24 mm from the edge of MRI contrast enhancement. In ten patients with clear progression of the contrast-enhancing lesion, the non-enhancing PET+ volumes predicted the location of new enhancement, which extended beyond the PET+ brain tissue in six. In two patients, with no PET+ area beyond the initial contrast enhancement, MRI remained stable. There was a negative correlation between AMT uptake in non-enhancing brain and time to subsequent progression (r = -0.77, p = 0.003). Amino acid PET imaging could complement MRI not only for detecting glioma recurrence but also predicting the location and timing of subsequent tumor progression. This could support decisions for surgical intervention or other targeted therapies for recurrent gliomas.
Collapse
|
174
|
Seddighi A, Esmaeil Akbari M, Seddighi AS, Rakhsha A, Vaezi M, Zohrevand AH. First Experience of Intraoperative Radiation Therapy in Cerebral High Grade Glioma in Iran: A Report of Three Cases and Literature Review. IRANIAN JOURNAL OF CANCER PREVENTION 2015; 8:e3795. [PMID: 26634108 PMCID: PMC4667239 DOI: 10.17795/ijcp-3795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/29/2015] [Indexed: 01/06/2023]
Abstract
Introduction: Among the high grade cerebral gliomas, Glioblastoma multiform for instance, would be the main pattern of local recurrence causes clinical deterioration and deaths. This has observed 2 - 3 cm upon the initial lesion. During the period of 2 - 4 weeks post-surgery, remaining tumor cells have re-grown until radiochemotherapy has initiated. So it has seemed clear that improved local control could hopefully translate into improved survival. As a matter of fact, mass reduction has insufficiently achieved in almost every case of GBM as that the tumor cell number has not fallen below a “threshold” that tumor control might achieve by the host immune system. Intraoperative Radiation therapy has been one of those add-on therapies, which has performed during or directly after resection and cleared the tumor cavity from microscopically remaining cells. Although IORT has presented a novel and feasible principle, the method faced a number of technical and geometrical errors and limitations, which has decreased its potential in the reports of previous studies. Examples could be mentioned as incomplete target volume coverage that seemed as the greatest influence on survival, due to irradiation with an inadequate electron cone size, due to angle errors, or inadequately low energies. In contrast to the previously used forward-beaming electron cones, spherical irradiation sources were specifically attractive in brain tumor IORT, even in post resection cavities with normal complex shapes. Case Presentation: We have been reporting 3 cases of high grade gliomas, one recurrent GBM, one primary glioma grade III, and the last one recurrent Rhabdoid GBM, which have been fulfilling our entrance criteria of IORT procedure, by using spherical applicators, which has been increasingly discussed in recent studies. Conclusions: It was the first experience of intraoperative radiation therapy for cerebral malignant tumours in Iran. Finally, we had a brief overview on the past and present IORT strategies in the treatment of GBM.
Collapse
Affiliation(s)
- Afsoun Seddighi
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Mohammad Esmaeil Akbari
- Cancer Research Centre (CRC), Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Amir Saied Seddighi
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Afshin Rakhsha
- Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Marjan Vaezi
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Amir Hossein Zohrevand
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
175
|
Xu YY, Gao P, Sun Y, Duan YR. Development of targeted therapies in treatment of glioblastoma. Cancer Biol Med 2015; 12:223-37. [PMID: 26487967 PMCID: PMC4607828 DOI: 10.7497/j.issn.2095-3941.2015.0020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a type of tumor that is highly lethal despite maximal therapy. Standard therapeutic approaches provide modest improvement in progression-free and overall survival, necessitating the investigation of novel therapies. Oncologic therapy has recently experienced a rapid evolution toward "targeted therapy", with drugs directed against specific targets which play essential roles in the proliferation, survival, and invasiveness of GBM cells, including numerous molecules involved in signal transduction pathways. Inhibitors of these molecules have already entered or are undergoing clinical trials. However, significant challenges in their development remain because several preclinical and clinical studies present conflicting results. In this article, we will provide an up-to-date review of the current targeted therapies in GBM.
Collapse
Affiliation(s)
- Yuan-Yuan Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Pei Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - You-Rong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| |
Collapse
|
176
|
Chen L, Chaichana KL, Kleinberg L, Ye X, Quinones-Hinojosa A, Redmond K. Glioblastoma recurrence patterns near neural stem cell regions. Radiother Oncol 2015; 116:294-300. [PMID: 26276527 DOI: 10.1016/j.radonc.2015.07.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 07/14/2015] [Accepted: 07/25/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE Glioblastoma (GBM) cancer stem cells and their neural stem cell counterparts are hypothesized to contribute to tumor progression. We examined whether GBM contrast enhancement contact with neurogenic regions (NR) affect recurrence patterns, as contrast enhancement reflects regions of blood-brain barrier breakdown. METHODS 102 patients with primary GBM, treated at Johns Hopkins Hospital between 2006 and 2009, were included. All patients underwent surgical resection followed by adjuvant IMRT (60 Gy/30 fractions) and concomitant temozolomide. Initial and recurrent tumor distance from the subventricular zone (SVZ) or subgranular zone (SGZ) was measured. Tumors were categorized as NR contacting or non-contacting. The chi-square test was used to analyze the association between tumor contact and recurrence pattern. RESULTS 49 of 102 (48.0%, 95% CI: 0.386-0.576) tumors contacted NRs at initial presentation, and, of these tumors, 49/49 (100%) contacted NRs at recurrence. Of 53 tumors that were initially non-contacting, 37/53 (69.8%, 95% CI: 0.565-0.804) recurred contacting NRs. In total, 86/102 (84.3%, 95% CI: 0.760-0.901) recurrent GBM contacted NRs compared with 49/102 (48%, 95% CI: 0.386-0.576) at initial presentation. Of the recurrent tumors that did not contact NRs, 16/53 (30.1%, 95% CI: 0.195-0.435) recurred medially toward NRs with a significant decrease in distance between tumor contrast enhancement and NRs. 16/49 (32.6%, 95% CI: 0.212-0.466) initially NR-contacting GBMs recurred out-of field while 7/53 (13.2%, 95% CI: 0.0655-0.248) initially non-contacting recurred out of the radiation treatment field (p=0.0315, Odds ratio: 3.19, 95% CI: 1.18-8.62). CONCLUSIONS GBM contrast-enhancing recurrence is significantly associated with proximity to NRs. NR-contacting initial tumors were more likely to recur out of radiation treatment fields.
Collapse
Affiliation(s)
- Linda Chen
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, United States
| | - Kaisorn L Chaichana
- Department of Neurosurgery and Oncology, The Johns Hopkins University, Baltimore, United States
| | - Lawrence Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, United States
| | - Xiaobu Ye
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, United States
| | - Alfredo Quinones-Hinojosa
- Department of Neurosurgery and Oncology, The Johns Hopkins University, Baltimore, United States; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, United States.
| | - Kristin Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, United States.
| |
Collapse
|
177
|
Kleinberg LR, Stieber V, Mikkelsen T, Judy K, Weingart J, Barnett G, Olson J, Desideri S, Ye X, Grossman S. Outcome of Adult Brain Tumor Consortium (ABTC) prospective dose-finding trials of I-125 balloon brachytherapy in high-grade gliomas: challenges in clinical trial design and technology development when MRI treatment effect and recurrence appear similar. ACTA ACUST UNITED AC 2015; 4:235-241. [PMID: 27695605 DOI: 10.1007/s13566-015-0210-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this study is to define the maximal safe radiation dose to guide further study of the GliaSite balloon brachytherapy (GSBT) system in untreated newly diagnosed glioblastoma (NEW-GBM) and recurrent high-grade glioma (REC-HGG). GBST is a balloon placed in the resection cavity and later filled through a subcutaneous port with liquid I-125 Iotrex, providing radiation doses that diminish uniformly with distance from the balloon surface. METHODS The Adult Brain Tumor Consortium initiated prospective dose-finding studies to determine maximum tolerated dose in NEW-GBM treated before standard RT or after surgery for REC-HGG. Patients were inevaluable if there was progression before the 90-day posttreatment toxicity evaluation point. RESULTS Ten NEW-GBM patients had the balloon placed, and 2/10 reached the 90 day timepoint. Five REC-HGG enrolled and two were assessable at the 90-day evaluation endpoint. Imaging progression occurred before 90-day evaluation in 7/12 treated patients. The trials were closed as too few patients were assessable to allow dose escalation, although no dose-limiting toxicities (DLTs) were observed. Median survival from treatment was 15.3 months (95 % CI 7.1-23.6) for NEW-GBM and 12.8 months (95 % CI 4.2-20.9) for REC-HGG. CONCLUSION These trials failed to determine a maximum tolerated dose (MTD) for further testing as early imaging changes, presumed to be progression, were common and interfered with the assessment of treatment-related toxicity. The survival outcomes in these and other related studies, although based on small populations, suggest that GSBT may be worthy of further study using clinical and survival endpoints, rather than standard imaging results. The implications for local therapy development are discussed.
Collapse
Affiliation(s)
- L R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Cancer Center, Johns Hopkins University, 401 North Broadway, Suite 1440, Baltimore, MD 21231, USA
| | - V Stieber
- Piedmont Radiation Oncology, Winston-Salem, NC, USA
| | | | - K Judy
- Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - J Weingart
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Cancer Center, Johns Hopkins University, 401 North Broadway, Suite 1440, Baltimore, MD 21231, USA
| | - G Barnett
- Cleveland Clinic, Cleveland, OH, USA
| | - J Olson
- Emory University, Atlanta, USA
| | - S Desideri
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Cancer Center, Johns Hopkins University, 401 North Broadway, Suite 1440, Baltimore, MD 21231, USA
| | - X Ye
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Cancer Center, Johns Hopkins University, 401 North Broadway, Suite 1440, Baltimore, MD 21231, USA
| | - S Grossman
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Cancer Center, Johns Hopkins University, 401 North Broadway, Suite 1440, Baltimore, MD 21231, USA
| |
Collapse
|
178
|
O-linked mannose β-1,2-N-acetylglucosaminyltransferase 1 correlated with the malignancy in glioma. J Craniofac Surg 2015; 24:1441-6. [PMID: 23851827 DOI: 10.1097/scs.0b013e318295378b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
O-linked mannose β-1,2-N-acetylglucosaminyltransferase 1 (PomGnT1) constitutes one third of the O-linked glycoproteins in brain tissue. However, its functions have been seldom investigated in brain cancers. In this study, immunohistochemistry was used for the detection of the PomGnT1 protein in 133 cases of glioma tissues. Spearman correlation analysis was used for the relationship between PomGnT1 staining and the glioma grade. Receiver operating characteristic curve was used to measure the diagnostic value of PomGnT1 protein in the degree of glioma malignance. We found that PomGnT1 expression was correlated with glioma grade, and it could be used as a marker to distinguish low- and high-grade gliomas. Stably transfected U87 cells were constructed to overexpress short hairpin RNA of PomGnT1. Immunofluorescence test detected that this protein also could restrain the generation of U87 cells' pseudopodia. Western blotting further showed that the PomGnT1 protein had an impact on the c-myc protein level. In conclusion, our data suggest that PomGnT1 protein was correlated with the malignance of glioma progression, the mechanism involved in glioma cell's pseudopodium formation, and the expression of c-myc protein.
Collapse
|
179
|
Genomic predictors of patterns of progression in glioblastoma and possible influences on radiation field design. J Neurooncol 2015; 124:447-53. [PMID: 26186902 DOI: 10.1007/s11060-015-1858-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/10/2015] [Indexed: 10/23/2022]
Abstract
We present a retrospective investigation of the role of genomics in the prediction of central versus marginal disease progression patterns for glioblastoma (GBM). Between August 2000 and May 2010, 41 patients with GBM and gene expression and methylation data available were treated with radiotherapy with or without concurrent temozolomide. Location of disease progression was categorized as within the high dose (60 Gy) or low dose (46 Gy) volume. Samples were grouped into previously described TCGA genomic groupings: Mesenchymal (m), classical (c), proneural (pn), and neural (n); and were also classified by MGMT-Methylation status and G-Cimp methylation phenotype. Genomic groupings and methylation status were investigated as a possible predictor of disease progression in the high dose region, progression in the low dose region, and time to progression. Based on TCGA category there was no difference in OS (p = 0.26), 60 Gy progression (PN: 71 %, N: 60 %, M: 89 %, C: 83 %, p = 0.19), 46 Gy progression (PN: 57 %, N: 40 %, M: 61 %,C: 50 %, p = 0.8) or time to progression (PN: 9 months, N:15 months, M: 9 months, C: 7 months, p = 0.58). MGMT methylation predicted for improved OS (median 25 vs. 13 months, p = 0.01), improved DFS (median 13 vs. 8 months, p = 0.007) and decreased 60 Gy (p = 0.003) and 46 Gy (p = 0.006) progression. There was a cohort of MGMT methylated patients with late marginal disease progression (4/22 patients, 18 %). TCGA groups demonstrated no difference in survival or progression patterns. MGMT methylation predicted for a statistically significant decrease in in-field and marginal disease progression. There was a cohort of MGMT methylated patients with late marginal progression. Validations of these findings would have implications that could affect radiation field size.
Collapse
|
180
|
Arshad A, Yang B, Bienemann AS, Barua NU, Wyatt MJ, Woolley M, Johnson DE, Edler KJ, Gill SS. Convection-Enhanced Delivery of Carboplatin PLGA Nanoparticles for the Treatment of Glioblastoma. PLoS One 2015; 10:e0132266. [PMID: 26186224 PMCID: PMC4506141 DOI: 10.1371/journal.pone.0132266] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/11/2015] [Indexed: 12/01/2022] Open
Abstract
We currently use Convection-Enhanced Delivery (CED) of the platinum-based drug, carboplatin as a novel treatment strategy for high grade glioblastoma in adults and children. Although initial results show promise, carboplatin is not specifically toxic to tumour cells and has been associated with neurotoxicity at high infused concentrations in pre-clinical studies. Our treatment strategy requires intermittent infusions due to rapid clearance of carboplatin from the brain. In this study, carboplatin was encapsulated in lactic acid-glycolic acid copolymer (PLGA) to develop a novel drug delivery system. Neuronal and tumour cytotoxicity were assessed in primary neuronal and glioblastoma cell cultures. Distribution, tissue clearance and toxicity of carboplatin nanoparticles following CED was assessed in rat and porcine models. Carboplatin nanoparticles conferred greater tumour cytotoxicity, reduced neuronal toxicity and prolonged tissue half-life. In conclusion, this drug delivery system has the potential to improve the prognosis for patients with glioblastomas.
Collapse
Affiliation(s)
- Azeem Arshad
- Functional Neurosurgery Research Group, School of Clinical Sciences, Bristol University, Bristol, United Kingdom
| | - Bin Yang
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Alison S. Bienemann
- Functional Neurosurgery Research Group, School of Clinical Sciences, Bristol University, Bristol, United Kingdom
| | - Neil U. Barua
- Functional Neurosurgery Research Group, School of Clinical Sciences, Bristol University, Bristol, United Kingdom
| | - Marcella J. Wyatt
- Functional Neurosurgery Research Group, School of Clinical Sciences, Bristol University, Bristol, United Kingdom
| | - Max Woolley
- Neurological Applications Division, Renishaw Plc, Gloucestershire, United Kingdom
| | - Dave E. Johnson
- Neurological Applications Division, Renishaw Plc, Gloucestershire, United Kingdom
| | - Karen J. Edler
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Steven S. Gill
- Functional Neurosurgery Research Group, School of Clinical Sciences, Bristol University, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
181
|
Moghaddasi L, Bezak E, Harriss-Phillips W. Evaluation of current clinical target volume definitions for glioblastoma using cell-based dosimetry stochastic methods. Br J Radiol 2015; 88:20150155. [PMID: 26140450 DOI: 10.1259/bjr.20150155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Determination of an optimal clinical target volume (CTV) is complex and remains uncertain. The aim of this study was to develop a glioblastoma multiforme (GBM) model to be used for evaluation of current CTV practices for external radiotherapy. METHODS The GBM model was structured as follows: (1) a Geant4 cellular model was developed to calculate the absorbed dose in individual cells represented by cubic voxels of 20 μm sides. The system was irradiated with opposing 6 MV X-ray beams. The beams encompassed planning target volumes corresponding to 2.0- and 2.5-cm CTV margins; (2) microscopic extension probability (MEP) models were developed using MATLAB(®) 2012a (MathWorks(®), Natick, MA), based on clinical studies reporting on GBM clonogenic spread; (3) the cellular dose distribution was convolved with the MEP models to evaluate cellular survival fractions (SFs) for both CTV margins. RESULTS A CTV margin of 2.5 cm, compared to a 2.0-cm CTV margin, resulted in a reduced total SF from 12.9% ± 0.9% to 3.6% ± 0.2%, 5.5% ± 0.4% to 1.2% ± 0.1% and 11.1% ± 0.7% to 3.0% ± 0.2% for circular, elliptical and irregular MEP distributions, respectively. CONCLUSION A Monte Carlo model was developed to quantitatively evaluate the impact of GBM CTV margins on total and penumbral SF. The results suggest that the reduction in total SF ranges from 3.5 to 5, when the CTV is extended by 0.5 cm. ADVANCES IN KNOWLEDGE The model provides a quantitative tool for evaluation of different CTV margins in terms of cell kill efficacy. Cellular platform of the tool allows future incorporation of cellular properties of GBM.
Collapse
Affiliation(s)
- L Moghaddasi
- 1 Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA, Australia.,2 School of Chemistry & Physics, University of Adelaide, Adelaide, SA, Australia
| | - E Bezak
- 2 School of Chemistry & Physics, University of Adelaide, Adelaide, SA, Australia.,3 School of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - W Harriss-Phillips
- 1 Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA, Australia.,2 School of Chemistry & Physics, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
182
|
Wee CW, Sung W, Kang HC, Cho KH, Han TJ, Jeong BK, Jeong JU, Kim H, Kim IA, Kim JH, Kim SH, Kim S, Lee DS, Lee MY, Lim DH, Park HL, Suh CO, Yoon SM, Kim IH. Evaluation of variability in target volume delineation for newly diagnosed glioblastoma: a multi-institutional study from the Korean Radiation Oncology Group. Radiat Oncol 2015; 10:137. [PMID: 26134973 PMCID: PMC4489390 DOI: 10.1186/s13014-015-0439-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/16/2015] [Indexed: 11/25/2022] Open
Abstract
Background This study aimed for a collaborative evaluation of variability in the target volumes for glioblastoma, determined and contoured by different radiotherapy (RT) facilities in Korea. Methods Fifteen panels of radiation oncologists from independent institutions contoured the gross target volumes (GTVs) and clinical target volumes (CTVs) for 3-dimensional conformal RT or intensity-modulated RT on each simulation CT images, after scrutinizing the enhanced T1-weighted and T2-weighted-fluid-attenuated inversion recovery MR images of 9 different cases of glioblastoma. Degrees of contouring agreement were analyzed by the kappa statistics. Using the algorithm of simultaneous truth and performance level estimation (STAPLE), GTVSTAPLE and CTVSTAPLE contours were derived. Results Contour agreement was moderate (mean kappa 0.58) among the GTVs and was substantial (mean kappa 0.65) among the CTVs. However, each panels’ GTVs and modification of CTVs regarding anatomical structures varied. Three-fourth of contoured panels’ CTVs encompassed the peritumoral areas of T2-high signal intensity (T2-HSI). Nine of nine GTVSTAPLE encompased the surgical cavity and the T1-enhanced lesions. Eight of nine CTVSTAPLE encompassed the peritumoral T2-HSI area. The median MARGIN90 and the median MARGIN95 were 1.4 cm and 1.5 cm, respectively. Conclusions Moderate to substantial agreement existed in target volumes for 3-dimensional or intensity-modulated RT determined by radiation oncologists in Korea. According to the estimated consensus contours, the initial CTV encompassed the GTV with margin less than 2.0 cm and the whole peritumoral areas of T2-HSI. The findings of our study propose the need for further studies and modified guidelines. Electronic supplementary material The online version of this article (doi:10.1186/s13014-015-0439-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chan Woo Wee
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea.
| | - Wonmo Sung
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.
| | - Hyun-Cheol Kang
- Dongnam Institute of Radiological and Medical Sciences, Busan, Korea.
| | - Kwan Ho Cho
- Research Institute and Hospital, National Cancer Center, Gyeonggi-do, Korea.
| | - Tae Jin Han
- Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea.
| | - Bae-Kwon Jeong
- Gyeongsang National University Hospital, Gyeongsangnam-do, Korea.
| | - Jae-Uk Jeong
- Chonnam National University Hwasun Hospital, Jeollanam-do, Korea.
| | - Haeyoung Kim
- Hallym University Dongtan Sacred Heart Hospital, Gyeonggi-do, Korea.
| | - In Ah Kim
- Seoul National University Bundang Hospital, Gyeonggi-do, Korea.
| | - Jin Hee Kim
- Keimyung University Dongsan Medical Center, Daegu, Korea.
| | - Sung Hwan Kim
- St. Vincent's Hospital, The Catholic University of Korea College of Medicine, Gyeonggi-do, Korea.
| | - Suzy Kim
- Seoul National University Boramae Medical Center, Seoul, Korea.
| | - Dong Soo Lee
- Uijeongbu St. Mary's Hospital, The Catholic University of Korea College of Medicine, Gyeonggi-do, Korea.
| | - Me Yeon Lee
- Hallym University Sacred Heart Hospital, Gyeonggi-do, Korea.
| | - Do Hoon Lim
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | | | - Chang-Ok Suh
- Yonsei University College of Medicine, Seoul, Korea.
| | - Sang Min Yoon
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Il Han Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea. .,Cancer Research Institute; Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 110-744, Korea.
| |
Collapse
|
183
|
Standardization and quality assurance of radiation therapy volumes for adults with high-grade gliomas. Semin Radiat Oncol 2015; 24:259-64. [PMID: 25219810 DOI: 10.1016/j.semradonc.2014.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Standard treatment for Glioblastoma Multiforme (GBM) consists of a combination of chemotherapy and radiation therapy followed by adjuvant chemotherapy. While the optimal dose of radiation therapy has been established, significant variability in volume of tissue irradiated exists. In this article we review the current guidelines, patterns of care, patterns of failure, imaging advances and toxicity related to radiation therapy volumes in the treatment of GBM.
Collapse
|
184
|
Abstract
In almost all patients, malignant glioma recurs following initial treatment with maximal safe resection, conformal radiotherapy, and temozolomide. This review describes the many options for treatment of recurrent malignant gliomas, including reoperation, alternating electric field therapy, chemotherapy, stereotactic radiotherapy or radiosurgery, or some combination of these modalities, presenting the evidence for each approach. No standard of care has been established, though the antiangiogenic agent, bevacizumab; stereotactic radiotherapy or radiosurgery; and, perhaps, combined treatment with these 2 modalities appear to offer modest benefits over other approaches. Clearly, randomized trials of these options would be advantageous, and novel, more efficacious approaches are urgently needed.
Collapse
Affiliation(s)
- John P Kirkpatrick
- Department of Radiation Oncology, Duke Cancer Institute, Durham, NC; Department of Surgery, Duke Cancer Institute, Durham, NC.
| | - John H Sampson
- Department of Radiation Oncology, Duke Cancer Institute, Durham, NC; Department of Surgery, Duke Cancer Institute, Durham, NC
| |
Collapse
|
185
|
Galle JO, McDonald MW, Simoneaux V, Buchsbaum JC. Reirradiation with Proton Therapy for Recurrent Gliomas. Int J Part Ther 2015. [DOI: 10.14338/theijpt-14-00029.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
186
|
Hasan S, Chen E, Lanciano R, Yang J, Hanlon A, Lamond J, Arrigo S, Ding W, Mikhail M, Ghaneie A, Brady L. Salvage Fractionated Stereotactic Radiotherapy with or without Chemotherapy and Immunotherapy for Recurrent Glioblastoma Multiforme: A Single Institution Experience. Front Oncol 2015; 5:106. [PMID: 26029663 PMCID: PMC4432688 DOI: 10.3389/fonc.2015.00106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/21/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The current standard of care for salvage treatment of glioblastoma multiforme (GBM) is gross total resection and adjuvant chemoradiation for operable patients. Limited evidence exists to suggest that any particular treatment modality improves survival for recurrent GBM, especially if inoperable. We report our experience with fractionated stereotactic radiotherapy (fSRT) with and without chemo/immunotherapy, identifying prognostic factors associated with prolonged survival. METHODS From 2007 to 2014, 19 patients between 29 and 78 years old (median 55) with recurrent GBM following resection and chemoradiation for their initial tumor, received 18-35 Gy (median 25) in three to five fractions via CyberKnife fSRT. Clinical target volume (CTV) ranged from 0.9 to 152 cc. Sixteen patients received adjuvant systemic therapy with bevacizumab (BEV), temozolomide (TMZ), anti-epidermal growth factor receptor (125)I-mAb 425, or some combination thereof. RESULTS The median overall survival (OS) from date of recurrence was 8 months (2.5-61) and 5.3 months (0.6-58) from the end of fSRT. The OS at 6 and 12 months was 47 and 32%, respectively. Three of 19 patients were alive at the time of this review at 20, 49, and 58 months from completion of fSRT. Hazard ratios for survival indicated that patients with a frontal lobe tumor, adjuvant treatment with either BEV or TMZ, time to first recurrence >16 months, CTV <36 cc, recursive partitioning analysis <5, and Eastern Cooperative Oncology Group performance status <2 were all associated with improved survival (P < 0.05). There was no evidence of radionecrosis for any patient. CONCLUSION Radiation Therapy Oncology Group (RTOG) 1205 will establish the role of re-irradiation for recurrent GBM, however our study suggests that CyberKnife with chemotherapy can be safely delivered, and is most effective in patients with smaller frontal lobe tumors, good performance status, or long interval from diagnosis.
Collapse
Affiliation(s)
- Shaakir Hasan
- Philadelphia CyberKnife/Crozer Keystone Healthcare System , Philadelphia, PA , USA
| | - Eda Chen
- Philadelphia CyberKnife/Crozer Keystone Healthcare System , Philadelphia, PA , USA
| | - Rachelle Lanciano
- Philadelphia CyberKnife/Crozer Keystone Healthcare System , Philadelphia, PA , USA ; School of Medicine, Drexel University , Philadelphia, PA , USA
| | - Jun Yang
- Philadelphia CyberKnife/Crozer Keystone Healthcare System , Philadelphia, PA , USA ; School of Medicine, Drexel University , Philadelphia, PA , USA
| | - Alex Hanlon
- Philadelphia CyberKnife/Crozer Keystone Healthcare System , Philadelphia, PA , USA ; School of Nursing, University of Pennsylvania , Philadelphia, PA , USA
| | - John Lamond
- Philadelphia CyberKnife/Crozer Keystone Healthcare System , Philadelphia, PA , USA ; School of Medicine, Drexel University , Philadelphia, PA , USA
| | - Stephen Arrigo
- Philadelphia CyberKnife/Crozer Keystone Healthcare System , Philadelphia, PA , USA ; School of Medicine, Drexel University , Philadelphia, PA , USA
| | - William Ding
- Philadelphia CyberKnife/Crozer Keystone Healthcare System , Philadelphia, PA , USA ; School of Medicine, Drexel University , Philadelphia, PA , USA
| | - Michael Mikhail
- Philadelphia CyberKnife/Crozer Keystone Healthcare System , Philadelphia, PA , USA
| | - Arezoo Ghaneie
- Philadelphia CyberKnife/Crozer Keystone Healthcare System , Philadelphia, PA , USA
| | - Luther Brady
- Philadelphia CyberKnife/Crozer Keystone Healthcare System , Philadelphia, PA , USA ; School of Medicine, Drexel University , Philadelphia, PA , USA
| |
Collapse
|
187
|
Quirk BJ, Brandal G, Donlon S, Vera JC, Mang TS, Foy AB, Lew SM, Girotti AW, Jogal S, LaViolette PS, Connelly JM, Whelan HT. Photodynamic therapy (PDT) for malignant brain tumors--where do we stand? Photodiagnosis Photodyn Ther 2015; 12:530-44. [PMID: 25960361 DOI: 10.1016/j.pdpdt.2015.04.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 11/16/2022]
Abstract
INTRODUCTION What is the current status of photodynamic therapy (PDT) with regard to treating malignant brain tumors? Despite several decades of effort, PDT has yet to achieve standard of care. PURPOSE The questions we wish to answer are: where are we clinically with PDT, why is it not standard of care, and what is being done in clinical trials to get us there. METHOD Rather than a meta-analysis or comprehensive review, our review focuses on who the major research groups are, what their approaches to the problem are, and how their results compare to standard of care. Secondary questions include what the effective depth of light penetration is, and how deep can we expect to kill tumor cells. CURRENT RESULTS A measurable degree of necrosis is seen to a depth of about 5mm. Cavitary PDT with hematoporphyrin derivative (HpD) results are encouraging, but need an adequate Phase III trial. Talaporfin with cavitary light application appears promising, although only a small case series has been reported. Foscan for fluorescence guided resection (FGR) plus intraoperative cavitary PDT results were improved over controls, but are poor compared to other groups. 5-Aminolevulinic acid-FGR plus postop cavitary HpD PDT show improvement over controls, but the comparison to standard of care is still poor. CONCLUSION Continued research in PDT will determine whether the advances shown will mitigate morbidity and mortality, but certainly the potential for this modality to revolutionize the treatment of brain tumors remains. The various uses for PDT in clinical practice should be pursued.
Collapse
Affiliation(s)
- Brendan J Quirk
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Garth Brandal
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Steven Donlon
- Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Thomas S Mang
- Department of Oral and Maxillofacial Surgery, University at Buffalo, Buffalo, NY, United States
| | - Andrew B Foy
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sean M Lew
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sachin Jogal
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Peter S LaViolette
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer M Connelly
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Harry T Whelan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
188
|
Combining immunotherapy with radiation for the treatment of glioblastoma. J Neurooncol 2015; 123:459-64. [PMID: 25877468 DOI: 10.1007/s11060-015-1762-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/28/2015] [Indexed: 01/09/2023]
Abstract
Glioblastoma is a devastating cancer with universally poor outcomes in spite of current standard multimodal therapy. Immunotherapy is an attractive new treatment modality given its potential for exquisite specificity and its favorable side effect profile; however, clinical trials of immunotherapy in GBM have thus far shown modest benefit. Optimally combining radiation with immunotherapy may be the key to unlocking the potential of both therapies given the evidence that radiation can enhance anti-tumor immunity. Here we review this evidence and discuss considerations for combined therapy.
Collapse
|
189
|
Bir SC, Connor DE, Ambekar S, Wilden JA, Nanda A. Factors predictive of improved overall survival following stereotactic radiosurgery for recurrent glioblastoma. Neurosurg Rev 2015; 38:705-13. [PMID: 25864406 DOI: 10.1007/s10143-015-0632-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 01/23/2015] [Accepted: 01/25/2015] [Indexed: 10/23/2022]
Abstract
The currently accepted standard of care for primary glioblastoma (GBM) consists of maximal surgical resection followed by fractionated external beam radiotherapy (EBRT) with concomitant temozolomide chemotherapy. The role of stereotactic radiosurgery (SRS) in the treatment of GBM is not well defined, but SRS has typically been applied as a salvage therapy for GBM recurrence. This paper reviews our single institution experience using gamma knife radiosurgery (GKRS) for the treatment of GBM. Thirty-six patients treated with GKRS for pathologically proven GBM at LSU Health in Shreveport from February 2000 to December 2013 were identified and analyzed. Patient characteristics, treatment variables, and survival were correlated. Seven patients received GKRS in the immediate postoperative period for an average tumor volume of 10.9 cm(3), and 29 patients were treated for a recurrent average tumor volume of 11.4 cm(3) with a prescribed dose ranging from 10 to 20 Gy at the 50 % isodose line. The median overall survival was significantly higher in recurrence group compared to up-front group [7.9 months (0.77-32.1 months) vs. 3.5 months (range 0.23-11.7 months) respectively, (p = 0.018)]. The predictive factors for improved survival in the patients with GBM were as follows: Karnofsky performance scale (KPS) > 70 (p = 0.026), age ≤ 50 years (p = 0.006), absence of neurodeficits (p = 0.01), and initial postoperative treatment with EBRT (p = 0.042). Adjuvant therapy with GKRS following GBM recurrence demonstrates statistical superiority over immediate postoperative boost therapy.
Collapse
Affiliation(s)
- Shyamal C Bir
- Department of Neurosurgery, LSU Health-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA
| | | | | | | | | |
Collapse
|
190
|
Can Elderly Patients With Newly Diagnosed Glioblastoma be Enrolled in Radiochemotherapy Trials? Am J Clin Oncol 2015; 38:23-7. [DOI: 10.1097/coc.0b013e3182868ea2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
191
|
Niranjan A, Kano H, Iyer A, Kondziolka D, Flickinger JC, Lunsford LD. Role of adjuvant or salvage radiosurgery in the management of unresected residual or progressive glioblastoma multiforme in the pre-bevacizumab era. J Neurosurg 2015; 122:757-65. [PMID: 25594327 DOI: 10.3171/2014.11.jns13295] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT After initial standard of care management of glioblastoma multiforme (GBM), relatively few proven options remain for patients with unresected progressive tumor. Numerous reports describe the value of radiosurgery, yet this modality appears to remain underutilized. The authors analyzed the outcomes of early adjuvant stereotactic radiosurgery (SRS) for unresected tumor or later salvage SRS for progressive GBM. Radiosurgery was performed as part of the multimodality management and was combined with other therapies. Patients continued to receive additional chemotherapy after SRS and prior to progression being documented. In this retrospective analysis, the authors evaluated factors that affected patient overall survival (OS) and progression-free survival. METHODS Between 1987 and 2008 the authors performed Gamma Knife SRS in 297 patients with histologically proven GBMs. All patients had received prior fractionated radiation therapy, and 66% had undergone one or more chemotherapy regimens. Ninety-six patients with deep-seated unresectable GBMs underwent biopsy only. Of those in whom excision had been possible, resection was considered to be gross total in 68 and subtotal in 133. The median patient age was 58 years (range 23-89 years) and the median tumor volume was 14 cm(3) (range 0.26-84.2 cm(3)). The median prescription dose delivered to the imaging-defined tumor margin was 15 Gy (range 9-25 Gy). The median follow-up duration was 8.6 months (range 1.1-173 months). Cox regression models were used to analyze survival outcomes. Variables examined included age, residual versus recurrent tumor, prior chemotherapy, time to first recurrence, SRS dose, and gross tumor volume. RESULTS The median survival times after radiosurgery and after diagnosis were 9.03 and 18.1 months, respectively. The 1-year and 2-year OS after SRS were 37.9% and 16.7%, respectively. The 1-year and 2-year OS after diagnosis were 76.2% and 30.8%, respectively. Using multivariate analysis, factors associated with improved OS after diagnosis were younger age (< 60 years) at diagnosis (p < 0.0001), tumor volume < 14 cm(3) (p < 0.001), use of prior chemotherapy (p = 0.001), and radiosurgery at the time of recurrence (p < 0.0001). Multivariate analysis showed that younger age (p < 0.0001) and smaller tumor volume (< 14 cm(3)) (p = 0.001) were significantly associated with increased OS after SRS. Adverse radiation effects were seen in 69 patients (23%). Fifty-eight patients (19.5%) underwent additional resection after SRS. The median survivals after diagnosis for recursive partitioning analysis Classes III, IV and V+VI were 31.6, 20.8, and 16.7 months, respectively. CONCLUSIONS In this analysis 30% of a heterogeneous cohort of GBM patients eligible for SRS had an OS of 2 years. Radiosurgery at the time of tumor progression was associated with a median survival of 21.8 months. The role of radiosurgery for GBMs remains controversial. The findings in this study support the need for a funded and appropriately designed clinical trial that will provide a higher level of evidence regarding the future role of SRS for glioblastoma patients in whom disease has progressed despite standard management.
Collapse
|
192
|
Radiation therapy for glioma stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:85-110. [PMID: 25895709 DOI: 10.1007/978-3-319-16537-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Radiation therapy is the most effective adjuvant treatment modality for virtually all patients with high-grade glioma. Its ability to improve patient survival has been recognized for decades. Cancer stem cells provide new insights into how tumor biology is affected by radiation and the role that this cell population can play in disease recurrence. Glioma stem cells possess a variety of intracellular mechanisms to resist and even flourish in spite of radiation, and their proliferation and maintenance appear tied to supportive stimuli from the tumor microenvironment. This chapter reviews the basis for our current use of radiation to treat high-grade gliomas, and addresses this model in the context of therapeutically resistant stem cells. We discuss the available evidence highlighting current clinical efforts to improve radiosensitivity, and newer targets worthy of further development.
Collapse
|
193
|
Abstract
Surgical resection, with the goal of maximal tumor removal, is now standard of care for the overwhelming majority of newly diagnosed gliomas. In order to achieve this goal while minimizing the risk of postoperative neurologic deficits, intraoperative brain mapping remains the gold standard. Recent advances in technical aspects of preoperative and intraoperative brain mapping, as well as our understanding of the functional anatomy of the human brain with respect to language, movement, sensation, and cognition, particularly at the subcortical level, have improved our ability to safely perform aggressive resective surgeries in eloquent areas. In this chapter, the functional anatomy of the human brain relevant to intrinsic tumor resection is reviewed. In addition, general principles governing surgical management of patients are highlighted, with a particular emphasis on awake brain mapping.
Collapse
Affiliation(s)
- Matthew C Tate
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 North Saint Clair Street Suite 2210, 60611, Chicago, IL, USA,
| |
Collapse
|
194
|
Giordano FA, Brehmer S, Abo-Madyan Y, Welzel G, Sperk E, Keller A, Schneider F, Clausen S, Herskind C, Schmiedek P, Wenz F. INTRAGO: intraoperative radiotherapy in glioblastoma multiforme—a phase I/II dose escalation study. BMC Cancer 2014; 14:992. [PMID: 25535398 PMCID: PMC4364103 DOI: 10.1186/1471-2407-14-992] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/16/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most frequent primary malignant brain tumor in adults. Despite multimodal therapies, almost all GBM recur within a narrow margin around the initial resected lesion. Thus, novel therapeutic intensification strategies must target both, the population of dispersed tumor cells around the cavity and the postoperative microenvironment. Intraoperative radiotherapy (IORT) is a pragmatic and effective approach to sterilize the margins from persistent tumor cells, abrogate post-injury proliferative stimuli and to bridge the therapeutic gap between surgery and radiochemotherapy. Therefore, we have set up INTRAGO, a phase I/II dose-escalation study to evaluate the safety and tolerability of IORT added to standard therapy in newly diagnosed GBM. In contrast to previous approaches, the study involves the application of isotropic low-energy (kV) x-rays delivered by spherical applicators, providing optimal irradiation properties to the resection cavity. METHODS/DESIGN INTRAGO includes patients aged 50 years or older with a Karnofsky performance status of at least 50% and a histologically confirmed (frozen sections) supratentorial GBM. Safety and tolerability (i.e., the maximum tolerated dose, MTD) will be assessed using a classical 3 + 3 dose-escalation design. Dose-limiting toxicities (DLT) are wound healing deficits or infections requiring surgical intervention, IORT-related cerebral bleeding or ischemia, symptomatic brain necrosis requiring surgical intervention and early termination of external beam radiotherapy (before the envisaged dose of 60 Gy) due to radiotoxicity. Secondary end points are progression-free and overall survival. TRIAL REGISTRATION The study is registered with clinicaltrials.gov, number: NCT02104882 (Registration Date: 03/26/2014).
Collapse
Affiliation(s)
- Frank A Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Kim HR, Kim SH, Lee JI, Seol HJ, Nam DH, Kim ST, Park K, Kim JH, Kong DS. Outcome of radiosurgery for recurrent malignant gliomas: assessment of treatment response using relative cerebral blood volume. J Neurooncol 2014; 121:311-8. [PMID: 25488072 DOI: 10.1007/s11060-014-1634-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 10/17/2014] [Indexed: 11/28/2022]
Abstract
Gamma knife radiosurgery (GKS) is efficacious for treating recurrent malignant gliomas as a salvage treatment. However, contrast enhancement alone on MR imaging remains difficult to determine the treatment response following GKS. The purpose of this study was to evaluate the radiosurgical effect for recurrent malignant gliomas and to clarify if relative cerebral blood volume (rCBV) derived from dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion MR imaging could represent the treatment response. Between March 2006 and December 2008, 38 patients underwent GKS for recurrent malignant gliomas. Before and after GKS, DSC perfusion MR imaging datasets were retrospectively reprocessed and regions of interest were drawn around the contrast-enhancing region targeted with GKS. DSC-perfusion MR scans were assessed at a regular interval of two months. Following GKS for the recurrent lesions, MR images showed response (stable disease or partial response) in 26 of 38 patients (68.4 %) at post-GKS 2 months and 18 of 38 patients (47.3 %) at post-GKS 4 months. Initial mean rCBV value was 2.552 (0.586-6.178) at the pre-GKS MRI. In the response group, mean rCBV value was significantly decreased (P < 0.05) at the follow up of 2 and 4 months. However, in the treatment-failure group, mean rCBV value had no significant change. We suggest that GKS is an alternative treatment choice for the recurrent glioma. DSC-perfusion MR images are helpful to predict the treatment response after GKS.
Collapse
Affiliation(s)
- Hong Rye Kim
- Department of Neurosurgery, Konyang University Hospital, Konyang University School of Medicine, Daejeon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Dehdashti AR, Sharma S, Laperriere N, Bernstein M. Coincidence vs Cause: Cure in Three Glioblastoma Patients Treated with Brachytherapy. Can J Neurol Sci 2014; 34:339-42. [PMID: 17803034 DOI: 10.1017/s031716710000679x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background:Very long term survival after diagnosis of malignant glioma has been described in individual case reports. Survival of more than 10 years is extremely rare, especially when identified in 3 out of 71 patients assigned to one arm of a randomized controlled trial.Patients:Three patients survived 11, 16, and 18 years following the diagnosis of glioblastoma and treatment with surgery, conventional fractionated radiation, and high-activity iodine-125 boost brachytherapy as part of a randomized controlled trial.Conclusion:Despite this apparent cause and effect relationship, statistical analysis shows no relationship between these cures and treatment with brachytherapy. Cure of glioblastoma remains rare.
Collapse
Affiliation(s)
- Amir R Dehdashti
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
197
|
Nguyen D, Rwigema JCM, Yu VY, Kaprealian T, Kupelian P, Selch M, Lee P, Low DA, Sheng K. Feasibility of extreme dose escalation for glioblastoma multiforme using 4π radiotherapy. Radiat Oncol 2014; 9:239. [PMID: 25377756 PMCID: PMC4230756 DOI: 10.1186/s13014-014-0239-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/16/2014] [Indexed: 12/22/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) frequently recurs at the same location after radiotherapy. Further dose escalation using conventional methods is limited by normal tissue tolerance. 4π non-coplanar radiotherapy has recently emerged as a new potential method to deliver highly conformal radiation dose using the C-arm linacs. We aim to study the feasibility of very substantial GBM dose escalation while maintaining normal tissue tolerance using 4π. Methods 11 GBM patients previously treated with volumetric modulated arc therapy (VMAT/RapidArc) on the NovalisTx™ platform to a prescription dose of either 59.4 Gy or 60 Gy were included. All patients were replanned with 30 non-coplanar beams using a 4π radiotherapy platform, which inverse optimizes both beam angles and fluence maps. Four different prescriptions were used including original prescription dose and PTV (4πPTVPD), 100 Gy to the PTV and GTV (4πPTV100Gy), 100 Gy to the GTV only while maintaining prescription dose to the rest of the PTV (4πGTV100Gy), and a 5 mm margin expansion plan (4πPTVPD+5mm). OARs included in the study are the normal brain (brain – PTV), brainstem, chiasm, spinal cord, eyes, lenses, optical nerves, and cochleae. Results The 4π plans resulted in superior dose gradient indices, as indicated by >20% reduction in the R50, compared to the clinical plans. Among all of the 4π cases, when compared to the clinical plans, the maximum and mean doses were significantly reduced (p < 0.05) by a range of 47.01-98.82% and 51.87-99.47%, respectively, or unchanged (p > 0.05) for all of the non-brain OARs. Both the 4πPTVPD and 4π GTV100GYplans reduced the mean normal brain mean doses. Conclusions 4π non-coplanar radiotherapy substantially increases the dose gradient outside of the PTV and better spares critical organs. Dose escalation to 100 Gy to the GTV or additional margin expansion while meeting clinical critical organ dose constraints is feasible. 100 Gy to the PTV result in higher normal brain doses but may be tolerated when delivered in proportionally increased treatment fractions. Therefore, 4π non-coplanar radiotherapy on C-arm gantry may provide an accessible tool to improve the outcome of GBM radiotherapy through extreme dose escalation.
Collapse
Affiliation(s)
- Dan Nguyen
- Department of Radiation Oncology, University of California, Los Angeles, 200 Medical Plaza Way, Suite B265, Los Angeles, USA.
| | - Jean-Claude M Rwigema
- Department of Radiation Oncology, University of California, Los Angeles, 200 Medical Plaza Way, Suite B265, Los Angeles, USA.
| | - Victoria Y Yu
- Department of Radiation Oncology, University of California, Los Angeles, 200 Medical Plaza Way, Suite B265, Los Angeles, USA.
| | - Tania Kaprealian
- Department of Radiation Oncology, University of California, Los Angeles, 200 Medical Plaza Way, Suite B265, Los Angeles, USA.
| | - Patrick Kupelian
- Department of Radiation Oncology, University of California, Los Angeles, 200 Medical Plaza Way, Suite B265, Los Angeles, USA.
| | - Michael Selch
- Department of Radiation Oncology, University of California, Los Angeles, 200 Medical Plaza Way, Suite B265, Los Angeles, USA.
| | - Percy Lee
- Department of Radiation Oncology, University of California, Los Angeles, 200 Medical Plaza Way, Suite B265, Los Angeles, USA.
| | - Daniel A Low
- Department of Radiation Oncology, University of California, Los Angeles, 200 Medical Plaza Way, Suite B265, Los Angeles, USA.
| | - Ke Sheng
- Department of Radiation Oncology, University of California, Los Angeles, 200 Medical Plaza Way, Suite B265, Los Angeles, USA.
| |
Collapse
|
198
|
Sheehan JP, Lee CC. Stereotactic Radiosurgery for Recurrent High-Grade Gliomas. World Neurosurg 2014; 82:e593-5. [DOI: 10.1016/j.wneu.2014.06.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
|
199
|
Gwak HS, Park MJ, Park IC, Woo SH, Jin HO, Rhee CH, Jung HW. Tetraarsenic oxide-induced inhibition of malignant glioma cell invasion in vitro via a decrease in matrix metalloproteinase secretion and protein kinase B phosphorylation. J Neurosurg 2014; 121:1483-91. [PMID: 25303017 DOI: 10.3171/2014.8.jns131991] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Local invasiveness of malignant glioma is a major reason for the failure of current treatments including surgery and radiation therapy. Tetraarsenic oxide (As4O6 [TAO]) is a trivalent arsenic compound that has potential anticancer and antiangiogenic effects in selected cancer cell lines at a lower concentration than arsenic trioxide (As2O3 [ATO]), which has been more widely tested in vitro and in vivo. The authors tried to determine the cytotoxic concentration of TAO in malignant glioma cell lines and whether TAO would show anti-invasive effects under conditions independent of cell death or apoptosis. METHODS The human phosphatase and tensin homolog (PTEN)-deficient malignant glioma cell lines U87MG, U251MG, and U373MG together with PTEN-functional LN428 were cultured with a range of micromolar concentrations of TAO. The invasiveness of the glioma cell lines was analyzed. The effect of TAO on matrix metalloproteinase (MMP) secretion and membrane type 1 (MT1)-MMP expression was measured using gelatin zymography and Western blot, respectively. Akt, or protein kinase B, activity, which is a downstream effector of PTEN, was assessed with a kinase assay using glycogen synthesis kinase-3β (GSK-3β) as a substrate and Western blotting of phosphorylated Akt. RESULTS Tetraarsenic oxide inhibited 50% of glioma cell proliferation at 6.3-12.2 μM. Subsequent experiments were performed under the same TAO concentrations and exposure times, avoiding the direct tumoricidal effect of TAO, which was confirmed with apoptosis markers. An invasion assay revealed a dose-dependent decrease in invasiveness under the influence of TAO. Both the gelatinolytic activity of MMP-2 and MT1-MMP expression decreased in a dose-dependent manner in all cell lines, which was in accordance with the invasion assay results. The TAO decreased kinase activity of Akt on GSK-3β assay and inhibited Akt phosphorylation in a dose-dependent manner in all cell lines regardless of their PTEN status. CONCLUSIONS These results showed that TAO effectively inhibits proliferation of glioblastoma cell lines and also exerts an anti-invasive effect via decreased MMP-2 secretion, decreased MT1-MMP expression, and the inhibition of Akt phosphorylation under conditions devoid of cytotoxicity. Further investigations using an in vivo model are needed to evaluate the potential role of TAO as an anti-invasive agent.
Collapse
Affiliation(s)
- Ho-Shin Gwak
- Neuro-Oncology Clinic, National Cancer Center, Goyang
| | | | | | | | | | | | | |
Collapse
|
200
|
Kuramitsu S, Motomura K, Natsume A, Wakabayashi T. Double-edged Sword in the Placement of Carmustine (BCNU) Wafers along the Eloquent Area: A Case Report. NMC Case Rep J 2014; 2:40-45. [PMID: 28663961 PMCID: PMC5364933 DOI: 10.2176/nmccrj.2014-0025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/22/2014] [Indexed: 11/28/2022] Open
Abstract
Although direct Gliadel® wafer implantation into the resection cavity has been shown to significantly improve survival in patients with high-grade gliomas, several complications have been associated with the implantations of Gliadel wafers, including brain edema, healing delay, cerebral spinal fluid leak, intracranial infections, and cyst formation. The brain edema that is associated with Gliadel wafer implantation might result in neurological deficits and significant morbidities and mortalities. In particular, it is not clear if they should be placed in the eloquent areas, such as language areas, motor areas, and areas related to cognitive function, even if these areas contain a remnant tumor. Here, we present a case of profound brain edema along the pyramidal tract due to Gliadel wafer implantation, which resulted in severe neurological deficits. This treatment represents a double-edged sword due to the possibility of severe symptomatic brain edema along the eloquent area, even though Gliadel wafers might be effective in controlling local tumor growth. We should keep in mind that Gliadel wafer placement in eloquent areas may result in severe disadvantages to patients and a loss of their quality of life.
Collapse
Affiliation(s)
- Shunichiro Kuramitsu
- Department of Neurosurgery, Nagoya University School of Medicine, Showa-ku, Nagoya, Aichi
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University School of Medicine, Showa-ku, Nagoya, Aichi
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine, Showa-ku, Nagoya, Aichi
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University School of Medicine, Showa-ku, Nagoya, Aichi
| |
Collapse
|